发明名称

产生0-乙酰高丝氨酸的微生物和利用所述微生物产生0-乙酰高丝氨酸的方法

摘要

本发明涉及产生0-乙酰高丝氨酸的微生物和利用所述微生物产生0-乙酰高丝氨酸的方法，具体而言，本发明公开了一种能够以高产酸率产生0-乙酰高丝氨酸的埃希氏菌属的菌株，在所述菌株中引入以下酶并增强其活性：高丝氨酸乙酰转移酶、天冬氨酸激酶和高丝氨酸脱氢酶；以及选自自由磷酸烯醇式丙酮酸羧化酶、天冬氨酸氨基转移酶和天冬氨酸脱氨酶组成的组中至少一种酶。此外，本发明还提供了利用所述菌株产生0-乙酰高丝氨酸的方法。
1. 一种生产0-乙酰高丝氨酸的方法，包括步骤：
在培养基中发酵具有提高的0-乙酰高丝氨酸产量的埃希氏菌属的菌株，
其中所述埃希氏菌属的菌株的特征为在其中引入和增强（a）高丝氨酸乙酰转移酶的活性，并且在其中增强（b）天冬氨酸激酶和高丝氨酸脱氨酶、磷酸烯醇式丙酮酸羧化酶、天冬氨酸氨基转移酶和天冬氨酸半醛脱氨酶的活性。

2. 如权利要求1所述的方法，其中所述埃希氏菌属的菌株的进一步特征为删除或缺少编码脱硫醚γ-合酶的metB基因。

3. 如权利要求1所述的方法，其中通过用携带相应基因的质粒进行转化、通过提高相应基因的拷贝数、通过利用相应基因的强启动子或者通过相应基因的已有启动子进行突变，来实现所述活性的引入和增强。

4. 如权利要求1所述的方法，其中所述天冬氨酸激酶和高丝氨酸脱氨酶、磷酸烯醇式丙酮酸羧化酶、天冬氨酸氨基转移酶和天冬氨酸半醛脱氨酶各个酶由来自大肠杆菌的相应基因thrA、ppc、aspC和asd编码。

5. 如权利要求1所述的方法，其中所述高丝氨酸乙酰转移酶由metX基因编码并源自于选自棒杆菌属、钩端螺旋体属、克氏菌属、假单胞菌属和分支杆菌属的微生物。

6. 如权利要求5所述的方法，其中所述高丝氨酸乙酰转移酶源自于选自谷氨酸棒杆菌、迈氏钩端螺旋体、耐辐射克氏菌、铜绿假单胞菌和耻垢分枝杆菌的微生物。

7. 如权利要求6所述的方法，其中所述高丝氨酸乙酰转移酶如SEQ ID NO.18、19或20的氨基酸序列所示。

8. 如权利要求1所述的方法，其中所述埃希氏菌属的菌株是大肠杆菌。

9. 一种生产L-蛋氨酸和乙酸的方法，包括步骤：
（a）利用权利要求1所述的方法生产0-乙酰高丝氨酸，并且
（b）在选自脱硫醚γ-合酶、0-乙酰高丝氨酸硫化氢解酶和0-琥珀酰高丝氨酸硫化氢解酶的酶的存在下将0-乙酰高丝氨酸以及甲硫醇一块转化为L-蛋氨酸和乙酸。

10. 如权利要求9所述的方法，其进一步包括步骤：
在步骤（a）后分离0-乙酰高丝氨酸。
说明书

产生0-乙酰高丝氨酸的微生物和利用所述微生物产生0-乙酰高丝氨酸的方法

[0001] 本申请是申请号为201010144906.2，申请日为2010年3月22日，发明名称为“产生0-乙酰高丝氨酸的微生物和利用所述微生物产生0-乙酰高丝氨酸的方法”的中国专利申请的分案申请。

[0002] 相关申请的交叉引用

技术领域

[0004] 本发明涉及能够以高产生成0-乙酰高丝氨酸的埃希氏菌属（Escherichia sp.）的菌株。另外，本发明还涉及利用所述菌株产生0-乙酰高丝氨酸的方法。

背景技术

[0005] 可以通过化学或生物学方式合成在动物饲料、食品和医药中使用的蛋氨酸。

[0006] 在化学合成途径中，蛋氨酸基本上是通过水解5-2-甲基硫烷基乙基]乙内酰脲产生的。然而，合成蛋氨酸的不利之处在于以L-型和D-型的混合物的形式存在，这需要困难的额外方法将它们彼此分开。为了解决该问题，本发明的发明人开发了用于选择性地合成L-蛋氨酸的生物化学法，L-蛋氨酸是已有专利申请（WO 2008/103432）要求保护的化学物质。该方法（简称为“两步法”）包括发酵产生L-蛋氨酸前体以及由L-蛋氨酸前体向L-蛋氨酸的酶促转化。所述蛋氨酸前体优选包括0-乙酰高丝氨酸和0-琥珀酰高丝氨酸。就对常规方法存在的问题的克服对所述两步法进行评价，所述常规方法存在的问题例如硫化物的毒性、蛋氨酸和SAMe在蛋氨酸合成中的反馈调控，以及硫胺素γ合酶的作用。0-琥珀酰高丝氨酸经硫化氢解酶和0-乙酰高丝氨酸硫化氢解酶对中间产物的降解。另外，与产生DL-蛋氨酸的常规方法合成法相比，所述两步法具有以下优点：仅对L-蛋氨酸具有选择性，并且伴随产生作为有用副产物的有机酸，例如琥珀酸和乙酸。

[0007] 作为蛋氨酸生物合成途径中的中间产物，0-乙酰-高丝氨酸被用作产生蛋氨酸的前体（WO 2008/013432）。如下式所示，在0-乙酰转移酶的协助下由L-高丝氨酸和乙酰-CoA合成0-乙酰-高丝氨酸。

[0008] L-高丝氨酸+乙酰-CoA→O-乙酰-高丝氨酸。

[0009] 在本申请的受让人的美国专利申请第12/062835号中公开了其中引入了负责天冬氨酸激酶活性和高丝氨酸脱氨酶活性的thrA基因和编码高丝氨酸乙酰转移酶的来源为奇球菌（Deinococcus）的metX基因从而分别提高L-高丝氨酸和0-乙酰高丝氨酸的生物合成的微生物株，和利用所述微生物株高产量地产生0-乙酰高丝氨酸的方法。

脱氢酶 (asd)。

【0011】与根据本发明的共同增强 (concomitant enhancement) 参与从磷酸烯醇式丙酮酸到0-乙酰高丝氨酸的转化的一系列酶类似，已经尝试通过同时表达在由天冬氨酸衍生的L-氨基酸 (例如L-赖氨酸、L-苏氨酸和L-蛋氨酸) 的生物合成中发挥重要作用的酶来提高L-氨基酸的产量。

【0012】EP00900872涉及在大肠杆菌 (Escherichia coli) 中有效地产生L-赖氨酸，其特征在于提高参与赖氨酸生物合成的一系列酶的活性，所述酶包括二氢吡啶二羧酸合酶 (dapA)、天冬氨酸激酶 (lysC)、二氢吡啶二羧酸还原酶 (dapB)、二氢基庚二酸脱氢酶 (ddh)、四氢吡啶二羧酸琥珀酰酶 (tetrahydropicolinate succinylase, dapD)、琥珀酰二氢基庚二酸脱羧酶 (succinyl diaminopimelate diacylase, lysE)、天冬氨酸半醛脱氢酶 (asd)、磷酸烯醇式丙酮酸羧化酶 (ppc)。日本专利第JP2006-520460和JP2000-244921号公开了通过提高天冬氨酸半醛脱氢酶 (asd)、磷酸烯醇式丙酮酸羧化酶 (ppc)、天冬氨酸激酶 (thrA)、高丝氨酸脱氢酶 (thrA) 和苏氨酸合酶 (thrC) 的活性从而在大肠杆菌中有效产生 L-苏氨酸。另外，WO2007/012078公开了能够产生水平增加的 L-氨基酸的棒杆菌 (Corynebacterium) 转化菌株，其中编码天冬氨酸激酶 (lysC)、高丝氨酸脱氢酶 (hom)、高丝氨酸乙酰转移酶 (metX)、0-乙酰高丝氨酸脱氢酶 (metY)、胱硫醚 y 合酶 (metB)、维生素B12依赖性甲基转移酶 (metH)、维生素B12非依赖性蛋氨酸合酶 (metE)、甲基四氢叶酸还原酶 (metF) 和葡萄糖6-磷酸脱氢酶 (zwr) 的基因的表达水平提高，而编码蛋氨酸阻遏物蛋白 (mclh)、高丝氨酸激酶 (hsk)、S-腺苷甲硫氨酸合成酶 (metK) 和苏氨酸脱氢酶 (livA) 的基因的表达水平降低。

【0013】所有这些专利均涉及有效产生天冬氨酸衍生的L-氨基酸，即分别为L-丝氨酸、L-苏氨酸和L-蛋氨酸，特征在于应用依赖于各自产物的基因组合。

【0014】在本发明中，经过设计使负责0-乙酰高丝氨酸生物合成途径中从磷酸烯醇式丙酮酸到0-乙酰高丝氨酸的催化步骤中的一系列酶的表达水平提高，从而以较高的产量产生0-乙酰高丝氨酸，这在之前的文献中并没有提及。另外，由于终产物不同，本发明中应用的酶组合不同于用于产生天冬氨酸衍生的L-氨基酸 (例如L-赖氨酸、L-苏氨酸或L-蛋氨酸) 的酶组合。

【0015】为实现本发明，本发明的发明人以最大产销量产生0-乙酰高丝氨酸进行了广泛而深入的研究，结果发现共同增强微生物株中基因组DNA和/或质粒形式的编码天冬氨酸激酶和高丝氨酸脱氢酶 (thrA) 以及高丝氨酸乙酰转移酶 (metX) 的基因，和编码选自磷酸烯醇式丙酮酸羧化酶 (ppc)、天冬氨酸氨基转移酶 (aspC) 和天冬氨酸半醛脱氢酶 (asd) 的至少一种酶的基因可以使0-乙酰高丝氨酸的产量显著增加。

发明内容

【0016】因此，本发明的目的是提供能够以高产销量产生0-乙酰高丝氨酸的微生物株，其经过设计以增强负责参与从磷酸烯醇式丙酮酸到0-乙酰高丝氨酸的高丝氨酸生物合成途径的酶的一系列基因。

【0017】本发明的另一个目的是提供利用所述微生物株以高产销量产生0-乙酰高丝氨酸的方法。
根据本发明的一个方面，提供能够以高产量产生0-乙酰高丝氨酸的埃氏菌属的菌株，其中在所述菌株中植入以下酶并增强其活性：(a) 高丝氨酸乙酰转移酶、天冬氨酸激酶和高丝氨酸脱氢酶；和(b) 选自由磷酸烯醇式丙酮酸羧化酶、天冬氨酸氨基转移酶和天冬氨酸半醛脱氢酶组成的组的至少一种酶。

根据本发明的另一方面，提供在培养基中产生0-乙酰高丝氨酸的方法，所述方法包括在所述培养基中发酵菌株。

根据本发明的再一方面，提供产生L-蛋氨酸和乙酸的方法，所述方法包括：(a) 发酵所述菌株从而产生0-乙酰高丝氨酸；(b) 分离0-乙酰高丝氨酸；和(c) 在选择性脱羧酵脱羧酶、0-乙酰高丝氨酸硫化氢酶和0-乙酰高丝氨酸硫化氢酶组成的组的酶存在下，将0-乙酰高丝氨酸和甲基硫醇一起转化为L-蛋氨酸和乙酸(acetate)。

因此，根据本发明，可以通过发酵麦克氏菌属的菌株以高产量产生0-乙酰高丝氨酸，其中所述菌株以染色体DNA或质粒的形式含有负责从磷酸烯醇式丙酮酸到0-乙酰高丝氨酸的生物合成途径的天冬氨酸激酶和高丝氨酸脱氢酶(thra)、高丝氨酸乙酰转移酶(metX)、磷酸烯醇式丙酮酸羧化酶(ppc)、天冬氨酸氨基转移酶(aspC)和天冬氨酸半醛脱氢酶(asd)的至少6个基因。此外，根据本发明的发明人提交的发明名称为“Microorganism producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor”的WO2008/013432中的公开，由本发明的菌株产生的0-乙酰-L-高丝氨酸可以被高产生成转化为L-蛋氨酸。

本发明涉及的生物保藏信息如下：

大肠杆菌CJM-X，其于2008年1月28日保藏在位于韩国首尔西大门区弘济洞儒林大厦的韩国微生物保藏中心(Korean Culture of Microorganism，简称KCCM)，保藏编号为KCCM10921P；

大肠杆菌CJM2-X，其于2008年2月12日保藏在位于韩国首尔西大门区弘济1洞儒林大厦的韩国微生物保藏中心，保藏编号为KCCM10925P；

大肠杆菌CA05-0567，其于2009年8月11日保藏在位于韩国首尔西大门区弘济1洞儒林大厦的韩国微生物保藏中心，保藏编号为KCCM11025P。

附图说明

参考以下详细说明并结合附图，可以更清楚地理解本发明的上述和其它目的、特点和优点，在附图中：

图1为显示本发明菌株的0-乙酰高丝氨酸生物合成途径的示意图；

图2为显示用于染色体整合的psG-2ppc载体的遗传图和构建的示意图；

图3为显示用于染色体整合的psG-2aspC载体的遗传图和构建的示意图；

图4为显示用于染色体整合的psG-2asd载体的遗传图和构建的示意图；

图5为显示表达载体pCJ-thra (M)-metX-CL的遗传图和构建的示意图。

具体实施方式

根据本发明的一个方面，本发明涉及能够以高产量产生0-乙酰高丝氨酸的埃氏菌属菌株，在所述菌株中植入以下酶并增强其活性：(a) 高丝氨酸乙酰转移酶、天冬氨酸激
酶和高丝氨酸脱氢酶；和(b)选自由磷酸烯醇式丙酮酸羧化酶、天冬氨酸氨基转移酶和天冬氨酸半醛脱氢酶组成的组的至少一种酶。

[0033] 本文使用的术语“L-蛋氨酸前体”旨在表示在蛋氨酸生物合成途径中发现的代谢物或其衍生物，特别是表示0-乙酰高丝氨酸。

[0034] 本文使用的术语“0-乙酰高丝氨酸株”旨在表示可以在细胞内或细胞外产生0-乙酰高丝氨酸的原核或真核微生物，特别是表示能够在其中累积0-乙酰高丝氨酸的经遗传修饰的微生物。可用于本发明的所述株的实例包括埃氏菌属、欧文氏菌属（Erwinia sp.）、沙雷氏菌属（Serratia sp.）、普罗威登斯菌属（Providencia sp.）、棒杆菌属、假单胞菌属（Pseudomonas sp.）、钩端螺旋体属（Leptospira sp.）、沙门氏菌属（Salmonella sp.）、短杆菌属（Brevibacteria sp.）、Hypomononas sp.、色杆菌属（Chromobacterium sp.）、诺卡氏菌（Nocardia sp.）、真菌和酵母，优选埃氏菌属、棒杆菌属和钩端螺旋体属以及酵母。更优选埃氏菌属。更优选大肠杆菌。更优选能够产生L-赖氨酸、L-苏氨酸、L-异亮氨酸或L-蛋氨酸的大肠杆菌菌株。优选选自本申请的受让人（US 12/062835）保藏的保藏号为KCCM 10921P或KCCM 10925P大肠杆菌菌株的菌株，或来自FTR2533（保藏号为KCCM 10541）的菌株。

[0035] 本文使用的术语“引入并增强……的活性”旨在表示提高由相应基因编码的酶的细胞内活性。这通常能够通过所述基因的过表达实现。过表达目标基因的方法有很多。例如，可以通过修饰目标基因启动子区和/或5’-UTR内的碱基；通过在染色体上引入目标基因的额外拷贝；或者通过将目标基因与自体同源启动子或异源启动子相组合引入到载体上，然后将所述载体转化到微生物株中实现过表达。另外，目标基因ORF（开放阅读框）内的突变可以引起其过表达。用数字表示，当发生过表达时，与天然状态的表达相比，相应蛋白的活性或浓度提高了10%、25%、50%、75%、100%、150%、200%、300%、400%或500%、1000%或高达2000%。引入并增强基因活性的方法包括用携带相应基因的质粒进行转化，增加基因拷贝量，利用针对所述基因的强启动子，或者对所述基因的现有启动子进行突变。

[0036] 在本发明的优选实施方式中，本发明提供能够以更高产量产生0-乙酰高丝氨酸的微生物株和利用所述微生物株产生0-乙酰高丝氨酸的方法，其中在所述菌株中引入由以下6种酶组成的一列酶并增强其活性：天冬氨酸激酶和高丝氨酸脱氨酶（thrA）、高丝氨酸乙酰转移酶（metX）、磷酸烯醇式丙酮酸羧化酶（ppc）、天冬氨酸氨基转移酶（aspC）和天冬氨酸半醛脱氨酶（asd）。优选地，通过转化携带相应基因的表达载体而向细胞中引入并增强天冬氨酸激酶和高丝氨酸脱氨酶（thrA）或高丝氨酸乙酰转移酶（metX），同时编码选自磷酸烯醇式丙酮酸羧化酶（ppc）、天冬氨酸氨基转移酶（aspC）和天冬氨酸半醛脱氨酶（asd）的至少一种酶的基因的一个或多个拷贝可以用于所述微生物株的基因组内。优选，所有这三个基因都以两个或更多个拷贝的形式位于大肠杆菌的基因组内。

[0037] 更详细地，微生物株经过设计以提高编码负责蛋氨酸生物合成途径第一步的高丝氨酸0-乙酰转移酶的metX基因的水平，从而增强L-蛋氨酸前体0-乙酰高丝氨酸的合成。在本文中，metX通常指编码具有高丝氨酸0-乙酰转移酶活性的蛋白的基因。对于本发明的应用，新的外源高丝氨酸0-乙酰转移酶可以源自多种微生物。所述可以由其获得编码高丝氨酸0-乙酰转移酶基因的微生物的实例包括棒杆菌菌属、钩端螺旋体属、奇球菌属、假单胞菌属或分支杆菌属（Mycobacterium sp.），但并不限于此。优选地，高丝氨酸0-乙酰转移酶可
以由源自选自以下组的菌株的基因编码：谷氨酰胺棒杆菌（Corynebacterium glutamicum）、
迈氏钩端螺旋体（Leptospira meyeri）、耐辐射奇球菌（Deinococcus radiodurans）、铜绿
假单胞菌（Pseudomonas aeruginosa）和耻垢分枝杆菌（Mycobacterium smegmatis）。更优选地，
高丝氨酸0-乙酰转移酶具有UniProt数据库登录号Q9RVZ8 (SEQ ID NO.18)、NP_249081 (SEQ ID NO.19) 或YP_886028 (SEQ ID NO.20) 的氨基酸序列。已知源自迈氏钩端螺旋
体的metX基因显示对反馈抑制的耐性（J. Bacteriol. 1998, Jan; 180 (2): 250-5; Belfaiza J et al.）。
在本发明的发明人此前的研究中还发现其他高丝氨酸0-乙酰转移酶对反馈抑制的耐性。

【0038】例如，可以通过引入metX或通过或对目标基因的5’-UTR和/或启动子区内的碱基进
行修饰，实现高丝氨酸0-乙酰转移酶的引入和增强。优选地，将与自体同源或异源启动子组
合的目标基因插入到载体内，然后将所述载体转化到微生物株中。metX的引入和增强引起
蛋氨酸前体的合成爆炸。

【0039】此外，经过设计使所述微生物株的天冬氨酸激酶或高丝氨酸脱氢酶活性提高，从
而提高0-乙酰高丝氨酸前体高丝氨酸的合成。在本文中，thra通常指编码具有天冬氨酸激
酶和高丝氨酸脱氢酶活性的肽的基因。优选所述天冬氨酸激酶和高丝氨酸脱氢酶由
Uniprot数据库登录号AP_000666的基因编码。优选通过质粒引入thra基因，并且作为质粒
DNA保留。也就是说，可以携带thra的表达载体转化到菌株中。更优选将metX和thra引入
到菌株中并使其在菌株中作为质粒DNA保留。也就是说，可以将同时携带metX和thra的表达
载体转化到菌株中。

【0040】在本发明的实施方式中，产生0-乙酰-L-高丝氨酸的微生物株的制备如下所示：

【0041】首先，设计通过提高分别编码磷酸烯醇式丙酮酸羧化酶（ppc）、天冬氨酸氨基转移
酶（aspC）和天冬氨酸半醛脱氢酶（asd）的基因的拷贝数使微生物株累积0-乙酰-L-高丝氨
酸。为此，将这些基因分别克隆到用于将基因整合到载体体中的pSG载体中，然后用pSG载体
进行转化，从而将各基因的数量增加至2个或更多个拷贝。结果，提高了所述基因的表达。接
着，将编码天冬氨酸激酶和高丝氨酸脱氢酶（thra）以及高丝氨酸乙酰转移酶（metX）的基因
作为质粒DNA引入到所述微生物株中。由此构建了由thra基因（天冬氨酸激酶和高丝氨酸脱
氢酶）、源自奇球菌的metX基因（高丝氨酸乙酰转移酶）和CJ1启动子构成的thra-metX操纵子
，并将其克隆至pC1920（低拷贝质粒）中，随后将所述重组质粒转化到各所述基因（磷酸
烯醇式丙酮酸羧化酶（ppc）、天冬氨酸氨基转移酶（aspC）和天冬氨酸半醛脱氢酶（asd））均
具有2个拷贝的菌株中。由此，所述微生物株在从磷酸烯醇式丙酮酸至0-乙酰高丝氨酸的生
物合成途径的每个步骤都得到改进。

【0042】如以下反应式所示，从磷酸烯醇式丙酮酸到0-乙酰高丝氨酸的生物合成的催化步
骤由一系列酶负责。因此，所述一系列基因的过表达导致0-乙酰高丝氨酸在细胞内的累积。

【0043】磷酸烯醇式丙酮酸+H+O2+CoA<->草酰乙酸+磷酸

【0044】草酰乙酸+谷氨酸<->天冬氨酸+a-酮戊二酸

【0045】天冬氨酸+ATP<->天冬氨酸-4-磷酸+ADP

【0046】天冬氨酸-4-磷酸+NADPH<->天冬氨酸-半醛+磷酸+NAD+

【0047】天冬氨酸-半醛+NADPH<->高丝氨酸

【0048】高丝氨酸+乙酰-CoA<->O-乙酰-高丝氨酸+CoA。

[0050] 可以以产生L-赖氨酸、L-苏氨酸或L-异亮氨酸的菌株为基础，优选以产生L-苏氨酸的菌株为基础制备产生L-蛋氨酸的菌株。在这种情况下，这些菌株已经适合合成高丝氨酸，并可以进一步通过工程化的方式提高metX的表达，从而大量产生蛋氨酸前体。

[0051] 本文使用的术语"产L-苏氨酸株"旨在表示能够在细胞内产生L-苏氨酸的原核或真核微生物。可用于本发明的菌株的实例包括埃希氏菌属、欧文氏菌属、沙雷氏菌属、普罗威登斯菌属、棒杆菌属、假单胞菌属或短杆菌属，优选埃希氏菌属。更优选大肠杆菌。

[0052] 在本发明的优选实施方式中，可以使用在WO 2005/075625中公开的产L-苏氨酸株FRT2533。FTR2533源自大肠杆菌TFR7624，TFR7624来源于保藏号为KCCM10236的大肠杆菌，而KCCM10236大肠杆菌又基于大肠杆菌TF4076。保藏号为KCCM10236的大肠杆菌高水平表达编码负责由PEP形成草酰乙酸的酶的ppc基因，以及编码对从苏氨酸到天冬氨酸的生物合成至关重要的酶的基因(包括thrA(天冬氨酸激酶-L-高丝氨酸脱氢酶)，thrB(高丝氨酸激酶)和thrC(苏氨酸合酶))，由此使L-苏氨酸的产量提高。大肠杆菌TFR7624(KCCM10538)携带失活的tyr基因，该基因抑制生物合成L-苏氨酸所必需的 tyrB基因的表达。大肠杆菌FTR2533(KCCM10541)为携带失活galA基因的产L-苏氨酸大肠杆菌菌株。

而同时表达thra和metX（图5）。依次将重组载体pSG-2ppc、pSG-2aspC和pSG-2asd转化到US 12/062835中公开的thra和metX基因得到增强的CJK-MX/thra（M）－CL菌株（保藏号KCCM 10921P）。所述转化菌株具有两个拷贝的整合至其染色体的ppc、aspC和asd基因，命名为CJK-MXPA2。用pCJ-thra（M）-metX-CL载体转化后，在培养瓶（flask）中培养该突变菌株，从而定量分析0-乙酰高丝氨酸的产生。与CJK-MX/thra（M）-CL（保藏号KCCM 10921P）对照相比，在其染色体中整合了两个拷贝ppc、aspC、asd基因（负责磷酸酯酶丙酮酸到天冬氨酸的转化）的菌株中，发现0-乙酰高丝氨酸的浓度由29.1%提高到32.7%，提高了3.6%；在以染色体DNA或质粒DNA的形式具有所有ppc、aspC、asd、thra和metX基因（负责从磷酸酯酶丙酮酸到0-乙酰高丝氨酸的生物合成途径）的菌株中，0-乙酰高丝氨酸的浓度由29.1%提高至46%，提高了16.9%。考虑到仅增强ppc、aspC和asd基因（负责磷酸酯酶丙酮酸到天冬氨酸的转化）时0-乙酰高丝氨酸的浓度为32.7%，以及仅增强thra和metX时0-乙酰高丝氨酸的浓度为37.5%的事实，当同时增强负责从磷酸酯酶丙酮酸到0-乙酰高丝氨酸的整个生物合成途径的所有基因时，0-乙酰高丝氨酸的浓度进一步提高至46%（实施例2，表2）。因此，根据本发明制备的菌株产生0-乙酰高丝氨酸的浓度高于野生型的对应菌株。

【0056】根据本发明的另一个方面，本发明涉及产生0-乙酰高丝氨酸的方法，所述方法包括在培养基中发酵产生0-乙酰高丝氨酸的大肠杆菌菌株，从而在培养基中累积0-乙酰高丝氨酸。

【0057】根据本发明的另一个方面，本发明涉及产生L-蛋氨酸和乙酸的发酵，所述方法包括(a) 通过发酵本发明的产0-乙酰高丝氨酸埃希氏菌株以产生0-乙酰高丝氨酸；(b) 分离0-乙酰高丝氨酸；和(c) 在选自胱硫醚γ合酶、0-乙酰高丝氨酸硫化氢解酶和0-琥珀酰高丝氨酸硫化氢解酶的转化酶存在下，将分离的0-乙酰高丝氨酸和甲基硫醇一起转化为L-蛋氨酸和乙酸。

【0058】当与本发明的菌株一起使用时，本发明的发明人的WO 2008/013432中公开的基于使用转化酶（胱硫醚γ合酶、0-乙酰高丝氨酸硫化氢解酶或0-琥珀酰高丝氨酸硫化氢解酶）的L-蛋氨酸生产方法能够产生更高产量的L-蛋氨酸。

【0059】以上制备的产0-乙酰-L-高丝氨酸酯可以在本领域已知的培养基和培养条件下培养。本领域技术人员完全理解，可以根据所用菌株对培养方法进行调整。发酵可以以分批、连续培养或分批补料的形式进行，但并不限于此。以下参考文献公开了多种发酵方法："Biochemical Engineering"by James M.Lee,Prentice-Hall International Editions, pp138-176。

【0060】培养基必须满足特定菌株的培养条件。以下参考文献中公开了多种微生物培养基："Manual of Methods for General Bacteriology"by the American Society for Bacteriology, Washington D.C., USA, 1981。通常，培养基包括多种碳源、氮源和微量元素。碳源的实例包括碳水化合物，例如葡萄糖、蔗糖、乳糖、果糖、麦芽糖、淀粉和纤维素；脂肪，例如大豆油、葵花油、蓖麻油和椰子油；脂肪酸，例如棕榈酸、硬脂酸和亚油酸；醇类，例如甘油和乙醇；和有机酸，例如乙酸。这些碳源可以单独或组合使用。氮源的实例包括有机氮源，例如蛋白胨、酵母提取物、肉汤、麦芽膏、玉米浆（CSL）和豆粉；无机氮源，例如尿素、硫酸铵、氯化铵、磷酸铵、硫酸铵和硝酸铵，这些氮源可以单独或组合使用。另外，所述培养基还可以包含磷酸氢二氢钾、磷酸氢二钾和/或其相应的含钾盐。另外，所述培养基中还可以以盐的形
式包含金属，例如磷酸镁或硫酸铁。此外，还可以加入氨基酸、维生素和适当的前体。可以分批或连续的方式将所述培养基或前体加入到培养物中。

【0061】可以利用合适的化合物，例如氯化镁、氯化钾、氯化钠、磷酸和硫酸，调整培养物的pH。为了防止在培养物中产生气泡，可以使用消泡剂，例如脂肪酸聚乙二醇酯。为了产生有氧条件，可以向培养基中充入氧气或二氧化碳（例如空气）。培养基保持在20～45℃，优选25～40℃。将菌株培养至L-蛋氨酸前体的期望水平，优选培养10～160小时。

【0062】通过以下实施例可以更好地理解本发明，但以下实施例仅用于说明而非限制本发明的范围。

【0063】实施例1：制备产O-乙酰高丝氨酸株
【0064】〈1-1〉构建用于ppc的染色体整合的pSG载体
【0065】为了在大肠杆菌的染色体中整合ppc，构建了pSG-2ppc载体。
【0066】从NHl的GenBank数据库获得ppc基因的碱基序列（NCBI-gi:89110074）。在该碱基序列的基础上，合成了用于扩增ppc基因的两对引物。一对引物（SEQ ID NO.1和2）从ppc ORF的起始密码子上游200bp开始，并包含EcoRI和SacI的限制性酶切位点；另一对引物（SEQ ID NO.3和4）从ppc ORF的起始密码子上游200bp开始，并包含SacI和KpnI的限制性酶切位点。

【0067】当以大肠杆菌W3110的染色体DNA作为模板时，在高保真DNA聚合酶PfuUltra™（Stratagene）的存在下，利用SEQ ID NO.1和2或SEQ ID NO.3和4的引物对进行PCR，条件为96℃变性30秒、50℃退火30秒并在72℃延伸4分钟，共30个循环。

【0068】由此获得的PCR产物是分别含有EcoRI和SacI位点，以及SacI和KpnI位点的约3.1kb两种ppc基因。

【0070】〈1-2〉构建用于aspC的染色体整合的pSG载体
【0071】为了在大肠杆菌的染色体中整合aspC，构建了pSG-2aspC载体。
【0072】从NHl的GenBank数据库获得aspC基因的碱基序列（NCBI-gi:85674274）。在该碱基序列的基础上，设计了一对用于扩增aspC基因引物（SEQ ID NO.5和6），其从aspC ORF的起始密码子上游200bp开始并包含限制性酶切位点BamH I。

【0073】当以大肠杆菌W3110的染色体DNA作为模板时，在高保真DNA聚合酶PfuUltra™（Stratagene）存在下，利用SEQ ID NO.5和6引物对进行PCR，条件为96℃变性30秒、50℃退火30秒并在72℃延伸2分钟，共30个循环。

【0074】由此获得的PCR产物是其中包含BamH I位点的约1.5kb的aspC基因。

【0075】用限制性酶BamH I消化后，将所扩增的aspC基因连接到用同一限制性酶处理的pSG76-C载体中，从而构建携带两个拷贝aspC基因的重组质粒pSG-2aspC。图3显示了用于向染色体中整合2个拷贝aspC的载体pSG-2aspC的遗传图和构建。

【0076】〈1-3〉用构建于asd的染色体整合的pSG载体
【0077】为了在大肠杆菌的染色体中整合asd，构建了pSG-2asd载体。
从NIH的GenBank数据库获得asd基因的碱基序列（NCBI-gi：89110578）。在该碱基序列的基础上，合成了用于扩增asd基因的两对引物：一对引物（SEQ ID NO.7和8）从asd ORF的起始密码子上游200bp开始，并包含EcoRI和XbaI的限制性酶切位点；另一对引物（SEQ ID NO.9和10）从asd ORF的起始密码子上游200bp开始，并包含XbaI和EcoRI的限制性酶切位点。

当以大肠杆菌W3110的染色体DNA作为模板时，在高保真DNA聚合酶PfuUltra™（Stratagene）存在下，利用SEQ ID NO.7和8或SEQ ID NO.9和10引物对进行PCR，条件为96℃变性30秒、50℃退火30秒并在72℃延伸2分钟，共30个循环。

由此获得的PCR产物是其中分别含有EcoRI和XbaI位点，以及XbaI和EcoRI位点的约1.5kb的两种asd基因。

用限制性酶EcoRI和XbaI消化后，将所扩增的asd基因彼此连接，并插入到用限制性酶EcoRI处理的pSG76-C载体中，从而构建携带两个拷贝的asd基因的重组质粒pSG-2asd。图4显示了用于向染色体中整合2个拷贝的asd的载体pSG-2asd的遗传图和构建。

（1-4）构建用于表达thrA和metX的重组pCJ-thrA(m)-metX-CL

为了生物合成O-乙酰高丝氨酸，通过引入携带thrA和metX基因的重组表达载体增强所述基因。

从NIH GenBank获得metX基因的核苷酸序列（NCBI gi:1799718）。在其核苷酸序列的基础上，设计一对引物（SEQ ID NO.11和12），其包含从ATG至TAA的metX ORF，并在其两端均具有限制性酶切位点HindIII。

在高保真DNA聚合酶存在下，利用引物SEQ ID NO.11和12进行PCR，条件为96℃变性30秒、50℃退火30秒并在72℃延伸2分钟，共30个循环，其中，耐辐射奇球菌R1的染色体DNA作为模板。

由此获得的PCR产物是含有限制性酶位点HindIII的约1kb的metX基因。

用限制性酶HindIII消化后，将所扩增的metX基因连接到US12/062835中公开的thrA表达载体pCJ-thrA(m)-CL质粒（预先用途同一限制性酶进行处理）中，从而构建携带thrA和metX的重组表达载体（命名为pCJ-thrA(m)-metX-CL，图5）。

（1-5）制备O-乙酰高丝氨酸

将在实施例1-1中构建的携带两个拷贝ppc基因的质粒pSG-2ppc转化到US12/062835中公开的菌株CJM-X/thrA(m)-CL（保藏号KCCM 10921P）中，然后在LB-Cm平板（酵母提取物10g/L、NaCl 5g/L、胰蛋白胨10g/L、氯霉素25μg/L）上进行培养，针对每个转化体选择10个氯霉素抗性克隆。所选转化体在其染色体的ppc位点处插入pSG-2ppc载体。然后，利用携带限制性酶I-SeeI的表达载体pAScep转化其中插入两个拷贝ppc基因的菌株，以便切割pSG载体中存在的I-SeeI位点，然后在LB-Ap（酵母提取物10g/L、NaCl 5g/L、胰蛋白胨10g/L、氨苄青霉素100μg/L）上进行筛选。选出的是其染色体上插入2个拷贝ppc基因并已经从其中除去pSG76-C载体的菌株。针对实施例1-2和1-3中分别构建的pSG76C-2aspC和pSG76C-2asd，重复与pSG-2ppc质粒相同的步骤。最后，将源自CJM-X/thrA(m)-CL（保藏号10921P）的pcp插入到其染色体的ppc、asd和aspC各两个拷贝的菌株命名为CJM-XPA2。

此外，用在实施例1-4中构建的pCJ-thrA(m)-metX-CL载体转化CJM-XPA2菌株，
然后在LB-Sp（酵母提取物10g/L、NaCl 5g/L、胰蛋白胨10g/L、壮观霉素25μg/L）上培养，选出10个具有壮观霉素耐性的克隆。所述CJM-XPA2（pCJ-thrA 0.1-metX-CL）（命名为大肠杆菌CA05-0567）于2009年8月11日保藏在KCCM（Korean Culture of Microorganism, Eulim build, Hongje-l-Dong, Seodaemun-ku, Seoul, 361-221, Korea），保藏号为KCCM11025P。对其产生0-乙酰高丝氨酸的能力进行相互比较。

[0091] 实施例2：发酵产生0-乙酰高丝氨酸
[0092] 为了检测实施例1中制备的菌株产生蛋氨酸前体0-乙酰高丝氨酸的能力，在锥形瓶中培养这些菌株。
[0093] 对于该培养，使用表1中所示的0-乙酰高丝氨酸滴定培养基(titer medium)。
[0094] 表1
[0095] 用于生产0-乙酰高丝氨酸的培养基成分

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度 (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>葡萄糖</td>
<td>60</td>
</tr>
<tr>
<td>硫酸铵</td>
<td>17</td>
</tr>
<tr>
<td>KH_2PO_4</td>
<td>1.0</td>
</tr>
<tr>
<td>MgSO_4 · 7H_2O</td>
<td>0.5</td>
</tr>
<tr>
<td>FeSO_4 · 7H_2O</td>
<td>5 mg</td>
</tr>
<tr>
<td>MnSO_4 · 8H_2O</td>
<td>5 mg</td>
</tr>
<tr>
<td>ZnSO_4</td>
<td>5 mg</td>
</tr>
<tr>
<td>CaCO_3</td>
<td>30 g</td>
</tr>
<tr>
<td>酵母提取物</td>
<td>2 g</td>
</tr>
<tr>
<td>蛋氨酸</td>
<td>0.15g</td>
</tr>
<tr>
<td>苏氨酸</td>
<td>0.15g</td>
</tr>
</tbody>
</table>

[0096] 利用商业在32℃过夜培养的LB平板上产生的单个菌落，并分别接种到25mL的0-乙酰高丝氨酸滴定培养基中，然后在32℃以250rpm振荡培养42～64小时。利用HPLC定量分析各培养物的0-乙酰高丝氨酸。分析数据汇总在下表2中。

[0097] 如表2所示，与CJM-2/pthA MCL（保藏号KCCM 10921P）对照相比，在具有整合至其染色体的ppc, aspC, asd基因（负责磷酸烯醇式丙酮酸到天冬氨酸的转化）各两个拷贝的菌株中，发现0-乙酰高丝氨酸的产率由29.1%提高至32.7%，提高了3.6%；在以染色体DNA或质粒DNA的形式具有所有ppc, aspC, asd, thrA和metX基因（负责从磷酸烯醇式丙酮酸至0-乙酰高丝氨酸的生物合成途径）的菌株中，0-乙酰高丝氨酸的产率由29.1%提高至46%，提高了16.9%。
总之，从上述培养瓶试验中获得的数据表明，考虑到仅增强ppc、aspC和asd基因（负责磷酸烯醇式丙酮酸到天冬氨酸的转化）时0-乙酰高丝氨酸的产率为32.7%，以及仅增强thra和metX时0-乙酰高丝氨酸的产率为37.5%的事实，当同时增强负责从磷酸烯醇式丙酮酸至0-乙酰高丝氨酸的整个生物合成途径的所有基因时，0-乙酰高丝氨酸的产率进一步提高至46%。因此，根据本发明制备的菌株产生0-乙酰高丝氨酸的产率高于野生型的对应菌株。

表2
产生0-乙酰高丝氨酸的培养瓶试验

<table>
<thead>
<tr>
<th>菌株</th>
<th>质粒</th>
<th>OAH 的产量(g/L)</th>
<th>产率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJM-X/pthrA(M)-CL</td>
<td>-</td>
<td>17.5</td>
<td>29.1</td>
</tr>
<tr>
<td>(保藏号 KCCM 10921P)</td>
<td>pCJ-thrA(M)-metX-CL</td>
<td>22.5</td>
<td>37.5</td>
</tr>
<tr>
<td>CJM-XPA2</td>
<td>-</td>
<td>19.6</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td>pCJ-thrA(M)-metX-CL</td>
<td>27.6</td>
<td>46.0</td>
</tr>
</tbody>
</table>

工业应用性
如上所述，本发明提供了在培养基中发酵时在培养基中高产量地产生0-乙酰高丝氨酸的埃希氏菌属的菌株。此外，通过两步法，0-乙酰高丝氨酸与甲基硫醇可以一起被转化为L-蛋氨酸，同时伴随乙酸的产生。

尽管出于说明的目的已经公开了本发明的优选实施方式，但本领域技术人员可以理解，在不背离权利要求书公开的本发明的范围和精神的前提下，各种修饰、添加和取代都是可能的。
序列表

〈110〉 CJ第一制糖株式会社

〈120〉 产生0-乙酰高丝氨酸的微生物和利用所述微生物产生0-乙酰高丝氨酸的方法

〈130〉 OPA09052

〈150〉 US12/550,121

〈151〉 2009-08-28

〈160〉 20

〈170〉 KopatentIn 1.71

〈210〉 1

〈211〉 31

〈212〉 DNA

〈213〉 人工序列

〈220〉

〈223〉 ppc的正向引物

〈400〉 1

gcggaatct tgctggatgc gactttgct 31

〈210〉 2

〈211〉 30

〈212〉 DNA

〈213〉 人工序列

〈220〉

〈223〉 ppc的反向引物

〈400〉 2

gaagagatct agaaaaacct egcgcataag 30

〈210〉 3

〈211〉 31

〈212〉 DNA

〈213〉 人工序列

〈220〉

〈223〉 ppc的正向引物

〈400〉 3

gcggaatct tgctggatgc gactttgct 31

〈210〉 4

〈211〉 30

〈212〉 DNA

〈213〉 人工序列

〈220〉

〈223〉 ppc的反向引物
400
aaagggta
agaaaaacct
cgcgcaaaag
30
210
5
211
30
212
DNA
213
人工序列
220
223 aspC的正向引物
400
5
tcgcagctca taagcgtage gcatcaggca
30
210
6
211
30
212
DNA
213
人工序列
220
223 aspC的反向引物
400
6
tcgagctcg tcaectatg ttgactacat
30
210
7
211
27
212
DNA
213
人工序列
220
223 asd的正向引物
400
7
cggaattc caggagca ataagca
27
210
8
211
28
212
DNA
213
人工序列
220
223 asd的反向引物
400
8
tcagttcag taagctttg aactcggc
28
210
9
211
28
212
DNA
213
人工序列
220

<223> asd的正向引物
<400> 9
tcagttcaga cggagacg aataagca 28
<210> 10
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> asd的反向引物
<400> 10
ccggaatttc gctctatatt aacctccg 27
<210> 11
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> metX的正向引物
<400> 11
tcgaagcttt atgacgcggc tgctgcggg 30
<210> 12
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> metX的反向引物
<400> 12
cgccaagctt tcaacctctg agaaacgccc 30
<210> 13
<211> 1005
<212> DNA
<213> 耐辐射奇球菌R1（Deinococcus radioduran R1）
<400> 13
atgacgcggc tgctgcggg ccaacgtctt gcctgcgtgc tgagcagaaga accgacgtg 60
tcggggcgcgc agaeglgtctg tctcttcggc cgctgacgcgc tgcgtctcga ctgacgcg 120
gcgcctgacg agtcggcgggt gcctctacac acctgaagca cgccgaggc gcgaecgccg 180
cgctgcgtgc acgcctgac gcggagacgac gcggttgccc aggggtgccc gcacctcttg 240
gccgagcgcgc gcgctgcctg ccgacaagac gaactagtg gctgacgcga cgcctcggc 300
ggctgcggcg gcgaeglgaag gcgctgctaa ctcgacgca cgcctctcgg ccgggtgccc 360
cgcctgctgc gcgacatggc cgccggtggg cgcggacgtgc gcggtctctc tggattttc tggcgtg 420
<210> 14
<211> 3125
<212> DNA
<213> 大肠杆菌W3110 (Escherichia coli W3110)
<400> 14

gccgcaataaa tgcggagatgc gatacttgcg catcttatcc gaccgacagt gactcaaacg 60
attgcceact tggagccgga taagggcgtc ggcggcgatt ggccgcgatt ggccgaaacg 120
agtgccgeaa taatgtgagga tgcgatactt ggcgccttat tccgacactt acectttgtg 180
atatgtgggg cggattttta acattcccat aagttcggct tatttaaaag gctgggtgaat 240
ntatgactga aattctctgt atattatgtg tgttctagacg gattttcgcag catttgacgt 300
cacgcccttt tcatgacctg ataaaaacg acgaaacagcg aacggccgca taattcggcgc 360
caatgcgcag tgaaggataac aggccgaata aacgataaga tgggggttct ggggtaataat 420
gaacgaaacg tattcgccat tgcgtagaac tgcggccagc atgggtggag cgcgcaagtc 480
aacccatcaag gatgctgcatc gagaacagat tcttggaacgc gtagaataca tccgtaagtt 540
gtcgaaatct tcaaggctgt gcaataagtg tcacgcgeac gcgtgcttac caaacccgta 600
aattgtgctc aagacggagac tgcgctgcct tgcgcgctgcg gttgctgtag ctectgaacc 660
gccaacaccc ggccagcata accacgcat ttcgcgcaag ggcgaagcgc cagcaacccc 720
gggcgagtgc ggccgcaaccc tgcgttacat gaaacggcagc gcaagtcgag cgaacgacac 780
catcacaacg gcaagtggat ccctgtgcgt cggagtggta ccagctggctt accaaaccga 840
aattacctcg ctagcagcta tcaaccaaat ggggtaattac gcacgtgctt taaaacagct 900
cgataacaaa gatatacgctg actacgaga caacagactg atgcgtgcgc tgcgcagtt 960
gatgccgeaa taattggtgtgc ccaagtaatc cggtcaaat gcggcaagct gcgtgattaga 1020
agccaaatgc ggttggcccg tagtggaaaa cagcctgtgg cagggcgtaa caaattacct 1080
gccgcaactg aagcgaacac tgcgaagaaaa ccctgctgtcc caaacctgcc tgaatttt 1140
tcggtttgtc ttatctctgt gatagggcag ggccgcaagac gcggccagtct tggcagatcc 1200
cgatatacgg cgccagctgc tggctactcag cgcctggaaa gcaccgcctt gttgccctga 1260
agatatctgg gcgtgcgtttt tgcgtattgc tgcctgtgga ggcacccgggg aactgtgcgc 1320
gctttggtgc gaagaggtgg ccgcaagacc gatactgctat cttgataaaa actggctgtc 1380
tgcggctgtgc gcagacagcgg atgggcgtga aggcggcgctg aagcggagaa aactgccaa 1440
<table>
<thead>
<tr>
<th>序 列 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>accagaagcc ctgcgtcagc aaaaagaga actgtgtagaa ccgtcttaac gttgtacca 1500</td>
</tr>
<tr>
<td>gtcacttceag gcgtgtgcca tgggttatatt cgeccaacgc gcctgccteg acacccctggc 1560</td>
</tr>
<tr>
<td>ccgcgtaaaa ttggtcggcg taccgctggt tctgatttgat atccgccagc agagacacgcgg 1620</td>
</tr>
<tr>
<td>tcatacggaa gcgcctgggccc gctcgcgacg ctcactcggta ctcgcggact gcgaagagctg 1680</td>
</tr>
<tr>
<td>gtcagagggc gacaaaacgag cgctgctgaag cgccgaacac ggctcgccatc ctgctgcttct 1740</td>
</tr>
<tr>
<td>ggcggcccaac acggcgaacac gcggcgaagct gcggagcttg ctcgatctcc ggcagaggtat 1800</td>
</tr>
<tr>
<td>tgccggaagca cggacggagc gatccggtg cacgctgcgct cgcagctgctgc 1860</td>
</tr>
<tr>
<td>cgagcgtactc gctgcaggca aagagggccc gtcgctgtgat gatgcgctgg gatgcgctgg 1920</td>
</tr>
<tr>
<td>tgcgctgcgg ttttaaaccct ttcgtattgc gacacagctc agtcggtgt tggacaacc 1980</td>
</tr>
<tr>
<td>gctcaattatt ccgagggtagc tggccgcttgata cgcggcggcag cagatcctca 2040</td>
</tr>
<tr>
<td>ttctcgactc caacaaagatg ccggagcttgact ggctcgcttcc tgggctggacat acgggcaaca 2100</td>
</tr>
<tr>
<td>gagtagataaa atcaacaacct gcggccaaacc ggggtattggag ctgagcgttct gcacacgctc 2160</td>
</tr>
<tr>
<td>cggcggttcc atgggtcgcc gcgggctgccac ccgctctcgc gcgcgctgtcgc cacaaccgcg 2220</td>
</tr>
<tr>
<td>agaaaagaca aggccggcgc gcgcggttaag cgcgggagcc ggcctagccgc 2280</td>
</tr>
<tr>
<td>tggctgcca gaaactcccg ctcggtccct gcgggctttat cggggcgcgct tcgccgagac 2340</td>
</tr>
<tr>
<td>caacctgcct gcacagccgggc ggcgggagct ccgctgctgc 2400</td>
</tr>
<tr>
<td>agicactctc gcgaggtgctc aacccgggtgca cgtacgttgc 2460</td>
</tr>
<tr>
<td>ctccgctcgc gcacggctggc aaccaagaact ggctggggtt ctcgcgggctgc 2520</td>
</tr>
<tr>
<td>gaaagctgcgc ccaacgggccc gctgcggagc actcggcggcc attcgctgga ctccgcttgctc 2580</td>
</tr>
<tr>
<td>gcggcggcggc ctcgctgctc gcgcgctgctgc 2640</td>
</tr>
<tr>
<td>ggtacgacgc gcgcggtttct gcgcggtttct gcgcggtttct gcgcggtttct gcgcggtttct 2700</td>
</tr>
<tr>
<td>gcagcgttgc gcgtcgctggc agagtgttct gcgcgaaagc gcacggtggc tgccggagat 2760</td>
</tr>
<tr>
<td>ctatgaccaac cgcctgtgtac acacaaccgtc gggcggcttta ggttaagata taccgcaacc 2820</td>
</tr>
<tr>
<td>gcgaagagac gcagacttcaag tgggtggtggc ggttggccac gattcccatc tgggctggggc 2880</td>
</tr>
<tr>
<td>tgcgcggatt ctattggctac gggatggaact tacccgataccgccgacggc 2940</td>
</tr>
<tr>
<td>atgcagccg gctgtgcggc aacgcctcgg ccagccagaa aaagagggcc agaagccgagacccg 3000</td>
</tr>
<tr>
<td>tccgctgctc gacaagacgt ttaatggcctac tattggctggc gtttgccagct gtaatctta 3060</td>
</tr>
<tr>
<td>taccgctgata tttctctctt ttcgacaaaaa tctgctgttta tttggggaga ttttataatt 3120</td>
</tr>
<tr>
<td>acttc 3125</td>
</tr>
</tbody>
</table>

《210》15
《211》1563
《212》DNA
《213》大肠杆菌
《400》15

gatgtctcgc cctatgttga ctacacact eaccagaceg atcttgacacaa caaaaccggtg 60
gtcagttcag acgcacacgct tgcgtgggtg tgcgtgttacc agtctctaata gccacccctctc 120
ttgtttaagc cgcggaaaaacc aggaccttgg cctgtcttatttt tttataacct ccaagaccaat 180
tctacgcttt ctgagagcag ctgctgctttc ctactgtaat gttggttaact 240
cgcgctgcc tgaatagcggt ccctcctctc gtcaggtatat tgggccatat 300
序 列 表

<table>
<thead>
<tr>
<th>序列</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaacattacc gcgcgtcctg cggacccgat tcggggcctg gccgatctgt tcggccgga</td>
<td>360</td>
</tr>
<tr>
<td>tgaacgtcc gcgnaaatta acctcgggat tgtgtctat aagatgagaa ggggnaaacc</td>
<td>420</td>
</tr>
<tr>
<td>cccggtactcg accagcgtga aaagagcgtga acagtaactgc tcggaaagtg aaccaccaaa</td>
<td>480</td>
</tr>
<tr>
<td>aaattacct gcattgagcc gcatcctcga atttggtgcgc tcgaactcagg aacctgtcttt</td>
<td>540</td>
</tr>
<tr>
<td>ttgtaaaggt aegcgcctga tcactgacaac aagctgtgctgc acgcgaagcac ccgcccgggggg</td>
<td>600</td>
</tr>
<tr>
<td>cacttgccgca ctacgcgttg ccgccgatttt cctggcaaaat aataccagcc tttaacgctgt</td>
<td>660</td>
</tr>
<tr>
<td>gtgggtggcgc aaccccaagt gccggaacca taagacgctc ttttaactctg cgggttcgga</td>
<td>720</td>
</tr>
<tr>
<td>agttcgtgaa taccgtaatt atgatgcgga aaaaacacact ttggacttcg acgtcactgat</td>
<td>780</td>
</tr>
<tr>
<td>taacgcctgt aataaagctc aggcctcgccga cgtatgtgct ttccatgctg gctgcctaaat</td>
<td>840</td>
</tr>
<tr>
<td>cccacacggt atcgacccctc gctgggaaca atggccaaac atggccacac cttcggtttga</td>
<td>900</td>
</tr>
<tr>
<td>gaaagcgtcgg ttacgcctgct ttgaacccgag ttgggcccgtg tctctggaaga</td>
<td>960</td>
</tr>
<tr>
<td>agatgccgga ggcacgctggc cttccgcggc tattgctaaac gacgctgtgcg tgcgcgccttc</td>
<td>1020</td>
</tr>
<tr>
<td>ctactctaaa aaccttggcc tgtacaaacac gcgggttgcc gcttgactct tgttggctgc</td>
<td>1080</td>
</tr>
<tr>
<td>cgacaggtga aacggctgatc ggcacccgac cccaaatgaa gcggcagacc gcgctaaatc</td>
<td>1140</td>
</tr>
<tr>
<td>cctctaaacca ccaagcaacgc gcggctccct tgttgccaccc atctcgagaa agcatgcgggt</td>
<td>1200</td>
</tr>
<tr>
<td>acgtcgccatt tcggggacaag atgcctgcag tcgtgcgcgc cgtttcaccc gcgtgcgtca</td>
<td>1260</td>
</tr>
<tr>
<td>gtgtcgcgct aaaacgcctgc aggaaaagaag cggcnaaaac gcactccact gtatccatac</td>
<td>1320</td>
</tr>
<tr>
<td>acagaacgcgg gcgtttttct ctacggtct catcggccctg gacaaagaaag cagaatgtgc gcctgcctgc</td>
<td>1380</td>
</tr>
<tr>
<td>agagttgagc gttaaattgct ttgctcttgg cgctgcaatat tgtggccgga ataaccagca</td>
<td>1440</td>
</tr>
<tr>
<td>taacatggct cgctgttgcag aagcgattgt ggcagttgctg taagcattaat aacaaatgaa</td>
<td>1500</td>
</tr>
<tr>
<td>gcggctgga aagcgccctgt gcacgtgatga caaaccgcaac atttgcctgtg gcgcgtacgc</td>
<td>1560</td>
</tr>
</tbody>
</table>

tat
tat

〈210〉 16
〈211〉 1556
〈212〉 DNA
〈213〉 大肠杆菌W3110
〈212〉 DNA

〈400〉 16

gaattccceac gagagcataa agcaacctc tgcaccagatg tcggggcgctg ctttctggttgaag

cagttggttt tcaaatattt gttggggaaat cggcctgctc tacggatcc taaaacgagga
	tcaatauenctct tgcacccctga aatactccgtaaatttaattg gaaaccgcttc

cggctctct gcgtcattgc aacgaggata acgtcctgatg tgggctttctg cgtatcacctt

gattaattt cggagacactc ttcggtctgt gtttgatatg gaaagatggc ccacaccggc
	acctgatcg ccttactgcag gcgtggctggc gcggctggctgc gcggctggctgc gcggctggctgc

gtccccctgc ggaaacccgct gccaccaatt cgacgcttctg tctctgctgc gcacgctgtg cttggtttt

ttcctcggcc gcctcggttgc gcgtgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt

ttcctcggcc gcctcggttgc gcgtgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt

ttcctcggcc gcctcggttgc gcgtgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt gcgtcgtcttt
序 列 表

<table>
<thead>
<tr>
<th>序列</th>
<th>长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>tggcatcagg acttttgttg gccttaacct ctcgccgcttc ttcggttggg 780</td>
<td></td>
</tr>
<tr>
<td>tggtttatcc gcctatgcatc ttgtgtgatt ggtgctcgtt gcacacctacc aggcgcttc 840</td>
<td></td>
</tr>
<tr>
<td>ccgccgggtg gcctacacata tcgggtgttt ataaccaacact tgtggccact tgtgttggc 900</td>
<td></td>
</tr>
<tr>
<td>tgtggcagat gaactcgcga cccgtctcct tcgtatattct gatactgac gccaaagtcac 960</td>
<td></td>
</tr>
<tr>
<td>aaccttaacce cgagcgtcgtg acggtcgccacctttg ccgcctggac gctgcggttag 1020</td>
<td></td>
</tr>
<tr>
<td>cctgattccg tcggatgcga aacgctcga taacggtcag agcgccgaag aagtgcggaa 1080</td>
<td></td>
</tr>
<tr>
<td>gcagggcggcg acaccaacca ctctaaacatctcctcctg atctctggag tgttgttattg 1140</td>
<td></td>
</tr>
<tr>
<td>tgtggctgtcg ggggcattgc gctgcacacag ccagccatct acctattaaat tcgaaaaaga 1200</td>
<td></td>
</tr>
<tr>
<td>tgtgtctatt cgcacccgttg aaagactgctg gctgcgcgtc caagcgcgatt gcctgcctgg 1260</td>
<td></td>
</tr>
<tr>
<td>tcggatgcag cgggaatacttgttgctc gctcaca ggcgcatttc ggcgcggttc aagcgcgcag 1320</td>
<td></td>
</tr>
<tr>
<td>gacagcgcgg gtaggcgcgc ggccgtagcct gataatggga cccagctcttc gctgtagcct 1380</td>
<td></td>
</tr>
<tr>
<td>tggccggttc gcgcggatgc ccggcgggct ctagctcgg ccgcgggttc gtcgtggtca 1440</td>
<td></td>
</tr>
<tr>
<td>actggtctaa ctcttttctct tcgaaactgttg ggcgcggtgc cgcctgcgtt aagtcggtat 1500</td>
<td></td>
</tr>
<tr>
<td>acaggagttaa ggcgcaggtct ttcgatgtg ttcgagggtt aataagacgca tctaga 1556</td>
<td></td>
</tr>
</tbody>
</table>

＜210＞17
＜211＞2464
＜212＞DNA
＜213＞大肠杆菌W3110
＜400＞17

atgcgaggtgt tgaagtctgggg eggtacatcag gtggcaaatg cagaaacgttt ttcggtggttt 60
gccgatattc tgggaaccagc tgcggcgccg gcgaggtgct caccgcccttc cctgcagggg 120
gcrraagtcag cgggttcgggt tggggcttc ggagttttcg gaaattttcg tacgttacag atttgcccaa 300
at acctgcaagc gcggtcagtf ctctcttttt ggtggcgcgtg gctgggcttg gtttgaccgtg 360
gccgcgttt tggcgtgggt gccggtggcg gaaagaatgc atccgctatg tgcggcgtt gatttagacg 420
gcgggttcac aacgtactgt ttcgattccg tgcgaaacac gttcggtgat cggggatcc 480
tctgcagatc cgggtggatgc tgtggatgctc acggcggagt tgcggcattg ctcggtcgct 540
gctgggatca tgggtctgtat ggcgggcttc agcggcgggta atgaaaaaaag cagacgaggtg 600
tgcattgggg gaacaaggtcc ctagcatttc gtcggtggtgc ggtggatttc ttcgctggctg 660
gatttgttggc agacttggac gcacggttggcc cgggtctttga ctgcgcaccc gctgctagggt 720
d}(ccggcagcgg ggttgggtta gggggttcag ctgcgcgctt gacggcgcggc ggcggattgcc 840
tcgttgcagc ggttcgctggg ctcgctggcagc gcagcgtatc atcctgggat gcgcgggggtc 900
gagacggtttc gggcaggtct cgcgtgcttc gcggagtctc gaccagcatc atctggcagaacg 960
tgggtctgag gatggagaaag gatggcgtcag ggtgggcttg gttggtggtgc gcgttgdtcttga 1020
cggcgcgggta ttcggttggt gtcgatttc cttcattcgg cgcagtcctg gccaggtttggc 1080
tgcggttcag cagacggtcag tgtgcgagct cggagggcag gttgcagctag ttcatccttg 1140
gaacgtgaaag aagggctttagt ggacggcgctg gctgcaggttt cggaggtgctg 1200
序 列 表

tggttaggtg atggtatgcg cacctgctcg gggatctcgg cgaaatcttt tgccgcaactg 1260
gcccgccca atatacaaat tgctgcaatt gcctcaggat cttcctaagc ccnaactctc 1320
gtcggtgtaa ataacagttg tcgacactt ggcgtgctgc ggagaatcct gtataagttc 1380
aatcggtagtc aggttttagc atgtgcttagc atggccgtgct cgggtctgtcgtg 1440
tagcgatcact ctaagcgctcg ccgaactgctg ctaagaatca caaagtcgtc cttaacgct 1500
tgcggtttgg ccaactcggc ggctctgcct aceaatgtac atggccttaa tctggaaacc 1560
tggcaggaaag aacggtccga gcggaaagag ccgattttaac tcgggctgtt gattcgcttc 1620
tgagagatg atctactgtc gaaacctggtgct atgtttgcact gcacctccac gcaggcagtg 1680
gcggatcaat atgcggacttt cctgcgcgcgg ggtttccacag tggtcaagcc gaaacaaag 1740
gccacacact cttgctgtagtc ttaactccat caggttttgtg atgcgggagg ccaaaagcg 1800
cgtaaattc ctctagacaac cagcggctgg gcctggattac cggttattga gaacctgcnaa 1860
aatctgtctc cagcgagtggt gaaattgtagt aagtctcctgc gcactcttc tttgtggctt 1920
tctatatct cggcgaaggta agacgagaggc atgggttttt cggaggccgc auxcgcgctg 1980
cggaaaatgg ttataccgcg accggacccc gcgggtattc tttgtggtat ggtattgccc 2040
cgtaaactat gcggcagtcg tctggagcag ccagcggcagc tgatattagcag 2100
attgaaacctg tcgctcggcgc agaatgttaac gcggagggggtg atgtgctgag tttaacgctg 2160
aatctgcaac aactcagcgc ttcgcttggcc gcggcgagttgc gaaagccggc tcggtatagc 2220
aaagtttggc gctatgtggtg caatttagtgc gaagatgggct ttcgctcgtc gaaagttggc 2280
gaagttggtag gtaatgtgacc gctgtctaaat ggaaagaga ggccaaagcc cctggctcctc 2340	tagcgccac actattacgccc gccgctggctt gatattgtgc gcggcaagc cttccagctc 2400
gttacagcgt gcgggtctcttg gcctgatcttg ctaaagctcc cttecatggag gttaggagtc 2460
tgaa

〈210〉 18
〈211〉 334
〈212〉 PRT
〈213〉 耐辐射奇球菌
〈220〉
〈221〉 PEPTIDE
〈222〉 (1) (334)
〈223〉 UniProt数据库登录号为Q9RZV8的高丝氨酸0-乙酰转移酶肽
〈400〉 18

Met Thr Ala Val Leu Ala Gly His Ala Ser Ala Leu Leu Leu Thr Glu
1 5 10 15
Glu Pro Asp Cys Ser Gly Pro Gln Thr Val Val Leu Phe Arg Arg Glu
20 25 30
Pro Leu Leu Leu Asp Cys Gly Arg Ala Leu Ser Asp Val Arg Val Ala
35 40 45
Phe His Thr Tyr Gly Thr Pro Arg Ala Asp Ala Thr Leu Val Leu His
50 55 60
| Ala Leu Thr Gly Asp Ser Ala Val His Glu Trp Trp Pro Asp Phe Leu |
|-------------------------|-------------------------|-------------------------|
| 65 | 70 | 75 |
| Gly Ala Gly Arg Pro Leu Asp Pro Ala Asp Asp Tyr Val Val Cys Ala |
| 85 | 90 | 95 |
| Asn Val Leu Gly Cys Ala Gly Thr Thr Ser Ala Ala Glu Leu Ala |
| 100 | 105 | 110 |
| Ala Thr Cys Ser Gly Pro Val Pro Leu Ser Leu Arg Asp Met Ala Arg |
| 115 | 120 | 125 |
| Val Gly Arg Ala Leu Leu Asp Ser Leu Gly Val Arg Arg Val Arg Val |
| 130 | 135 | 140 |
| Ile Gly Ala Ser Met Gly Gly Met Leu Ala Tyr Ala Trp Leu Leu Glu |
| 145 | 150 | 155 | 160 |
| Cys Pro Asp Leu Val Glu Lys Ala Val Ile Ile Gly Ala Pro Ala Arg |
| 165 | 170 | 175 |
| His Ser Pro Trp Ala Ile Gly Leu Asn Thr Ala Ala Arg Ser Ala Ile |
| 180 | 185 | 190 |
| Ala Leu Ala Pro Gly Gly Glu Gly Leu Lys Val Ala Arg Gln Ile Ala |
| 195 | 200 | 205 |
| Met Leu Ser Tyr Arg Ser Pro Glu Ser Leu Ser Arg Thr Gln Ala Gly |
| 210 | 215 | 220 |
| Gln Arg Val Pro Gly Val Pro Ala Val Thr Ser Tyr Leu His Tyr Gln |
| 225 | 230 | 235 | 240 |
| Gly Glu Lys Leu Ala Ala Arg Phe Asp Glu Gln Thr Tyr Cys Ala Leu |
| 245 | 250 | 255 |
| Thr Trp Ala Met Asp Ala Phe Gln Pro Ser Ser Ala Asp Leu Lys Ala |
| 260 | 265 | 270 |
| Val Arg Ala Pro Val Leu Val Val Gly Ile Ser Ser Asp Leu Leu Tyr |
| 275 | 280 | 285 |
| Pro Ala Ala Glu Val Arg Ala Cys Ala Ala Glu Leu Pro His Ala Asp |
| 290 | 295 | 300 |
| Tyr Trp Glu Leu Gly Ser Ile His Gly His Asp Ala Phe Leu Met Asp |
| 305 | 310 | 315 | 320 |
| Pro Gln Asp Leu Pro Glu Arg Val Gly Ala Phe Leu Arg Ser |
| 325 | 330 |

19, 379, PRT, Pseudomonas aeruginosa, 22
<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Pro Thr Val Phe Pro Asp Asp Ser Val Gly Leu Val Ser Pro Gln</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Thr Leu His Phe Asn Glu Pro Leu Glu Leu Thr Ser Gly Lys Ser Leu</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Ala Glu Tyr Asp Leu Val Ile Glu Thr Tyr Gly Glu Leu Asn Ala Thr</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Gln Ser Asn Ala Val Leu Ile Cys His Ala Leu Ser Gly His His His</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Ala Ala Gly Tyr His Ser Val Asp Glu Arg Lys Pro Gly Trp Trp Asp</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Ser Cys Ile Gly Pro Gly Lys Pro Ile Asp Thr Arg Lys Phe Phe Val</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Val Ala Leu Asn Asn Leu Gly Gly Cys Asn Gly Ser Ser Gly Pro Ala</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Ser Ile Asn Pro Ala Thr Gly Lys Val Tyr Gly Ala Asp Phe Pro Met</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Val Thr Val Glu Asp Trp Val His Ser Gln Ala Arg Leu Ala Asp Arg</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Leu Gly Ile Arg Gln Trp Ala Ala Val Val Gly Gly Ser Leu Gly Gly</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Met Gln Ala Leu Gln Trp Thr Ile Ser Tyr Pro Glu Arg Val Arg His</td>
<td>165 170 175</td>
</tr>
<tr>
<td>Cys Leu Cys Ile Ala Ser Ala Pro Lys Leu Ser Ser Ala Gln Asn Ile Ala</td>
<td>180 185 190</td>
</tr>
<tr>
<td>Phe Asn Glu Val Ala Arg Gln Ala Ile Leu Ser Asp Pro Glu Phe Leu</td>
<td>195 200 205</td>
</tr>
<tr>
<td>Gly Gly Tyr Phe Glu Gln Glu Gly Val Ile Pro Lys Arg Gly Leu Lys</td>
<td>210 215 220</td>
</tr>
<tr>
<td>Leu Ala Arg Met Val Gly His Ile Thr Tyr Leu Ser Asp Asp Ala Met</td>
<td>225 230 235 240</td>
</tr>
<tr>
<td>Gly Ala Lys Phe Gly Arg Val Leu Lys Thr Glu Lys Leu Asn Tyr Asp</td>
<td>245 250 255</td>
</tr>
<tr>
<td>Leu His Ser Val Glu Phe Gln Val Glu Ser Tyr Leu Arg Tyr Gln Gly</td>
<td>260 265 270</td>
</tr>
<tr>
<td>Glu Glu Phe Ser Thr Arg Phe Asp Ala Asn Thr Tyr Leu Leu Met Thr</td>
<td></td>
</tr>
<tr>
<td>Sequence Table</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>275 Lys Ala Leu Asp Tyr Phe Asp Pro Ala Ala Ala His Gly Asp Asp Leu</td>
<td></td>
</tr>
<tr>
<td>290 Val Arg Thr Leu Glu Gly Val Glu Ala Asp Phe Cys Leu Met Ser Phe</td>
<td></td>
</tr>
<tr>
<td>305 Thr Thr Asp Trp Arg Phe Ser Pro Ala Arg Ser Arg Glu Ile Val Asp</td>
<td></td>
</tr>
<tr>
<td>325 Ala Leu Ile Ala Ala Lys Lys Asn Val Ser Tyr Leu Glu Ile Asp Ala</td>
<td></td>
</tr>
<tr>
<td>340 Pro Gln Gly His Asp Ala Phe Leu Met Pro Ile Pro Arg Tyr Leu Gln</td>
<td></td>
</tr>
<tr>
<td>355 Ala Phe Ser Gly Tyr Met Asn Arg Ile Ser Val</td>
<td></td>
</tr>
<tr>
<td>370 (210) 20</td>
<td></td>
</tr>
<tr>
<td>375 (211) 380</td>
<td></td>
</tr>
<tr>
<td>380 (212) PRT</td>
<td></td>
</tr>
<tr>
<td>390 <213> 赘垢分枝杆菌(Mycobacterium smegmatis)</td>
<td></td>
</tr>
<tr>
<td>400 <220></td>
<td></td>
</tr>
<tr>
<td>410 <221> PEPTIDE</td>
<td></td>
</tr>
<tr>
<td>420 <222> (1)..<380)</td>
<td></td>
</tr>
<tr>
<td>430 <223> UniProt数据库登录号为YP_886028的高丝氨酸O-乙酰转移酶肽</td>
<td></td>
</tr>
<tr>
<td>440 <400> 20</td>
<td></td>
</tr>
<tr>
<td>450 Met Thr Ile Ile Glu Glu Arg Ala Thr Asp Thr Gly Met Ala Thr Val</td>
<td></td>
</tr>
<tr>
<td>460 1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>470 Pro Leu Pro Ala Glu Gly Glu Ile Gly Leu Val His Ile Gly Ala Leu</td>
<td></td>
</tr>
<tr>
<td>480 20 25 30</td>
<td></td>
</tr>
<tr>
<td>490 Thr Leu Glu Asn Gly Thr Val Leu Pro Asp Val Thr Ile Ala Val Gln</td>
<td></td>
</tr>
<tr>
<td>500 35 40 45</td>
<td></td>
</tr>
<tr>
<td>510 Arg Trp Gly Glu Leu Ala Pro Asp Arg Gly Asn Val Val Met Val Leu</td>
<td></td>
</tr>
<tr>
<td>520 50 55 60</td>
<td></td>
</tr>
<tr>
<td>530 His Ala Leu Thr Gly Asp Ser His Val Thr Gly Pro Ala Gly Asp Gly</td>
<td></td>
</tr>
<tr>
<td>540 65 70 75 80</td>
<td></td>
</tr>
<tr>
<td>550 His Pro Thr Ala Gly Trp Trp Asp Gly Val Ala Gly Pro Gly Ala Pro</td>
<td></td>
</tr>
<tr>
<td>560 85 90 95</td>
<td></td>
</tr>
<tr>
<td>570 Ile Asp Thr Asp His Trp Cys Ala Ile Ala Thr Asn Val Leu Gly Gly</td>
<td></td>
</tr>
<tr>
<td>580 100 105 110</td>
<td></td>
</tr>
<tr>
<td>590 Cys Arg Gly Ser Thr Gly Pro Gly Ser Leu Ala Pro Asp Gly Lys Pro</td>
<td></td>
</tr>
<tr>
<td>600 115 120 125</td>
<td></td>
</tr>
<tr>
<td>610 Trp Gly Ser Arg Phe Pro Gln Ile Thr Ile Arg Asp Gln Val Ala Ala</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Asp</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>Met</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>Trp</td>
<td>Leu</td>
</tr>
<tr>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>Arg</td>
<td>180</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td>Ile</td>
<td>Gly</td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Trp</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td>Tyr</td>
<td>Arg</td>
</tr>
<tr>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td>Gln</td>
<td>245</td>
</tr>
<tr>
<td>Asp</td>
<td>Asp</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>Tyr</td>
<td>Lys</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>Cys</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
</tr>
<tr>
<td>His</td>
<td>Asp</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
</tr>
</tbody>
</table>
磷酸烯醇式丙酮酸

草酰乙酸

天冬氨酸

L-β-天冬氨酸磷酸

ASA

高丝氨酸

0-乙酰高丝氨酸

图1
图2
图3