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PROVISION OF EXTENDED ADDRESSING MODES IN A SINGLE INSTRUCTION
MULTIPLE DATA (SIMD) DATA PROCESSOR

Background

Field

[0001] This disclosure relates generally to data processors, and more specifically, to

providing extended addressing modes in SIMD register extensions.
Related Art

[0002] Increased performance in data processing systems can be achieved by allowing
parallel execution of operations on multiple elements of a vector. One type of processor
available today is a vector processor which utilizes vector registers for performing vector
operations. However, vector processors, while allowing for higher performance, also have
increased complexity and cost as compared with processors using scalar general purpose
registers. That is, a vector register file within vector processors typically includes N vector
registers, where each vector register includes a bank of M registers for holding M elements.
Another type of known processor is a single-instruction multiple-data (SIMD) scalar
processor (also referred to as a “short-vector machine”) which allows for limited vector
processing while using a scalar general purpose register (GPR). Therefore, although the
number of elements per operation is limited as compared to vector processors, reduced

hardware is required.

[0003] Many different applications executed on SIMD processors requires specialized
addressing, such as circular addressing or bit-reversed addressing. However, load and
store instructions typically require a large amount of limited opcode space to encode due, for
example, to large displacements. Therefore, there is often no opcode space left to support
any additional functionality. Therefore, the specification of additional addressing control

without increasing the opcode space is desirable.

Brief Description of the Drawings

[0004] The present invention is illustrated by way of example and is not limited by the
accompanying figures, in which like references indicate similar elements. Elements in the

figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.

[0005] FIG. 1 illustrates in block diagram form a SIMD data processing system in

accordance with one form of the present invention.
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[0006] FIG. 2 illustrates in block diagram form the scalar general purpose register file of
the SIMD data processing system of FIG. 1, in accordance with form of the present

invention.

[0007] FIG. 3 illustrates one form of an index form load vector instruction for execution
by the SIMD data processing system of FIG. 1, in accordance with one embodiment of the

present invention.

[0008] FIG. 4 illustrates in block diagram form a general purpose register of the scalar
general purpose register file of FIG. 2 in accordance with one embodiment of the present

invention.

[0009] FIG. 5 illustrates in block diagram form a general purpose register of the scalar
general purpose register file of FIG. 2 in accordance with one embodiment of the present

invention.

[0010] FIG. 6 illustrates in block diagram form a portion of the memory of FIG. 1 to

illustrate an example of circular buffer addressing.

[0011] FIG. 7 illustrates in block diagram form a general purpose register of the scalar
general purpose register file of FIG. 2 in accordance with one embodiment of the present

invention.
[0012] FIG. 8 illustrates an example of bit-reversed addressing.

[0013] FIG. 9 illustrates a table of example values for masks for different data sizes and

number of data which may be used for determining bit-reversed addressing increments.

[0014] FIG. 10 illustrates, in diagram form, an example base address pointer value, an
example index value, an example mask value, and an example bit-reversed addressing

sequence in accordance with one embodiment of the present invention.

[0015] FIG. 11 illustrates, in diagram form, a portion of the memory of the SIMD data

processing system of FIG. 1 storing data elements of a Fast Fourier Transfer (FFT) buffer

[0016] FIG. 12 illustrates one form of a displacement form load vector instruction for
execution by the SIMD data processing system of FIG. 1, in accordance with one

embodiment of the present invention.

[0017] FIG. 13 illustrates, one form of a prior art non-SIMD index form load instruction

for execution by the processor of FIG. 1.
2
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Detailed Description

[0018] In one embodiment, SIMD data processing instructions are provided which
support the use of different addressing modes. For example, in one embodiment, an index
form vector load or store instruction specifies two source general purpose registers, where
the main portion of one source general purpose register (GPR) is used to provide a base
address and the main portion of the other source GPR is used to provide an index value (i.e.
an offset value). The extension portion of either the source GPR which provides the base
address or the source GPR which provides the index value is used to provide additional
addressing control information which allows for increased functionality of the vector load or
store instruction. In one embodiment, a displacement form vector load or store instruction
specifies one source GPR, where the main portion of the one source GPR is used to provide
a base address and the extension portion of the one source GPR is used to provide
additional addressing control information. In this manner, addressing mode functionality

may be increased without increasing the opcode size.

[0019] As used herein, the term "bus" is used to refer to a plurality of signals or
conductors which may be used to transfer one or more various types of information, such as
data, addresses, control, or status. The conductors as discussed herein may be illustrated
or described in reference to being a single conductor, a plurality of conductors, unidirectional
conductors, or bidirectional conductors. However, different embodiments may vary the
implementation of the conductors. For example, separate unidirectional conductors may be
used rather than bidirectional conductors and vice versa. Also, plurality of conductors may
be replaced with a single conductor that transfers multiple signals serially or in a time
multiplexed manner. Likewise, single conductors carrying multiple signals may be separated
out into various different conductors carrying subsets of these signals. Therefore, many

options exist for transferring signals.

[0020] The terms "assert" or “set” and "negate” (or "deassert" or “clear”) are used herein
when referring to the rendering of a signal, status bit, or similar apparatus into its logically
true or logically false state, respectively. If the logically true state is a logic level one, the
logically false state is a logic level zero. And if the logically true state is a logic level zero,

the logically false state is a logic level one.

[0021] Each signal described herein may be designed as positive or negative logic,

where negative logic can be indicated by a bar over the signal name or an asterix (*)
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following the name. In the case of a negative logic signal, the signal is active low where the
logically true state corresponds to a logic level zero. In the case of a positive logic signal,
the signal is active high where the logically true state corresponds to a logic level one. Note
that any of the signals described herein can be designed as either negative or positive logic
signals. Therefore, in alternate embodiments, those signals described as positive logic
signals may be implemented as negative logic signals, and those signals described as

negative logic signals may be implemented as positive logic signals.

[0022] Also, as used herein, a word (w) includes 4 bytes, a halfword (h) includes 2 bytes,
and a doubleword (d) includes 8 bytes. However, in alternate embodiments, a word may be
defined as 2 bytes and a doubleword as 4 bytes. The symbol “$” or “0x” preceding a number
indicates that the number is represented in its hexadecimal or base sixteen form. The
symbol “%” preceding a number indicates that the number is represented in its binary or

base two form.

[0023] FIG. 1 illustrates, in block diagram form, a data processing system 10 in
accordance with one embodiment of the present invention. Since data processing system
10 is capable of executing SIMD instructions, system 10 may also be referred to as a SIMD
data processing system. Data processing system 10 includes a memory 12, a processor 14,
an input/output (1/0O) 16, other peripherals 18 and a system bus 20. Memory 12 is
bidirectionally coupled to system bus 20 via conductors 22, /O 16 is bidirectionally coupled
to system bus 20 via conductors 24, the other peripherals 18 are bidirectionally coupled to
system bus 20 via conductors 26, and processor 14 is bidirectionally coupled to system bus
20 via conductors 58. In one embodiment, the other peripherals 18 may include one or more
peripherals, where each can be any type of peripheral, such as a universal asynchronous
receiver transmitter (UART), a real time clock (RTC), a keyboard controller, other memories,
etc. Some or all of the other peripherals 18 may be capable of communicating information
external to data processing system 10 via conductors 62. 1/O 16 may include any type of I/O
circuitry which receives or provides information external to data processing system 10, via,
for example, conductors 60. Memory 12 can be any type of memory, such as, for example,
a read only memory (ROM), a random access memory (RAM), non-volatile memory (e.g.
Flash), etc. Data processing system 10 may include elements other than those illustrated, or
may include more or fewer elements than those illustrated. For example, data processing

system 10 may include any number of memories or processors.

[0024] Processor 14 may be any type of processor, such as, for example, a

microprocessor, microcontroller, digital signal processor, etc. In one embodiment, processor

14 may be referred to as a processor core. In another embodiment, processor 14 may be
-4-
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one of many processors in a multi-processor data processing system. Furthermore,
although not illustrated as such, processor 14 may be a pipelined processor. Note also that
processor 14 may also be referred to as a SIMD processor. In the embodiment illustrated in
FIG. 1, processor 14 includes a control unit 28, an instruction unit 30, execution units 32, a
scalar general purpose register (GPR) file 34, a bus interface unit (BIU) 36, and a load/store
unit 38. Control unit 28 is bidirectionally coupled to instruction unit 30 via conductors 40, to
execution units 32 via conductors 42, to scalar file 34 via conductors 46, and to load/store
unit 38 via conductors 48. Execution units 32 are bidirectionally coupled to scalar register
file 34 via conductors 44, and scalar register file 34 is bidirectionally coupled to load/store
unit 38 via conductors 50. BIU 36 is bidirectionally coupled to instruction unit 30 via
conductors 54 and to load/store unit 38 via conductors 52. Processor 14 is capable of
bidirectionally communicating with system bus 20 via conductors 56 which are coupled to
conductors 58. Note that processor 14 may include more circuitry than that illustrated,
where the additional circuitry may also be coupled to conductors 58. That is, conductors 56
may communicate with system bus 20 via all or a portion of conductors 58. Note also that all

or a portion of processor 14 may be referred to as processing circuitry.

[0025] In operation, instruction unit 30 fetches instructions from a memory, such as
memory 12, via BIU 36 and system bus 20, and receives and provides control information
from and to control unit 28. Instruction unit 30 can be any type of instruction unit as known
in the art, and operates as known in the art, and therefore will not be described in more
detail herein. Instruction unit 30 therefore provides instructions to control unit 28 which
controls execution of these received instructions via, for example, execution units 32 and
load/store unit 38, which are both capable of communicating with scalar register file 34, as
needed, directly or via control unit 28. For example, control unit 28, via load/store unit 38
and BIU 36, is capable of loading data from memory (such as memory 12) to registers within
scalar register file 34 as needed for executing instructions and is capable of storing data
from registers within scalar register file 34 to memory (such as memory 12) as needed for
executing instructions. For example, in one embodiment, load/store unit 38 can
communicate directly with scalar register file 34 (to read and write data) via conductors 50
based on control information provided from control unit 28 via conductors 48. Execution
units 32 can perform arithmetic, logical, shifting, or other operations using data stored within
scalar register file 34 and store results to registers within scalar register file 34, as required
for executing the instructions received from instruction unit 30 by way of control unit 28.
Execution units 32 may include, for example, arithmetic logic units (ALUs), floating point
units, etc. Scalar register file 34 can provide or receive control information or data to or from

control unit 28 via conductors 46.

-5-



WO 2010/019304 PCT/US2009/045379

[0026] Operation of processor 14 will not be described in more detail herein other than
for those portions that are needed in understanding the various embodiments described
herein. Also note that existing designs for data processing systems having operands stored
in a scalar general purpose register file can be modified as needed to execute the vector

load and store instructions.

[0027] lllustrated in FIG. 2 is a block diagram of scalar general purpose register file 34.
In the illustrated embodiment, scalar register file 34 includes 32 general purpose registers
(GPRs). However, in alternate embodiments, scalar register file can include any number of
GPRs. As used here in, a scalar register indicates a register which has a one dimensional
map and thus holds only one row of data. Each GPR in scalar register file 34 includes a
main portion (which includes the N lower bits of each GPR) and a SIMD extension portion
(which includes the M upper bits of each GPR). In the illustrates embodiment, N is 32 bits
and M is 32 bits, such that each GPR is a 64-bit register capable of storing a 64-bit quantity
for SIMD operations. In the embodiments described herein, each GPR in scalar register file
34 includes 8 bytes, where, when used for SIMD operations, each GPR may store, for
example, 2 word-size vector elements, 4 halfword-size vector elements, or 8 byte-size vector

elements.

[0028] In the illustrated embodiment, the main portion of GPR file 34 is used for non-
SIMD operations where the SIMD extension portion of GPR file 34 is not used when
executing non-SIMD instructions, or when forming effective address (EA) values for load and
store instructions (including vector load and vector store instructions). Furthermore, any
values stored in an extension portion of a GPR are preserved when performing non-SIMD
operations. In one embodiment, the number of bits, N, for the main portion is determined by
the architecture of processor 14. For example, processor 14 is considered to be an N-bit
processor. An N-bit processor refers to a processor whose native (e.g. non-extended)
integer data type is N bits. Typically, the pointers in an N-bit processor are N bits; thus, a
pointer value (stored within a main portion of a GPR) is capable of accessing 2" bytes. That
is, an N-bit processor has an N-bit address space. Therefore, in one embodiment, the
number of bits, N, for the main portion of the GPRs is determined by the type of processor,
or the Instruction Set Architecture of the processor. The number of bits, M, of the extended
portion of the GPRs therefore extends beyond the N bits. In the illustrated embodiment,
processor 14 is assumed to be a 32-bit processor (whose native, non-extended, integer data
type is 32 bits and whose pointer values are 32 bits). Therefore, the main portion of the
GPRs is 32 bits (i.e. N=32). In the illustrated embodiment, the main portion of the GPRs

corresponds to the lower portion (e.g. lower half) of register file 34 (i.e. bits 32:63 of each

-6-
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GPR). In the illustrated embodiment, the extended portion is also 32 bits (i.e. M=32), and
corresponds to the upper portion (e.g. upper half) of register file 34 (i.e. bits 0:31 of each
GPR). Alternatively, scalar GPR file 34 can be organized differently, so long as the main
portion includes N bits, and the extension portion includes M bits, beyond the N bits, such
that each GPR (or a subset of GPRs used for SIMD operations) includes N+M bits. For
example, the main portion may correspond to an upper portion and the extension portion to
a lower portion of register file 34. Alternate embodiments may have different values for M
and N, such as N=32 and M=96, where the width of a SIMD vector is correspondingly larger
than the native integer data type for such embodiments, and thus supports larger SIMD

vector lengths, while maintaining the base N-bit architecture of the processor.

[0029] In the illustrated embodiment of FIG. 2, the extension portion of register file 34 is
shaded and referred to as a SIMD extension portion since the extension portion is only used
for SIMD operations. In an alternate embodiment, other specialized functions may use the
extension portion, such as double precision floating point values. However, in one
embodiment, the extension portions are not used for non-SIMD integer operations within
processor 14. Also, note that the extension portion of each register is not independently
accessible or addressable apart from the main portion of each register. That is, for example,
the extension portion of r0 is only accessible by accessing r0 and cannot be addressed
independently from the main portion of rQ since the extension portion is simply an M-bit
extension of the N-bit main portion of r0. This is also the case for each of the extension

portions and main portions of GPRs r1-r31 illustrated in FIG. 2.

[0030] lllustrated in FIG. 13 is one embodiment of an index form non-SIMD (i.e. scalar)
integer load instruction (lwz[u]x), in accordance with the prior art. As illustrated in FIG. 13,
Iwz[u]x is a thirty-two bit instruction which indicates a destination register, rD, and two source
registers, rA and rB. The Ilwz[u]x instruction allows for an update value (U) to be specified to
indicate whether a load with index without update or a load with index and update is to be
performed. In the case of U=1 (lwzux), an update of rA is to be performed as part of the
operation of the instruction. In the case of U=0 (lwzx), no update of rA is performed. The
Iwz[u]x instruction includes an opcode field (bits 0:5) to identify the function or type of
instruction. A destination field (bits 6:10) within the instruction is a destination register
identifier labeled “rD” which identifies a register D within the scalar register file 34. A first
source field (bits 11:15) within the instruction is a source register identifier labeled “rA” which
identifies a register A within scalar register file 34, and a second source field (bits 16:20)
within the instruction is a source register identifier labeled “rB” which identifies a register B

within scalar register file 34. The instruction also includes a subopcode field (bits 21:31)

-7-



WO 2010/019304 PCT/US2009/045379

which may be used to further specify the functionality of the instruction. Note that in the
illustrated embodiment, U is included as a bit within the subopcode of the instruction (at bit

location 25 in the illustrated embodiment).

[0031] The Iwz[u]x instruction loads a 32-bit integer word from memory into the main
portion of the destination register. Thus, in the illustrated embodiments where processor 14
is a 32-bit processor, the Iwz[u]x instruction may be used to load a 32-bit integer word into
the main portion of the destination register. Since this is a normal (non-SIMD) integer load
instruction, the SIMD-only portion of the data register is not affected. The operation of the
instruction is identical to operation of the instruction on an ISA compatible processor without
SIMD capabilities. Upon execution of an lwz[u]x instruction, the contents of the main portion
of rA (which stores a base address value) and the main portion of rB (which stores an index
value) are used to calculate an effective address (e.g., EA[0:31]). The 32-bit word located
at the memory location in memory 12 pointed to by EA[0:31] is then loaded into the main
(integer) portion of rD. That is, the word pointed to by EA in memory 12 is loaded into
rD[32:63]. If U=0 (i.e. a lwzx instruction), then no update of rA is performed. However, if U=1
(i.e. a lwzux instruction), in addition to the load operation which updates rD with the memory
data, an update of rA is to be performed. That is, the update form of the normal load
instructions may be used in order to update the base value of rA with a new base value
equal to the computed EA[0:31] value used for the load operation for a subsequent load
instruction using the updated base value. Update form instructions thus provide additional
parallelism by combining a load operation with an address operand update operation into a
single instruction. Note that for normal integer load instructions, the extension portion

(SIMD-only portion) of registers rA, rB, and rD are neither used nor updated.

[0032] Similarly, note that a corresponding normal (non-SIMD, scalar) integer store
instruction (stw[u]x rS, rA, rB) operates similar to the load instruction. The stw[u]x instruction
stores the integer word from the GPR indicated by rS to the location in memory pointed to by
EA (where the contents of rA, which stores the base address value, and rB, which stores the
index value, are used to calculate EA[0:31]]. As with the load instruction, if U=0 (i.e. an stwx
instruction), then no update of rA is performed. However, if U=1 (i.e. a stwux instruction), an
update of rA is to occur by updating the main portion of rA with the calculated EA[0:31]. Note
that for integer store instructions, the extension portion (SIMD-only portion) of registers rA,

rB, and rS are neither used nor updated.

[0033] lllustrated in FIG. 3 is one embodiment of an index form vector (SIMD) load

instruction (evldh[u]x), in accordance with one embodiment of the present invention. In the

illustrated embodiment, evldh[u]x is a thirty-two bit instruction which indicates a destination
8-
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register, rD, and two source registers, rA and rB. The evldh[u]x instruction allows for an
update value (U) to be specified to indicate whether a load with index without updated or a
load with index and update is to be performed. In the case of U=1 (evldhux), an update of rA
is to be performed as part of the operation of the instruction, which will be described in more
detail below. In the case of U=0 (evldhx), no update of rA is performed. The evidh[u]x
instruction includes an opcode field (bits 0:5) to identify the function or type of instruction. A
destination field (bits 6:10) within the instruction is a destination register identifier labeled
“rD” which identifies a register D within the scalar register file 34. A first source field (bits
11:15) within the instruction is a source register identifier labeled “rA” which identifies a
register A within scalar register file 34, and a second source field (bits 16:20) within the
instruction is a source register identifier labeled “rB” which identifies a register B within scalar
register file 34. The instruction also includes a subopcode field (bits 21:31) which may be
used to further specify the functionality of the instruction. Note that in the illustrated
embodiment, U is included as a bit within the subopcode of the instruction (at bit location 25
in the illustrated embodiment). However, in alternate embodiments, the indication of
whether or not to update can be provided as different opcodes or as a different bit within the
instruction. Alternatively, other bit length instructions may be implemented and the bit size of
each instruction field is implementation specific. However, as discussed above, note that in
many instruction set architectures, opcode and subopcode space is limited, and thus,
additional instruction bit length may not be available. Also, in other embodiments additional
fields or other fields may be implemented. Further, the ordering of the fields rD, rA and rB

may be changed to other sequences than the one as illustrated in FIG. 3.

[0034] The evldh[u]x instruction loads a doubleword from memory into four halfwords of
the destination register. Thus, in the illustrated embodiments where processor 14 is a 32-bit
processor, the evldh[u]x instruction may be used to load 4 16-bit vector elements into the
SIMD destination register. Upon execution of an evldh[u]x instruction, the contents of rA
(which stores a base address value) and rB (which stores an index value) are used to
calculate an effective address (e.g., EA[0:31]). (Note that if the index value in rB is 0, then
the base address value in rA can be directly used as the EA.) The doubleword located at
the memory location in memory 12 pointed to by EA[0:31] is then loaded into the combined
extended and main portions of rD. That is, the halfword pointed to by EA in memory 12 is
loaded into rD[0:15], the halfword pointed to by EA+2 in memory 12 is loaded into rD[16:31],
the halfword pointed to by EA+4 in memory 12 is loaded into rd[32:47], and the halfword
pointed to by EA+6 in memory 12 is loaded into rD[48:63]. (Note that, as will be discussed
below in reference to a circular buffer addressing example, any of these EA’s used to load

the 4 vector elements into rD may wrap at a length boundary of a circular buffer.) If U=0 (i.e.

9.
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an evldhx instruction), then no update of rA is performed. However, if U=1 (i.e. an evidhux
instruction), in addition to the load operation which updates the entire contents of rD (both
the main and extension portions) with the memory data, the extension portion of rA or rB is
used to determine how an update of rA is to be performed. That is, an extension portion of
rA or rB can be used to further provide control information which defines how the update of
rA is to occur in order to implement different addressing schemes, such as linear addressing,
circular buffer addressing with wrap-around, or bit-reversed addressing. In one embodiment,
the updated value of rA is based on the previous value of rA, where this can be achieved by
modifying the base address or the EA. Update forms of the SIMD load instructions may be
selected in order to update the base value of rA with a new base value for a subsequent load
instruction using the updated base value. Update form instructions may thus provide
additional parallelism by combining a load operation with an address operand update

operation into a single SIMD instruction.

[0035] Similarly, note that the corresponding SIMD store instruction (evstdh[u]x rS, rA,
rB) operates similar to the SIMD load instruction. The evstdh[u]x instruction stores four
halfwords from the GPR indicated by rS to the location in memory pointed to by EA (where
the contents of rA, which stores the base address value, and rB, which stores the index
value, are used to calculate EA[0:31]). (Note that if the index value in rB is 0, then the base
address value in rA can be directly used as the EA.) As with the SIMD load instruction, if
U=0 (i.e. an evstdhx instruction), then no updated of rA is performed. However, if U=1 (i.e.
an evstdhux instruction), the extension portion of rA or rB is used to determine how the
update of rA is to be performed. That is, an extension portion of rA or rB can be used to
further provide control information (i.e. modifying information) which defines how the update
of rA is to occur in order to implement different addressing techniques, such as, for example,
circular buffer addressing with wrap-around or bit-reversed addressing, when executing
SIMD load or store instructions. Therefore, the descriptions which follow regarding the
calculation of EA and the use of an extension portion to further define how an update is to be
performed when U=1 apply to both the index form SIMD load and the index form SIMD store
instructions. However, for ease of explanation, many of the examples herein correspond to
the SIMD load instruction. Also, note that any element size can be defined in the SIMD load
or store instruction other than a halfword. For example, the descriptions provided herein
may also apply analogously to an evildb[u]x or evstdb[u]x which loads or stores, respectively,
8 bytes from or to memory. The descriptions may also apply analogously to an evldw[u]x or

evstdw[u]x which loads or stores, respectively, 2 words from or to memory.

-10-



WO 2010/019304 PCT/US2009/045379

[0036] FIG. 4 illustrates an extension portion and a main portion of a GPR, in
accordance with one example of the present invention. The main portion of the GPR (bits
32:63) stores an address operand (e.g. the base address or the index value). Therefore, this
may correspond to the main portion of the GPR designated by rA (which stores the base
address as an address operand) or the main portion of the GPR designated by rB (which
stores the index value as an address operand). The extension portion (bits 0:31) includes a
mode field and an address update control field. In the illustrated embodiment, the mode field
is a 3-bit field located in bits 0:2, and the address update control field is a 29-bit field located
in bits 3:31 of the GPR. The mode field may be used to define what type of address update
is to be performed for a SIMD load or store instruction, and the address update control field
may provide additional control information, if needed, for the update. In one embodiment, if
the mode field has a value of %000, then a normal update operation, as is performed when
executing the normal integer load and store instructions with update (discussed above in
reference to FIG. 13), is indicated in which the calculated EA[0:31] is stored into the main
portion of rA (rA[32:63]). If the mode field has a value of %001, then a circular buffer
address update is performed where the main portion of rA (rA[32:63]) is updated with the
address value of the next circular buffer element to be accessed. Additional information
stored in the address update control field is used to perform this update, as will be described
in more detail below in reference to FIGs. 5 and 6. If the mode field has a value of %010,
then a bit-reversed address update is performed where the main portion of rA (rA[32:63]) is
updated with the address value of the next buffer element to be accessed according to bit-
reversed addressing (such as, for example, to access a buffer storing FFT data). Additional
information stored in the address update control field is used to perform this update, as will
be described in more detail below in reference to FIGs. 7-11. Therefore, if U=1 for the SIMD
load or store instruction, the value of the mode field of the extension portion of either rA or rB
is used to indicate how an update of the main portion of rA will be performed, where the
address update control field is used as needed to perform these updates. Note that if U=0,
no extension portion is accessed. Also note that no extension portion is accessed for normal
integer load or store with update instructions, regardless of the value of the corresponding U

bit for those instructions.

[0037] In the examples which follow, it will be assumed that, for SIMD load and store
instructions, if U=1, the extension portion of rA will be accessed to determine how to perform
the address update of the main portion of rA. (Alternatively, note that if U=1, processor 14
may be designed such that the extension portion of rB rather than the extension portion of rA
is accessed to determine how to perform the address update of the main portion of rA.)

Note that through the use of the extension portion, a separate GPR or address location need
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not be independently addressed or accessed in order to provide additional information such
as the mode or address update control information. Furthermore, additional fields within the
instruction are not needed, since the instruction already indicates rA for the purposes of
providing the base address value. However, since only the main portion of rA is needed to
access the base address value, the extension portion can be used to provide additional
information. Note that regardless of the value of U or the mode field, the effective address
calculation for either the vector load or store instructions remains unchanged. That is, the
EA for the evldh[u]x or the evstdh[u]x is calculated by adding the contents of rA (rA[32:63]) to
the contents of rB (rB[32:63]). That is, EA[0:31] = “the contents of rA + the contents of rB”.
Also, note that the EA is a 32-bit value in the illustrated example in which processor 14 is
assumed to be a 32-bit processor. The EA may also be referred to as a memory access
address since it provides the memory address to which data will be stored or from which

data will be loaded.

[0038] lllustrated in FIG. 5 is an example of a main portion and an extension portion of
rA which can be used for the execution of a evidh[u]x instruction (or an evstdh[u]x
instruction) to implement circular buffer addressing. The main portion of rA, as discussed
above, includes the base address as the memory operand. The mode field within the
extension portion of rA is %001, indicating a circular buffer addressing technique, and the
address update control field includes additional information for implementing the circular
buffer addressing. In the illustrated embodiment, the address update control field includes a
5 bit modulus (Mod) field in bits 3:7, an 8-bit offset (O) field in bits 8:16, and a 16-bit length
(L) field in bits 16:31. Note that alternate embodiments may organize the information within
the extension portion of rA differently, or may include other types of information in addition to
or in place of any of the modifying information in the address update control field. The L field
provides the number of elements in the circular buffer. The O field provides the distance to
the next element for the update calculation. The Mod field indicates that the starting address
of the circular buffer in memory is aligned to a 2"° byte boundary in memory. Note that the
Mod field also defines the maximum length allowable for the circular buffer. As will be seen

below, this allows for a faster wrap around calculation.

[0039] FIG. 6 illustrates a portion of memory 12 which stores a circular buffer. (Note that
the circular buffer of FIG. 6 may be referred to as a data structure and can be formed within
memory 12 prior to being accessed.) The starting address (i.e. the base address) of the
circular buffer in FIG. 6 is provided as %10000. The length of the circular buffer is 11
(indicating 11 bytes), and the offset (i.e. the distance between elements accessed) is 4

bytes. Therefore, note that the buffer elements are numbered 1-11 indicating the order in
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which they are to be accessed according to the base address of %10000 and offset value of
4. Thatis, first, location %1000 is accessed, followed by location %10100, followed by
location %11000, followed by location %10001 (which includes a wrap around), followed by
location %10101, followed by location %11001, followed by location %10010 (which again
includes a wrap around), followed by location %10110, followed by location %11010,
followed by location %10011 (which also includes a wrap around), followed by location
%10111, etc.

[0040] Therefore, upon execution of an evldhux instruction (U=1) in which the mode
field is %001, the base address is %10000 (the index value is assumed to be 0 in this
example), and the offset =4, rD is loaded with the contents of the memory location
addressed by %10000. Also, the main portion of rA will be updated to %10100 as part of the
execution of the evldhux such that a separate instruction is not needed to advance the
access point of the circular buffer to the next element located 4 bytes away. (At this point,
one or more additional instructions may be executed which use the results in rD.) Note also
that only the main portion of rA is updated, while the extension portion of rA (including the
mode field and address update field) remains unchanged. Therefore, upon execution of a
subsequent evildhux instruction, using the updated version of rA, rD is updated with the
contents of the memory location addressed by %10100, and the main portion of rA is again
updated, from %10100 to %11000. Since the extension portion of rA was not updated, the
length is still provided as 11 and the offset as 4. Upon execution of a subsequent evidhux
instruction, the addition of 4 to %11000 (which is %11110) will result in the address
surpassing the last element of the buffer (%11010). This can be determined using the least
4-significant bits of the address, since it is known, for this example, that the starting address
of the circular buffer is aligned to %10000 (2"°!=2*=%10000) and the length is 11. In this
case, the length of the buffer can be subtracted from the address to result in the next
element address of %10001. However, since it is known that the starting element of the
buffer address is %10000 (due to the mod value, e.g. 2"°=2*=%10000, it is aligned on a 16-
byte boundary), the mod value can be used to determine which portion of the starting buffer
address is to be updated upon a wrap-around. That is, in the case of a wrap-around, rA[(64-
Mod):63] = (rA[48:63] + Offset)[(64-Mod):63] in which only bits (64-Mod):63 are modified
upon an update. Therefore, rD is updated with the contents of the memory location
addressed by %11000 and the main portion of rA is updated from %11000 to %10001 (and
not %11110, due to the wrap around). Note that the mod value also provides the maximum
index of the buffer as 2M°9-1. That is, in order to use the mod value to perform the wrap

around calculations, the last circular buffer element cannot be located beyond %11111.
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[0041] lllustrated in FIG. 5, is an example of a main portion and an extension portion of
rA which can be used for the execution of a evidh[u]x instruction (or an evstdh[u]x
instruction) to implement bit-reversed addressing. The main portion of rA, as discussed
above, includes the base address as the address operand. The mode field within the
extension portion of rA is %010, indicating a bit-reversed addressing technique, and the
address update control field includes additional information for implementing the bit-reversed
addressing. In the illustrated embodiment, the address update control field includes a 16-bit
mask field in bits 16:31. Note that alternate embodiments may organize the information
within the extension portion of rA differently, or may include other types of information in
addition to or in place of any of the modifying information in the address update control field.

The mask field provides a mask value that is used to perform bit-reversed incrementing.

[0042] Many types of filtering algorithms utilize buffers to hold sets of input samples and
computed output samples from a set of filtering operations, such as FFT filters. These filters
are typically accessed in a bit-reversed fashion to obtain the data and store output in a
predetermined order which corresponds to the natural order of computations. For example,
for an 8 element FFT buffer having elements 0, 1, 2, 3, 4, 5, 6, and 7 stored in a linear order,
the bit-reversed order in which they need to be accessed is elements 0, 4, 2, 6, 1, 5, 3, and
7. FIG. 8 illustrates an example of bit-reversed addressing which may be used when
accessing data elements in a bit-reversed manner, such as, for example, when accessing
FFT data elements from a buffer stored in memory 12. In the example of FIG. 8, it is
assumed that 8 data elements (elements 0-7) are stored in linear order. Each of these
elements can be addressed by a 3-bit binary address representing the values 0 to 7. These
binary values, %000, %001, %010, %011, %100, %101, %110, and %111, correspond to
each of elements 0-7, respectively. These binary values are then “bit-reversed”, resulting in
the mirror image of each 3-bit binary value. Upon bit-reversing each of these binary values,
the bit-reversed elements result in the elements 0-7 being addressed in the bit-reversed
order of element 0, element 4, element 2, element 6, element 1, element 5, element 3, and
element 7, respectively. Note that, for ease of explanation, the examples which will be
described herein assume a buffer of 8 data elements to be accessed in a bit-reversed
manner; however, in alternate embodiments, a buffer of any number of data elements can

be addressed in a bit-reversed order.

[0043] The mask value, which is based on a number of data elements or samples in a
buffer (e.g. the number of points in an FFT) as well as the data size of a sample, is used to
determine a next element to be accessed in a bit-reversed fashion. Known methods of using

the mask value to determine the next element to be accessed in a bit-reversed fashion may
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be used. FIG. 9 illustrates an example of a table which provides various mask values based
on both number of data samples and data sample size. To access a buffer containing n
byte-sized data elements that is to be accessed with bit-reversed addressing, the mask
value has log;n ones (1s) in the least significant bit positions and zeroes (0s) in the
remaining most significant bit positions. If, however, the data size is a multiple of a halfword
or a word, the mask is constructed so that the 1s are shifted left by log,(size of the data in
bytes) and Os are placed in the least significant bit positions. Note that, for each row of the
table, the mask values, as they progress from the byte column to the doubleword column,
are shifted to the left by one bit each time. Also, note that for each column of the table, the
mask values, as they progress from the size of 8 elements down to the size of 64 elements,
have an additional lower order bit set to “1”. The table of FIG. 9 can be expanded to include
larger buffer sizes, which are typically powers of 2, and may include larger data sizes as
well. The table of FIG. 9 may be stored within control unit 28 of FIG.1, or may be stored
elsewhere within system 10. The table of FIG. 9 may be stored as a table of values or may
be implemented with logic gates. Alternate embodiments may store or receive the

information of the table of FIG. 9 in a variety of different manners.

[0044] FIG. 10 illustrates a bit-reversed addressing sequence which may be achieved
using evldh[u]x instructions to access the example buffer of FIG. 11. In the example of FIG.
11, the buffer stores 8 data elements where each data element is a halfword in size. (Note
that the buffer of FIG. 11 may be used in an FFT application, and may also be referred to as
an FFT sample buffer. Note also that the buffer of FIG. 11 may be referred to as a data
structure and can be formed within memory 12 prior to being accessed.) For example, FIG.
11 illustrates a portion of memory 12 which stores 8 halfword-sized data elements starting at
address location OXDCAABCFO. Since each element is a halfword in size (e.g. 16 bits), the
next 7 elements, element 1 — element 7, are sequentially addressed in linear order by
address values OxXDCAABCF2, 0OxXDCAABCF4, 0OxDCAABCF6, 0OxDCAABCFS,
OxDCAABCFA, 0xDCAABCFC, and OxDCAABCFE, respectively. (Note that each of these
address values may also be referred to as pointer values.) If these were to be accessed in a
bit-reversed order (as described in FIG. 8), then these addresses would be accessed in the
following order: OXDCAABCFO (corresponding to element 0), OXDCAABCF8 (corresponding
to element 4), 0OxDCAABCF4 (corresponding to element 2), 0OxXDCAABCFC (corresponding to
element 6), 0OXDCAABCF2 (corresponding to element 1), OXDCAABCFA (corresponding to
element 5), 0OxXDCAABCF6 (corresponding to element 3), and 0xXDCAABCFE (corresponding

to element 7).
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[0045] Therefore, in the example of bit-reversed addressing in FIG. 10, a base address
value (i.e. initial pointer value) of OXDCAABCFQ is placed into the main portion of register rA,
prior to execution of the evlidh[u]x instruction, where this points to the first element, element
0, of the buffer in memory 12 to be accessed. The value of 0x00000000 is placed in rB as
the index value. Also, for this example, the mask value (taken from the table of FIG. 4) is
“000...00001110,” since the buffer contains 8 halfword-sized data elements. This mask
value, corresponding to 0x000E, is stored in the extension portion of rA. Therefore, upon
execution of an evldhux instruction, in which U=1 and the mode field is %010, the EA is
calculated to be 0OxDCAABCFO (the base address + index value), and rD receives the
contents of mem[EA], which is element 0 of the buffer. (Note that, in this example, since the
index value in rB is 0, the base address value can be provided directly as the EA.) Also,
since U=1 and the mode field is %010, upon execution of the evldhux instruction, the
address update control field in the extension portion of rA (i.e. the mask value) is used to
determine how to update the main portion of rA. Using any known method, the mask value
of OxO00E is used to calculate the next address in the bit-reversed addressing sequence (i.e.
OxDCAABCEFS8, which corresponds to element 4). Therefore, the main portion of rA is
updated to the new base address value of 0OXDCAABCF8. Note that only the main portion of
rA is updated such that the mask value and mode field value remains unchanged. Also, at
this point, one or more additional instructions may be executed which use the results in rD
(element 0) in a subsequent data processing operation. Upon execution of a subsequent
evldhux instruction with U=1 and using the same rA and rB, the mode value is still %010 and
the mask value is still 0XOOO0E. In this case, the base value is OxDCAABCF8, as was
updated with the previous evldhux instruction. Again, using known methods, the mask value
of OxO00E is used to calculate the next address following OXDCAABCFS8 in the bit-reversed
addressing sequence (i.e. OXDCAABCF4, which corresponds to element 2). Therefore, the
contents of OXDCAABCF4, element 2, is loaded into rD, and the main portion of rA is
updated to OxXDCAABCF4. In this manner, a series of evldhux instructions may be used to
access the buffer elements of the buffer of FIG. 11 in a bit-reversed order in which the main
portion of rA can be updated to reflect the next address in the bit-reversed addressing

sequence (since U=1).

[0046] Note that the above circular buffer addressing example and bit-reversed
addressing example were described in reference to loading elements from memory;
however, the above methods also apply to storing elements to memory where, when U=1 in
a evstdh[u]x instruction, and mode = %001 or %010, the main portion of rA can be updated
as described above for each addressing scheme to point to the next address location to

which a data element will be stored.
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[0047] lllustrated in FIG. 12 is one embodiment of a displacement form vector load
instruction (evldh[u]). In the illustrated embodiment, evidh[u] is a thirty-two bit instruction
which indicates a destination register, rD, one source register, rA, and an immediate value
field which provides a displacement value. The evldh[u] instruction allows for an update
value (U) to be specified to indicate whether a load with displacement or a load with
displacement and update is to be performed. In the case of U=1 (evidhu), an update of rA is
to be performed as part of the operation of the instruction. In the case of U=0 (evidh), no
update of rA is performed. The evldh[u] instruction includes an opcode field (bits 0:5) to
identify the function or type of instruction. A destination field (bits 6:10) within the instruction
is a destination register identifier labeled “rD” which identifies a register D within the scalar
register file 34. A source field (bits 11:15) within the instruction is a source register identifier
labeled “rA” which identifies a register A within scalar register file 34. An unsigned
immediate field (UIMM, bits 16:20) within the instruction is an immediate value which
provides a displacement value. The instruction also includes a subopcode field (bits 21:31)
which may be used to further specify the functionality of the instruction. Note that in the
illustrated embodiment, U is included as a bit within the subopcode of the instruction (at bit
location 25 in the illustrated embodiment). However, in alternate embodiments, the
indication of whether or not to update can be provided as different opcodes or as a different
bit within the instruction. Alternatively, other bit length instructions may be implemented and
the bit size of each instruction field is implementation specific. However, as discussed
above, note that in many instruction set architectures, opcode and subopcode space is
limited, and thus, additional instruction bit length may not be available. Also, in other
embodiments additional fields or other fields may be implemented. Further, the ordering of
the rD field, rA field, and the immediate field may be changed to other sequences than the

one as illustrated in FIG. 12.

[0048] The evldh[u] instruction (evidh[u] rD, rA, UIMM) is similar to the evidh[u]x
instruction; however, rather than providing a second source register, rB, which stores an
index value used to calculate the EA, the evldh[u] instruction provides an immediate value
within the instruction itself that is directly used to calculate the EA. Similar to the evidh[u]x
instruction, the evidh[u] instruction loads a doubleword from memory into four halfwords of
the destination register. Thus, in the illustrated embodiments where processor 14 is a 32-bit
processor, the evldh[u] instruction may be used to load 4 16-bit vector elements into the
destination register. However, upon execution of an evldh[u] instruction, the displacement
value (UIMM) provided within the immediate field of the instruction is added to the contents
of rA (which stores a base address value) to calculate an effective address (e.g., EA[0:31]).

The doubleword located at the memory location in memory 12 pointed to by EA[0:31] is then
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loaded into rD. That is, the halfword pointed to by EA in memory 12 is loaded into rD[0:15],
the halfword pointed to by EA+2 in memory 12 is loaded into rD[16:31], the halfword pointed
to by EA+4 in memory 12 is loaded into rD[32:47], and the halfword pointed to by EA+6 in
memory 12 is loaded into rD[48:63].

[0049] If U=0 (i.e. an evldh instruction), then no update of rA is performed. However, if
U=1 (i.e. an evldhu instruction), the extension portion of rA can be used to determine how
the update of rA is to be performed. In one embodiment, if U=1 (i.e. an evldhu instruction),
both the extension portion of rA and UIMM is used to determine how the update of rA is to
be performed. For example, in one embodiment, if U=1 and UIMM is not 0, then, regardless
of the value of the mode field in the extension portion of rA, a normal update is performed in
which the value of EA is stored into the main portion of rA (rA[32:63]), in the same manner
as in a normal integer load with displacement and update (analogous to the update
performed for the normal integer load with index and update described above in reference to
FIG. 13). However, if the UIMM value = 0 and U=1, then an update form is indicated, but
normally, no change in value of rA would occur, since the addition of the UIMM value of zero
to the current value in rA would not provided an altered rA value. Thus, in one embodiment,
the U=0, UIMM=0 and the U=1, UIMM=0 variants of the instruction produce the same result.
This provides an opportunity to use such an instruction encoding to indicate that additional
update control values are to be used for SIMD load or store instructions, such as in the
extension portion of rA. So, if U=1, UIMM = 0, and the mode field value in the extension
portion of rA is %000, then a normal update is performed in which the value of EA is stored
into the main portion of rA (rA[32:63]). However, if U=1, UIMM=0, and the mode field value
in the extension portion of rA is %001 or %010, then a circular buffer addressing update or a
bit-reversed addressing update, respectively, as was described above, is performed for the
main portion of rA. That is, in these cases (where the mode field is %001 or %010), the
extension portion of rA is used to further provide control information (e.g. the address update
control field) which defines how the update of rA is to occur in order to implement different
addressing schemes, such as circular buffer addressing with wrap-around or bit-reversed
addressing. Therefore, the descriptions provided above with respect to FIGs. 4-11 in which
the extension portion of rA is used to provide additional modifying information with respect to

how to update the main portion of rA also apply to the evldh[u] instruction.

[0050] Similarly, note that the corresponding store instruction (evstdh[u]x rS, rA, UIMM)
operates similar to the load instruction. The evstdh[u] instruction stores four halfwords from
the GPR indicated by rS to the location in memory pointed to by EA (where the contents of

rA, which stores the base address value, and UIMM, the displacement value, are used to
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calculate EA[0:31]). As with the load instruction, if U=0 (i.e. an evstdh instruction), then no
update of rA is performed. However, if U=1 (i.e. an evstdhu instruction), the extension
portion of rA and the value of UIMM can be used to determine how the update of rA is to be
performed. That is, when a value of UIMM = 0 is indicated in the instruction, an extension
portion of rA can be used to further provide control information (i.e. modifying information)
which defines how the update of rA is to occur in order to implement different addressing
techniques, such as, for example, circular buffer addressing with wrap-around or bit-
reversed addressing. Therefore, the descriptions provided above regarding the calculation of
EA and the use of UIMM and an extension portion to determine how an update is to be
performed when U=1 apply to both the displacement form load and the displacement form
store instructions. Also, note that any element size can be defined in the load or store
instruction other than a halfword. For example, the descriptions provided herein may also
apply analogously to an evldb[u] or evstdb[u] which loads or stores, respectively, 8 bytes
from or to memory. The descriptions may also apply analogously to an evldw[u] or evstdw([u]

which loads or stores, respectively, 2 words from or to memory.

[0051] By now it should be appreciated that there has been provided data processing
instructions for use in a data processing system which are capable of using an extension
portion of one of its source registers to provide additional information with respect to how to
modify a main portion of one of its source registers. In this manner, additional opcode space
is not necessary. Furthermore, in one embodiment, one or more bits within these
instructions (e.g., the U bit) may be used to determine whether or not an update of the main
portion of one of the source registers is to be performed and whether or not the address
update control information in the extension portion is to be used in calculating the new
updated value. In another embodiment, the value of a displacement field within the
instruction may be used to determine whether or not the address update control information

in the extension portion is to be used in calculating the new updated value.

[0052] Note that the circuitry within processor 14 which may be used to implement the
circular buffer addressing or the bit-reversed addressed, as was discussed above, may be
located within control unit 28 or within execution units 32. Known circuitry may be used to
implement the functionality described above with respect to determining the next address
according to a circular buffer addressing technique or a bit-reversed addressing technique.
Note that additional or alternate addressing modes or types may be indicated by means of
alternate mode encodings in a similar manner to the illustrated techniques of circular

addressing and bit-reversed addressing.
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[0053] Because the apparatus implementing the present invention is, for the most part,
composed of electronic components and circuits known to those skilled in the art, circuit
details will not be explained in any greater extent than that considered necessary as
illustrated above, for the understanding and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract from the teachings of the present

invention.

[0054] The term “program,” as used herein, is defined as a sequence of instructions
designed for execution on a computer system. A program, or computer program, may
include a subroutine, a function, a procedure, an object method, an object implementation,
an executable application, an applet, a servlet, a source code, an object code, a shared
library/dynamic load library and/or other sequence of instructions designed for execution on

a computer system.

[0055] Some of the above embodiments, as applicable, may be implemented using a
variety of different information processing systems. For example, although FIG. 1 and the
discussion thereof describe an exemplary information processing architecture, this
exemplary architecture is presented merely to provide a useful reference in discussing
various aspects of the invention. Of course, the description of the architecture has been
simplified for purposes of discussion, and it is just one of many different types of appropriate
architectures that may be used in accordance with the invention. Those skilled in the art will
recognize that the boundaries between logic blocks are merely illustrative and that
alternative embodiments may merge logic blocks or circuit elements or impose an alternate

decomposition of functionality upon various logic blocks or circuit elements.

[0056] Thus, it is to be understood that the architectures depicted herein are merely
exemplary, and that in fact many other architectures can be implemented which achieve the
same functionality. In an abstract, but still definite sense, any arrangement of components
to achieve the same functionality is effectively "associated" such that the desired
functionality is achieved. Hence, any two components herein combined to achieve a
particular functionality can be seen as "associated with" each other such that the desired
functionality is achieved, irrespective of architectures or intermedial components. Likewise,
any two components so associated can also be viewed as being "operably connected," or

"operably coupled," to each other to achieve the desired functionality.

[0057] Also for example, in one embodiment, the illustrated elements of system 10 are
circuitry located on a single integrated circuit or within a same device. Alternatively, data

processing system 10 may include any number of separate integrated circuits or separate

220-



WO 2010/019304 PCT/US2009/045379

devices interconnected with each other. For example, memory 12 may be located on a
same integrated circuit as processor 14 or on a separate integrated circuit or located within
another peripheral or slave discretely separate from other elements of data processing
system 10. Peripherals 18 and I/O circuitry 16 may also be located on separate integrated
circuits or devices. It should also be understood that all circuitry described herein may be
implemented either in silicon or another semiconductor material or alternatively by software
code representation of silicon or another semiconductor material. As such, system 10 may
be embodied in a hardware description language of any appropriate type. The software code
or hardware description language may be embodied on any type of computer readable

media.

[0058] Furthermore, those skilled in the art will recognize that boundaries between the
functionality of the above described operations are merely illustrative. In some examples the
functionality of multiple operations may be combined into a single operation, and/or the
functionality of a single operation may be distributed in additional operations. Moreover,
alternative embodiments may include multiple instances of a particular operation, and the

order of operations may be altered in various other embodiments.

[0059] All or some of the software described herein may be received elements of system
10, for example, from computer readable media such as memory 12 or other media on other
computer systems. Such computer readable media may be permanently, removably or
remotely coupled to an information processing system such as system 10. Computer
readable media may include, for example and without limitation, any number of the following:
magnetic storage media including disk and tape storage media; optical storage media such
as compact disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk storage media;
nonvolatile memory storage media including semiconductor-based memory units such as
FLASH memory, EEPROM, EPROM, ROM; ferromagnetic digital memories; MRAM,; volatile
storage media including registers, buffers or caches, main memory, RAM, etc.; and data
transmission media including computer networks, point-to-point telecommunication

equipment, and carrier wave transmission media, just to name a few.

[0060] In one embodiment, data processing system 10 is a computer system such as a
personal computer system. Other embodiments may include different types of computer
systems. Computer systems are information handling systems which can be designed to
give independent computing power to one or more users. Computer systems may be found
in many forms including but not limited to mainframes, minicomputers, servers, workstations,
personal computers, notepads, personal digital assistants, electronic games, automotive and
other embedded systems, cell phones and various other wireless devices. A typical
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computer system includes at least one processing unit, associated memory and a number of

input/output (I/O) devices.

[0061] A computer system processes information according to a program and produces
resultant output information via 1/0O devices. A program is a list of instructions such as a
particular application program and/or an operating system. A computer program is typically
stored internally on computer readable storage medium or transmitted to the computer
system via a computer readable transmission medium. A computer process typically
includes an executing (running) program or portion of a program, current program values
and state information, and the resources used by the operating system to manage the
execution of the process. A parent process may spawn other, child processes to help
perform the overall functionality of the parent process. Because the parent process
specifically spawns the child processes to perform a portion of the overall functionality of the
parent process, the functions performed by child processes (and grandchild processes, etc.)

may sometimes be described as being performed by the parent process.

[0062] Although the invention is described herein with reference to specific
embodiments, various modifications and changes can be made without departing from the
scope of the present invention as set forth in the claims below. For example, various
numbering formats other than hexadecimal may be used. Changes to the data processing
architecture may be used. Any of a variety of known data storage circuits may be used to
implement the memories and registers. The bit sizes of the data buses, registers, vector
fields and data operands may be changed depending upon the application. Additionally, the
values used for the predetermined constants may be changed to have other values than the
ones illustrated herein. Any type of semiconductor processing technology may be used to
implement the circuitry described herein. Accordingly, the specification and figures are to be
regarded in an illustrative rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present invention. Any benefits, advantages,
or solutions to problems that are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential feature or element of any or

all the claims.

[0063] The term “coupled,” as used herein, is not intended to be limited to a direct

coupling or a mechanical coupling.

[0064] Furthermore, the terms “a” or “an,” as used herein, are defined as one or more
than one. Also, the use of introductory phrases such as “at least one” and “one or more” in

the claims should not be construed to imply that the introduction of another claim element by
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the indefinite articles "a" or "an" limits any particular claim containing such introduced claim
element to inventions containing only one such element, even when the same claim includes
n,.n

the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or

"an." The same holds true for the use of definite articles.

[0065] Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus, these terms are not

necessarily intended to indicate temporal or other prioritization of such elements.
[0066] The following are various embodiments of the present invention.

[0067] Item 1 includes a method of operating a data processing system which includes
executing a first instruction by an N-bit processor, where the first instruction is a memory
access instruction with update, where the execution of the first instruction includes:
accessing at least one source register of a plurality of registers, where the accessing the at
least one source register includes accessing a first register of the plurality of registers, where
each register of the plurality of registers includes a main register portion of N bits and an
extension register portion of M bits, where the main register portion of the first register
includes a first address operand; forming a memory access address using the first address
operand; using the memory access address as an address for a memory access; producing
an updated address operand, wherein the updated address operand is based on the first
address operand; and writing the updated address operand to the main portion of the first
register. The producing includes accessing an extension portion of a source register of the
at least one source register to obtain modifying information and using the modifying

information in the producing an updated address operand.

[0068] Item 2 includes the method of item 1, where the accessing an extension portion
of a source register of at least one source register to obtain modifying information includes
accessing the extension register portion of the first register to obtain the modifying

information.

[0069] Item 3 includes the method of item 2 where the first registers is a base register for

the first instruction and the first address operand is a base address.

[0070] Item 4 includes the method of item 1 where the at least one source register
includes an index register of the plurality of registers, wherein the accessing an extension
portion of a source register of at least one source register to obtain modifying information
includes accessing the extension register portion of the index register to obtain the modifying

information.
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[0071] Item 5 includes the method of item 1, where the first instruction is for accessing a
memory operand stored in a circular buffer, and the modifying information includes an

indication of buffer length of the circular buffer.

[0072] Item 6 includes the method of item 5 where the modifying information includes an

indication of a modulus of the circular buffer.

[0073] Item 7 includes the method of item 5 where the modifying information includes an

indication of an offset value used in accessing the circular buffer.

[0074] Item 8 includes the method of item 1 where the first processor instruction when
executed, performs a bit reverse incrementing operation, and the modifying information

includes an indication of a mask value for the bit reverse incrementing operation.

[0075] Item 9 includes the method of item 1, where the executing a first instruction
includes determining that an offset field of the first instruction indicates a first value, and the
executing the first instruction includes accessing an extension portion of a source register of
the at least one source register to obtain modifying information in response to the offset field
indicating the first value, where if an offset field of a memory access instruction with update
does not indicate the first value, producing an updated address operand for a memory
access instruction with update will not include using modifying information from an extension

portion of a source register for the memory access instruction with update.

[0076] Item 10 includes the method of item 1, where the extension portions of the

plurality of registers are not used when executing scalar integer instructions.

[0077] Iltem 11 includes the method of item 1, where the extension portions of the

plurality of registers are provided for storing SIMD vector elements.

[0078] ltem 12 includes the method of item 1 where the first instruction is a SIMD
instruction.
[0079] Item 13 includes the method of item 1, where an extension portion of the source

register of the at least one source register includes a mode field and a control field; the
modifying information is located in the control field; and the producing an updated address
operand includes producing an updated address operand as per a plurality of updating
techniques, where the mode field indicates which technique of the plurality is to be used in

the producing.
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[0080] ltem 14 includes the method of item 1 and further includes executing a second
instruction by the processor, where the second instruction is a memory access instruction
with update, and where the execution of the second instruction includes accessing the main
register portion of the first register to obtain the updated address operand, forming a second
memory access address using the updated address operand, and using the second memory

access address as an address for a second memory access.

[0081] Item 15 includes the method of item 1, where the forming the memory access
address includes adding the first address operand with a first value to derive the memory
access address, and the producing an updated address operand includes modifying the

memory access address using the modifying information.

[0082] Item 16 includes a processor which includes a plurality of registers, each of the
plurality of registers includes a main portion and an extension portion, where the main
portion is N-bits and the extension portion is M-bits, where the processor is an N-bit
processor; an execution unit, the execution unit for executing instructions, where registers of
the plurality of registers are utilized as source registers and destination registers in the
execution of instructions by the execution unit; and where the execution unit accesses at
least one source register of the plurality of registers for executing a first memory access
instruction with update, where the execution unit uses modifying data from an extension
portion of a source register of the at least one source registers to update a first address
operand from a main portion of a first source register of the at least one source registers to
produce an update