发明名称
聚对苯二甲酸 1,3- 丙二醇酯连续生产系统

摘要
本发明涉及一种聚对苯二甲酸 1,3- 丙二醇酯连续生产系统，包括依次连接的酯化子系统、缩聚子系统和切粒结晶干燥子系统，所述酯化子系统的气相出口连接一用于对酯化段气相出料进行初步蒸馏的工艺塔的进口，所述工艺塔的液相出口连接一精制装置的待精制 PDO 混合物输入口，所述缩聚子系统中的缩聚反应器的气相出料口连接与其对应的喷淋装置的待喷淋介质输入口，所述精制装置的已精制 PDO 液相输出口连接所述酯化子系统的 PDO 原料进口和 / 或所述喷淋装置的喷淋介质入口。采用本发明可连续稳定地实现从 PTT 材料的生产到 PTT 切粒、结晶、干燥、包装的全过程，还能够实现 1,3 丙二醇在该系统内的最大限度的循环利用，显著降低生产成本。
1. 一种聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于包括依次连接的酯化子系统、缩聚子系统和切片结晶干燥子系统，所述酯化子系统的气相出口连接一用于对酯化段气相出料进行初步蒸馏的工艺塔的进口，所述工艺塔的液相出口连接一精制装置的待精制PDG混合物输入口，所述缩聚子系统中的缩聚反应器的气相出料口连接与其对应的喷淋装置的待淋洗介质输入口，所述精制装置的已精制PDG液相输出口连接所述酯化子系统的PDG原料进口和/或所述喷淋装置的喷淋介质入口，所述喷淋装置的液相出口连接所述待精制PDG混合物输入口，所述精制装置中包括精制塔、再沸器和塔釜循环泵，所述精制塔包括位于上部的塔釜和其底部开口直接与所述塔釜的顶部开口相连接的塔体，所述塔釜底部的液相出口连接所述塔釜循环泵的进口，所述塔釜循环泵的出口连接所述再沸器的进口，所述再沸器的底部出口与设置在所述塔釜底部的另一开口直接连接。

2. 如权利要求1所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于所述工艺塔的液相出口还同时连接所述酯化子系统的酯化反应器的PDG回流液入口。

3. 如权利要求2所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于所述精制装置还包括塔顶蒸汽冷凝器、塔顶回流器、PDG冷凝器、PDG储罐、PDG液环泵、PDG混合物收集罐和进料泵，所述塔体的顶部设有蒸汽出口，侧壁上自上而下依次设有冷凝液进口、PDG混合物进口和PDG液相出口，所述蒸汽出口和冷凝液出口之间依次连接所述塔顶蒸汽冷凝器和塔顶回流罐，所述PDG液相出口连接所述PDG冷凝器的进口，所述PDG冷凝器的出口连接所述PDG储罐的进口，所述PDG储罐的出口连接所述PDG液环泵的进口，所述PDG液环泵的出口构成为所述精制装置的已精制PDG液相输出口，所述PDG混合物收集罐和进料泵依次连接且所述进料泵的出口连接所述PDG混合物进口，所述PDG混合物收集罐的进口构成为所述精制装置的待精制PDG混合物输入口。

4. 如权利要求3所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于所述酯化反应器系统包括两个依次连接的酯化反应器，其中第二酯化反应器的釜体为带夹套的多腔室卧式反应釜，所述第二酯化反应器的相邻腔室采用隔板隔开，隔板的底部设有通孔或缺口，每个腔室单独设置搅拌机、加热盘管、添加剂导管和导流筒，所述所述添加剂导管插入相应的所述导流筒内部。

5. 如权利要求4中任一项权利要求1所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于所述切片结晶干燥子系统包括依次连接的水下切粒机、结晶塔、大块捕捉器和切片干燥机，所述结晶塔的塔体由螺旋状管道构成，所述结晶塔内水温保持在75-85°C，水与切片混合物在所述结晶塔内的停留时间控制在1-5分钟之间，流速控制在1-3m/s之间。

6. 如权利要求5所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于所述喷淋装置包括依次连接的捕集器和一台一用的两台液封槽，所述液封槽的出口设有离心泵，所述捕集器的喷淋介质进口通过管道连接所述液封槽的出口，该管道上设有用于对管道内介质降温的喷淋换热器，所述捕集器的入口构成所述喷淋装置的待淋洗介质输入口，所述液封槽的出口还连接所述精制装置的待精制PDG混合物输入口，构成所述喷淋装置的液相出口。

7. 如权利要求6所述的聚对苯二甲酸1,3-丙二醇酯连续生产系统，其特征在于还包括精制塔真空子系统和与所述喷淋装置一一对应的多套缩聚段真空子系统，所述精制真空子
系统包括真空泵，所述真空泵的进口与所述塔顶蒸汽冷凝器的不凝气出口或与之连接的塔顶回流罐排气口连接，液相出口连接所述待精制 PDO 混合物输入口，所述缩聚段真空子系统设有液环泵，所述液环泵的进口管道上设有或不设有真空喷射泵，所述液环泵的进口管道的进口为所述缩聚段真空子系统的抽真空口，与所述捕集器顶部的气相出口连接，所述液环泵的液相出口与所述精制装置的待精制 PDO 混合物输入口连接。

8. 如权利要求 7 所述的聚对苯二甲酸 1, 3-丙二醇酯连续生产系统，其特征在于其为全密闭系统，其中所有装置输出的尾气均汇集后进入淋洗塔，经冷却水淋洗后的尾气通过尾气喷射泵送入尾气焚烧炉焚烧。

9. 如权利要求 8 所述的聚对苯二甲酸 1, 3-丙二醇酯连续生产系统，其特征在于所述切粒结晶干燥子系统的 PTT 切粒出口依次经振动筛、振动输送机和切片储存料斗连接到切粒打包子系统的物料进口，所述塔体为板式或板式/填料复合塔，所述喷淋换热器为板式换热器或列管式换热器，所述水下切粒机为水下球磨切粒机，所述切片打包子系统的打包方式为全自动、半自动或手动。
聚对苯二甲酸 1,3- 丙二醇酯连续生产系统

技术领域
[0001] 本发明涉及一种聚对苯二甲酸 1,3- 丙二醇酯连续生产系统，属于化工生产领域。

背景技术
[0002] 聚对苯二甲酸 1,3- 丙二醇酯 (PTT) 是 20 世纪 90 年代中期工业开发成功的新型聚酯材料。现有很多生产 PTT 的装置或系统，但尚未见到包含了从聚酯材料本身的生产到对该种材料进行结晶、干燥、切粒以及包装的全流程的连续生产系统，也没有能够将生产过程中产生的 1,3- 丙二醇 (PDO) 全部循环回用的生产系统，生产效率不高、原料利用率不高，制约了 PTT 成型产品的发展。

发明内容
[0003] 为了克服上述缺陷，本发明提供了一种聚对苯二甲酸 1,3- 丙二醇酯连续生产系统，该系统可以连续稳定地实现从 PTT 材料生产到 PTT 切粒、结晶、干燥、包装的全过程，还能够实现 1,3 丙二醇在该系统内的最大限度的循环利用。
[0004] 本发明所采用的主要的技术方案是：
[0005] 一种聚对苯二甲酸 1,3- 丙二醇酯连续生产系统，包括依次连接的酯化子系统、缩聚子系统和切粒结晶干燥子系统，所述酯化子系统的气相出口连接一用于对酯化段气相出料进行初步蒸馏的工艺塔的进口，所述工艺塔的液相出口连接一精制装置的待精制 PDO 混合物输入口，所述缩聚子系统中的缩聚反应器的气相出口连接与其对应的喷淋装置的待淋洗介质输入口，所述精制装置的已精制 PDO 液相输出口连接所述酯化子系统的 PDO 原料进口和/或所述喷淋装置的喷淋介质入口，所述喷淋装置的液相出口连接所述待精制 PDO 混合物入口。
[0006] 所述精制装置中可以包括精制塔、再沸器和塔釜循环泵，所述精制塔包括位于下部的塔釜和其底部开口直接与所述塔釜的顶部开口相连接的塔体，所述塔釜底部的液相出口连接所述塔釜循环泵的进口，所述塔釜循环泵的出口连接所述再沸器的进口，所述再沸器的底部出口与设置在所述塔体顶部的另一开口直接连接。
[0007] 所述酯化子系统可以包括两个依次连接的酯化反应器，其中第二酯化反应器的釜体为带夹套的多腔室卧式反应釜，所述第二酯化反应器的相邻腔室采用隔板隔开，隔板的底部设有通孔或缺口，每个腔室单独设置搅拌器、加热盘管、添加剂管和导流筒，各个所述添加剂管插接相应的所述导流筒内部。
[0008] 上述任一种聚对苯二甲酸 1,3- 丙二醇酯连续生产系统中，所述切粒结晶干燥子系统可以包括依次连接的水下切粒机、结晶塔、大块捕捉器和切片干燥机，所述结晶塔的塔体由螺旋状管道构成，所述结晶塔内水温保持在 75-85℃，水与切片混合物在所述结晶塔内的停留时间优选控制在 1-5 分钟之间，流速优选控制在 1-3m/s 之间。
[0009] 所述喷淋装置可以包括依次连接的捕集器和一备一用的两台液封槽，所述液封槽的出口设有离心泵，所述捕集器的喷淋介质通过管道连接所述液封槽的出口，该管道
上设有用于给管道内介质降温的喷淋换热器，所述辅集器的入口构成所述喷淋装置的待淋洗介质输入，所述液封槽的出口还连接所述精制装置的待精制 PDO 混合物输出口，构成所述喷淋装置的液相出口。

[0010] 所述聚对苯二甲酸 1,3- 丙二醇酯连续生产系统还可以包括精制塔真空子系统和与所述喷淋装置一一对应的多套压缩段真空子系统，所述精制塔真空子系统包括真空泵，所述真空泵的进口与所述塔顶蒸汽冷凝器的不凝气出口或与之连接的塔顶回流罐排气口连接，液相出口连接所述精制 PDO 混合物输入口，所述压缩段真空子系统设有液环泵，所述液环泵的进口通于设有或不设有真空喷射泵，所述液环泵的进口通于为所述压缩段真空子系统的抽真空口，与所述辅集器顶部的气相出口连接，所述液环泵的液相出口与所述精制装置的待精制 PDO 混合物输入口连接。

[0011] 所述聚对苯二甲酸 1,3- 丙二醇酯连续生产系统为全密闭系统，其中的装置输出的尾气均汇集后进入淋洗塔，经冷却水淋洗后的尾气通过尾气喷射泵送入尾气焚烧炉焚烧。

[0012] 本发明的有益效果：

[0013] 由于再沸器对经过塔体初步分离后汇集于塔釜底部的仍然含有 PDO 的液相物质进行循环加热，使其中的 PDO 和轻组份不断地被加热蒸发，蒸发出的 PDO 和轻组份再次直接进入塔体进行提纯，相当于对含 PDO 的混合物中的 PDO 进行反复精制提纯，因此显著提高了 PDO 的纯度，达到可 回用作为酯化反应原料的质量要求，为 PDO 的循环利用提供了基本的前提条件。

[0014] 由于采用水下切粒，造粒均匀、圆滑、脱水方便，且环保；由于采用适宜温度的水下结晶工艺，且采用了其塔体主要由螺旋状管道构成的结晶塔，能够充分保证 PTT 粒子在塔中有足够的停留时间进行结晶，使结晶后的 PTT 粒子的玻璃化温度得以提高，粒子性能得以改善，即使在气流冷却时 PTT 粒子不直受得凋解、结块，方便后续的打包、储存和运输，为从 PTT 合成原料一直到 PTT 粒子的全过程连续生产提供了重要的保证。

[0015] 由于第二酯化反应器的釜体为带夹套的多腔室卧式反应釜，可以根据实际需要将各个腔室的长度设置成相等或不等，便于控制各种物料（含催化剂）在不同腔室的停留时间，从而控制酯化物在各个腔室的酯化度，且由于各个腔室设有各自独立的搅拌器、加热盘管和添加剂导管，可将多种不同的添加剂加入到不同腔室中的不同酯化度的酯化物中，并对各个腔室进行各自独立的温度控制和搅拌，有利于实现对酯化度的精控表，从而提高酯化后的产品质量，为 PTT 连续生产提供重要的质量保证。

[0016] 由于各套所述喷淋装置的液相出口、所述压缩段真空子系统的液环泵的液相出口均连接所述精制装置的待精制 PDO 混合物输入口，且所述精制装置的已精制 PDO 液相输出口连接所述酯化子系统的 PDO 原料进口和 / 或所述喷淋装置的喷淋介质入口，使该系统中的 PDO 得到了最大化回收、精制和循环利用，极大地提高了原料利用率，显著降低了 PDO 的原料消耗。

附图说明

[0017] 图 1 为本发明的结构示意图；

[0018] 图 2 为设有真空喷射泵的压缩段真空子系统结构示意图。
具体实施方式

【0019】本发明提供了一种聚对苯二甲酸 1,3-丙二醇酯连续生产系统，图 1 所示为其一个实施例。该系统包括依次连接的酯化物系统、缩聚子系统和切粒结晶干燥子系统，所述酯化物系统的气相出口连接一用于对酯化段气相出料进行初步蒸馏的工艺塔 26 的进口，所述工艺塔的液相出口连接一精制装置的待精制 PDO 混合物输入口，将 PTT 连续生产中酯化段排出的含 PDO 的混合物引入精制装置进行提纯，所述缩聚子系统中的缩聚反应器（所述缩聚子系统中优选使用第一预缩聚反应器 23、第二预缩聚反应器 24 和终缩聚反应器 25）的气相出料口连接与其对应的喷淋装置的待淋洗介质输入口，所述精制装置的已精制 PDO 液相输出口连接所述酯化物系统的 PDO 原料进口和 / 或所述喷淋装置的淋洗介质进口，使得经过精制提纯后的高纯度 PDO 再次作为酯化反应用原料和 / 或喷淋介质得到循环利用，所述喷淋装置的液相出口连接所述待精制 PDO 混合物输入口。

【0020】所述精制装置中包括精制塔 3、再沸器 5 和塔釜循环泵 4，所述精制塔包括位于下部的塔釜和其底部开口连接与所述塔釜的顶部开口相连的塔体，所述塔体为板式或板式 / 填料复合塔，所述塔釜底部的液相出口连接所述塔釜循环泵的进口，所述塔釜循环泵的出口连接所述再沸器的进口，所述再沸器的底部出口与设置在所述塔体顶部的另一开口直接连接，所述再沸器优选为降膜式再沸器。

【0021】所述工艺塔的液相出口还同时连接所述酯化物系统的酯化反应器（即第一酯化反应器 1 和第二酯化反应器 2）的 PDO 回流液进口，实现初步提纯后的 PDO 的直接回用。在保证酯化反应段对 PDO 纯度要求的情况下，PDO 的直接回用有利于减少 PDO 精制的量，简化工艺流程的同时减少系统的消耗。所述工艺塔的液相出口与所述待精制 PDO 混合物输入口和所述 PDO 回流液进口之间可以分别设置阀门，用于分别调节直接回用的 PDO 和引入精制装置进行精制的 PDO 的量以达到合适的比例，有利于保证整个 PTT 连续生产系统的平衡、稳定运行。

【0022】所述精制装置还可以包括塔顶蒸汽冷凝器 9、塔顶回流罐 8、PDO 冷凝器 6、PDO 储罐 27、PDO 液环泵、PDO 混合物收集罐 7 和进料泵。所述塔体的顶部设有蒸汽出口，侧壁上自上而下依次设有冷凝液进口、PDO 混合物进口和 PDO 液相出口。所述蒸汽出口和冷凝液进口之间依次连接所述塔顶蒸汽冷凝器和塔顶回流罐，所述蒸汽出口连接所述塔顶蒸汽冷凝器的进口，所述塔顶蒸汽冷凝器的出口连接所述塔顶回流罐的进口，所述塔顶回流罐的出口连接所述冷凝液进口。所述塔顶蒸汽冷凝器将通过所述蒸汽出口排出的气相杂质中的水蒸汽转化为凝液，然后作为冷凝液回用于精制塔。所述塔顶回流罐可设有多个出口，其中部分出口连接所述冷凝液进口。所述出口可连接废水处理设备的进口，设置多个出口将冷凝液引入不同的设备并分别独立控制流速和流量，有利于保证整个生产系统的稳定运行。

【0023】所述 PDO 液相出口连接所述 PDO 冷凝器的进口，所示 PDO 冷凝器的出口连接所述 PDO 储罐的进口，所示 PDO 储罐的出口连接所述 PDO 液环泵的进口。所述 PDO 液环泵的出口构成所述精制装置的已精制 PDO 液相输出口。精制后输出的具有较高温度、较高纯度的 PDO 先经所述 PDO 冷凝器冷却，然后汇集到所述 PDO 储罐中，再经所述 PDO 液环泵输送到所述酯化物系统的 PDO 原料进口实现循环再利用。

【0024】所述 PDO 混合物收集罐和进料泵依次连接且所述进料泵的出口连接所述 PDO 混合
物进口，所述 PD0 混合物收集罐的进口构成为所述精制装置的待精制 PD0 混合物输出口。
[0025] 所述酯化子系统至少包含两个酯化反应段，每个酯化反应段对应一台酯化反应器。本实施例中，所述酯化反应子系统包括两个依次连接的酯化反应器，其中第二酯化反应器 2 的釜体为带夹套的多腔室卧式反应釜，所述第二酯化反应器的相邻腔室采用隔板隔开，隔板的底部设有通孔或缺口，每个腔室单独设置搅拌器、加热盘管、添加剂导管和导流管，各个所述添加剂导管和搅拌器伸入到相应的所述导流管内部，所述加热盘管环绕在所述导流管的外面。采用这种第二酯化反应器，可以根据实际需要将各个腔室的长度设置成相等或不等，因此可以灵活控制各种物料（包含酯化物）在不同腔室的停留时间，从而控制酯化物在每个腔室的酯化度。由于各个腔室设有各自独立的搅拌器、加热盘管和添加剂导管，可将多种不同的添加剂加入到不同腔室内的不同酯化度的酯化物中，并对每个腔室进行各自独立的温度控制和搅拌，有利于实现对酯化度的精确控制，有利于提高产品质量。
[0026] 上述任何一种所述聚对苯二甲酸 1,3-丙二醇酯连续生产系统中，所述切粒结晶干燥子系统可以包括依次连接的水下切粒机 15、结晶塔 16、大块捕捉器 17 和切片干燥机 18，所述切粒结晶干燥子系统的 PTI 切粒出口依次经振动筛 19、振动输送机 20 和切片储存料斗 21 连接到切粒打包子系统的物料进口，例如，图 1 所示的切片储存料斗的出料口接在打包机 22 的入口的上方，PTT 粒子由重力作用从切片储存料斗进入打包机，由打包机打包运出装置。过大的粒子被大块捕捉器剔除后，进入切片干燥机进行干燥，然后进入振动筛进行筛分，及时剔除不合格的 PTI 切粒，干燥后的合格的 PTI 粒子再经所述振动输送机输送至切片储存料斗中暂时储存，然后进入切粒打包子系统直接被打包，所述切粒打包子系统打包方式可以是手动、半自动或全自动方式。
[0027] 所述水下切粒机设有用于输入所述缩聚子系统生产出的熔体的入口，PTT 连续生产出的 PTI 熔体直接进入所述水下切粒机进行切粒，极大地缩短了 PTI 粒子的整个生产周期。采用水下切粒，造粒均匀、圆滑、脱水方便，且环保，所述水下切粒机优选为水下球磨切粒机，在水下形成球状粒子，然后经管道连同水一起输送到结晶塔，在充满结晶塔的热水中结晶，所述结晶塔的塔体主要由螺旋状管道组成，其目的是充分保证 PTI 粒子在结晶塔中有足够的停留时间进行结晶。另外，所述结晶塔中内温温温度保持在 75-85℃，水与切片混合物在所述结晶塔内的停留时间控制在 1-5 分钟之间，流速控制在 1-3m/s 之间，以上结晶塔结构以及结晶工艺参数可为提高 PTI 粒子的玻化化度提供有力保证。
[0028] 所述喷淋装置包括依次连接的捕集器 11 和液封槽 12，所述液封槽的出口设有离心泵，所述捕集器的喷淋介质进口通过管道连接所述液封槽的出口，该管道上设有用于给管道内介质降温的喷淋换热器，所述捕集器的入口构成所述喷淋装置的待淋洗介质输入口，所述液封槽的出口还连接所述精制装置的待精制 PD0 混合物出口，构成所述喷淋装置的液相出口。利用所述捕集器喷淋捕集浓缩聚段反应器的气相出料，回收其中的 PD0 及其夹带出的低聚物，喷淋后获得的 PD0 进入液封槽，然后输出为两路，一路被泵到喷淋换热器降温至喷淋温度，然后作为喷淋介质循环使用，喷淋温度可根据工艺要求及喷淋效果进行调整；另一路被引入精制装置进行精制提纯，然后可作为反应原用或喷淋介质回用于所述聚对苯二甲酸 1,3-丙二醇酯连续生产系统。所述喷淋介质可以为新鲜的 PD0 或经过所述精制装置提纯后循环使用的 PD0，也可以是经过所述喷淋装置自身喷淋后获得的 PD0，还可以是上述几种 PD0 的混合物。
所述喷淋装置中一台捕集器可对应至少两台液封槽、至少两台换热器及至少两台离心泵。两台液封槽一台正常使用，一台备用，可在正常运行下切换。所述喷淋换热器可以为板式换热器、列管式换热器或其他种类换热器。

所述聚对苯二甲酸 1,3- 丙二醇酯连续生产系统还包括精制塔真空子系统和所述喷淋装置——对应的缩聚段真空子系统。所述精制塔真空子系统包括真空泵，所述真空泵的进口与所述塔顶蒸汽冷凝器的不凝气出口或与之连接的塔顶回流罐排气口连接，抽吸所述精制装置中的不凝体，液相出口连接所述精制 PD0 混合物输入口。所述缩聚段真空子系统设有液环泵 14，所述液环泵的进口上设有或不设有真空喷射泵 13，当不设置所述真空喷射泵时，所述液环泵的进口为所述缩聚段真空子系统的抽真空，当设置所述真空喷射泵时，参见图 2，所述真空喷射泵的进口为所述缩聚段真空子系统的抽真空，该抽真空口与所述捕集器顶部的气相出口连接，抽吸所述捕集器内未被捕集的气体，间接地为所述缩聚段真空子系统营造负压环境。当设有真空喷射泵时，优选地，利用回收的 PD0（最好是经过降温处理后的 PD0）为所述真空喷射泵提供抽吸动力，最大限度地利用了回收的 PD0。

所述液环泵的液相出口与所述精制装置的精制 PD0 混合物输入口连接，优选地，所述液环泵的液相出口先连接到一个真空子系统收集槽，将回收的 PD0 汇集到该真空子系统收集槽中，然后再通过泵将汇集的 PD0 汇入所述精制装置的所述 PD0 混合物收集罐中，以回收喷淋装置中的 PD0，尽可能地扩大回收 PD0 的范围和程度。

优选地，所述第一预缩聚反应器对应使用不设置真空喷射泵的缩聚段真空子系统，所述第二预缩聚反应器和终缩聚反应器对应使用设置有真空喷射泵的缩聚段真空子系统。

所述聚对苯二甲酸 1,3- 丙二醇酯连续生产系统还可以包括尾气处理系统，所述尾气处理子系统包括依次连接的淋洗塔 29 和尾气焚烧炉，所述工艺塔的不凝气体出口、所述真空泵的出口和所述液环泵的气相出口及其他子系统的设备放空口与所述淋洗塔的尾气进口连接，所述淋洗塔的尾气出口经由尾气喷射器 28 连接所述尾气焚烧炉。所述尾气处理子系统将相应设备中产生的尾气均汇集送入所述淋洗塔中，经冷却水淋洗后形成净化尾气，再用所述尾气喷射器送入尾气焚烧炉焚烧处理，所述淋洗塔中产生的废水可送入蒸汽提塔处理合格后排放。

本发明的主要工作过程是：对苯二甲酸和 1,3 丙二醇在催化剂存在条件下经过多个酯化反应段酯化后，其液相出料进入缩聚段，气相出料进入工艺塔。进入缩聚段的液相出料聚合程度不断提高，最终得到浓缩的产物，即 PTT 熔体。PTT 熔体直接被引入切粒结晶干燥子系统依次进行水下切粒、特定温度的水下结晶和干燥，然后直接进入切粒打包子系统完成包装，从而完成了从原材料到 PTT 切粒成品的连续生产。酯化段的气相出料中含有大量的 PD0，还夹带有水蒸气、烯丙醇、丙烯醛等低聚物等杂质，该气相出料首先进入工艺塔初步蒸馏，PD0 转化为液相进入精制装置，精制后的符合 PTT 生产原料质量要求的较高纯度的 PD0 进入酯化子系统充当 PD0 原料和 / 或进入喷淋装置充当喷淋介质，实现循环再利用；各缩聚反应器的气相出料口也排出含 PD0 混合气体，这些 PD0 混合气体进入与相应缩聚反应器对应的喷淋装置进行分离，被 PD0 喷淋，回收气相出料中的 PD0 及夹带出的低聚物，可避免低聚物堵塞后续的真空管道 (如真空喷射泵的管道)，影响抽真空效果。喷淋装
置中得到的含 PDO 的液相物质由离心泵泵入精制装置进行提纯，而未被捕集的气体被抽吸进相应的真空子系统，为酯化段和缩聚段提供了真空环境。其中所述液环泵抽吸所述真空喷射泵的尾气，所述液环泵的尾气送入所述尾气处理子系统中的淋洗塔。

【0035】本系统为全密闭系统，系统内所有设备的尾气均汇集送入尾气处理子系统中的淋洗塔，经冷却水淋洗后，用尾气喷射器送入尾气焚烧炉焚烧，装置生产中产生的废水与淋洗塔的淋洗液则送入汽提塔处理合格后排掉。

【0036】前述的各子系统可以根据实际生产需要设置成一套或多套，且其中的相应设备均可以根据需要设置成一台或多台。本系统还包括一些辅助调配及输送装置，按常规设置即可。