
JP 4913353 B2 2012.4.11

10

20

(57)【特許請求の範囲】
【請求項１】
　監視対象ソフトウェアの正常動作をモデル化するソフトウェア動作モデル化装置と、前
記監視対象ソフトウェアの動作を監視するソフトウェア動作監視装置とを含むソフトウェ
ア動作監視システムであって、
　前記ソフトウェア動作モデル化装置は、
　前記監視対象ソフトウェアを複数回試行させて、前記監視対象ソフトウェアが発行した
インストラクションを取得するモデル化装置側インストラクション取得部と、
　前記モデル化装置側インストラクション取得部が取得したインストラクションを試行毎
に時系列で蓄積するモデル化装置側インストラクション蓄積部と、
　前記監視対象ソフトウェアの分岐命令による分岐フローに基づいて生成した木構造モデ
ルである第１の動作モデルを蓄積するモデル化装置側第１のモデル蓄積部と、
　前記インストラクションの時系列から求めた共起頻度を特徴量とする動作モデルである
第２の動作モデルを蓄積するモデル化装置側第２のモデル蓄積部と、
　今回読み込んだインストラクションの時系列を学習系列とし、前記学習系列と前記モデ
ル化装置側第１のモデル蓄積部に蓄積された動作モデルとを時系列で比較し、前記動作モ
デルと異なるインストラクションが学習系列上に現れた時点で、前記動作モデルに新たな
辺を追加することで木構造モデルを生成し、当該木構造モデルを新たな第１の動作モデル
として前記モデル化装置側第１のモデル蓄積部に蓄積する第１のモデル生成部と、
　前記学習系列から導出した共起頻度と、前記モデル化装置側第２のモデル蓄積部に蓄積

(2) JP 4913353 B2 2012.4.11

10

20

30

40

50

された前記第２の動作モデルとから新たな共起頻度を導出し、当該共起頻度を特徴量とす
る動作モデルを生成し、当該動作モデルを新たな第２の動作モデルとして前記モデル化装
置側第２のモデル蓄積部に蓄積する第２のモデル生成部と
を備え、
　前記ソフトウェア動作監視装置は、
　前記監視対象ソフトウェアが動作中に発行したインストラクションを取得する監視装置
側インストラクション取得部と、
　前記監視装置側インストラクション取得部が取得したインストラクションを時系列で蓄
積する監視装置側インストラクション蓄積部と、
　前記ソフトウェア動作モデル化装置によって生成された前記第１の動作モデルを蓄積す
る監視装置側第１のモデル蓄積部と、
　前記ソフトウェア動作モデル化装置によって生成された前記第２の動作モデルを蓄積す
る監視装置側第２のモデル蓄積部と、
　前記監視装置側第１のモデル蓄積部から前記第１の動作モデルを取得し、前記監視装置
側インストラクション取得部がインストラクションを取得する度に、前記第１の動作モデ
ルに基づいてトレースし、乖離した場合に異常であると判定する第１の検証部と、
　前記監視装置側インストラクション蓄積部が蓄積したインストラクションの時系列のう
ち、前記第１の検証部が乖離と判断した時点からの時系列を検証系列とし、前記監視装置
側第２のモデル蓄積部から前記第２の動作モデルを取得し、前記検証系列の共起頻度を導
出し、前記第２の動作モデルとの判別分析によって、乖離が検出された場合に異常である
と判定する第２の検証部と
を備えることを特徴とするソフトウェア動作監視システム。
【請求項２】
　前記検証系列は、前記監視対象ソフトウェアが終了するまでに発行されたインストラク
ションの時系列の部分列の集合であることを特徴とする請求項１に記載のソフトウェア動
作監視システム。
【請求項３】
　前記部分列は、前記インストラクションの時系列を前記監視対象ソフトウェアがシステ
ムコールを発行するタイミングで区切ることで生成されることを特徴とする請求項２に記
載のソフトウェア動作監視システム。
【請求項４】
　監視対象ソフトウェアの正常動作をモデル化するとともに、前記監視対象ソフトウェア
の動作を監視するソフトウェア動作監視システムであって、
　前記監視対象ソフトウェアを複数回試行させて前記監視対象ソフトウェアが発行したイ
ンストラクション、及び前記監視対象ソフトウェアが動作中に発行したインストラクショ
ンを取得するインストラクション取得部と、
　前記取得したインストラクションを時系列で蓄積するインストラクション蓄積部と、
　前記監視対象ソフトウェアを複数回試行させて前記監視対象ソフトウェアが発行したイ
ンストラクションのうち、前記監視対象ソフトウェアの分岐命令による分岐フローに基づ
いて生成した木構造モデルである第１の動作モデルを蓄積する第１のモデル蓄積部と、
　前記監視対象ソフトウェアを複数回試行させて前記監視対象ソフトウェアが発行した前
記インストラクションの時系列から求めた共起頻度を特徴量とする動作モデルである第２
の動作モデルを蓄積する第２のモデル蓄積部と、
　今回読み込んだインストラクションの時系列を学習系列とし、前記学習系列と前記第１
のモデル蓄積部に蓄積された動作モデルとを時系列で比較し、前記動作モデルと異なるイ
ンストラクションが学習系列上に現れた時点で、前記動作モデルに新たな辺を追加するこ
とで木構造モデルを生成し、当該木構造モデルを新たな第１の動作モデルとして前記第１
のモデル蓄積部に蓄積する第１のモデル生成部と、
　前記学習系列から導出した共起頻度と、前記第２のモデル蓄積部に蓄積された前記第２
の動作モデルとから新たな共起頻度を導出し、当該共起頻度を特徴量とする動作モデルを

(3) JP 4913353 B2 2012.4.11

10

20

30

40

50

生成し、当該動作モデルを新たな第２の動作モデルとして前記第２のモデル蓄積部に蓄積
する第２のモデル生成部と、
　前記第１のモデル蓄積部から前記第１の動作モデルを取得し、前記監視対象ソフトウェ
アが動作中に発行したインストラクションを前記インストラクション取得部が取得する度
に、前記第１の動作モデルに基づいてトレースし、乖離した場合に異常であると判定する
第１の検証部と、
　前記監視対象ソフトウェアが動作中に発行したインストラクションであって、前記イン
ストラクション蓄積部が蓄積したインストラクションの時系列のうち、前記第１の検証部
が乖離と判断した時点からの時系列を検証系列とし、前記第２のモデル蓄積部から前記第
２の動作モデルを取得し、前記検証系列の共起頻度を導出し、前記第２の動作モデルとの
判別分析によって、乖離が検出された場合に異常であると判定する第２の検証部と
を備えることを特徴とするソフトウェア動作監視システム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、ソフトウェア動作モデル化装置及びソフトウェア動作監視装置に関する。
【背景技術】
【０００２】
　ＰＣやワークステーション、サーバ、ルータ、携帯電話、ＰＤＡなど、すべての計算機
は外部もしくは内部からの攻撃にさらされている。代表的な攻撃は、計算機上で実行され
ているソフトウェアの脆弱性を踏み台にしたものである。攻撃者はソフトウェアの脆弱性
を利用した悪意のある実行コードを計算機に送り込み、実行中のプロセスの制御を奪い、
当該プロセスの権限を利用して不正操作をおこなう。ソフトウェアの脆弱性を利用した攻
撃の対策として、実行中ソフトウェアの異常を検知するシステムが開示されている（例え
ば、非特許文献１及び非特許文献２参照。）。
【０００３】
　非特許文献１に記載のシステムは、ソフトウェアのソースコードを予め取得しておき、
ソースコードを静的解析することによってソフトウェアの正常な動作、すなわち、正常動
作時に発行されるシステムコールの発行パターンを表すモデルを作成し、ソフトウェアの
実行系列がこのモデルに受理されるどうかを検査することによって、正常動作からの乖離
すなわち異常動作を検知するものである。モデルの生成はコンパイラによって行われ、モ
デルが決定性有限オートマトンで記述されることがこのシステムの特徴である。ソフトウ
ェアのソースコードには条件分岐や関数呼び出しなど非決定性を生む箇所が多数存在する
ため、静的解析からは非決定性オートマトンのクラスでしかモデルの生成ができないが、
関数ごとに生成されたオートマトンの直列接続および独自システムコールの追加および修
正を行うことで非決定性を削減している。又、関数ポインタやlongjmp命令、シグナルは
、性質上静的解析によってオートマトンに反映させることが不可能であるとされるが、監
視対象ソフトウェアを動作させながら、モデルへ動的に反映させることで対応しているこ
とも特徴である。
【０００４】
　非特許文献２に記載のシステムも、非特許文献１同様ソフトウェアの正常な動作、すな
わち、システムコールの発行パターンを表すモデルを作成するが、ソースコードを利用せ
ず、攻撃から隔離された環境下でソフトウェアを動作させ、そこで得られる入出力などの
ログを取得しモデルを学習するものである。システムコール、コールスタックの状況、プ
ログラムカウンタを入力系列とし、プログラムカウンタを状態、システムコール、コール
スタックの状況を辺とした非決定性有限オートマトンを学習により生成することが特徴で
ある。システムコールのプログラムカウンタは学習時と検証時に変わってしまう可能性が
ある（例：動的リンクライブラリ利用時）が、システムコールのプログラムカウンタを直
近の静的リンク関数のアドレスとすることで、検証時に、学習したオートマトンを利用で
きるようにしている。

(4) JP 4913353 B2 2012.4.11

10

20

30

40

50

【０００５】
　又、正常動作で発行されるインストラクション集合をあらかじめ設定しておき、コンピ
ュータの動作中に取得したインストラクションが、あらかじめ設定してあった正常動作で
発行されるインストラクション集合の中に含まれているか否かを検証するコンピュータ作
動状況監視装置も開示されている（例えば、特許文献１参照。）。これは、正常動作では
発行されるはずのないインストラクションが発行された場合は、異常であると判定するも
のである。
【特許文献１】特開平１１－２１９３０４号公報
【非特許文献１】L. Lamら “Automatic Extraction of Accurate Application-Specific
 Sandboxing Policy”, EUROCOM International Symposium on Recent Advances in Intr
usion Detection (RAID) 2004, September 2004
【非特許文献２】D.Gaoら “On Gray-Box Program Tracking for Anomaly Detection”,
13th USENIX Security Symposium, August 2004
【発明の開示】
【発明が解決しようとする課題】
【０００６】
　非特許文献１に記載のシステムでは、ソフトウェアのソースコードを予め取得しておか
なければならないが、ソフトウェア提供者はソフトウェアの不正な流用を防ぐためにソー
スコードを開示しないことが容易に考えられる。ソフトウェア提供者がソースコードを静
的に解析し生成したモデルを端末側に送ることも考えられるが、モデルはソースコードと
ほぼ同等の意味をもつため、ソースコードを開示したこととほぼ同じとなる。そのため、
ソフトウェア提供者はモデルの開示さえしないと考えられる。又、このシステムは条件分
岐や関数ポインタなど実行コードの制御が移り変わる箇所の検証を考慮しているが、条件
分岐がソースコードどおりに動作しているかを検証していない。
【０００７】
　又、非特許文献２に記載のシステムでは、システムコールのプログラムカウンタではな
い値をシステムコールのプログラムカウンタとしている。そのため、攻撃者はプログラム
カウンタの値を偽装し、モデルに受理される攻撃コードを生成することが可能である。攻
撃者がこの偽装を行うためには、モデルに受理されるプログラムカウンタの値を知る必要
がある。そのため、偽装から守るためにプログラムカウンタをランダム化し、プログラム
カウンタの値を秘匿化することが考えられるが、完全に秘匿化するためにはソースコード
が必要となってしまう。以上により、非特許文献１に記載のシステムと同様の理由で、適
用することが難しい。又、モデルがプログラムカウンタを状態とするオートマトンで記述
される。オートマトンは過去の検証結果を現在の検証に利用しない場合に効率的なモデル
であるが、プログラムカウンタを状態としているため、条件分岐などによって入り線が複
数の状態が存在することになり、条件分岐を正しく検証しようとすると、過去の条件分岐
の結果を保持する必要があるため、非効率である。
【０００８】
　更に、非特許文献１、非特許文献２に記載のシステムはともに、システムコールの発生
パターンをモデルとしているが、システムコールの発行は、ソフトウェアの動作の一部を
モデル化しているにすぎない。そのため、攻撃者はバッファーオーバーフローなどを用い
て、モデルに受理されるようにプログラムカウンタやリターンアドレスを偽装し、システ
ムコールの発行を行い、かつ悪意ある実行コードを実行することが可能であった（偽装攻
撃）。
【０００９】
　又、特許文献１に記載のコンピュータ作動状況監視装置は、システムコールよりも詳細
なデータであるインストラクションを利用した監視を行っているが、インストラクション
の時系列を考慮していないため、正常動作中に発行されるインストラクションのみを用い
て攻撃コードを記述することが容易にできてしまう。したがって、攻撃を確実に検知でき
るとはいえない。

(5) JP 4913353 B2 2012.4.11

10

20

30

40

50

【００１０】
　又、実際のソフトウェアの動作から発行されるシステムコールやインストラクションか
らモデルを学習する、非特許文献２、特許文献１に記載の技術は、監視対象ソフトウェア
の動作すべてを学習の段階で試行しなければならないが、データ領域に格納されたデータ
を含めて試行することや、すべての動作の組み合わせを試行することは一般的に不可能で
ある。そのため、ソフトウェアの動作検証時に、本来ソフトウェアの正常動作であるが未
学習であるため、正常動作ではないと判断せざるを得ない（誤検出）。
【００１１】
　そこで、本発明は、上記の課題に鑑み、偽装攻撃を防止するとともに、未学習動作が検
知された場合の善悪判断を行うことができるソフトウェア動作モデル化装置及びソフトウ
ェア動作監視装置を提供することを目的とする。
【課題を解決するための手段】
【００１２】
　上記目的を達成するため、本発明の第１の特徴は、監視対象ソフトウェアの正常動作を
モデル化するソフトウェア動作モデル化装置であって、監視対象ソフトウェアを複数回試
行させて、（ａ）監視対象ソフトウェアが動作中に発行したインストラクションを取得す
るインストラクション取得部と、（ｂ）取得したインストラクションを試行毎に時系列で
蓄積するインストラクション蓄積部と、（ｃ）インストラクション蓄積部に蓄積されたイ
ンストラクションの時系列を試行毎に読み込み、インストラクションの時系列から動作モ
デルを作成するモデル生成部と、（ｄ）モデル生成部が前回の読み込みまでで生成した監
視対象ソフトウェアの動作モデルを蓄積するモデル蓄積部とを備え、モデル蓄積部は、（
ｅ）モデル生成部が前回の読み込みまでで生成した木構造モデルを蓄積する第１のモデル
蓄積部と、（ｆ）モデル生成部が前回の読み込みまでで生成したインストラクション発行
の統計量を特徴量とする動作モデルを蓄積する第２のモデル蓄積部とを有し、モデル生成
部は、（ｇ）今回読み込んだインストラクションの時系列を学習系列とし、学習系列と第
１のモデル蓄積部に蓄積された動作モデルとから木構造モデルを生成する第１のモデル生
成部と、（ｈ）学習系列から統計量を導出し、更に、第２のモデル蓄積部に蓄積された動
作モデルを、統計量を用いて学習する第２のモデル生成部とを有するソフトウェア動作モ
デル化装置であることを要旨とする。
【００１３】
　第１の特徴に係るソフトウェア動作モデル化装置によると、システムコールよりも詳細
なデータであるインストラクションの時系列を利用した監視を行うことができ、偽装攻撃
をほぼ不可能にできるモデルを生成できる。かつ、木構造モデルの各点は、プログラムカ
ウンタなど入り線を複数にする情報を含めないため、過去の条件分岐の結果はモデルが保
持していることとなる。すなわち、条件分岐を正しく検証することが可能なモデルを生成
できる。
【００１４】
　又、木構造モデルだけでは未学習動作を異常動作として判定せざるを得ないが、インス
トラクション発行の統計量を特徴とした動作モデルを、木構造モデル生成と同時に生成す
ることができる。
【００１５】
　又、第１の特徴に係るソフトウェア動作モデル化装置において、第２のモデル蓄積部は
、モデル生成部が前回の読み込みまでで生成したインストラクションの共起頻度を特徴量
とする動作モデルを蓄積し、第２のモデル生成部は、学習系列から統計量を導出し、更に
、第２のモデル蓄積部に蓄積された動作モデルを、共起頻度を用いて学習してもよい。
【００１６】
　ソフトウェアの脆弱性をつき攻撃を行うためには、脆弱性をつく攻撃コードを注入する
必要があるが、この攻撃コードは監視対象プログラムにはそもそも存在しなかった可能性
が高く、統計的に正常挙動との乖離が考えられる。一方、本来正常動作であるが未学習で
ある挙動の場合は、正常動作である以上、監視対象プログラムに存在していたルーチンや

(6) JP 4913353 B2 2012.4.11

10

20

30

40

50

関数を呼び出すわけであり、統計的に正常挙動と近いものが得られる可能性が高いといえ
る。
【００１７】
　このソフトウェア動作モデル化装置によると、正常状態のインストラクションの共起頻
度を把握することができ、ソフトウェアの動作の変化をとらえることのできるモデルを生
成することができる。動作の検証をする際、オートマトンや木構造モデルによる検証では
未学習の動作を検知したら異常と判断せざるを得なかったが、インストラクションの共起
頻度を利用するため、統計的に善悪の判断をすることが可能である。
【００１８】
　又、第１の特徴に係るソフトウェア動作モデル化装置において、監視対象ソフトウェア
の異常動作が入力された場合、取得したインストラクションから、異常動作によって生じ
たインストラクションの時系列を分離する負例分離部を更に備え、負例分離部は、取得し
たインストラクションを、第１のモデル蓄積部に蓄積された動作モデル上でトレースし、
動作モデルと異なるインストラクションが現れた時点からのインストラクション時系列を
異常動作によって生じたインストラクション列である負例であると判断し、第２のモデル
生成部は、負例を用いて、異常動作のモデルを生成してもよい。
【００１９】
　統計的なモデルで判別分析を行う際、負例を学習することで、正確な判別を行うことが
可能である。しかし、負例を入力するためには、異常状態のソフトウェアの動作から、異
常動作によって生じたインストラクションを抽出する必要がある。
【００２０】
　このソフトウェア動作モデル化装置によると、正例との差分をとることができ、負例を
抽出することができる。
【００２１】
　又、第１の特徴に係るソフトウェア動作モデル化装置は、監視対象ソフトウェアを動作
させた計算機環境情報を、生成した動作モデルにメタ情報として付与するメタ情報付与部
を更に備えてもよい。
【００２２】
　インストラクションは計算機環境によって異なる。そのため、ソフトウェアの動作を検
証する際には、計算機環境が同一のモデルを選択する、もしくは、検証時の環境にモデル
上のインストラクションを変更する必要がある。
【００２３】
　このソフトウェア動作モデル化装置によると、動作モデルに計算機環境情報を付与する
ことができ、検証時におけるモデル選択や、インストラクションの変更を可能にする。
【００２４】
　本発明の第２の特徴は、監視対象ソフトウェアの動作を監視するソフトウェア動作監視
装置であって、（ａ）監視対象ソフトウェアが動作中に発行したインストラクションを取
得するインストラクション取得部と、（ｂ）取得したインストラクションを時系列で蓄積
するインストラクション蓄積部と、（ｃ）監視対象ソフトウェアの木構造モデルを蓄積し
た第１のモデル蓄積部から木構造モデルを取得し、インストラクション取得部がインスト
ラクションを取得する度に、木構造モデル上でトレースすることで、正常動作との乖離を
判定する第１の検証部と、（ｄ）インストラクション蓄積部が蓄積したインストラクショ
ンの時系列のうち、第１の検証部が乖離と判断した時点からの時系列を検証系列とし、監
視対象ソフトウェアのインストラクション発行の統計量を特徴量とした動作モデルを蓄積
した第２のモデル蓄積部から動作モデルを取得し、検証系列からの統計量を生成し、動作
モデルとの判別分析によって、正常動作との乖離を判定する第２の検証部とを備えるソフ
トウェア動作監視装置であることを要旨とする。
【００２５】
　第２の特徴に係るソフトウェア動作監視装置によると、インストラクションをひとつず
つ監視していくことで正常状態を確実に判別できる木構造モデルと、インストラクション

(7) JP 4913353 B2 2012.4.11

10

20

30

40

50

の時系列を監視することで未学習動作と異常動作を判別できる統計モデルとを利用するこ
とができる。 木構造モデルを利用して監視している間、統計モデルを生成、取得する必
要がなくなるため、効率がよい。また、未学習の動作の善悪判断が可能になる。
【００２６】
　又、第２の特徴に係るソフトウェア動作監視装置において、第２のモデル蓄積部は、監
視対象ソフトウェアが発行したインストラクションの共起頻度を特徴量とする動作モデル
を蓄積し、第２のモデル検証部は、検証系列からインストラクションの共起頻度を導出し
、動作モデルとの判別分析によって、正常動作との乖離を判定してもよい。
【００２７】
　このソフトウェア動作監視装置によると、動作の検証をする際、オートマトンや木構造
モデルによる検証では未学習の動作を検知したら異常と判断せざるを得なかったが、イン
ストラクションの共起頻度を利用した善悪判断をすることが可能となる。
【００２８】
　又、第２の特徴に係るソフトウェア動作監視装置において、インストラクション蓄積部
が蓄積したインストラクションの時系列を学習系列とし、第１のモデル蓄積部に蓄積され
た木構造モデルと、第２のモデル蓄積部に蓄積されたインストラクション発行の統計量を
特徴量とする動作モデルとを、学習系列を利用して学習するモデル学習部を更に備え、モ
デル学習部は、第２の検証部が、監視対象ソフトウェアの動作が正常であると判定した場
合のみ、モデルを学習してもよい。
【００２９】
　統計量を利用した動作モデルは、インストラクションの時系列から統計量を計算するコ
ストが発生するため、できる限り利用しないようにしたほうがよい。
【００３０】
　このソフトウェア動作監視装置によると、未学習動作を木構造モデルへ反映することが
できるため、次回の監視が効率よく行える。
【００３１】
　又、第２の特徴に係るソフトウェア動作監視装置において、検証系列は、監視対象ソフ
トウェアが終了するまでに発行されたインストラクションの時系列の部分列の集合であっ
てもよい。又、この部分列は、インストラクションの時系列を監視対象ソフトウェアがシ
ステムコールを発行するタイミングで区切ることで生成されてもよい。
【００３２】
　第２の検証部で統計量を計算することになるが、終了までのインストラクションの列を
統計量計算の対象とするよりも、サブシーケンスを対象としたほうが、異常検知を早く行
うことが可能であり、かつ、シーケンスに攻撃コードが含まれる場合には、統計量を計算
するシーケンスのうち攻撃コードが閉める割合が大きくなり、より正常動作との乖離を判
定しやすくなる。サブシーケンスの終了を決定するトリガは、あらかじめ与えた定数分の
インストラクションが発行される、システムコールが発行される、jmp、call、retなど現
在動作しているアドレスから離れたアドレスへ動作を遷移させるインストラクションが発
行される、などである。特にシステムコールを利用したものは、システムコールがどのよ
うなインストラクション発行を経て発行されたのかを検査するよいタイミングである。攻
撃者がプログラムの脆弱性をついてシステムになんらかの影響を与えるためには、システ
ムコールを発行しなければならないが、システムコールの発行タイミングでサブシーケン
スを区切ることで、脆弱性をつく攻撃コードを検知できる可能性が高くなる。
【発明の効果】
【００３３】
　本発明によると、偽装攻撃を防止するとともに、未学習動作が検知された場合の善悪判
断を行うことができるソフトウェア動作モデル化装置及びソフトウェア動作監視装置を提
供することができる。
【発明を実施するための最良の形態】
【００３４】

(8) JP 4913353 B2 2012.4.11

10

20

30

40

50

　次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、
同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なもの
であることに留意すべきである。
【００３５】
　＜第１の実施の形態＞
　第１の実施の形態に係るソフトウェア動作モデル化装置１００は、図１に示すように、
監視対象ソフトウェア１０を複数回試行させて、監視対象ソフトウェアの動作を表す動作
モデルを生成する。又、第１の実施の形態に係るソフトウェア動作監視装置２００は、図
２に示すように、ソフトウェア動作モデル化装置１００が生成した動作モデルを利用して
監視対象ソフトウェア１０の動作を監視し、異常動作がないかを検証する。
【００３６】
　（ソフトウェア動作モデル化装置）
　ソフトウェア動作モデル化装置１００は、図１に示すように、監視対象ソフトウェア１
０が動作中に発行するインストラクションを取得するインストラクション取得部１１０と
、取得したインストラクションの時系列を蓄積するインストラクション蓄積部１２０と、
インストラクション蓄積部１２０に蓄積されたインストラクション時系列を学習系列とみ
なし、動作モデルを生成するモデル生成部１３０と、モデル生成部１３０によって生成さ
れた木構造モデルを蓄積する第１のモデル蓄積部１４０と、モデル生成部１３０によって
生成された共起頻度モデルを蓄積する第２のモデル蓄積部１５０とを備える。モデル生成
部１３０は、インストラクション蓄積部１２０に蓄積されたインストラクション時系列よ
り木構造モデルを生成する第１のモデル生成部１３１と、共起頻度モデルを生成する第２
のモデル生成部１３２とを有する。
【００３７】
　インストラクション取得部１１０は、LinuxのPTRACEを利用するなどして監視対象ソフ
トウェアがインストラクションを発行するたびにインストラクションを取得する。
【００３８】
　インストラクション蓄積部１２０は、取得したインストラクションを試行毎に時系列で
蓄積する。
【００３９】
　第１のモデル生成部１３１は、動作モデルと学習系列とを時系列で比較し、動作モデル
と異なるインストラクションが学習系列上に現れた時点で、動作モデルに新たな辺を追加
することで木構造モデルを生成する。
【００４０】
　第１のモデル蓄積部１４０は、第１のモデル生成部１３１が前回の読み込みまでで生成
した木構造モデルを蓄積する。
【００４１】
　第２のモデル生成部１３２は、学習系列から共起頻度などの統計量を導出し、更に、第
２のモデル蓄積部に蓄積された動作モデルを、統計量を用いて学習する。
【００４２】
　第２のモデル蓄積部１５０は、第２のモデル生成部１３２が前回の読み込みまでで生成
したインストラクション発行の共起頻度などの統計量を特徴量とする動作モデルを蓄積す
る。
【００４３】
　メタ情報付与部１７０は、監視対象ソフトウェア１０を動作させた計算機環境情報を、
生成した動作モデルにメタ情報として付与する。
【００４４】
　図３に動作モデルのデータ構造の例を示す。動作モデルのデータ構造は、インストラク
ションテーブル３０、分岐先アドレステーブル４０から構成される。インストラクション
テーブル３０は、インストラクションの識別子を記録するインストラクション名列３１と
、分岐先アドレステーブルへのポインタを記録する分岐ポインタ列３２とから構成され、

(9) JP 4913353 B2 2012.4.11

10

20

30

40

50

インストラクションの時系列、すなわち、木構造の辺を表す。分岐先アドレステーブル４
０は、インストラクションテーブルのアドレスを格納する分岐先アドレス列４１の配列で
あり、分岐前のインストラクションと、分岐先の辺をリンクする。
【００４５】
　（ソフトウェア動作モデル化方法）
　次に、第１の実施の形態に係るソフトウェア動作モデル化方法について、図４～７を用
いて説明する。図４は、第１のモデル生成部１３１が、インストラクション蓄積部１２０
に蓄積されたインストラクション時系列より木構造モデルを生成するフローチャートの例
である。木構造モデル化には、モデル化関数、モデル化関数に呼ばれ初期モデルを生成す
る生成関数、モデル化関数に呼ばれ第１のモデル蓄積部１４０に蓄積された木構造モデル
を学習する学習関数が用いられる。
【００４６】
　まず、ステップＳ１０１において、モデル化関数は、第１のモデル蓄積部１４０に蓄積
された監視対象ソフトウェアの動作モデルを取得する。
【００４７】
　次に、ステップＳ１０２において、モデル取得に成功したか否か判断し、成功した場合
は、ステップＳ１０３へ進み、学習関数を呼び出し、失敗した場合は、ステップＳ１０４
へ進み、生成関数を呼び出す。ステップＳ１０３の学習処理と、ステップＳ１０４の生成
処理は、後に詳述する。
【００４８】
　次に、ステップＳ１０５において、生成もしくは学習された動作モデルを第１のモデル
蓄積部１４０へ蓄積する。この際、インストラクションを取得した際の環境情報（例えば
、インテルx86プロセッサ等のプロセッサ情報。プロセッサが変わればインストラクショ
ン名も変わる）をモデルへ付与することによって、次回、モデルを学習する際や、検証時
に、適したモデルを選択することができる。環境情報の取得とメタ情報の付与は、メタ情
報付与部１７０が行う。環境情報の取得は、環境情報を格納している箇所、たとえば、Li
nuxの場合、/proc/cpuinfoにはCPUの情報がおかれているが、/proc/cpuinfoなどを見るな
どして取得する。取得した情報はメタ情報としてモデルへ付与される。
【００４９】
　次に、図４のステップＳ１０４の詳細について、図５を用いて説明する。
【００５０】
　ステップＳ２０１において、生成関数は、インストラクション蓄積部１２０より監視対
象ソフトウェアのインストラクション時系列を取得する。
【００５１】
　次に、ステップＳ２０２において、取得に成功したか否かを判断し、取得に失敗した場
合、ステップＳ２０３へ進み、エラー処理を行い、関数を終了する。一方、成功した場合
、ステップＳ２０４へ進み、インストラクションを時系列の先頭から順に読み込む。
【００５２】
　次に、ステップＳ２０５において、インストラクション読み込みが終了した場合、生成
関数を終了する。
【００５３】
　一方、ステップＳ２０５において、インストラクション読み込みが終了していなければ
、ステップＳ２０６において、インストラクションテーブルを作成し、ステップＳ２０７
において、インストラクション名をインストラクション名列に、ヌルを分岐ポインタ列へ
格納する。そして、ステップＳ２０４へ戻り、次のインストラクションを取得する。
【００５４】
　次に、図４のステップＳ１０３の詳細について、図６を用いて説明する。
【００５５】
　まず、ステップＳ３０１において、学習関数は、インストラクション蓄積部１２０より
監視対象ソフトウェアのインストラクション時系列を取得する。

(10) JP 4913353 B2 2012.4.11

10

20

30

40

50

【００５６】
　ステップＳ３０２において、取得に成功したか否か判断し、取得に失敗した場合、ステ
ップＳ３０３へ進み、エラー処理を行い、関数を終了する。一方、成功した場合、ステッ
プＳ３０４へ進み、インストラクションを時系列の先頭から順に読み込む。
【００５７】
　次に、インストラクション読み込みが終了したか否か判断し、終了した場合、生成関数
を終了する。終了していなければ、ステップＳ３０６へ進み、木をトレースする。木トレ
ースについては、後に詳述する。
【００５８】
　次に、ステップＳ３０７において、トレースした結果、「読み込んだインストラクショ
ンは存在している」と判断すると、次のインストラクションを取得し、「新しい」と判断
した場合、ステップＳ３０８へ進む。そして、ステップＳ３０８において、インストラク
ションテーブルを生成し、ステップＳ３０９において、分岐先アドレステーブルを生成し
、新規に生成したインストラクションテーブルのアドレスを分岐先アドレス列に格納する
。そして、ステップＳ３１０において、インストラクション名をインストラクション名列
に、分岐先アドレステーブルのアドレスを分岐ポインタ列へ格納し、ステップＳ３０４へ
戻り、次のインストラクションを取得する。
【００５９】
　次に、図６のステップＳ３０６の詳細について、図７を用いて説明する。
【００６０】
　まず、ステップＳ４０１において、現在トレースしているアドレスを示す現在位置を利
用して、インストラクションテーブルの内容を確認する。
【００６１】
　次に、ステップＳ４０２において、インストラクション名に取得したインストラクショ
ンが登録されているかを確認し、登録されていれば（インストラクションが新規でない場
合）、ステップＳ４１０へ進み、存在していると判断する。そして、ステップＳ４０５に
おいて、現在位置を次のアドレスに更新し、木トレースを終了する。
【００６２】
　一方、ステップＳ４０２において、登録されていなければ、分岐ポインタの値を確認し
、ヌルであれば、ステップＳ４０４へ進み、新規インストラクションであると判断し、ス
テップＳ４０５において、現在位置を次のアドレスに更新し木トレースを終了する。
【００６３】
　ステップＳ４０３において、ヌルでなければ、ステップＳ４０６において、分岐ポイン
タの値を利用して分岐先アドレステーブルを引き、分岐先アドレスを順に取得する。
【００６４】
　次に、ステップＳ４０７において、取得が成功したか否か判断し、成功した場合は、ス
テップＳ４０８へ進み、分岐先アドレスが引くインストラクションテーブルの先頭のイン
ストラクション名を確認する。そして、ステップＳ４０９において、取得したインストラ
クションが登録されているかを確認し、登録されていれば（インストラクションが新規で
ない場合）、ステップＳ４１０へ進み、存在していると判断する。そして、ステップＳ４
０５において、現在位置を次のアドレスに更新し、木トレースを終了する。一方、ステッ
プＳ４０９において、登録されていなければ、ステップＳ４０６へ戻り、次の分岐先アド
レスを取得する。
【００６５】
　一方、ステップＳ４０７において、取得が失敗した場合、ステップ
　Ｓ４０４において、新規インストラクションであると判断し、ステップＳ４０５におい
て、現在位置を次のアドレスに更新し、木トレースを終了する。
【００６６】
　次に、図８～１０を用いて、モデルが学習される様子を説明する。
【００６７】

(11) JP 4913353 B2 2012.4.11

10

20

30

40

50

　図８は、インストラクション蓄積部１２０に蓄積されたインストラクション時系列であ
る。最左列には通し番号がふられており、１から順に読み込まれ、モデルに変換される。
【００６８】
　図９は２番のインストラクション時系列を読み込んで学習が終了した時点のモデルであ
る。時系列上６番目のインストラクションにおいて、１番の時系列ではjmp、２番の時系
列ではpopが存在しているため、jmpの分岐ポインタ列には分岐先アドレステーブルへのア
ドレス（AAAAAAAA）が登録され、分岐先アドレステーブルによって、第２のインストラク
ションテーブルが引かれるように学習されている。
【００６９】
　図１０は、３番のインストラクション時系列を読み込んで学習が終了した時点のモデル
である。順次インストラクション時系列が読み込まれるが、３番のインストラクション時
系列上の１９番目のインストラクションにおいて、図８のモデルに登録されていない新た
なインストラクションmovが存在しているため、jmpの分岐ポインタ列には分岐アドレステ
ーブルへのアドレス（BBBBBBBB）が登録され、分岐先アドレステーブルによって第３のイ
ンストラクションテーブルが引かれるよう学習されている。
【００７０】
　次に、第１の実施の形態に係るソフトウェア動作モデル化方法について、図１１～図１
３を用いて説明する。第２のモデル生成部１３２は、インストラクション蓄積部１２０に
蓄積されたインストラクションの時系列からN-gramを生成し、各N-gramの出現確率を動作
モデルとして生成することを特徴とする。ここで計算される出現確率は、各N-gramの出現
頻度を、生成したすべてのN-gramの出現頻度の総和で除算して求めるが、この分母は、複
数回の試行により得られたインストラクションの時系列から生成されたN-gramを総合して
求めてもよいし、試行ごと求めてもよい。
【００７１】
　図１１に、第２のモデル生成部１３２の動作例を表すフローチャートを示す。第２のモ
デル生成部１３２は、モデル化関数、生成関数、学習関数からなる。
【００７２】
　まず、ステップＳ５０１において、モデル化関数は、第２のモデル蓄積部１５０から監
視対象ソフトウェアに対応するモデルを取得する。
【００７３】
　そして、ステップＳ５０２において、取得に成功した場合は、ステップＳ５０３へ進み
、取得に失敗した場合は、ステップＳ５０４へ進む。ステップＳ５０３及びステップＳ５
０４の詳細は、後に詳述する。
【００７４】
　次に、ステップＳ５０５において、学習、生成されたモデルを第２のモデル蓄積部１５
０に蓄積する。蓄積の際には、インストラクションを取得した際の環境情報をモデルへ付
与することによって、次回モデルを学習する際や、検証時に、適したモデルを選択するこ
とができる。
【００７５】
　次に、図１１のステップＳ５０４の詳細について、図１２を用いて説明する。
【００７６】
　まず、ステップＳ６０１において、生成関数では、インストラクション蓄積部１２０か
らインストラクション時系列を取得する。ステップＳ６０２において、取得に成功した場
合、ステップＳ３０４へ進み、N-gramを生成する。そして、ステップＳ３０５において、
各N-gramの出現頻度を計算し、生成を終了する。
【００７７】
　一方、ステップＳ６０２において、取得失敗した場合、エラー処理後に生成を終了する
。
【００７８】
　ここで生成されるN-gramは、たとえばひとつのインストラクションを１ワードとした連

(12) JP 4913353 B2 2012.4.11

10

20

30

40

50

続Ｎワードの列であり、たとえば“A New Method of N-gram Statistics for Large Numb
er of n and Automatic Extraction of Words and Phrases from Large Text Data of Ja
panese”に記載のアルゴリズムを用いるなどして生成される。本実施形態では、ひとつの
インストラクションを１ワードとして取り扱うが、複数のインストラクションを１ワード
としてもよく、機能を限定するものではない。
【００７９】
　次に、図１１のステップＳ５０３の詳細について、図１３を用いて説明する。
【００８０】
　まず、ステップＳ７０１において、学習関数では、インストラクション蓄積部１１０か
らインストラクション時系列を取得し、取得に成功した場合、ステップＳ７０４において
、上記の方法を用いるなどしてN-gramを生成し、ステップＳ７０５において、モデルの各
N-gramの出現頻度の更新および新しいエントリを追加する。
【００８１】
　一方、ステップＳ７０２において、取得に失敗した場合、エラー処理後に生成を終了す
る。
【００８２】
　図１４にN-gramの例を示す。最右に位置する数字が出現頻度である。本実施形態では3-
gramを例としているが、Nの数を限定するものではない。
【００８３】
　N-gramとは、言語処理の手法の一つで、ストリーム上の連続したＮ個の文字あるいは単
語の列であり、軽量なアルゴリズムで文字や単語の共起関係を把握できる、優れた手法で
ある。ソフトウェアとは、ソースコードとソースコードから呼ばれるライブラリ上のバイ
ナリコードで構成される。すなわち、動作の異なるソフトウェアを生成するためには、お
おむねソースコードを変更することになる。又、ソフトウェアには、外部からの実行コー
ドの参入を許し、動的に動作を変更できるものも存在するが、ソフトウェア実行中に発行
されるインストラクションは、動作の変更にともない変化する。すなわち、どちらの場合
においても、動作が変化すれば正常状態とは異なる共起関係を有するインストラクション
時系列を発行する。
【００８４】
　正常かつ未学習の動作の場合は、同一のソースコードから発行されるインストラクショ
ンであれば、モデルと統計的に近いサンプルが得られる可能性が高い。なぜならば、同一
の環境下でコンパイラを通って生成されたインストラクションであるからである。攻撃者
の作成する攻撃コードは、アセンブラ（又は機械語）でかかれることが多く、ソフトウェ
アの被攻撃時には、実行コードが発行するインストラクションとは異なる共起関係を有す
るインストラクション時系列を発行する可能性が高い。
【００８５】
　（ソフトウェア動作監視装置）
　ソフトウェア動作監視装置２００は、図２に示すように、監視対象ソフトウェア１０を
入力とし、ソフトウェア動作モデル化装置１００によって生成された木構造モデルを蓄積
する第１のモデル蓄積部２５０と、インストラクション発行の統計量（例えばインストラ
クションの共起頻度）を特徴とした動作モデルを蓄積する第２のモデル蓄積部２６０と接
続する。
【００８６】
　又、第１の実施の形態に係るソフトウェア動作監視装置２００は、監視対象ソフトウェ
ア１０が動作中に発行したインストラクションを取得するインストラクション取得部２１
０と、取得したインストラクションを時系列で蓄積するインストラクション蓄積部２２０
と、インストラクション取得部２１０がインストラクションを取得するたびに第１のモデ
ル蓄積部２５０から取得した木構造モデルで監視対象ソフトウェアの発行するインストラ
クションを検証する第１の検証部２３０と、インストラクション蓄積部２２０に蓄積した
インストラクション時系列のうち、第1の検証部２３０が動作の異常を検知してからのイ

(13) JP 4913353 B2 2012.4.11

10

20

30

40

50

ンストラクションを検証系列としてとらえ、第２のモデル蓄積部２６０から取得したイン
ストラクション発行の統計量（例えばインストラクションの共起頻度）を特徴とした動作
モデルで監視対象ソフトウェアの発行するインストラクションを検証する第２の検証部２
４０とを備え、第２の検証部２４０は、第1の検証部２３０がソフトウェア動作に異常を
検知した場合にのみ動作する。
【００８７】
　即ち、第１の検証部２３０は、監視対象ソフトウェアの木構造モデルを蓄積した第１の
モデル蓄積部２５０から木構造モデルを取得し、インストラクション取得部２１０がイン
ストラクションを取得する度に、木構造モデル上でトレースすることで、正常動作との乖
離を判定する。
【００８８】
　又、第２の検証部２４０は、インストラクション蓄積部２２０が蓄積したインストラク
ションの時系列のうち、第１の検証部２３０が乖離と判断した時点からの時系列を検証系
列とし、監視対象ソフトウェアのインストラクション発行の共起頻度などの統計量を特徴
量とした動作モデルを蓄積した第２のモデル蓄積部２６０から動作モデルを取得し、検証
系列からの統計量を生成し、動作モデルとの判別分析によって、正常動作との乖離を判定
する。
【００８９】
　モデル学習部２７０は、インストラクション蓄積部２２０が蓄積したインストラクショ
ンの時系列を学習系列とし、第１のモデル蓄積部２５０に蓄積された木構造モデルと、第
２のモデル蓄積部２６０に蓄積されたインストラクション発行の統計量を特徴量とする動
作モデルとを、学習系列を利用して学習する。そして、モデル学習部２７０は、第２の検
証部２４０が、監視対象ソフトウェアの動作が正常であると判定した場合のみ、モデルを
学習する。
【００９０】
　又、検証系列は、監視対象ソフトウェアが終了するまでに発行されたインストラクショ
ンの時系列の部分列の集合である。この部分列は、インストラクションの時系列を監視対
象ソフトウェアがシステムコールを発行するタイミングで区切ることで生成される。
【００９１】
　尚、第１のモデル蓄積部１４０と第1のモデル蓄積部２５０は同一のものでもよい。又
、第２のモデル蓄積部１５０と第２のモデル蓄積部２６０は同一のものでもよい。
【００９２】
　（ソフトウェア動作監視方法）
　次に、第１の実施の形態に係るソフトウェア動作監視方法について、図１５及び図１６
を用いて説明する。
【００９３】
　図１５は、第１の検証部２３０の動作例を示すフローチャートである
　まず、ステップＳ９０１において、監視対象ソフトウェアの動作モデルを第１のモデル
蓄積部２５０から取得する。このとき、監視対象ソフトウェアの動作環境を取得しておい
て、動作モデルに付与されているメタ情報と突合し、動作環境にあわせたモデルを取得す
るとよい。
【００９４】
　次に、ステップＳ９０２において、インストラクション蓄積部２２０に蓄積されたイン
ストラクションを順次取得する。そして、ステップＳ９０３において、終了したか否か判
断し、終了したならば、ステップＳ９０４において、正常と判定して、ステップＳ９０８
において、判定結果を出力し、監視を終了する。
【００９５】
　一方、ステップＳ９０３において、終了していなければ、ステップＳ９０５において、
木トレース（詳細は、図７参照。）を呼び出す。
【００９６】

(14) JP 4913353 B2 2012.4.11

10

20

30

40

50

　次に、ステップＳ９０６において、判定結果が新規であるか否か判断し、新規である場
合は、ステップＳ９０７において、異常と判定し、ステップＳ９０８において、結果を出
力し、監視を終了する。
【００９７】
　一方、ステップＳ９０６において、判定結果が新規でない場合、即ち、存在であった場
合、ステップＳ９０２へ戻り、次のインストラクションを取得する。
【００９８】
　以下、図８～図１０を用いて、監視対象ソフトウェアが監視される様子を説明する。
【００９９】
　第１のモデル蓄積部２５０に、モデル生成のときに説明した図９記載のモデルが蓄積さ
れているとし、図８記載のインストラクション時系列の1番がインストラクション蓄積部
２２０に蓄積されているとする。
【０１００】
　インストラクション時系列の先頭からインストラクションが順次読み込まれ、モデルと
の乖離判定を行う。この場合、インストラクション時系列上のすべてのインストラクショ
ンが、モデル上に存在している（木トレースの結果が「存在」）ことから、動作検証部は
正常である旨の結果を出力する。
【０１０１】
　次に、第１のモデル蓄積部２５０に、モデル生成のときに説明した図９記載のモデルが
蓄積されているとし、図８記載のインストラクション時系列の３番がインストラクション
蓄積部２２０に蓄積されているとする。インストラクション時系列の先頭からインストラ
クションが順次読み込まれ、モデルとの乖離判定を行う。この場合、19番目のインストラ
クションにおいて、新規インストラクションmovが検知され、動作検証部は異常である旨
の結果を出力する。
【０１０２】
　図１６は、第２の検証部２４０の動作例を示すフローチャートである。
【０１０３】
　まず、ステップＳ１００１において、第２の検証部２４０は、監視対象ソフトウェアの
動作モデルを第２のモデル蓄積部２６０から取得する。このとき、監視対象ソフトウェア
の動作環境を取得しておいて、動作モデルに付与されているメタ情報と突合し、動作環境
にあわせたモデルを取得するとよい。
【０１０４】
　次に、ステップＳ１００２において、インストラクション蓄積部２２０に蓄積されたイ
ンストラクション時系列から 検証系列を取得する。検証系列とは異常判定が起きたイン
ストラクションから終了までのインストラクションの列、あるいはそのサブシーケンスで
ある。第２の検証部２４０が統計的な判断を行う際、統計量を計算することになるが、終
了までのインストラクションの列を統計量計算の対象とするよりも、サブシーケンスを対
象としたほうが、異常検知を早く行うことが可能であり、かつ、シーケンスに攻撃コード
が含まれる場合には、統計量を計算するシーケンスのうち攻撃コードが閉める割合が大き
くなり、より正常動作との乖離を判定しやすくなる。サブシーケンスの終了を決定するト
リガは、あらかじめ与えた定数分のインストラクションが発行される、システムコールが
発行される、jmp、call、retなど現在動作しているアドレスから離れたアドレスへ動作を
遷移させるインストラクションが発行される、などである。特にシステムコールを利用し
たものは、システムコールがどのようなインストラクション発行を経て発行されたのかを
検査するよいタイミングである。攻撃者がプログラムの脆弱性をついてシステムになんら
かの影響を与えるためには、システムコールを発行しなければならないが、システムコー
ルの発行タイミングでサブシーケンスを区切ることで、脆弱性をつく攻撃コードを検知で
きる可能性が高くなる。ただし、本実施例では、サブシーケンスの場合の説明をするが、
機能を限定するものではない。
【０１０５】

(15) JP 4913353 B2 2012.4.11

10

20

30

40

50

　次に、ステップＳ１００３において、インストラクションの時系列を取得し、取得が終
了したか否か判断し、取得が終了した場合、ステップＳ１００４において、正常動作であ
ると判定する。そして、ステップＳ１００５において、判定結果を出力して監視を終了す
る。
【０１０６】
　一方、ステップＳ１００３において、取得が終了していなければ、ステップＳ１００６
において、時系列よりN-gramを生成し、ステップＳ１００７において、各N-gramの出現頻
度を計算し、出現確率を導出しておく。
【０１０７】
　次に、ステップＳ１００８において、取得していた動作モデルと、先ほど生成したN-gr
amの出現確率を判別分析にかける。判別分析は、適当に閾値を定めることによる線形判別
分析を用いるなどして、外れ値を検知する。
【０１０８】
　ステップＳ１００９において、判別分析の結果、正常であるか否か判断し、正常である
場合は、ステップＳ１００２へ戻り、次のインストラクション時系列を取得する。
【０１０９】
　一方、ステップＳ１００９において、異常であると判定された場合は、ステップＳ１０
１０において、異常であると判断し、ステップＳ１０１１において、異常である旨を出力
して、監視を終了する。
【０１１０】
　（作用及び効果）
　第１の実施の形態に係るソフトウェアモデル動作モデル化装置及びソフトウェアモデル
化方法によると、木構造モデル化を行うことによって、システムコールよりも詳細なデー
タであるインストラクションの時系列を利用した監視を行うことができ、偽装攻撃をほぼ
不可能にできるモデルを生成できる。かつ、モデルの各状態は、プログラムカウンタなど
入り線を複数にする情報を含めないため、過去の条件分岐の結果はモデルが保持している
こととなる。すなわち、条件分岐を正しく検証することが可能なモデルを生成できる。
【０１１１】
　又、学習系列から統計量を導出し、第２のモデル蓄積部１５０に蓄積された動作モデル
を、統計量を用いて学習することによって、正常状態のインストラクションの共起関係を
把握することができ、ソフトウェアの動作の変化をとらえることのできるモデルを生成す
ることができる。動作の検証をする際、オートマトンによる検証では未学習の動作を検知
したら異常と判断せざるを得なかったが、インストラクションの共起関係を利用するため
、統計的に正常と判断することが可能である。
【０１１２】
　ただし、本実施例では共起頻度を計測する手法としてN-gramをあげているが、アソシエ
ーションルールなど、共起頻度が計測できればよく、これにこだわるものではない。
【０１１３】
　又、第１の実施の形態に係るソフトウェア動作監視装置及びソフトウェア動作監視方法
によると、インストラクションの共起頻度を利用した監視を行うことができ、未学習動作
の正常、異常判別を確率的に求めることができる。
【０１１４】
　又、第１の検証部２３０のあとに第２の検証部２４０を配置することで、インストラク
ションをひとつずつ監視していくことで正常状態を確実に判別できる木構造モデルと、イ
ンストラクションの時系列を監視することで未学習動作と異常動作を判別できるN-gramモ
デルを利用することができる。木構造モデルを利用して監視している間、N-gramの出現頻
度を計算する必要がなくなるため、効率がよい。
【０１１５】
　又、ソフトウェア動作監視装置２００は、モデル学習部２７０をさらに配置し、第２の
検証部２４０の検証により、ソフトウェア動作が正常であると判定された場合に、第２の

(16) JP 4913353 B2 2012.4.11

10

20

30

40

50

検証部２４０で用いた検証系列を、木構造モデルに追加してもよい。N-gramのような統計
量を特徴量とする動作モデルは、統計量を計算するコストが発生するため、計算コストを
考慮するとできる限り利用しないようにしたほうがよい。上記の構成をとることによって
、未学習動作を木構造モデルへ反映することができるため、次回の監視が効率よく行える
。
【０１１６】
　＜第２の実施の形態＞
　判別分析を効率よく行う手法として、負例を与えることが挙げられる。第１の実施の形
態では、正例のみを扱っていたが、第２の実施の形態では、負例をともに扱うことについ
て説明する。
【０１１７】
　（ソフトウェア動作モデル化装置）
　第２の実施の形態に係るソフトウェア動作モデル化装置は、図１７に示すように、図１
に示すソフトウェア動作モデル化装置に加え、負例分離部１６０を備える。
【０１１８】
　負例分離部１６０は、監視対象ソフトウェアの異常動作（例：被攻撃、バグによる動作
）が入力された場合、取得したインストラクションから、異常動作によって生じたインス
トラクションの時系列を分離する。又、負例分離部１６０は、取得したインストラクショ
ンを、第１のモデル蓄積部１４０に蓄積された動作モデル上でトレースし、動作モデルと
異なるインストラクションが現れた時点からのインストラクション時系列を異常動作によ
って生じたインストラクション列である負例であると判断する。
【０１１９】
　第２のモデル生成部１３２は、負例を用いて、異常動作のモデルを生成する。
【０１２０】
　インストラクション取得部１１０、インストラクション蓄積部１２０、第１のモデル生
成部１３１、第１のモデル蓄積部１４０、第２のモデル蓄積部１５０については、第１の
実施の形態と同様であるので、ここでは、説明を省略する。
【０１２１】
　（ソフトウェア動作モデル化方法）
　次に、第２の実施の形態に係るソフトウェア動作モデル化方法について、図１８を用い
て説明する。
【０１２２】
　まず、ステップＳ８０１において、第1のモデル蓄積部１４０よりモデルを、インスト
ラクション蓄積部１１０よりインストラクション時系列をそれぞれ取得する。
【０１２３】
　次に、ステップＳ８０２において、取得に成功したか否かを判断し、失敗した場合は、
ステップＳ８０３へ進み、エラー処理をして終了する。一方、ステップＳ８０２において
、成功した場合は、ステップＳ８０４において、インストラクション時系列からインスト
ラクションを順次読み込む。
【０１２４】
　次に、ステップＳ８０５において、読み込みが終了したか否か判断し、終了した場合は
、ステップＳ８０６において、エラー処理をして終了する。一方、ステップＳ８０５にお
いて、読み込みが終了していなければ、木をトレースする（詳細は、図７参照。）。
【０１２５】
　次に、ステップＳ８０８において、木トレースの結果、新規であるか否か判断する。新
規である場合は、ステップＳ８０９において、現在位置から終了までの時系列をサブシー
ケンス化し、このサブシーケンスを負例として抽出し、負例分離を終了する。一方、ステ
ップＳ８０８において、新規でない場合は、ステップＳ８０４へ戻り、次にインストラク
ションを取得する。
【０１２６】

(17) JP 4913353 B2 2012.4.11

10

20

30

40

50

　（作用及び効果）
　第２の実施の形態に係るソフトウェア動作モデル化装置及びソフトウェア動作モデル化
方法によると、負例を分離することで、異常動作時純粋のデータをモデルにすることがで
きるため、判別分析に効果的な判別空間を生成できる。
【０１２７】
　又、木構造モデルを用いることで、インストラクション発行パターンの変化点を正確に
検知することができるので、正確な負例抽出が可能である。
【０１２８】
　＜第３の実施の形態＞
　第１及び第２の実施の形態では、ソフトウェア動作モデル化装置とソフトウェア動作監
視装置を異なる装置として説明したが、これらの装置を一つの装置として構成してもよい
。
【０１２９】
　（ソフトウェア動作モデル化装置）
　第３の実施の形態に係るソフトウェア動作モデル化装置１００は、監視対象ソフトウェ
ア１０の動作モデルを生成、蓄積し、蓄積した動作モデルをもとに動作の監視を行う。
【０１３０】
　ソフトウェア動作監視装置２００は、監視対象ソフトウェア１０が動作中に発行するイ
ンストラクションを取得するインストラクション取得部２１０と、取得したインストラク
ションの時系列を蓄積するインストラクション蓄積部２２０と、インストラクション蓄積
部に蓄積されたインストラクション時系列を学習系列とみなし、動作モデルを生成するモ
デル生成部１３０と、モデル生成部１３０によって生成された動作モデルを蓄積するモデ
ル蓄積部２８０と、モデル蓄積部２８０に蓄積された動作モデルを用いて監視対象ソフト
ウェアの正常動作との乖離を判定する動作監視部２９０とを備える。
【０１３１】
　インストラクション取得部２１０は、LinuxのPTRACEを利用するなどして、監視対象ソ
フトウェア１０がインストラクションを発行するたびにインストラクションを取得する。
【０１３２】
　モデル生成部１３０は、インストラクション蓄積部２２０に蓄積されたインストラクシ
ョン時系列を学習系列とし、学習系列をもとに木構造モデルを生成する第１のモデル生成
部１３１と、学習系列をもとにインストラクションの共起頻度を計算し、その統計量を特
徴量とする動作モデルを生成する第２のモデル生成部１３２とを備える。
【０１３３】
　第1のモデル生成部１３１は、例えば、図４に示すフローチャートで動作し、図３に示
す木構造データを出力する。第２のモデル生成部１３２は、例えば、図１１に示すフロー
チャートで動作し、図１４に示すN-gramを出力する。
【０１３４】
　モデル蓄積部２８０は、第１のモデル生成部１３１が生成した木構造モデルを蓄積する
第１のモデル蓄積部２５０と、第２のモデル生成部１３２が生成したインストラクション
発行の統計量（例えば共起頻度）を特徴量とする動作モデルを蓄積する第２のモデル蓄積
部２６０とを備える。
【０１３５】
　動作監視部２９０は、インストラクション取得部２１０がインストラクションを取得す
るたびに第１のモデル蓄積部２５０から取得した木構造モデルで監視対象ソフトウェアの
発行するインストラクションを検証する第１の検証部２３０と、インストラクション蓄積
部２２０に蓄積したインストラクション時系列のうち、第１の検証部２３０が動作の異常
を検知してからのインストラクションを検証系列としてとらえ、第２のモデル蓄積部２６
０から取得したインストラクション発行の統計量（例えば、インストラクションの共起頻
度）を特徴とした動作モデルで監視対象ソフトウェア１０の発行するインストラクション
を検証する第２の検証部２４０とを備え、第２の検証部２４０は、第１の検証部２３０が

(18) JP 4913353 B2 2012.4.11

10

20

30

40

50

ソフトウェア動作に異常を検知した場合にのみ動作する。
【０１３６】
　第１の検証部２３０は、例えば、図１５に示すフローチャートで動作する。一方、第２
の検証部２４０は、例えば、図１６に示すフローチャートで動作する。
【０１３７】
　（作用及び効果）
　第３の実施の形態に係るソフトウェア動作モデル監視装置によると、自らモデル化し、
自ら検証する端末を開発することができる。同一の環境でモデル化、検証を行うことがで
きるため、環境情報を伝えるメタ情報を付与する必要がなく、効率がよい。
【図面の簡単な説明】
【０１３８】
【図１】第１の実施の形態に係るソフトウェア動作モデル化装置の構成ブロック図である
。
【図２】第１の実施の形態に係るソフトウェア動作監視装置の構成ブロック図である。
【図３】第１の実施の形態において用いられる木構造の一例である。
【図４】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャートで
ある（その１）。
【図５】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャートで
ある（その２）。
【図６】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャートで
ある（その３）。
【図７】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャートで
ある（その４）。
【図８】第１の実施の形態において、蓄積されたインストラクション時系列の一例である
。
【図９】第１の実施の形態において、動作モデルの一例である（その１）。
【図１０】第１の実施の形態において、動作モデルの一例である（その２）。
【図１１】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャート
である（その５）。
【図１２】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャート
である（その６）。
【図１３】第１の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャート
である（その７）。
【図１４】第１の実施の形態において、N-gramの一例である。
【図１５】第１の実施の形態に係るソフトウェア動作監視方法を示すフローチャートであ
る（その１）。
【図１６】第１の実施の形態に係るソフトウェア動作監視方法を示すフローチャートであ
る（その２）。
【図１７】第２の実施の形態に係るソフトウェア動作モデル化装置の構成ブロック図であ
る。
【図１８】第２の実施の形態に係るソフトウェア動作モデル化方法を示すフローチャート
である。
【図１９】第３の実施の形態に係るソフトウェア動作監視装置の構成ブロック図である。
【符号の説明】
【０１３９】
　１０…監視対象ソフトウェア
　３０…インストラクションテーブル
　３１…インストラクション名列
　３２…分岐ポインタ列
　４０…分岐先アドレステーブル

(19) JP 4913353 B2 2012.4.11

10

20

　４１…分岐先アドレス列
　１００…ソフトウェア動作モデル化装置
　１１０…インストラクション取得部
　１１０…インストラクション蓄積部
　１２０…インストラクション蓄積部
　１３０…モデル生成部
　１３１…第1のモデル生成部
　１３２…第２のモデル生成部
　１４０…第1のモデル蓄積部
　１５０…第２のモデル蓄積部
　１６０…負例分離部
　１７０…メタ情報付与部
　２００…ソフトウェア動作監視装置
　２１０…インストラクション取得部
　２２０…インストラクション蓄積部
　２３０…第１の検証部
　２４０…第２の検証部
　２５０…第１のモデル蓄積部
　２６０…第２のモデル蓄積部
　２７０…モデル学習部
　２８０…モデル蓄積部
　２９０…動作監視部

【図１】

【図２】

【図３】

(20) JP 4913353 B2 2012.4.11

【図４】 【図５】

【図６】 【図７】

(21) JP 4913353 B2 2012.4.11

【図８】 【図９】

【図１０】 【図１１】

【図１２】

(22) JP 4913353 B2 2012.4.11

【図１３】

【図１４】

【図１５】

【図１６】 【図１７】

(23) JP 4913353 B2 2012.4.11

【図１８】 【図１９】

(24) JP 4913353 B2 2012.4.11

10

フロントページの続き

(72)発明者 金野　晃
 東京都千代田区永田町二丁目１１番１号　株式会社エヌ・ティ・ティ・ドコモ内
(72)発明者 中山　雄大
 東京都千代田区永田町二丁目１１番１号　株式会社エヌ・ティ・ティ・ドコモ内
(72)発明者 竹下　敦
 東京都千代田区永田町二丁目１１番１号　株式会社エヌ・ティ・ティ・ドコモ内

 審査官 多胡　滋

(56)参考文献 特開２００４－１８５３４５（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　２１／００　　　　
 Ｇ０６Ｆ　　１１／２８　　
 Ｇ０６Ｆ　　１１／３４　　　　
 Ｇ０６Ｆ　　１１／３６

	biblio-graphic-data
	claims
	description
	drawings
	overflow

