(11) N° de publication :

INSTITUT NATIONAL
de la propriété industrielle
(A n'utiliser que pour les commandes de reproduction).

——

PARIS

A1

DEMANDE

 DE BREVET D'INVENTION(21) N ${ }^{\circ} 8101499$
(54) Mécanisme de transfert de fluide à plusieurs positions.
(51) Classification internationale (Int. CI. ${ }^{3}$). G O1N 35/06.
(22) Date de dépôt.......................... 27 janvier 1981.
(33) (32) (31) Priorité revendiquée : EUA, 28 janvier 1980, $n^{\circ} 115,691 ; 24$ octobre 1980, n° 200,143.
(41) Date de la mise à la disposition du public de la demande............. B.O.P.I. - «Listes $» n^{0} 31$ du 31-7-1981.
(71) Déposant : Société dite : COULTER ELECTRONICS, LTD., résidant en Grande-Bretagne.
(72) Invention de : Vladimir J. Drbal, Guenter Ginsberg, Bruce J. Hodgins, John Andrew Richardson, Ted Walker Britton, Richard M. Grimm, Ernesto Bello, Rodolfo Ramiro Rodriguez, Ivan Kenneth Saltz, Wallace H. Coulter et Walter M. Mena.
(73) Titulaire : Idem (71)
(74) Mandataire : Cabinet Z. Weinstein, 20, av de Friedland, 75008 Paris.

La présente invention se rapporte à un mécanisme de transfert de fluide pour prendre, transférer et distribuer des volumes de fluide et elle concerne plus particulièrement l'aspiration d'un volume de fluide dans une première position, la rotation du fluide aspiré vers une seconde position et la distribution du volume de fluide à la seconde position.

Des mécanismes de transfert et de distribution de fluide fonctionnent pour distribuer des quantités de fluide à un emplacement souhaité; cependant, les dispositifi selon l'art antérieur ne présentent pas la capacité de prendre ou d'aspirer une quantité précise de fluide dans une première position, de déplacer la quantité de fluide à une seconde position à une allure rapide et avec une mise en place très précise de la sonde prenant et distribuant le fluide, en positions verticale et horizontale. Par ailleurs, de nombreux dispositifs selon l'art antérieur ont été développés pour pomper un fluide dédié à travers Ie distributeur, comme les réactifs dans des systèmes
20 d'analyse chimique ou pour prendre des volumes multiples dans une sonde de fluide, séparés par de l'air ou autres fluides. Si I'on souhaite une certaine flexibilité pour prendre et distribuer des quantités différentes de fluides provenant de différentes sources et les mélanger à d'autres fluides, alors les systèmes dédiés ou en ligne ne peuvent etre utilisés, car ils sont soit uniquement physiquement reliés à un fluide ou peuvent présenter le risque d'entrainement et de contamination entre les fluides.

Dans certains systèmes d'analyse chimique, des fluides échantillons en rapport avec un patient particulier sont programmés pour un ou plusieurs examens analytiques comame la mesure de la réaction chimique résultant de l'addition d'un ou plusieurs réactifs provenant d'une alimentation en réactifs. Les dispositifs selon l'art antérieur présentent ux inconvénient da aux positions des réactifs dédiès et typiquement à un mécanisme de distribution du réactif dédié pour chaque position. En général,
l'agencement de cuvettes ou récipients de réaction est segmenté ou divisé en nombre de positions qu'il faut selon les positions des réactifs dédiés. Par exemple, cent positions de cuvettes avec cent positions de réactifs ont pour résultat qu'il n'y a que les échantillons de dix patients qui sont examinés dans le système sans considérer le nombre d'examens entrepris sur l'échantillon de chaque patient.

Le patient $\mathrm{N}^{\circ} 1$ peut ne nécessiter qu'un examen mais les dix positions doivent être allouées pour cet échantillon du patient dans le dispositif, car chaque position de réactif est dédiée. Chacune des neuf positions vides peut ne pas être utilisée ainsi la machine à cent positions n'est efficace que comme une machine à dix patients ou échantillons. Si ce problème est doublé en incorporant dix seconds réactifs, alors la machine à cent positions sera divisée de nouveau par deux et seuls les échantillons de cinq patients pourront être analysés sur la rachine en une fois. Cela a pour résultat une forte augmentation du temps écoulé pour un débit donné ainsi qu'une diminution correspondante de l'efficacité du système. Il serait souhaitable de produire un mécanisme de transfert de fluide pouvant prendre, déplacer et distribuer des échantillons et réactifs d'une ou plusieurs positions pour augmenter la flexibilité du système afin que chaque cuvette puisse contenir un échantillon et un réactif sans considérer le nombre d'examens ou de réactifs dans le système.

La présente invention a pour objet un mécanisme de transfert de fluide à plusieurs positions ayant un organe formant bras mobile et généralement allongé pour maintenir un moyen formant sonde de fluide à son extrémité distale pour prendre et distribuer le fluide, caractérisé par un moyen oscillant monté sur l'organe formant bras pour une oscillation de la sonde afin d'agiter le fluide dans laquelle la sonde est insérée.

La présente invention a pour autre objet un
mécanisme de transfert de fluide caractérisé par un moyen formant arbre relié mobile à une première extrémité du bras et ayant un axe; un premier moyen d'entrainement pour déplacer le bras en translation par rapport au moyen formant arbre et le long de l'axe de ce moyen formant arbre; et un second moyen d'entrainement pour faire tourner le bras sur un trajet arqué autour de l'axe du moyen formant arbre.

L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaftront plus clairement au cours de la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant plusieurs modes de réalisation de l'invention et dans lesquels :

- la figure 1 est une vue en perspective partielle d'un mécanisme de transfert de fluide selon I'invention et use vue en perspective partielle d'un analyseur chimique;
- la figure 2 est une vue latérale et en plan partiellement en coupe d'un mode de réalisation du mécanisme de transfert;
- la figure 3 est une vue latérale, en plan et agrandie, partiellement en coupe d'un mode de réalisation d'une sonde de fluide du mécanisme;
- la figure 4 est une vue de dessus faite suivant la ligne 4-4 de la figure 2;
- la figure 5 est une vue en coupe latérale du bras du mécanisme de transfert, faite suivant la ligne 5-5 de la figure 2;
- la figure 6 est une vue en perspective éclatée du bras de transfert et de la sonde de la figure 2 ;
- la figure 7 est une vue latérale et en plan partiellement en coupe d'un second mode de réalisation du mécanisme de transfert;
- la figure 8 est une vue partiellement sous forme de blocs et partiellement sous forme schématique d'un
système de controle du mécanisme de transfert de fluide;
- la figure 9 est une vue en perspective d'un autre mode de réalisation de la structure de bras mobile selon l'invention;
- la figure 10A est une vue en perspective partielle et éclatée des composants du bras représenté sur la figure 9;
- la figure 10 B est une vue en perspective partielle et éclatée comprenant la structure de détection verticale avec les arbres d'entrainement et de guidage de la structure du bras de la figure 9;
- la figure 10 C est une vue en perspective partielle et éclatée de la base et des moteurs d'entrainement de la structure du bras de la figure 9;
- la figure 11 est une vue en élévation arrière montrant le trajet de cablage de la structure du bras de la figure 9; et
- la figure 12 est une vue en élévation latérale fragmentaire de la structure représentée sur la figure 11. En se référant maintenant à la figure 1, un mécanisme de transfert de fluide construit selon l'invention est généralement désigné par le repère 10. Trois mécanismes de transfert, 10, 10^{\prime} et $10^{\prime \prime}$ sont illustrés en fonctionnement avec un analyseur de réaction chimique 12. L'analyseur 12 peut contenir un alimentation en échantillons 14 et une alimentation en réactifs 16. Le mécanisme de transfert 10 peut etre utilisé avec tout type de système d'analyse ou de mélange où il est souhaitable d'utiliser les capacités du mécanisme 10, comme on le décrira ciaprès. Pour la facilité de la description des opérations du mécanisme 10 et la flexibilité inhérente, on décrira un analyseur 12 particulier.

L'analyseur 12 comprend un rotor à cuvettes 18 qui contient un certain nombre de cuvettes ou de cavités 20. Les portions d'échantillon sont prises ou aspirées par le mécanisme 10 de l'alimentation 14 et déplacées et distribuées vers les cuvettes 20. Les portions sont mélangées avec des
portions de réactif qui sont prises et distribuées par
 Un second réactif peut être ajouté aux cuvettes 20 par le troisième mécanisme $10^{\prime \prime}$ en provenance de l'alimentation 16
5 ou d'une alimentation différente (non représentée). L'alimentation en échantillons 14 peut contenir des échantillons, des stats, des témoins et des blancs qui sont pris de l'alimentation 14 dans un ordre prédéterminé et qui sont alors analysés par l'analyseur 12 dans les cuvettes 20. Les cuvettes 20 sont de préférence renouvelables en étant nettoyées dans l'analyseur 12 avant d'arriver de nouveau à la position de distribution de l'échantillon du mécanisme 10.

L'alimentation en échantillons 14 présente un certain nombre de cavités 22 où les échantillons, blancs, stats et témoins peuvent etre placés et il peut y avoir une ou plusieurs positions de prise sur un arc défini par une sonde de fluide 24 . Les cavités 22 peuvent etre déplacées aux positions de prise en tournant l'alimentation 14. La gonde 24 tourne sur un bras 26 autour d'un arbre 28. Ze bres 26 est illustrć avec la sonde 24 à la position de distribution insérée dans l'une des cuvettes 20 du rotor 18. Le muide prif à l'almentation 14 est distribué et peut Etre mélangé par un moteur 30 faisant osciller la sonde 24 d'avant en arrière à l'intérieur de la cuvette 20. Le mécanisme 10^{\prime} forntionne d'une façon analogue pour prendre un fluide dans $I^{\prime \prime} u n$ des récipients de réactif 32 de I'alimentation 16 . Le mécanisme $10^{\prime \prime}$ peut prendre une seconde quantité de réactif dans les récipients 32 ou une autre alimentation ou rangée de récipients (non représentée).

La sonde 24 tourne autour de l'arbre 28 et est verticalement entrafnée de haut en bas sur l'arbre 28 pour prendre et distribuer les quantités de fluide. Les types d'alimentationsainsi que l'agencement de cuvettes 20 sont simplerent des illustrations et les mécanismes 10 , 10^{\prime} et $10^{\prime \prime}$ peuvent prendre et distribuer des fluides de toute position sur un are défini par l'axe de l'arbre 28. Chaque
fluide peut etre différent lors de chaque opération du mécanisme 10 et il est très important qu'il y ait élimination d'entrainement et de contamination car les fluides sont en rapport avec des examens sur les fluides corporels d'un patient particulier.

Les positions de fonctionnement du mécanisme 10 pendant chaque cycle seront les suivantes, en décrivant la position de la sonde 24 pour la simplicité. La sonde 24 sera en une position de repos, comme au-dessus d'un laveur de sonde 34 où la sonde est lavée à la fois intérieurement et extérieurement et séchée à la fin de chaque cycle en préparation pour le cycle suivant. La sonde 24 est d'abord entrainée en rotation à la bonne position de prise audessus de l'une des cavités 22, est entraînée vers le bas dans la cavité jusqu'à ce qu'elle atteigne le fluide, aspire la portion précise de fluide souhaité , est ramenée à la position de rotation au-dessus de l'alimentation 14, est entrainée en rotation jusqu'à une position de distribution au-dessus de l'une des cuvettes 20 , est entrainée vers le bas dans la cuvette 20 , distribue la portion de fluide aspiré, oscille pour mélanger les fluides dans la cuvette 20, est entrainée vers le haut jusqu'à sa position de rotation, est entrainée en rotation jusqu'à une position au-dessus du laveur 34, est entrainée vers le bas dans le laveur 34 où elle est lavée et séchée de tous les fluides précédents puis est ramenée à sa position de repos audessus du laveur 34. Dans un analyseur chimique 12, utilisant le cycle ci-dessus, le rotor 18 fait avancer les cuvettes 20 pas à pas d'une position dans la direction "A" toutes les six secondes et par conséquent chacun des mécanismes $10,10^{\prime}$ et $10^{\prime \prime}$ accomplit chacun des mouvements ci-dessus en moins de six secondes. On peut voir qu'il est extremement critique que chacune des positions, aussi bien verticale qu'en rotation, doit etre atteinte précisément et rapidement par la sonde 24.

Les figures 2 à 6 montrent un premier mode de réalisation du mécanisme de transfert 10 et de la sonde 24.

Fin se référant à la figure 2, la sonde 24 est illustrée comme étant insérée dans l'une des cuvettes 20 du rotor 18. La sonde 24 oscille d' avant en arrière comme cela est indiqué par la flèche "B" pour mélanger les fluides dans la cuvette 20. La sonde 24 est entrainée de haut en bas le long de l'axe de l'arbre 28 comme cela est indiqué par la flèche "C" pour la retirer et l'insérer dans les cavités 22, les cuvettes 20 et le laveur 34 . Le mécanisme 10 peut être monté à toute surface appropriée comme une plaque de base 36 de lianalyseur 12.

Le bras 26 est monté sur l'arbre 28 et est ertrainé horizontalement par un moteur 38 et verticalement par un moteur 40 . Les moteurs 38 et 40 sont de préférence des moteurs pas à pas pour donner un mouvement et un alignement très précis de la sonde 24. Dans un exemple, le moteur 38 déplace la sonde 24 le long d'un arc horizontal de $0,0508 \mathrm{~mm}$ your chaque impulsion d'entrafnement qu'il regoit, tandis que le moteur 40 déplace la sonde 24 le long de l'arbre 28 de $0,152 \mathrm{~mm}$ pour chaque impulsion qu'il regoit. Par ailleurs, les impulsions peuvent etre appliquées à I'un des moteurs ou auy deux moteurs 38 et 40 à une fréquence croissante et décroissante pour accélérer la sonde 24 au début du mouvement pour atteindre une vitesse rapide puis la décélérer afin que le bras 26 ne s'arréte pas brusquement etre fasse pas vibrer la sonde 24 pour répandre les fluides de la sonde. Cela est également pratique du fait du nombre de mouvements que le bras doit effectuer en une très courte période de temps, en plus de la précision nécessaire pour chacun des emplacements de la sonde 24.

Pour obtenir la vitesse et les mouvements de précision de la sonde 24 , l'arbre 28 est une vis à petit pas, dont le pas est étudié pour obtenir la rapidité nécessaire pour le mouvement du bras et de la sonde. Seule une partie 42 du filetage de la vis est représentée en détail; cependant, on comprendra que la partie filetée 42 s'étend de la partie la plus haute de l'arbre 28 à sa partie la plus basse, jusqu'où le bras 26 peut étre entrainé.

Le bras 26 est monté sur I'arbre 28 par un écrou 44 à petit pas, de configuration opposée au filetage 42, et qui est en engagement dans un passage 46 dans le bras 26. Les moteurs 38 et 40 peuvent etre montés sur une plaque 48 qui est en-dessous de la plaque de base 36 et peut y etre montée ou peut être montée à une autre surface.

Le moteur 38 comprend un arbre d'entrainement 50 qui traverse une ouverture 52 de la plaque 48 et auquel est montée une poulie 54. Autour d'une extrémité de la poulie 54 est engagée une courroie d'entrafnement. La courroie 56 est engagée, à son extrémité opposée, autour d'une poulie d'entrainement 58 montée sur un moyeu 60. Le moyeu 60 est monté rotatif par deux paliers 62 et 64 autour d'un arbre d'entrainement à vis 66. L'arbre 66 est assujetti ou autrement fixé à une extrémité inférieure 68 de la vis 28 à une extrémité et est assujetti ou autrement fixé à son extrémité opposée à un arbre d'entrainement 70 du moteur 40.

Le moyeu 60 comprend également une tige de guidage 72 montée ou fixée par une vis ou autre dispositif de retenue 74. L'extrémité opposée de lig tige de guidage 72 est fixée dans un moyen de retenue supérieur 76 par une vis ou autre dispositif de fixation 78. Le moyen de retenue 76 comporte un palier 80 retenu dans une fente ou évidement 82. Une extrémité supérieure 84 de la vis 28 est en engagement rotatif dans le palier 80. La tige de guidage 72 maintient la position angulaire du bras 26 par un palier 86 monté dans le passage 88 dans le bras 26. Le palier 86 tel qu'un roulement à billes, entoure la tige de guidage 72, permettant au bras 26 de se déplacer facilement de haut en bas sur la tige 72 , tout en le plaçant, avec la sonde 24, avec précision. Quand le moteur 40 fonctionne, l'arbre 28 est entrafné en rotation, entrainant le bras 26 et par conséquent la sonde 24 vers le haut ou vers le bas par I'écrou d'entrainement 44. Le bas de la tige de guidage 72 est monté dans le moyeu 60 , ainsi quand le moteur 38
fonctionne et que la courroie d'entrainement 56 fait tourner le moyeu 60, la tige de guidage 72 place avec précision la sonde 24 tandis que le moyeu 60 tourne. Le moteur 40 peut fonctionner en tandem avec le moteur 38 pour maintenir la position du bras 26 sur l'arbre 28 si cette position est critique. Si le bras 26 a la possibilité de se déplacer légèrement de haut en bas tandis que le bras est entrainé en rotation par le moteur 38, alors le moteur 40 n'a pas besoin d'être activé.'Alors, tandis que le moyeu 60 tourne autour de I'arbre 28 , le bras 26 est entrainé légèrement vers le haut ou vers le bas sur l'arbre 28, car l'écrou 44 est entrainé en rotation sur le filetage 42 tandis que le bras 26 est entrainé en rotation par la tige de guidage 72. La position du bras 26 et de la sonde 24 vers le haut peut etre déterminée par un lecteur optique 90 porté sur le bras 26 qui peut etre un commutateur de lumière traditionnel ea U ou en C, produisant un signal quand le trajet lunineux entre les bras est interrompu par une patte 92 pendant du moyen de retenue supérieur 76 (ce que 1'on peat mieux voir sur la figure 4). La position inférieure du bras 26 et de la sonde 24 peut etre déterminés par nu second commutateur optique 94 porté sur le bras 26 en-dessous du commutateur 90 , qui est activé par une patte 96 montée sur la tige 72. Les pattes 92 et 96 peuvent etre fixes ou réglables pour établir la position supérieure ainsi que la position inférieure du bras 26 et de la sonde 24.

La position définie par la patte 92 sera la position la plus élevée où la sonde 24 est retirée de tout récipient ou cavité où elle peut être placée afin de pouvoir etre exitraînée en rotation sans l'endommager. La position la plus basse définie par la patte 96 peut etre la position la plus basse dans laquelle la sonde 24 est inséréc, comme l'espacement souhaité au-dessus du fond de la curette 20 on dans le laveur 34. Pour donner une certaine flexibilité au mécanisme 10 , d'autres pattes et
lecteurs peuvent être utilisés pour définir d'autres positions, lesquels lecteurs peuvent être montés à proximité du lecteur 94 et avec des pattes s'étendant verticalement vers le haut parallèlement à la tige 72 et montées sur la tige 72 ou le moyeu 60.

La position angulaire du bras 26 est déterminée par le moteur d'entrainement horizontal 38 et peut être vérifiée par une roue à code 98 fixée à une bride pendante 100 du moyeu 60 par un support de palier inférieur 102. La roue 98 tourne avec le moyeu 60 et sa position angulaire et par conséquent du bras 26 et de la sonde 24 , peut etre détectée par un lecteur optique 104 monté sur la plaque 48 par un bloc de montage 106. La roue 98 peut être utilisée pour déterminer la position angulaire de la sonde 24 ou elle peut seulement etre utilisée pour vérifier la position qui a été déterminée par le nombre d'impulsions d'entrainement appliquées au moteur 40. Comme chacun des moteurs 38 et 40 est de préférence un moteur pas à pas et est entraîné sur une distance précise pour chaque impulsion d'entrainement qu'il reçoit, la position verticale et en rotation de la sonde 24 peut etre déterminée simplement par le nombre d'impulsions appliquées aux moteurs 38 et 40 . Les pattes 92 et 96 et la roue à code 98 peuvent alors etre uniquement utilisées pour vérifier la position déterminée par les moteurs d'entrainement.

La sonde 24 est mieux illustrée sur les figures 2 et 3 et elle comprend un passage central 108 qui s'étend sur toute sa longueur et débouche au sommet dans un alésage 110 dans lequel peut s'adapter un raccord de fluide 112 auquel est relié un tube traditionnel de fluide 114. Le passage 108 est de préférence formé en une matière plastique non réactive et il s'étend jusqu'à une extrémité inférieure 116 dans laquelle il débouche, et qui est la partie d'aspiration et de distribution du fluide de la sonde 24. L'extrémité 116 et deux conducteurs électriques 118 et 120 s'étendent hors d'une gaine inférieure non conductrice 122. La gaine 122 est dimensionnée pour
s'edegter dans les dimensions internes des cuvettes 20, des cavités 22 et du laveur de sonde 34.

Les extrémités supérieures des conducteurs 118 et 120 sont reliées è un circuit de détection de fluide 5 (figure 8) qui comprend une source de puissance et un détecteur pour détecter le moment où les extrémités inférieures exposées des conducteurs 118 et 120 contactent une surface de fluide pour former un capteur de niveau du mécanisme 10. Le bas 116 de la sonde et des conducteurs 118 et 120 sont espacés, ainsi l'extrémité inférieure 116 a un contact mingmum avec le fluide dans les cavités 22 et 32. il y a donc we quantité minimum d'entrainement à 1'cxterrieux de la sonde 24 et une portion précise de fluide peut ainsi etre aspirée et distribuée.

La sonde $2 l_{\text {s }}$ est montée dans une ouverture 124 dans an csulisseau 126. Le coulisseau 126 comporte un bloc de montags 128 formé avec lui ou qui lui est fixé, et qui comporte un alésage fileté 130 dans lequel est ixséré un plongexr 132 du type à ressort qui assure la bome orientation de la sonde 24 . Le plongeur 132 permet \therefore Le sonde 24 de se deplacer latéralement et verticalement si ello doit Etroe deplacée contre un objet solide pour Efiter de I 'endommager ainsi que le mécanisme 10. La mise en place ou position vertacale de la sonde 24 est maintenue
25 par un ressort 134 vissé autour d'une partie filetée 136 du bloc de nontage 128 à une extrémité, et à son autre extrémites autour d'une partie filetée 138 de la sonde 24. Ainsi, si la sonde 24 doit etre déplacée contre un objet solide dans sa course vers le bas, elle remonte à travers
30 I'ouverture 124 pour éviter d'endommager le mécanisme 10. Un tel défaut de fonctionnement peut se produire sans aucun défaut du mécanisme 10 car l'alimentation 14 peut ne pas amener les cavités à la bonne position ou le rotor 18 peut ne pas amener les cuvettes 20 à la bonne position ou
35 I'une des cuvettes 20 peut être bloquée.
On fait osciller la sonde 24 d tavant en arrière pour agiter les fluides dans les cuvettes 20 sur le
coulisseau 126 par le moteur 30. Le fonctionnement du moteur 30 , la construction du coulisseau 126 et le montage sur le bras 26 sont mieux représentés sur les figures 5 et 6. Le coulisseau 126 comporte deux gorges 140 et 142

La partie supérieure du bras 26 comporte un canal 144 où s'adapte le coulisseau 126 avec un espace latéral entre les côtés du canal 144 et les gorges 140 et 142 . Les côtés du canal 144 sont traversés d'un certain nombre d'alésages 146 qui ont une première dimension exterme et une seconde dimension interne plus petite débouchant dans le canal 144. Dans la partie de première dimension de chacun des alésages 146 est inséré un roulement à billes 148 qui s'étend partiellement dans le canal 144 pour engagement dans les gorges respectives 140 et 142. Les roulements à billes 148 sont maintenus dans les alésages 146 par deux plaques formant ressorts 150 et 152.

Les plaques 150 et 152 sont fixés au bras 26 par des vis 154 insérées dans des ouvertures 156 des plaques 150 et 152 et dans des alésages filetês 158. Le bras 26 comporte une partie de base 160 où est formé le passage d'écrou 46 et le passage de palier 88 . La base 160 peut comporter des gorges ou fentes 162 dans ses parois latérales, où peuvent être fixés les conducteurs pour les cables 118 et 120 et le tube 114. Le coulisseau 126 reçoit un mouvement réciproque dans le canal 144 par le moteur 30 avec un arbre excentrique d'entrainement traversant une ouverture ou fente 164 dans la plaque 126.

Un second mode de réalisation du mécanisme 10 comportant une sonde 24^{\prime} est illustré sur la figure 7. Le mécanisme 10 de la figure 7 ainsi que la sonde 24^{\prime} produisent les mémes opérations que celles que lion a précédemment décrites. Des organes sensiblement identiques seront décrits avec les mèmes repères que ceux précédemment utilisés pour les figures 1 à 6 , avec le signe ${ }^{n}$ ' n pour indiquer des modifications mineures et des repères différents sont utilisés pour des éléments qui ont été
sensiblement ou totalement changés.
La sonde 24' comporte une sonde 166 de prise et de distribution en acier inoxydable qui est montée dans un manchon non conducteur 168 par un raccord fileté 170. l'orifice d'aspiration et de distribution de fluide et qui sert également à former un conducteur d'un circuit capacitif de détection du niveau décrit sur la figure 8. La connexion électrique à la sonde 166 est formée par à une extrémite supérieure 176 de la sonde 166 et qui comprend un conducteur électrique (figure 8) relié de façon traditionnelle.

A l'extrémité supérieure 176 de la sonde 166 sera relié un tube de fluide. Le manchon 168 est monté dans un coulisseau 126' vissé ou autrement fixé à un coulisseau à bilies traditionnel 178 (seule sa partie coulissante étant illustrée sur la figure) qui est monté sur le bras 26'. Le moteur 30 comporte de nouveau un arbre excentrique d'entralnement 180 en engagement avec la fente d'entrainement 164 du coulisseau 126'. Le moteur 38 fait tourner une poulie d'entrainement 58' par la courroie d'entrainement 56. Le moyeu 60' est fixé à la poulie 58' et tourne avec elle autour de deux paliers 182
25 et 184 montés sur un moyeu non rotatif 186 lui-même monté sur la plaque de base 48.

L'arbre d'entrainement 28 est monté pour une rotation dans deux paliers 188 et 190 montés à l'intérieur du moyeu 186. Les paliers 182 et 188 sont fixés par un capuchon 192 vissé ou autrement fixé au moyeu 186. L'arbre 28 est monté dans les paliers 188 et 190 par son extrémité infér:'eure 68'. L'extrémité inférieure 68' de I'arbre 28 est fixée à I'arbre d'entrainement 70 du moteur 40 par un accouplement flexible 194. L'accouplement 194 est rigide en rotation et axialement flexible avec l'arbre 28 pour éliminer les vibrations du moteur et du fonctionnement du mécanisme 10.

Le moyeu 60' comporte une bride 196 à laquelle est fixée une jupe de code ou codée 198 qui s'étend partiellement ou totalement autour du moyeu 60' selon l'angle maximum de rotation sur lequel l'arbre 26^{\prime} peut tourner. La jupe 198 peut etre lue par un lecteur optique 200 monté sur une plaque 202 sur la plaque de base 48. Le lecteur 200 de position de code peut de nouveau etre utilisé pour vérifier le nombre d'impulsions d'entrainement appliquées au moteur 40 pour assurer que la bonne position être utilisé comme controle de position primaire pour le bras 26' si on le souhaite.

L'écrou d'entrainement 44 du bras 26' est engagé sur la vis 28'. L'extrémité supérieure de la vis 28^{\prime} n'est pas engagée dans le moyen supérieur de retenue 76^{\prime}. Ce moyen 76' comporte toujours la patte 92 pendant vers le bas coopérant avec le lecteur 90 porté par le bras 26'. La tige de guidage 72^{\prime} est montée dans le moyeu 60^{\prime} et retenue dans le moyen 76^{\prime} et en engagement coulissant à travers le palier 86, de préférence du type roulement à billes, pour la facilité du mouvement du bras 26^{\prime} de haut en bas de la tige de guidage $7{ }^{\prime}$ '.

Une seconde tige de guidage 204 a une extrémité montée dans le moyeu 60° et son autre extrémité montée dans le moyen de retenue 76^{\prime}. La tige 204 est engagée dans un passage 206 du bras 2^{\prime}, qui peut contenir un palier ou non. Avec les deux tiges parallèles de guidage 72' et 204, l'extrémité supérieure de $^{\prime}$ 'arbre 28^{\prime} peut forcer le mouvement du bras 26^{\prime} à se gripper si l^{\prime} extrémité supérieure est retenue dans le moyen de retenue 76'. La seconde tige de guidage 204 assure de plus que la sonde 24^{\prime} sera bien alignée et que le mécanisme 10 aura la durée de vie et la fiabilité suffisantes.

La position la plus basse du bras 26^{\prime} est illustrée en tracé fantơme en 208. La position 208 peut etre obtenue soit en comptant les impulsions d'entrainement du moteur 40, comme on l'a précédemment décrit, ou par un ou
plusieurs autres lecteurs optiques montés sur le bras 26', identiques mais espacés du lecteur 90 avec des pattes à des positions correspondantes montées sur le moyeu 60' (non représentées).

La figure 8 montre un mode de réalisation du circuit de contr8le 210 du mécanisme 10 . Le circuit 210 peut faire partie du controle de l'analyseur 12 ou peut ttre un controle séparé prévu avec un ou plusieurs des mécanismes 10. Uniquement dans le cadre de la présente description, le cortrole 210 sera décrit comme fonctionnant avec la sonde de détection de niveau 24^{\prime} avec le mécanisme d'échantillon 10 , la sonde 24' avec le mécanisme 10' et la sonde 24 avec le mécanisme $10^{\prime \prime}$. En général, I'analyseur 12 aura des mécanismes $10,10^{\prime}$ et $10^{\prime \prime}$ sensiblement identigues, et par conséquent seul un type de sonde 24 ou 24'. Par ailleure, comme on l'a précédemment décrit, un saul mécanisme 10 peut fonctionner avec le controle 210.

En se référant au mécanisme 10 , le circuit de détection de niveau comprenc un oscillateur 212 qui applique tas sortie à haute fréquence par deux lignes 214 et 216. 11 pcurrait égelement Y avoir un oscillateur séparé 212 aqec chacune des sondes 24^{\prime} pour les mécanismes 10 et 10^{\prime}. La ligns 214 applique le signal à haute fréquence par un condensateur 210 à la sonde 24^{\prime} sur une ligne 220 et à une resistance 222. Quand la sonde 24' a son bout 172 avodescus de la surface du fluide 224, le trajet du courant passe par le condensateur 218 et la résistance 222 vers la masse. Ce niveau de courant ou cette tension proportionnelle au. courant est détecté par un détecteur 226 par une ligne 228 reliée à la jonction de la ligne 220 et de la résistance 222. Quand le bout 172 de la sonde atteint la surface 224 du fluide échantillon dans l'une des cavités 22 , un second trajet de courant passe par le condensateur 218, la ligne 220 , la sonde 24^{\prime} et le fluide dans la cavité 22 quí a une résistance 230. La cavité 22 peut être formée en un matériau conducteur ou peut avoir une masse électronique très précisément associée avec elle, agissant de la même
façon que le circuit décrit par rapport au mécanisme 10'. En concevant la résistance 222 pour qu'elle ait une valeur considérablement différente de celle de la résistance du fluide 230, quand le bout 172 de la sonde touche la surface du fluide, le détecteur 226 détecte le changement de courant et applique un signal de détection de niveau au controle 210 par une ligne 232. Le controle 210 peut utiliser cela pour controler le moteur 40 pour arreter le bout 172 de la sonde et l'empecher d'etre plus amplement immergé dans le fluide ou pour arrêter la sonde à une distance précise en-cessous de la surface du fluide 224. Ainsi, la sonde 24' peut etre utilisée pour aspirer ou prendre le fluide échantillon dans la cavité 22 sans immerger totalement le bout 172 dans le fluide, sans considérer le niveau 224 du fluide dans la cavité 22.

Le circuit de détection de niveau du mécanisme 10° est illustré avec la sonde 24' dans l'un des récipients de réactif 32 , qui peut typiquement être formé en verre ou autre matériau traditionnel non-conducteur. Dans ce cas, le signal à haute fréquence, par exemple de l'ordre de 100 KHz , est appliqué par la ligne 216 et un condensateur 234 à une résistance 236 et par une ligne 238 à la sonde 24^{\prime} et au bout 172. Quand la sonde 24' est au-dessus de la surface 240 du réactif, le trajet de courant passe par la résistance 236 vers la masse, ce qui est détecté sur une ligne 242 par un détecteur 244. Le détecteur 244 peut etre un détecteur séparé ou peut faire partie du détecteur 226. Quand le bout 172 de la sonde contacte la surface 240 du fluide, un second trajet de courant est établi, passant par le fluide réactif qui a une résistance 246.

Cependant le récipient 32 est fait en un matériau non-conducteur tel que du verre, et il agit par conséquent comme une capacité 248. Les récipients 32 peuvent etre placés dans puits métallique ou contre une surface métallique mise à la masse dans l'alimentation en réactifs 16 pour compléter le trajet du circuit. De nouveau, la valeur d'impédance de la résistance 236 est choisie pour être
considérablement différente de l'impédance produite par la résistance 246 du fluide et la capacité 248 du récipient. Quand le trajet de courant est établi par la sonde 172 contactant la surface du fluide 240, le détecteur 244 détecte la différence de courant et applique un signal de détection de niveau par une ligne 250 au controle 210. De nouveau, le controble 210 peut insérer le bout 172 aussi loin en-dessous de la surface 240 que cela est souhaitable pour l'opération particulière. Les condensateurs 218 et 234 et le signal eli courant alternatif empechent l'électrolyse des fluides.

Le mécanisme $10^{\prime \prime}$ est illustré avec la sonde de détection de niveau 24 ayant les conducteurs électriques 118 et 120. L'un des conducteurs , par exemple 118, est
15 relié à une source de signaux 252 pouvant etre identique ̀̀ I'oscillateur 212, si on le souhaite. Dans ce cas, la ligne 120 est reliée à un détecteur 254 qui ne recevra pas de signal quand la sondo 24 et les extrémités des conducteurs 113 et 120 seront au-dessus de la surface 256
20 du fluide. Quand Ies conducteurs 118 et 120 contactent la surface 256 dans le récipient de réactif 32 , le signal de la source 252 sux la ligne 118 est appliqué à travers Ie Ruide aú conducteur 120 et est détecté par le détecteur 254. Le détecteur 254 applique alors un signal de détection

25 de niveau par tue ligne 258 au contrble 210 indiquant que Ie bout 116 a atteint une position connue par rapport à la surface 256 du fluide, selon l'alignement avec les conducteurs 118 et 120.

Les autres fonctions du controle 210 sont 30 schématiquement illustrées pour une sonde 24 . Le controle 210 appliquera le nombre approprié d'impulsions d'entrainement au moteun 38 par une ligne 260 pour faire tourner le bras et par conséquent la sonde 24 à la position appropriée de prise. En supposant par exemple, que c'est
35 Ifune des cavités 22 d'échantillon, le controle 210 supposera gue la sonde 24 a tourné sur la distance appropaite. La position peut etre vérifiée pour voir que
le bras 26 et par conséquent la sonde 24 sont à la bonne position en lisant la position sur la roue de code 98 par le lecteur 104. Le controle 210 après détermination que la sonde 24 est à la bonne position au-dessus de la cavité 22 dans la position de prise du mécanisme 10, applique alors des impulsions d'entrainement au moteur vertical 40 par une ligne 262 pour entrainer la sonde 24 vers le bas, vers la surface du fluide.

Le détecteur de niveau produira un signal quand le bout de la sonde atteindra le niveau du fluide, appliqué au controle 210. Le controle arretera alors les impulsions d'entrainement sur la ligne 262, le bout de la sonde étant sur la surface du fluide ou légèrement en-dessous. Le controle 210 activera alors une source 264 de déplacement du fluide par une ligne 266. La source 264 peut etre un entrainement à seringue ou autre moyen de déplacement de fluide relié par des vannes appropriées, au tube de fluide 114. La séringue sera entraînée sur la distance appropriée pour prendre ou aspirer la quantité appropriée de fluide dans le passage 108.

Les dimensions des sondes 24 et 24^{\prime} seront choisies de façon que le volume du fluide échantillon ou le volume du fluide réactif soient totalement contenus dans le passage 108 ou la sonde 166. Cela élimine sensiblement tout problème d'entrainement quand les sondes sont lavées dans le laveur 34. Quand la sonde 24 a aspiré la portion souhaitée de fluide, le controle 210 applique des impulsions au moteur 40 par la ligne 262 pour l'entrainer vers le haut jusqu'à ce que le commutateur 90 soit activé par la patte 92,indiquant que la sonde 24 et le bras 26 sont à leur position la plus élevée. Quand le bras et par conséquent la sonde 24 ont atteint la position la plus élevée ou de rotation, le controle 210 applique alors le nombre approprié d'impulsions d'entrainement par la ligne 260 au moteur 38 pour faire tourner la sonde 24 à sa position de distribution au-dessus de la cuvette 20 ou autre récipient de réaction placé dans la position de
distribution. La position angulaire peut de nouveau etre vérifiée par la roue codée 98.

La sonde 24 est alors entrainée vers le bas jusqu'à sa position la plus basse de distribution, qui sera fixée par un commutateur tel que la patte 96 ou par le nombre d'impulsions d'entrainement appliquées au moteur vertical 40. Le controle 210 indique alors à la source de déplacement du filuide 264 que la sonde 24 est en position de distribution et alors la source 264 distribue le fluide dans la sonde 24 et par des vannes appropriées peut également ajoutar une quantité de diluant à la portion d'échantilion cens la cuvette 20 . Le controle 210 activera alors le moteur occillant 30 par une ligne 268 pour faire oscilier la sonde 24 d'avant en arrière pour agiter les 5 fluides dans la cuvette 20 . Le controle 10 désactivera Ze moteur 30 puis entrainera la sonde 24 à sa position la plus éevée on appliquant les impulsions d'entrainement au moteur 40.

La sonde 24 est alors entraInée en rotation par 2. moterr 38 jusqu'à une postion au-dessus de laveur 34 , (t) clle est entrainée vers le bas par le moteur 40 dans 20 Bevear et eat extérieurement lavée dans ce laveur 34. La zende st pert etre intérieurement lavée en appliquant mande de layse de la source 264 par le passage 108 © 166. La sonces est alors ramenée à sa position la plus ETGq6 par le mobera 40 , où elle est maintenue en position prete pour le rycle suivant.

En se référant à la figure 9 , on peut y voir un autre mode de réalisation de la structure de transfert de fluide selon l'invention, qui est généralement désignée $^{\prime}$ par le répère I e e l'ensemble du bras est généralement désigné par le repère II. La construction de l'ensemble II, comme on peut mieux le voir par les vues éclatées des figures 10 A et 10 B , contient une plaque supérieure de support 301 et une plaque inférieure de support 302 qui, avec des pièces filetées d'espacement 303, maintiement en sandwich trois composants principaux : un support de
paliers 304 avec un palier 305 pressé à chaque extrémité pour recevoir un arbre comme on le décrira ci-après; un écrou en hélice 306; et un ensemble 307 d'un moteur d'agitation ayant un roulement à billes 307 a excentrique.

A la surface supérieure de la plaque supérieure de support 301 est monté , par quatre vis, le bras de support de sonde 308 . Le bras 308 sert principalement à supporter un ensemble oscillant linéaire, entrainé par l'ensemble du moteur 307, et maintenu par en-dessous du bras de support 308 par deux petits blocs en matière plastique, les supports de guidage avant 309 et arrière 310, comme on peut mieux le voir sur la vue éclatée de la figure 10A. L'ensemble oscillant linéaire glisse d'avant en arrière en réaction à l'action de came excentrique créée par l'ensemble du moteur 307. En se référant de nouveau à la vue éclatée de la figure 10A, I'ensemble oscillant linéaire comporte une pince 312 ayant deux orifices pour recevoir les tabes de guidage de sonde 313. Ces tubes sont maintenus à la pince 312 par un adhésif et vissés en 315 à la liaison excentrique usinée 314 à l'extrémité opposée. La liaison 314 applique la force d'entrainement de l'ensemble du moteur 307 à la sonde serrée 311 au moyen des tubes 313.

A travers l'un ou les deux tubes creux de guidage 313 passent un ou plusieurs fils conducteurs 316 qui servent de connexion électrique entre la sonde 311 et un circuit électrique approprié de détection du niveau de liquide (non représenté) pour détecter la surface des échantillons ou réactifs, comme on l'a précédemment décrit. Le fil 316 est relié à une borne du type à soudure 317 à l'extrémité coté sonde et est de plus vissé à un téton $^{\prime}$ fileté 318 qui, à son tour, est soudé à l'argent à la sonde 311 qui aspire et distribue les fluides. L'extrémité opposée du fil 316 est fixée à la planche de circuit imprimé 319 placée derrière le bras par une patte en métal 320 que 1 'on peut voir sur la figure 10 C.

Le téton fileté 318 est soudé à l'argent à la
sonde 311, et est de plus vissé dans un boftier de sonde 321 qui sert à protéger la sonde 311 de dégradations et aide également à maintenir son extension droite pour entrer dans la faible largeur de la cuvette.

Quand elle est vissée dans son boftier 321, la sonde 311 peut etre serrée solidement dans la pince 312 de l'ensemble oscillant linéaire. La sonde 311 et l'ensemble oscillant linéaire peuvent alors être ajustés en position d'aspiration et de distribution de liquide en montant les \%is fixant les supports de guidage 309 et 310 dans un trou fendu à la surface supérieure du bras de support 308 comme cela est illustré sur les figures 9 et 10A.

Comme on peut mieux le voir sur la figure 9 , un moyen d'interruption de détecteur 322 est fixé par une patte, de préférence d'un cotté de l'extrémité arrière du bras de support 306 afin que le moyen d'interruption 322 se déplace verticalsment entre les bas de détecteurs 323 à diode photo-emettrice en U pour interrompre la transmission pour l'indication d'une position verticale spectifique du bras 308 et du bout de la sonde 311. Les détecteurs 323 sont maintenus en position par une patte verticale fendue 324 qui permet un ajustement vertical de chaque détecteur 323 indépendamment comme on peut le voir sur la figure 10B.

Tandis que le bras 308 et le moyen d'interruption 322 qui lui est fixé se déplacent verticalement, les détecteurs 323 et les extrémités des fils électriques 323 a restent verticalemoxit stationnaires sur la patte 324, assurant que les condveteurs 323 a ne s'entortilleront pas avec le mouvement vertical du bras 308. Cet entortillement a été un problène récurrent dans des équipements automatiques de ce type, quand les fils conducteurs des composants électriques sont portés sur le bras mobile, et le mouvement du bras ou ae ses composarts provoque un enroulement ou un entortjilement des fils. Dans des situations extremes, Is mouvenent des fils peut produire une résistance ou une
interférence avec le mouvement requis du bras.
La structure cuu système d'entrainement pour les mouvements vertical et horizontal du bras 308 sera décrite en se référant aux figures $9,10 \mathrm{~B}$ et 10 C . Le mouvement vertical est obtenu par un moteur pas à pas 325 qui entraine un arbre à filetage hélicoldal 326 par une extension d'arbre 327 et un accouplement 328 ayant une certaine flexibilité latérale pour permettre un défaut d'alignement latéral et. angulaire de l'arbre 325 tandis qu'il tourne.

Le mouvement horizontal du bras 308 est obtenu par un moteur pas à pas 329 monté sur une plaque de support 330 qui sert à faire tourner la poulie 331 par une courroie temporisatrice 332 et une poulie temporisatrice 333 produisant de préférence un système d'entrafnement par courroie à un rapport de 4 à 1 . Les extrémités inférieures de deux arbres de guidage 334 et 334 a sont fixées dans la poulie 331 et traversent le support de palier 304 et un palier 346, respectivement, pour faire tourner les plaques 301 et 302 et le bras 308. Ainsi, la poulie 331 sert également de palier du type à tourillon principal pour le mouvement horizontal du bras 308. La poulie 331 repose sur une mince rondelle de poussée 335 qui réduit l'usure et le frottement entre la poulie 331 et la plaque de support 330 du moteur.

Le trou central 331 á de la poulie 331 reçoit la surface exterme d'un manchon en acier inoxydable lubrifié 336, fixé dans une plaque plate 337. La plaque 337 est calée pour controler l'emplacement assemblé de deux trous taraudés sur des côtés opposés du manchon en acier 336, qui reçoivent des vis 338 à tête pour clé à tube, servant d'arret mécanique au mouvement horizontal de la poulie 331. Le calage est obtenu par une petite broche 339 pressée dans une paroi du manchon 336 et s'adaptant dans une encoche 337 a de la plaque 337.

La plaque de base 337 sert à maintenir le moteur pas à pas vertical 325 et à maintenir toute la structure
de transfert de fluide I au châssis principal ou structure semblable (non représenté). La plaque 337 est pourvue de deux trous taraudés à l'avant pour maintenir des pièces verticales d'espacement 340,341 , qui supportent une plaque de montage du capteur ou détecteur 342 maintenant un agencement photodétecteur segmenté 343 comme on peut le voir sur la figure 10 C . Comme on peut mieux le voir sur la figure 12, le dispositif 343 est du type diode photoémettrice et sert à lire une section codée 344 qui confirme la position horizontale du bout de la sonde 311 ̀̀ ses positions de prise du fluide, de distribution, de lavage et d'oscillation. La section optiquement codée 344 est montée par des petites pièces d'espacement 345 à la surface inférieure filetée de la poulie 331 et tourne afec Ie mouvement de cette poulie en mode horizontal. Les pièces d'espacement 345 qui maintiennent la section optiquement codé 344 servent également de point de contact pour les arrets wecomiques 338 qui limitent le mouvement de la poulie 331 à we game angulaire appropriée. Après assemblage, la poulie 331 glisse sur le manchon 336 et repose contre la rondelle de poussée 335. L'tarbe 3e6, 1^{\prime} accouplement 328 et 1 'extension 327 de I'axbre somt joints et alignés dans l'ouverture central du nenchon ex acion 336 , vissé à l'arbre du moteur vertioal 325.
un palier à bride ou à rebord 346 pour l'arbre 334. est fixe 11brement au moyen d'une bague de retenue 347 cu type à poussose, à la fente de précision placée d'un cbté de la plaque supérieure de support 301 comme on peut le voir sur la figure 10A.

En se référant aux figures 9 et 10A, les arbres de guidage 334 et 334 a dont les extrémités sont taraudées, sont coiffés d'une plaque 348. En plus de la transmission du mouvement de rotation de la poulie 331, les arbres 334 et 334 a offrent un guidage tolérant pour le mouvement vertical du bras 308. Jne rondelle à épaulement en nylon 349, servant de rondelle de poussée verticale et une
pince 350 guident leflottement vertical du sommet de l'arbre 326.

Comme on peut le voir sur la figure 10A, un couvercle 351 ayant une ouverture latérale 351a s'adapte sur la plaque 348 et est fixé au moyen d'une roue 352 entraînée par le pouce, à une partie dressée et filetée 348 a sur la plaque 348. Des pinces 353 sont maintenues dans des orifices dans le couvercle 351 et maintiennent librement I'extension (non représentée) du tube 354 au couvercle 351. L'extrémité légèrement à bride du tube 354 forme un conduit de fluide vers la sonde 311, qui fait saillie au-dessus de l'extrémité supérieure du téton fileté 318 et y est soudée. Le tube 354 est scellé sur le téton 318 par un écrou godronné 355 . Dans le fonctionnement du bras 308, le fil conducteur 316 de la sonde 311 se déplace à l'intérieur de la protection du tube 313 pendant l'oscillation de la sonde. Pendant un mouvement vertical du bras 308, le mouvement du fil 316 et des conducteurs 356 du moterr 307 est guidé par un conduit à travers une gaine verticalement stationnaire 357 qui est de préférence fixée à la patte 324 comme cela est illustré sur les figures 11 et 12. La poulie 331 est traversée d'un passage 331 b qui forme un conduit pour l'extension des fils 316 et 356 dans la gaine 357 ainsi que pour I'extension des conducteurs 323a de capteur ou détecteur. Les extensions passant par le passage $331 \underline{b}$ restent sensiblement stationnaires par rapport à la rotation du bras 308 et de la poulie 331 parce que le passage $331 \underline{b}$ est à proximité radiale de l'axe de rotation autour de l'arbre 326 du fait de l'emplacement de la poulie 331.

Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits et représentés qui n'ont été donnés qu'à titre d'exemple. En particulier, elle comprend tous les moyens constituant des équivalents

25

techniques des moyens décrits ainsi que leurs combinaisons
si celles-ci sont exécutées suivant son esprit et mises
en oeuvre dans le cadre de la protection comme revendiquée.
1.- Mécanisme de transfert de fluide à plusieurs positions ayant un organe formant bras mobile et généralement allongé pour tenir un moyen formant sonde de fluide à son extrémité distale pour prendre et distribuer du fluide, caractérisé par un moyen oscillant (30) monté audit organe formant bras pour une oscillation de ladite sonde (24) pour agiter le fluide dans lequel ladite sonde est insérée.
2.- Mécanisme selon la revendication 1, caractérisé par un moyen formant arbre (28) relié mobile à une première extrémité du bras (26) précité et ayant un axe; un premier moyen d'entrainement (40) pour déplacer ledit bras en translation par rapport audit moyen formant arbre et le long de son axe; et un second moyen d'entrainement (38) pour faire tourner ledit bras selon un trajet arqué autour dudit axe.
3.- Mécanisme selon la revendication 2, caractérisé par un moyen de sollicitation (134) maintenant la sonde (24) précitée sur le bras (26) précité pour solliciter ladite sonde dans une première position et lui permettre de passer à une seconde position tandis qu'elle contacte une surface autre qu'une surface d'un fluide.
4.- Mécanisme selon la revendication 2, caractérisé en ce que le moyen formant arbre précité comprend une partie à filetage très serré (42) reliée au premier moyen d'entraînement précité et vissée au bras précité pour le déplacer de bas en haut le long de l'axe précité quand ledit moyen formant arbre est tourné par ledit premier moyen d'entraînement.
5.- Mécanisme selon la revendication 2, caractérisé par un moyen de guidage (72) relié au moyen formant arbre précité pour maintenir la position angulaire du bras précité tandis qu'il est déplacé de haut en bas sur l'axe dudit moyen formant arbre par le premier moyen
d'entrainement précité.
6.- Mécanisme selon la revendication 5, caractérisé par un moyeu (60) relié au second moyen d'entrainement (38) précité ; et en ce que le moyen de guidage précité comporte au moins un montant placé sur ledit moyeu à une extrémité et traversant le bras précité et relié à l'arbre précité à son autre extrémité.
7.- Mécanisme selon la revendication 6, caractérisé en ce que l'ensemble oscillant précité comprend un moyen formant coulisseau (126) monté sur le bras précité avec la sonde montée à l'extrémité distale dudit moyen formant coulisseau; et un moyen d'entrainement oscillant (30) relié à l'extrémité opposée dudit moyen formant conlisseau pour le faire osciller ainsi que ledit moyen formant sonde sur ledjt bras.
8.- Mécanisme selon l'une quelconque des revendications 1 oul 2 , caractérisé en ce que le moyen formant sonde précité comporte un moyen de détection de niveau qui lui est relit pour détecter le moment où ladite sonde contacte une surface d'un fluide.
9.- Méeanisme zelon la revendication 8 , caractérise en ce que le moyen de détection de niveau précité scmprend deux conducteurs électriques (118, 120), s'étendaat sensiblement parallèlement à une ouverture de Mraide dans la sonde précitée pour former un trajet electrique à trafers ledit fluide entre lesdits conducteurs quend ils contactent la surface du fluide.
10.- Mécenisme selon la revendication 8 , caractérisé en es que le moyen de détection de niveau précité comprend une sonde en métal conducteur reliée à un moyen oscillant électronique pour former un trajet de courant alternatif à travers le fluide précité quand ladite sonde contacte le fluide.
11.- Mécanisme selon la revendication 8 , caractérisé par un moyen (50) pour accélérer le second moyen d'entraînement précité sur la première partie de son mouvement dans le trajet précité et le décélérer sur la
dernière partie de son mouvement ; un moyen de guidage (72) relié au moyen formant arbre précité afin de maintenir la position angulaire du bras précité tandis qu'il est déplacé de haut en bas le long dudit moyen formant arbre par ledit premier moyen d'entrainement; un moyen (92, 94, 96) pour controler la position dudit bras et du moyen formant sonde précité sur ledit arbre; et un moyen $(98,104)$ pour controler la position angulaire dudit bras et dudit moyen formant sonde.
12.- Mécanisme selon la revendication 2, caractérisé en ce que le second moyen d'entrainement (38) précité comprend un moteur pas à pas pour faire tourner le bras précité; et un moyen $(98,104)$ pour contriler la position angulaire dudit bras et dudit moyen formant sonde.
13.- Mécanisme selon la revendication 12, caractérisé en ce que le moyen de controle précité comprend un moyen à code (98) tournant avec le bras précité et un moyen (104) pour lire ledit moyen à code correspondant à la position angulaire dudit bras.
14.- Mécanisme selon l'une quelconque des revendications 2 ou 12, caractérisé par un moyen (50) pour accélérer le second moyen d'entrainement précité sur la première partie de son mouvement et le décélérer sur la dernière partie de son mouvement dans le trajet précité.
15.- Mécanisme selon la revendication 14, caractérisé en ce que le moyen précité d'accélération et de décélération comprend un moyen pour changer la fréquence des impulsions d'entrainement appliquées au moteur pas à pas précité.
16.- Mécanisme selon l'une quelconque des revendications 2 ou 12, caractérisé en ce que le premier moyen d'entrainement (40) précité comprend un moteur pas à pas pour déplacer le bras précité et un moyen (92, 94,96) pour controler la position dudit bras et du moyen formant sonde précité sur le moyen formant arbre précité.
17.- Mécanisme selon la revendication 16,
caractérisé par un moyen formant compteur pour compter le nombre d'impulsions d'entrainement appliquées à chacun des moyens d'entrainement précités correspondant aux positions du bras précité.
18. - Mécanisme selon la revendication 1, caractérisé en ce que le moyen oscillant comprend un organe de montage (126) pour placer la sonde précitée à proximité de l'extrémité distale de l'organe formant bras (26') précité; au moins un organe tubulaire fixé audit organe de montage et aligné sensiblement parallèlement avec ledit organe frmantres;et moyen d'entrainement (30) pour une oscillation linéaire dudit organe tubulaire sensiblement le long de son axe, afin de produire une oscillation de l'organe de montage de la sonde.
19.- Mécanisme selon la revendication 18, caractérisé par un conducteur traversant l'organe tubulaire précité pour connexion de la sonde précitée à un circuit de détection.
20.- Mécanisme selon l^{\prime} une quelconque des revendications 18 ou 19, caractérisé en ce que l'organe tubulaire précité est flacé en-dessous de l'organe formant bras précité.
21.- Mécanisme selon 1'une quelconque des revendications 1 ou 18, caractérisé par un organe d'interruption (322) faisant saillie de l'extrémité arrière de l'organe formant bras précité, à l'opposé de son extrémité distale, pour l'interruption de la transmission électromagnétique, placé de façon que ladite interruption indique l'emplacement vertical dudit organe formant bras.
22.- Mécanisme selon la revendication 21, caractérisé par un moyen de support (324) pour placer un ou plusieurs moyens de détection (323) dans le trajet vertical du moyen d'interruption précité.
23.- Mécanisme selon la revendication 22 , caractérisé en ce que le moyen de détection précité est placé réglable sur le moyen de support précité.
24.- Mécanisme selon l'une quelconque des revendications 1 ou 18, caractérisé par un organe formant poulie (331) pour une rotation horizontale de la structure du bras, ledit organe formant poulie étant traversé d'un passage pour les conducteurs précités.
25.- Mécanisme selon la revendication 24, caractérisé en ce que les conducteurs précités comprennent des conducteurs reliés au moyen de détection précité supportés séparément de l'organe formant bras précité.

PLI_d

FlII- 10

PLIII- 10

FIG. 5

PLIU-10

FIG. 8

PL ET-10

FIG. 9

PL VII_- 10

$P L E-10$

