

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2008219269 B2

**(54) Title
Combination therapy using TNF and alfa-galactosyl ceramide**

(51) International Patent Classification(s)
A61K 38/19 (2006.01) **A61P 35/00** (2006.01)
A61K 31/70 (2006.01)

(21) Application No: **2008219269** **(22) Date of Filing:** **2008.02.20**

(87) WIPO No: **WO08/101951**

(30) Priority Data

(31) Number **07102787.4** **(32) Date** **2007.02.21** **(33) Country** **EP**

(43) Publication Date: **2008.08.28**
(44) Accepted Journal Date: **2012.10.25**

(71) Applicant(s)
Universiteit Gent;VIB vzw

(72) Inventor(s)
Brouckaert, Peter;Elewaut, Dirk;Huyghe, Leander

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
NAKUI ET AL, CLINICAL & EXPERIMENTAL METASTASIS, VOL 18, 2000, PAGES 147-153

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 August 2008 (28.08.2008)

PCT

(10) International Publication Number
WO 2008/101951 A1

(51) International Patent Classification:
A61K 38/19 (2006.01) A61P 35/00 (2006.01)
A61K 31/70 (2006.01)

(74) Common Representative: VIB VZW; Rijvisschestraat
120, B-9052 Gent (BE).

(21) International Application Number:
PCT/EP2008/052055

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

(22) International Filing Date:
20 February 2008 (20.02.2008)

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

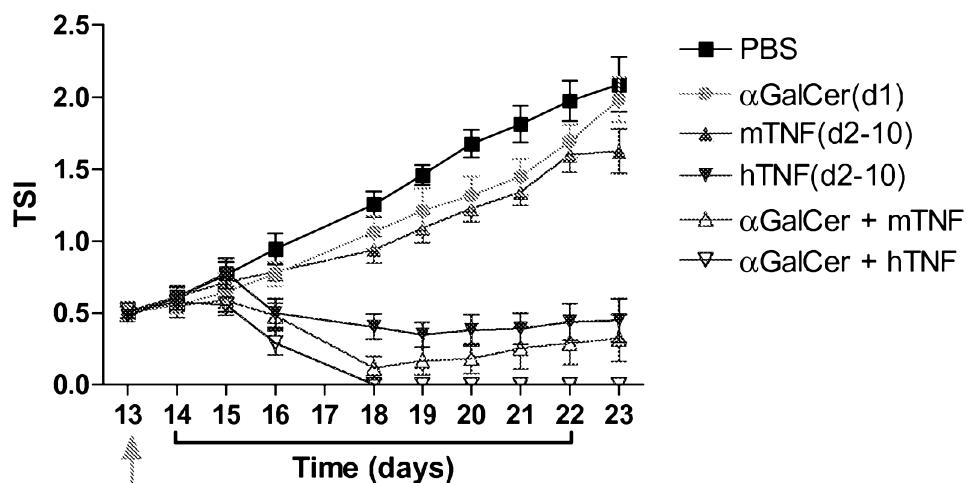
(25) Filing Language: English

Published:

(26) Publication Language: English

- with international search report
- before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(30) Priority Data:
07102787.4 21 February 2007 (21.02.2007) EP


(71) Applicants (for all designated States except US): VIB
VZW [BE/BE]; Rijvisschestraat 120, B-9052 Gent (BE).
UNIVERSITEIT GENT [BE/BE]; Sint-Pietersnieuw-
straat 25, B-9000 Gent (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BROUCKAERT,
Peter [BE/BE]; Monterreystraat 19, B-9000 Gent (BE).
ELEWAUT, Dirk [BE/BE]; Blauwesterenstraat 14, B-9070
Heusden (BE). HUYGHE, Leander [BE/BE]; Deinses-
teenweg 214, B-8700 Aarsle (BE).

(54) Title: COMBINATION THERAPY USING TNF AND ALFA-GALACTOSYL CERAMIDE

Fig. 2.A

(57) Abstract: The invention relates to the treatment of cancer. More specifically the invention shows that the anti-cancer activity in mammals can be augmented by administering to the mammalian host a combination of a synergistically effective amount of TNF and alfa-galactosylceramide.

WO 2008/101951 A1

COMBINATION THERAPY USING TNF AND ALFA-GALACTOSYL CERAMIDE

Field of the invention

The invention relates to the treatment of cancer. More specifically the invention shows that the

5 anti-cancer activity in mammals can be augmented by administering to the mammalian host a combination of a synergistically effective amount of TNF and alfa-galactosylceramide.

Introduction to the invention

Combination therapy using two or more anti-cancer drugs to treat malignant tumours in

10 humans is currently in use in research and in the clinic. The anti-cancer drugs may be anti-metabolites, alkylating agents, antibiotics, immune-stimulants, cytokines and the like. Combinations of said drugs are administered in an attempt to obtain a synergistic, cytotoxic effect on most cancers, e.g., carcinomas, melanomas, lymphomas and sarcomas, and to reduce or eliminate emergence of drug-resistant cells and to reduce side effects to each drug.

15 Tumour Necrosis Factor (TNF), a protein of 157 amino acids, was originally discovered by Carswell *et al* (1975) (*Proc. Nat. Acad. Sci. USA*, 1975:72, 666) as a soluble factor released by the host after exposure to bacterial endotoxins and being responsible for tumour cytotoxicity. In addition to its antitumour effects, TNF is involved in immunoregulation, metabolism, haematopoiesis and musculoskeletal growth. However, TNF is very toxic and in attempts to

20 evaluate TNF in the treatment of cancer, clinical trials have shown that hypotension, fever, chills, fatigue and headache were commonly observed precluding the systemic use of TNF.

Alfa-galactosylceramides (alfa-GalCer) have originally been isolated from a marine sponge *Agelas mauritianus* and it was found that these compounds exhibit anti-tumour and immuno-stimulating activity in pre-clinical animal models (see for example patent EP0609437B1).

25 KRN7000 is a synthetic alfa-GalCer that has been most frequently used in experimental studies. Clinical studies using KRN7000 have been disappointing since no clinical anti-tumour effects were recorded (Giaccone G *et al* (2002) *Clin Cancer Res* 8: 3702). Furthermore, recent studies point out that the use of sequential doses of alfa-GalCer can lead to an anergic state of T-cells (Parekh VV *et al* (2005) *J Clin. Invest.* 115(9):2572-83).

30 In the present invention we have found that the use of a sub-therapeutic amount of TNF in combination with an alfa-galactosylceramide provides a surprising synergism in treating various forms of cancer. In addition, we have shown that this synergistic combination does not have significant cytotoxic effects against normal cells and may thus be safely used to combat cancer.

2008219269 01 Oct 2012

Figures

Fig. 1. Tumour experiment. The line under the graph represents the treatment period. The arrows indicate injection points of alfa-GalCer. Data are shown as mean \pm SEM. For PBS n = 6, for human TNF (hTNF) n = 7, for all other groups n = 2. **(A)** Growth curves of subcutaneously growing B16Bl6 melanoma in C57BL/6 mice after treatment with alfa-GalCer (2 μ g/mouse) and hTNF. **(B)** Relative body weight of the mice during treatment as a measure for systemic toxicity. Average body weight before treatment was 22,3g (day 13).

Fig. 2. Pre-treatment with alfa-GalCer sensitizes for sub-therapeutic TNF. The line under the graph represents the treatment period with hTNF or murine TNF (mTNF). The green arrow indicates the time of injection of alfa-GalCer. Data are shown as mean \pm SEM, n = 7 **(A)** Growth curves of subcutaneously growing B16Bl6 melanoma in C57BL/6 mice after treatment with alfa-GalCer (1 μ g/mouse), hTNF and low dose mTNF. **(B)** Relative body weight of the mice during treatment as a measure for systemic toxicity. Average body weight before treatment was 22,2g (day 13).

Detailed description

!0 The present invention relates to a combination of tumour necrosis factor (TNF) and alfa-galactosyl-ceramide and the use of said combination as an anti-tumour therapeutic agent.

Accordingly, the present invention provides a pharmaceutical composition comprising TNF and alfa-galactosylceramide.

In a particular embodiment said pharmaceutical composition comprises synergistically effective amounts of TNF and alfa-galactosylceramide.

In another particular embodiment said TNF is from mammalian species, preferably human. In another particular embodiment said pharmaceutical composition is free of cells and free of lymphotoxin.

In yet another particular embodiment said TNF in said pharmaceutical composition is present in a sub-therapeutic amount. A sub-therapeutic effect of a compound (here TNF) means that no statistically relevant effect is observed on tumour growth when said compound is administered to a mammalian host carrying a tumour as a sub-therapeutic doses of said compound (i.e. here TNF) alone.

In yet another embodiment the pharmaceutical composition comprising TNF and alfa-galactosylceramide further comprises a chemotherapeutic agent.

In yet another embodiment the invention provides the use of a pharmaceutical composition comprising TNF and alfa-GalCer for the therapeutic treatment of cancer.

In yet another embodiment the use of a pharmaceutical composition comprising TNF and alfa-GalCer is used for the treatment of metastasis.

In a particular embodiment said TNF and alfa-galactosylceramide are administered sequentially.

5 In another particular embodiment the administration of TNF precedes the administration of alfa-galactosylceramide.

In a preferred embodiment the administration of alfa-galactosylceramide precedes the administration of TNF.

10 In yet another preferred embodiment the administration of alfa-GalCer precedes the administration of TNF wherein said alfa-GalCer administration consists of a single dose which is administered at least one hour before the administration of TNF. In a particular embodiment said single dose of alfa-GalCer is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours before the administration of TNF. In yet another particular embodiment said single dose of alfa-GalCer is administered at least one day before the administration of TNF. In yet another 15 particular embodiment at least two doses of alfa-GalCer are administered before the administration of TNF.

Another preferred embodiment the administration with TNF is daily for at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9 consecutive days.

It should be clear to the skilled practitioner that the dose and dosage regimen will depend 20 mainly on whether the TNF and an alfa-galactosylceramide are being administered separately or as a mixture, the type of cancer, the patient, and the patient's history. The amount must be effective to achieve a tumour reduction that is synergistic. If multiple doses are employed (such as preferred with TNF) the frequency of administration will depend, for example, on the type of host and type of cancer, dosage amounts, etc. For some types of cancers, daily administration 25 will be effective, whereas for others, administration every other day or every third day will be effective, but daily administration will be ineffective. The practitioner will be able to ascertain upon routine experimentation which route of administration and frequency of administration are most effective in any particular case.

30 By "TNF" it is meant the various forms of TNF described below:

The cloning of human TNF having 151 and 155 amino acids (2 and 6 less than the native form) is disclosed in EP155,549 (Dainippon Pharmaceutical Co., Ltd.), and human TNF having 155 amino acids is disclosed in EP158,286 (Asahi Kasei Kogyo Kabushiki Kaisha). The cloning of mature TNF (157 amino acids) and various modified forms (muteins) thereof is disclosed in 35 EP168,214 (Genentech). The recombinant human TNF may be obtained as described by Pennica et al., *Nature* (1984), 312:724-729; Yamada et al., *J. Biotechnology* (1985), 3:141-153; Wang et al., *Science* (1985), 228:149-154, EP155,549 and EP168,214. The TNF is

preferably human unglycosylated TNF having a molecular weight of about 15,000-20,000 daltons on SDS-PAGE. In a particular embodiment the TNF is a human TNF mutein wherein up to the first eight amino acid residues have been deleted, using the procedure described in US4,677,064 and US4,677,063 the TNF is a cysteine-depleted mutein described in

5 US698,939. For human applications preferably the TNF is derived from human sources. Even more preferably, the TNF for human applications is recombinant unglycosylated human TNF.

By "an alfa-galactosylceramide or alfa-GalCer" it is meant a derivative or an analogue derived from a glycosphingolipid that contains a galactose carbohydrate attached by an alfa-linkage to a ceramide lipid that has an acyl and sphingosine chains of variable lengths. KRN7000 (2S 3S,

10 4R)-1-O-(alfa-D-galactopyranosyl)-N-hexacosanoyl-2-amino-1, 3, 4-octadecanetriol) is a synthetic alfa-GalCer that has been most frequently used in experimental studies and also in example 1 of the present invention. The present invention also envisages alfa-galactosylceramides described in the patent EP0609437B1 (Kirin Beer Kabushiki Kaisha), in the application WO2006026389 (Albert Einstein College of Medicine of Yeshiva University), in

15 the application US20040127429. In particular, in the latter application C-glycoside analogues of alfa-GalCer are described which are less susceptible to enzymatic degradation *in vivo* than the O-glycosides. A particular C-glycoside (an analogue of KRN7000) is described in Yang G. *et al* (2004) *Angew. Chem. Int. Ed.* 43, 3818-3822. The preferred range of alfa-GalCer used in the pharmaceutical composition of the present invention is between 20-200 µg/kg.

20

Thus the combination of alfa-galactosyl ceramide and TNF is found to provide a surprising synergism in treating various forms of cancer such as melanoma, lung carcinoma and lymphoma.

25 As used herein, the term "therapeutic" treatment refers to administration to the host of TNF and an alfa-galactosylceramide after the host has contracted cancer, as determined by any means. The treatment is not considered therapeutic if an existing tumour burden is not decreased or more preferentially eliminated.

30 As used herein, the term "cancer" refers to any neoplastic disorder, including such cellular disorders as, for example, renal cell cancer, Kaposi's sarcoma, chronic leukemia, breast cancer, sarcoma, ovarian carcinoma, rectal cancer, throat cancer, melanoma, colon cancer, bladder cancer, mastocytoma, lung cancer, mammary adenocarcinoma, pharyngeal squamous cell carcinoma, and gastrointestinal or stomach cancer. Preferably, the cancer is lung

35 carcinoma, melanoma and lymphoma.

As used herein, the term "synergistically effective amount" as applied to TNF and an alfa-galactosylceramide refers to the amount of each component of the pharmaceutical

composition which is effective for a decrease of tumour volume and which produces an effect which does not intersect, in a dose-response plot of the dose of TNF versus a dose of alfa-galactosylceramide versus decrease of tumour volume, either the dose TNF axis or the dose alfa-galactosylceramide axis. The dose response curve used to determine synergy in the art is fully described by Sande et al., p. 1080-1105 in A. Goodman *et al*, ed., the Pharmacological Basis of Therapeutics, MacMillan Publishing Co., Inc., New York (1980). The optimum synergistic amounts can be determined, using a 95% confidence limit, by varying factors such as dose level, schedule and response, and using a computer-generated model that generates isobolograms from the dose response curves for various combinations of the alfa-galactosylceramide and TNF. The highest decrease in tumour volume on the dose response curve correlates with the optimum dosage levels.

As used herein, the term "recombinant" refers to TNF produced by recombinant DNA techniques wherein generally the gene coding for the TNF is cloned by known recombinant DNA technology. The recombinant host may be eucaryotic or procaryotic host.

As used herein, the term "pharmaceutically acceptable" refers to a carrier medium that does not interfere with the effectiveness of the biological activity of the active ingredients and that is not toxic to the hosts to which it is administered.

The administration of the pharmaceutical composition of the invention may take place by any suitable technique, including parenteral administration. Examples of parenteral administration include subcutaneous, intravenous, intra-arterial, intramuscular, and intraperitoneal, with intraperitoneal administration(s) being preferred (for convenience) with murine models, and intravenous and subcutaneous being preferred for higher mammals.

The dosage amount which appears to be most effective herein is one which results in tumour regression or complete regression and is not toxic to the host. This optimum level will depend on many factors, for example, on the type of host and type of cancer, route, schedule of administration, existing tumour burden, the type of alfa-galactosyl ceramide and TNF, and the definition of toxicity. Toxicity to the host may be defined by the extent and type of side effects or by the amount of body weight loss or by death after a certain period of time. If body weight loss is the criterion for toxicity, typically a loss of 10-20% by weight will be tolerated, with greater than 20% loss being considered toxic.

If body weight loss of greater than 20% is considered toxic, if the host is murine, if the route of administration is intraperitoneal via a mixture prepared in vitro and is every day or every other day, the dosage level at each administration of recombinant produced subtherapeutic TNF is preferably about 20 to about 50 µg TNF per kg host weight (note that these sub-therapeutic levels are approximately 5-10 times less than the murine therapeutic levels). Calculated to human applications the TNF range is about 50 to about 300 µg/m².

For parenteral administration the pharmaceutical composition will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion), preferably in a pharmaceutically acceptable carrier medium that is inherently non-toxic and non-therapeutic. Examples of such vehicles include saline, Ringer's solution, dextrose solution, mannitol and normal serum albumin. Non-aqueous vehicles such as fixed oils and ethyl oleate may also be used. The carrier medium may contain minor amounts of additives such as substances that enhance isotonicity and chemical stability, e.g., buffers and preservatives. TNF will typically be formulated in such carriers at a concentration of about 0.1 mg/ml to 20 mg/ml.

10 Alternatively, the pharmaceutical composition may be made into a sterile, stable lyophilized formulation in which the purified compounds (i.e. TNF and alfa-GalCer) can be admixed with a water-soluble carrier such as mannitol, which provides bulk, and a sufficient amount of a surfactant (such as for example sodium dodecyl sulfate) to ensure the solubility of the alfa-galactosyl ceramide in water. The formulation is suitable for reconstitution in aqueous

15 injections for parenteral administration and it is stable and well-tolerated in human patients.

It should be clear that the pharmaceutical composition and its uses can also be applied for the treatment of veterinary animals. For such applications TNF may be prepared from tissue cultures or by recombinant techniques, and from any mammalian source, such as, e.g. rabbit,

20 primate, pig, cow, cat and dog.

The various aspects of the invention are further described by the following examples, which are not intended to limit the invention in any manner.

25

Materials and methods

1. Reagents

Recombinant humane TNF (hTNF) and murine TNF (mTNF), produced by *Escherichia coli* containing an appropriate expression plasmid (Marmenout A. (1985) Eur J Biochem. 152(3):515-22), were purified to apparent homogeneity. Specific activities were $6,1 \times 10^7$ IU/mg and $1,28 \times 10^8$ IU/mg, respectively, as determined by a L929s cytotoxicity assay as described (Takahashi *et al.*, 1995). Both for hTNF and mTNF, the endotoxin content was <10 U/mg as assayed by a *Limulus* amoebocyte lysate assay (Coatest; Chromogenix, Stockholm, Sweden). The alfa-Galactosyl Ceramide(alfa-GalCer) used has the same structure as KRN7000 and was synthesized by the group of Serge Van Calenbergh at the Laboratory for Medical Chemistry (Ghent University, Belgium).

2. Mice

Female C57BL/6J@RJ mice were purchased from Janvier (Le Genest-Saint-Isle, France). The animals were housed in 14-10 hours light/dark cycles in a temperature-controlled, air-conditioned room, and received food and water *ad libitum*. The mice were used for the tumour experiment at the age of 8-12 weeks.

3. Tumour cells

The melanin-positive melanoma B16Bl6 cells (Hart *et al.*, 1979) were cultured in RPMI 1640 (Invitrogen) supplemented with 10% FCS, 50 IU/ml penicillin G, 50µg/ml streptomycin sulphate, 2 mM L-glutamine and 0,4 mM Na-pyruvate. For tumour inoculation cells were detached from the culture flask by a short EDTA treatment, washed three times in endotoxin-free sterile PBS (Sigma), and resuspended in PBS at 6×10^6 cells/ml.

4. Tumour experiment

On day 0 the mice were inoculated with 6×10^5 cells subcutaneously in the back just in front of the hind limb. Treatment was started when the tumour size index (TSI), i.e. the product of the largest perpendicular diameters in cm, reached 0,5 (day13). Treatment with hTNF (30µg/injection) or low dose mTNF (0,7µg/injection) was given daily for 9 or 10 consecutive days via paralesional injection (subcutaneous injection near the site of the tumour but outside the nodule). Alfa-GalCer (1-2µg/injection) was injected intraperitoneal. All agents were diluted in PBS to a final volume of 100µl/injection. Control mice were injected with 100µl PBS. TSI and body weight were measured every day prior to injection and every two or three days when treatment was finished.

25 Examples

1. Synergism between alfa-GalCer and TNF

To determine whether activation of NKT cells would sensitize for a sub-therapeutic treatment with TNF, C57BL/6 mice bearing a subcutaneously growing B16Bl6 tumour were treated with a combination of the specific NKT cell agonist alfa-GalCer and either hTNF or low dose mTNF.

We first performed a pilot experiment to assess what would be the optimal time point to inject the alfa-GalCer in comparison to TNF. Alfa-GalCer was injected either 1 day before, 1 hour before, or 1 day after treatment with TNF was started. In PBS treated mice the tumours grew linearly. Treatment with alfa-GalCer or hTNF alone had respectively no effect on tumour growth or nor any tumouristatic effect. However, the response to the combination of alfa-GalCer and hTNF was striking, with tumour regression (more than 25% decrease in tumour size) in all treated animals (Fig. 1.A). Moreover, complete regression (no palpable tumour) of the B16Bl6 tumour was obtained in both treated mice when alfa-GalCer was injected 1 day

before hTNF, and in one of the two treated mice when alfa-GalCer was injected 1 day after treatment with hTNF was started. The combination treatment with alfa-GalCer and hTNF caused a moderate increase in systemic toxicity compared to hTNF alone (Fig. 1.B). One of the two treated mice died when alfa-GalCer was injected 1 hour before hTNF. From these 5 results we concluded that the optimal time point to inject alfa-GalCer was 1 day before treatment with TNF was started.

Next, we performed a larger scale experiment to determine whether pre-treatment with alfa-GalCer would cause a significant increase of the anti-tumour effect of TNF. Treatment with alfa-GalCer or low dose mTNF alone had a small inhibiting effect on tumour growth, while the 10 effect of hTNF was tumourstatic. The combination of alfa-GalCer with hTNF or low dose mTNF was clearly synergistic: treatment caused tumour regression in all treated animals (Fig. 2.A), which was complete in five of the seven treated animals for alfa-GalCer plus hTNF (2 mice died during treatment; for hTNF alone also 2 mice died during treatment), and four of the seven treated animals for alfa-GalCer plus low dose mTNF (1 mouse died during treatment; for 15 mTNF alone also 1 mouse died during treatment). The combination of alfa-GalCer plus hTNF or low dose mTNF, however, did only cause a moderate increase in systemic toxicity compared to hTNF or low dose mTNF alone (Fig. 2.B).

Taken together, we have shown that specific activation of NKT cells by a single injection of alfa-GalCer can induce a selective increase of the anti-tumour effect of TNF.

2008219269 01 Oct 2012

The claims defining the invention are as follows:

1. A pharmaceutical composition comprising TNF and alfa-galactosylceramide.
2. A pharmaceutical composition according to claim 1 wherein TNF is recombinant and said TNF is human.
3. A pharmaceutical composition according to either claim 1 or claim 2 further comprising a chemotherapeutic agent.
4. Use of a pharmaceutical composition according to any one of claims 1 to 3 for the manufacture of a medicament to treat cancer.
5. Use according to claim 4 wherein a single alfa-galactosylceramide dose is administered at least one hour before the administration of TNF.
6. Use according to claim 5 wherein treatment with TNF is administered daily for at least 5 consecutive days.
7. A method of treatment of cancer in a patient requiring such treatment comprising administering to the patient an effective amount of a composition according to any 1 of claims 1 to 3.
8. The composition according to claim 1, the use according to claim 4 or the method according to claim 7, substantially as herein before described.

1/2

Fig. 1.A

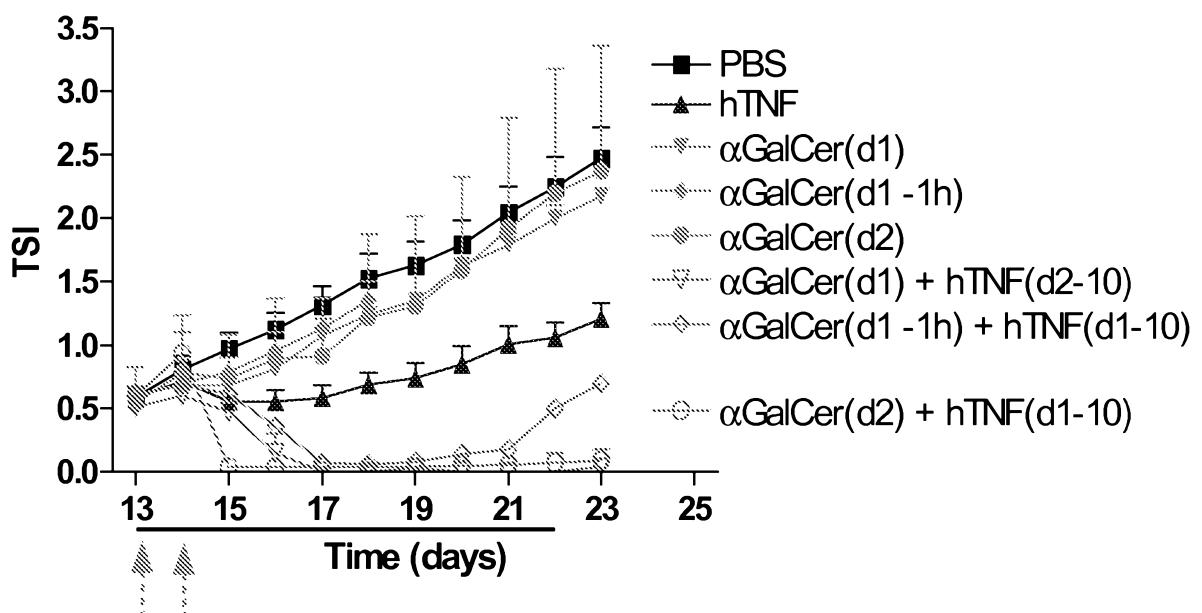
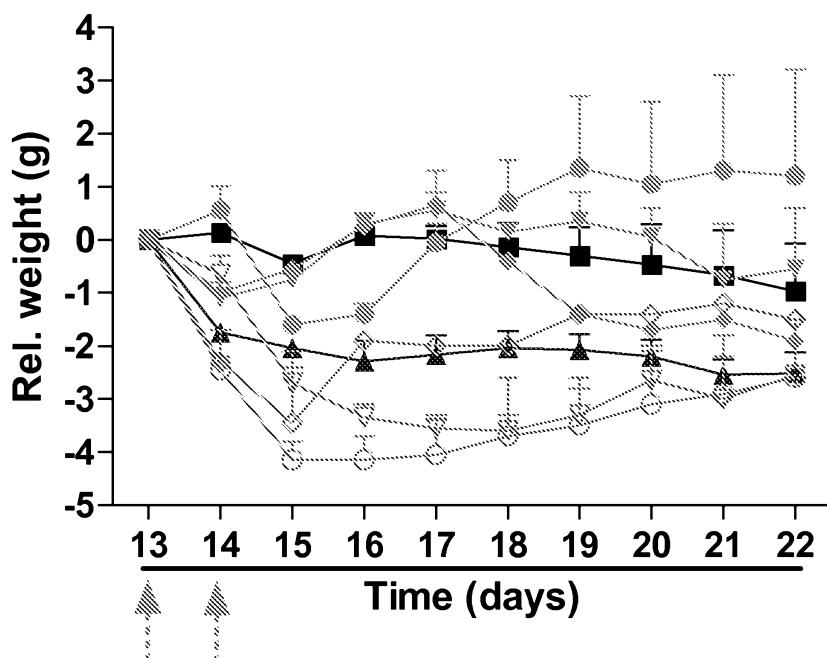



Fig. 1.B

2/2

Fig. 2.A

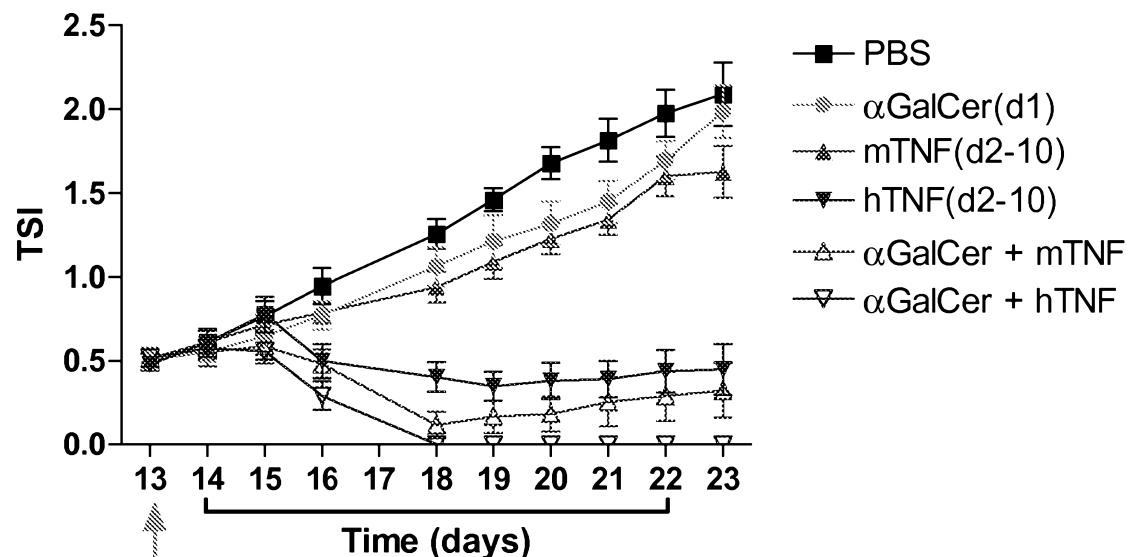
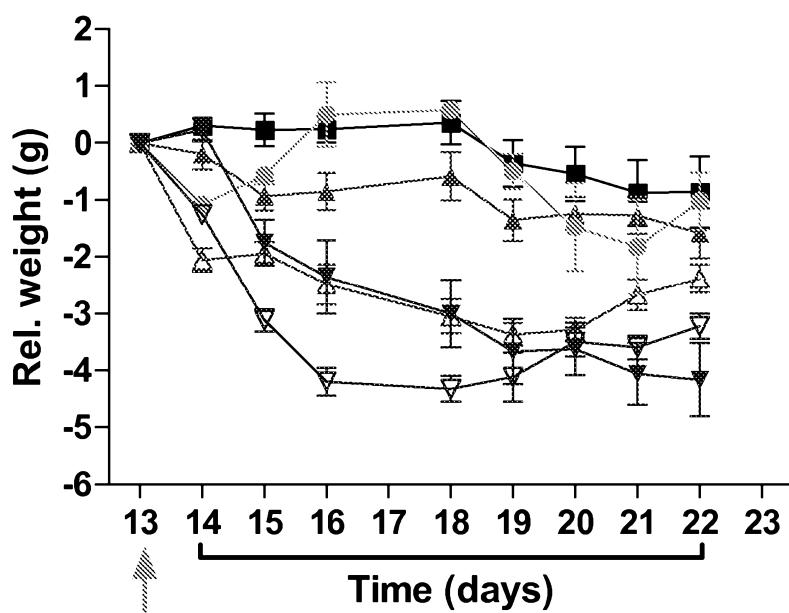



Fig.2.B

