(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
3 July 2003 (03.07.2003)

PCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 03/054747 A2

(51
21
22
(25
(26)

30

(Y

(72)

International Patent Classification’:

International Application Number: PCT/US02/27348

International Filing Date: 28 August 2002 (28.08.2002)

Filing Language: English

Publication Language: English
Priority Data:

10/021,535 12 December 2001 (12.12.2001) US

Applicant: RELICORE, INC. [US/US]; One Wall Street,
Burlington, MA 01803 (US).

Inventors: ANUSZCZYK, Jeffrey, John; 394 Edmands
Road, Framingham, MA 01701 (US). BARBROW,
David, Jay; 60 Halcyon Road, Newton, MA 02459 (US).
BHATHENA, Firdaus;, 60 William Street, Andover,
MA 01810 (US). BEAMAN, Peter, Demarest; 11 Lin-
coln_Road, Wellesley, MA 02481 (US). KOWALCZYK,
Stanislaw; 483 Beacon Street #16, Boston, MA 02115
(US). WHEELER, Blair, Francis; 9 Harrison Street,
Winchester, MA 01890 (US).

GOG6F 17/30 (74) Agents: HAAG, Joseph, F. et al.; Hale and Dorr LLP, 60

State Street, Boston, MA 02109 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

84

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Titlee METHOD AND APPARATUS FOR MANAGING COMPONENTS IN AN IT SYSTEM

AGENT 12 o
COMMANDS commanps 92
EVENTS ~ 94 EVENTS — %
50 j 70 90
OBSERVER SERVICE
ANALYSIS SERVICE CONNECTION
1 S S SR !
v v) v) v v
FILTERS RULE ENGINE 74
PROCESS | NETWORK |DATABASE| FILE | PACKAGE . . TOIF
OBSERVER | OBSERVER |0BSERVER | OBSERVER |0BSERVER |) SERooM
A \ 72 i
o 62 COMPONENT | DEPENDENCY
DRVER 7o PROces " | "Roces e
/ / / 4 /
52 54 56 58 60
. A
80\ "ACCUMULATOR _ |« FINGERPRINT
DATABASE
8 PERSISTVMAP | 84

0O 03/054747 A2

(57) Abstract: A system and method for collecting information on components in an information technology (IT) system (76). This
embodiment features discovering components in the IT system, determining at least one dependency between two or more of the
discovered components (78), and tracking changes to the discovered components and the dependency between two or more of the

discovered components. The discovery of components can be carried out using fingerprints (84) of components, which can include
key elements of the component that exist in a full model of all of the elements of the component.

wO 03/054747 A2 NI 000 0 OO0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

METHOD AND APPARATUS FOR MANAGING COMPONENTS IN AN IT
SYSTEM

Field

The present invention relates generally to methods and systems for managing the
applications and components of an integrated information technology or e-business

computer system.

Background of the Invention

Information technology (IT) and electronic business (e-business) solutions are
important for business competitiveness and growth for many companies. An e-business
or IT solution is typically a set of applications , or software packages, grouped together to
solve a problem. A number of difficulties in IT systems and e-business solutions,
however, can cause maintenance, planning, and management of these systems to be
difficult. First, many IT systems are complex. Many IT systems use a large number of
applications that can exist on a large number of servers in a variety of locations. In
addition, a large number of participants can take part in an e-business solution. Many IT
systems, therefore, have a large number of components that form sizeable e-business
systems of potentially overwhelming complexity.

Complexity for some IT systems results because it is often difficult to determine
what applications are running as part of the e-business solution, where those applications
are running, and who is running those applications. Relationships also exist between two
or more applications in which one application uses another application in some way.
These relationships, or “dependencies,” between applications are often difficult to
determine. For example, common building blocks such as databases, web servers, and
application servers can be used by many different applications. Knowledge of
dependencies in a system can be important. The failure of one application due to a bug or
system malfunction can cause a larger breakdown of an e-business system due to
dependencies between the applications of the e-business system. Detailed knowledge of
the organization of applications and the dependencies between applications can provide
valuable insight into repairing system malfunctions, planning for future growth, and

managing the IT system.

Page 1

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

The rapid change of many IT systems can also make management of IT systems
difficult. E-business solutions can change rapidly as technology changes and as the needs
of the e-business solution are modified. New servers, databases, and applications can be
added to upgrade a system or to improve performance. It can therefore become difficult
and expensive to track and fix problems, modify the e-business solution, and plan for
future growth.

A lack of information about large, complex systems can also make maintenance of
IT systems difficult. The organization and information about a company’s e-business
system is typically locked up in the heads of one or more IT professionals within a
company. The loss of knowledgeable IT personnel can make system management time-
consuming and burdensome for personnel who are not familiar with the entire structure of

the IT system.

Summary of the Invention

The invention features a method and apparatus for managing components in an
IT system. Under one aspect of the invention, the method features discovering
components in the IT system, determining at least one dependency between two or more
of the discovered components, and tracking changes to the discovered components and
the dependency between two or more of the discovered components. The discovery of
components can be carried out using fingerprints of components. These fingerprints can
include key elements of the component that exist in a full model of all of the elements of
the component. Refined components, which are components that relate in some manner
to another component (that is, the refined component is a specific version of the
component or an optional piece that can be included with the component), can be
discovered using subfingerprints that are activated upon the discovery of the component.
A dependency is a relationship between two or more components in which one
component uses another component in some way, or in which one component requires
the existence of another component. After a component has been discovered, changes to
the component can be tracked so that, for example, IT personnel can more readily

identify system changes that might hamper performance of the IT system.

Page 2

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

Under another aspect of the invention, after components have been discovered, a
visual map of the IT system can be generated. The visual map can include depictions of
the discovered components and the dependencies between the discovered components.

Under another aspect of the invention, an agent for collecting information on
components in an IT system is provided. The agent can be a module that resides on a
server in the IT system, and the agent can feature an observer module to detect event
information about the elements of the server and an analysis module to process the event
information. The analysis module can include (1) component discovery rules to process
event information and match event information with elements of one or more
fingerprints of known components using an accumulator, and (2) dependency discovery
rules to discover relationships between components of the IT system.

Under another aspect of the invention, a network server can be used along with a
plurality of agents, such as those described above. Each agent can be installed on a
separate server of the IT system, and each agent can have the capability of discovering
components that are local to the server on which the agent is installed. The agents can
then transmit information regarding events and discovered components to the network
server, where the information can be further processed to discover components that span
more than one server and to discover dependencies between components that exist on
separate servers.

Under yet another aspect of the invention, changes to components and
dependencies in an IT system are tracked. In this embodiment, the method features
generating a discovery message upon the discovery of an existing component in the IT
system, retrieving a list of elements of the existing component to track for changes, and
transmitting a message to an observer module to begin tracking changes for the elements

in the list.

Brief Description of the Drawings
FIGURE 1 is a block diagram of a representative network in which the system can

be implemented in one embodiment.
FIGURE 2 is a block diagram of one embodiment of the architecture of an agent
in the system of FIGURE 1.

Page 3

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

FIGURE 3 is a block diagram of one embodiment of the architecture of the
network server in the system of FIGURE 1.

FIGURE 4 is a depiction of a fingerprint for a component that can be used in one
embodiment of the invention.

FIGURE 5a is a depiction of a subfingerprint for a component that can be used in
conjunction with the fingerprint of FIGURE 4.

FIGURE 5b is a depiction of a second subfingerprint for a component that can be
used in conjunction with the fingerprint of FIGURE 4.

FIGURE 6 is a block diagram that illustrates the discovery of network
dependencies in one embodiment of the invention.

FIGURE 7a is a flow chart illustrating the processing of network messages in one
embodiment.

FIGURE 7b is a second flow chart illustrating the processing of network messages
in one embodiment.

FIGURE 7c is a flow chart illustrating the processing of process-related messages
in one embodiment.

FIGURE 7d is a flow chart illustrating the processing of resource messages to
determine dependencies in one embodiment.

FIGURE 7e is a flow chart illustrating the processing of resource removal
messages to remove dependencies in one embodiment.

FIGURE 8 is a block diagram that illustrates the filtering of information at -
different locations in the network of FIGURE 1.

FIGURE 9 is a flow chart illustrating the flow of event information during
operation of the network of FIGURE 1 in one embodiment of the invention.

FIGURE 10 is a depiction of one embodiment of a visual map of one computer of
a system that can be used in conjunction with the invention.

FIGURE 11 is flow chart of the rules and processes in the operation of one
embodiment in response to an exist message in the network of FIGURE 1.

FIGURE 12 is flow chart of the rules and processes in the operation of one
embodiment in response to a delete message in the network of FIGURE 1.

FIGURE 13 is a flow chart of the rules and process in the operation of one

embodiment in response to a modify message in the network of FIGURE 1.
Page 4

WO 03/054747 PCT/US02/27348

Attorney Docket No. 111345-122

FIGURE 14 is flow chart of the rules and processes in the operation of one
embodiment in response to an application discovered message in the network of FIGURE

1.

Page 5

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

Detailed Description of the Embodiments of the Invention

The embodiments described herein provide methods and devices for managing the
hardware and software platforms and building blocks of an integrated information
technology (IT), e-business solution, or computer system. Very briefly, a set of agents on
servers of the system is used to collect system event information by detecting low-level
items in the IT system. Events are occurrences in the IT system, such as file or registry
creations, modifications, or deletions, or the discovery of such components in the IT
system. This event information is analyzed within the agents to filter out unneeded event
information, such as minor file modifications that do not affect the system. The event
information is then analyzed in an agent or in a network server that receives information
from all or a subset of the agents of the IT system. The components of the IT system are
therefore discovered, and changes to these components are tracked after discovery. In
addition, dependencies, which are relationships between components, can be determined.
A visual map of the IT system can then be created using the event information, and this
visual map can be updated as the IT system changes. The visual map can be used to
locate and track system problems, help in developing system modifications, and aid in
procuring the necessary hardware for proper system performance.

As used throughout this specification, the term “component” refers to any item
that can be detected, discovered, and/or tracked in an IT system. These items include the
Jow-level items in an IT system such as files, directories, and registry settings, hardware
of the system, database metadata, shared libraries, and Dynamic Link Libraries (“DLLs”),
and also the higher-level components such as the applications of the IT system, along
with other items. The term “application” will be used to refer to a component that is a
piece of software for an identifiable product. One application can therefore contain many
components. Examples of applications include an Apache web server, an Oracle
database, Microsoft® Word, and a collection of web pages and instructions for managing
a stock portfolio. An application can exist on one server or can be spread across multiple
servers. One application can include a number of other applications. Microsoft® Office,
for example, is an application that can include a number of other applications, such as
Word and Excel. Such an application can also be called a solution, which is a set of

applications grouped together to provide a specific solution to a specific problem.
Page 6

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

Discovery of components can generally be either reactive or proactive. Reactive
discovery is when an agent in the system is notified that an application or component has
been installed, modified, or deleted, or is provided with real-time messages regarding the
creation of compor\lents to permit the agent to determine that an application or component
has been installed. In reactive discovery, the method and system react in real time to
event information in messages received from the observers and the operating system as
discussed below. This event information can be used to attempt to match fingerprints for
discovery. In any case, as discussed in connection with the observers, the system and
method can use features of the server’s operating system to detect events in real time.

Proactive discovery, on the other hand, is used when an agent is installed on an
existing system, when a system has restarted, or when further information about the
system is needed. In proactive discovery, the agent proactively scans or “crawls” the
system to detect key files, registry entries, directory structures, and other information that
will allow it to detect an installed component or application. Proactive discovery can be
used to step through the files on the system to determine what is present. The detected
files, registry entries, and directory structures can be used to match the fingerprints of the
system to discover components. In other embodiments, a map of the system can be saved
so that the components of the system before a crash are known. If, after the fingerprints
have been used to discover components on the system, the persist map is different from
the actual components that have been discovered, the system differs from before the crash
or the happening that caused the proactive scan.

A. System Architecture

FIGURE 1 is a block diagram of a representative network in which the invention
can be implemented. The network includes a network server 10 and a plurality of agents
12, 14, 16 that communicate either directly or indirectly with the network server 10.
Generally, one or more agents exist on each server 11, 13 for which management is
desired and that is used by the IT system. It is also possible, however, for an agent to
remotely monitor a server. FIGURE 1, for instance, shows agent 12 remotely monitoring
sever 15. The IT system, as a whole, includes all of the computers, servers, and databases
used by an e-business solution. Each server can be any computer or computer system,
including a router, local director, or database system. The agents 12, 14, 16 collect and

process system event information, which can then be communicated to the network server
Page 7

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

10. Although FIGURE 1 shows one network server 10, multiple network servers 10 can
exist. In the network of FIGURE 1, a firewall 18 separates agents 12, 14 from the
network server 10. In one embodiment, a gateway server 20 exists in the same firewall
segment as agents 12, 14 so that the agents 12, 14 can communicate with the gateway
server 20, which is nearby. In other embodiments, a gateway server 20 is not used. The
gateway server 20, if used, sends the event information received from agents 12, 14 to
network server 10. In this manner, only server-to-server communications need be
firewall friendly.

The event information received by the network server 10 is stored in network
database 22. This event information can then be accessed by users through a user
interface (UI) server 24 by using a browser 26, which can be any available browser, such
as Netscape® Navigator or Microsoft® Internet Explorer. It is also possible, in one
embodiment, to use a browser 28 to access information through the firewall 18 to Ul
server 24.

1. The Agents

The term “agent” will be used throughout this specification to refer generally to a
program module that resides on a server to be managed and that collects and analyzes
event information that describes occurrences on the server of the IT system. The events
monitored by an agent can include file creation, deletion, or modification, registry
creation, deletion, or modification, network termination point creation, network outbound
request creation, local directors, DNS information, SMTP information, database system
information, security-related changes, and information regarding other c;omponents. A
registry is a database used by the Microsoft® Windows operating system (such as
Windows 2000, XP, or NT) to store configuration information. Typically, at least one
agent exists on each server or operating system of the IT system for which management is
desired to monitor the server/system and collect relevant event information. Each agent
therefore can monitor the events of the specific server or system on which it is installed.
In other embodiments, an agent can also monitor a server upon which the agent does not
reside, as shown by agent 12 and server 15 in FIGURE 1. As an example, a database
server need not have an agent installed on it in order to monitor the database metadata,

which can be monitored remotely. Although FIGURE 1 depicts three agents 12, 14, 16,

Page 8

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

the number of agents used within an embodiment will vary with the size and structure of
the IT system.

In addition to collecting event information, the agents 12, 14, 16 can discover
components on the IT system that are local to the particular agent. If, for instance,
Microsoft® Word exists on a server 11 running agent 12, agent 12 can discover and track
changes to the Microsoft® Word application. Components that span more than one
server, however, cannot typically be discovered or tracked using a single agent. For this
reason, event information is passed on to the network server 10, where event information
from more than one agent can be processed. Web sites that retrieve information from
multiple servers, for instance, are examples of applications that span multiple servers and
can be discovered at the level of the network server 10. Because both the agents 12, 14,
16 and the network server 10 receive event information, discover components, and track
changes, the architecture of agents 12, 14, 16 and the network server 10 can, in one
embodiment, be similar.

FIGURE 2 is a block diagram that depicts the core services of one of the agents
12, 14, 16 of FIGURE 1 in one embodiment. In general, the purpose of the agents 12, 14,
16 is to collect event information, perform low-level processing of the event information,
and send the event information to the network server 10 (through the gateway server 20 in
an embodiment having a gateway server 20). In the embodiment of FIGURE 2, the agent
12 includes an observer service 50, an analysis service 70, and a connection service 90.
The connection service 90 handles communications between the agent 12 and the network
server 10 (or the gateway server 20) and ensures that communications are secure. The
connection service 90 receives event messages generated on the observer service 50
through the analysis service 70 for communication to the network server 10. In addition,
the connection service 90 receives commands from the network server 10 for
communication to other services of the agent 12, as depicted in FIGURE 2.

The observer service 50 is responsible for loading and configuring a set of
observers that can be used to collect event information. An observer is a piece of code
that determines if an event has occurred that is significant to the IT system, generates a
message describing the event, and passes the message to the agent 12 for further
processing. Such events can be detected in real time as they occur or can be generated in

a systematic “crawl” through a directory or server to collect information that already
Page 9

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

exists. Observers, therefore, “detect” the low-level items in the IT system or subsystem.
An observer can also filter event information to exclude certain events that are not of
particular importance so that those events are not passed on to the analysis service 70.
The code of an observer interfaces with the host operating system, device drivers,
databases, and other components of the server 11 on which the agent 12 is installed to
detect events. In one embodiment, different observers can be used to detect different
component classes of the server 11. For example, a first observer can be used to monitor
the operating system, a second observer can be used to monitor a first database, a third
observer can be used to monitor a second database, a fourth observer can be used to
monitor a first device driver, and so forth.

As noted above, the observers generate messages having event information that
describe an event upon the occurrence or detection of the event. FIGURE 2 depicts the
transmission of event information 94 in messages between the observer service 50 and the
analysis service 70. FIGURE 2 also depicts the transmission of commands 92 from the
analysis service 70 to the observer service 50. These commands 92 are requests that a
particular function be performed or that more information be gathered for analysis. An
example of such a command 92 is a request that a detailed description of a file, such as
the file size and creation date, be retrieved and returned to the analysis service.

FIGURE 2 depicts a number of observers running on agent 12. These observers
include process observer 52, network observer 54, database observer 56, file driver 58
and file observer 62, and package observer 60. The observers 52, 54, 56, 60, 62 depicted
in the observer service 50 of FIGURE 2 are exemplary, and other observers can be used
within the scope of the invention. In addition, multiple observers of the same type can be
used to monitor different events.

The file driver 58 and file observer 62 can be used to monitor file creations,
deletions, and modifications. In one embodiment, the file observer 62 and file driver 58
are implemented as described below. Numerous other implementations can also be used.
A Solaris version of the file driver 58 can be implemented such that an interface is
exposed to the file observer 62 through a pseudo device. Information regarding Solaris
internals and pseudo devices is provided in Writing Device Drivers; Sun Microsystems,
Inc.; February 2000; Part Number 805-7378-10; and Jim Mauro & Richard McDougall,

“Solaris Internals,” Sun Microsystems Press (2001), ISBN 0-13-022496-0, p. 44-46, 513-
Page 10

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

564, 257-343. After load and initialization, the file driver 58 hooks into the sysent table
by saving key system call function pointers and replacing them with the intercept code
that allows the file driver 58 to intercept hooked calls. The calls of interest can include
creat, creat64, open, open64, close, fork and exec, among others.

For this embodiment of file observer 62, Solaris calls the intercept code that
allows the driver 58 to intercept hooked calls when an application initiates a system call.
At this point, if the intercepting function is enabled, it gathers data about the underlying
storage device (i.e., physical, virtual, or network), full pathname of the file or directory,
and supplied flags to the system call. To gather this data, the file driver 58 uses the
virtual file system, vnode and process constructs supplied by Solaris. Once gathered, the
file driver 58 compares this data with prerequisites, such as whether the WRITE flag is
enabled or residing on a physical drive, to determine if the event is worth reporting. After
the event passes these prerequisites, the file driver 58 collects further information relevant
to the event, such as fd, pid, ppid, uid and size, before passing it on to the file observer 62
in the agent. After an event has been passed to the file observer 62, the file observer 62
translates the message to a common internal format before determining if further
processing is necessary or if the event can be sent straight to the analysis service 70.

The file observer 62 can generate a variety of messages regarding events in the
system. These messages can, for example, include messages indicating that a file exists,
has been modified, or has been deleted. The file observer 62 can also respond to certain
commands generated by the analysis service 70. These commands to which the file
observer 62 responds can include commands to crawl through a specified directory to
collect event information, a command to retrieve details about a file, a command to copy
a file, and a command to filter certain information. The file observer 62 can also generate
messages in response to the commands indicated above, such as a message providing
details about a file in response to a command message or a message indicating that a file
has been copied in response to a command message.

The process observer 52 generally collects information on processes in the system
that can be used to determine dependencies between certain components. Such processes,
for example, can include the use of a file or application that already exists on the system.
In one embodiment, a Solaris version of process observer 52 can be implemented such

that an interface is exposed to the process observer 52 through a pseudo device. After
Page 11

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

load and initialization, a driver hooks into the sysent table by saving system call function
pointers and replacing them with the intercept code that allows the driver to intercept
hooked calls made by applications. The calls of interest can include fork, exec, and exit,
among others.

The processes of concern for this embodiment of process observer 52 are
generally created by calling one of the members of the fork or exec family of routines.
Once an application initiates a system call, the intercept code that allows the driver to
intercept hooked calls gathers information about the full pathname executable, fd, pid,
ppid, uid and supplied parameters. To gather this information, the driver uses information
stored about the process through the virtual file system (vfs), vnode and process
constructs supplied by Solaris. Due to the nature of certain system calls, such as the exit
call, information can be stored so that subsequent system calls can fill the message
expected by the analysis service 70. For instance, whenever an exec occurs, the full
pathname is saved using the pid as the key. This allows the process observer 52 to send
the full pathname when the exit occurs, which normally does not contain the full
pathname. After information has been collected by the process observer 52, it is sent to
the analysis service 70. ‘

The process observer 52 can generate a variety of messages regarding events in
the system. These messages can, for example, include messages indicating that a process
exists or has been deleted. The process observer 52 can also respond to certain
commands generated by the analysis service 70. Such commands can include, for
example, a command to retrieve details about a process. The process observer 52 can
also generate messages in response to commands, such as a message providing details
about a process.

The network observer 54 generally gathers socket information and forwards this
information for analysis. The network observer 54 can be used to detect outbound
network connections and inbound network listeners that can be used in the discovery
process. In one embodiment, a Solaris version of network observer 54 can be
implemented such that an interface is exposed to the network observer 54 through a
pseudo device. After load and initialization, a driver hooks into the sysent table by saving

system call function pointers and replacing them with the intercept code that allows the

Page 12

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

driver to intercept hooked calls made by applications. The calls of interest can include
socket, bind, listen, accept, connect and close, among others.

In this embodiment of the network observer 54, once an application initiates a
system call, the intercept code that allows the driver to intercept hooked calls determines
the relevance of the event based on characteristics such as ip address, port number, and.
supplied flags. If the event meets relevant requirements, the driver collects further
information, such as fd, pid, ppid, vid, remote ip and port number before passing it on to
the network observer 54 in the agent. The network observer 54 can then determine if the
event is relevant, and, if so, pass it on to the analysis service 70.

The network observer 54 can generate a variety of messages regarding events
relating to network connections in the system. These messages can, for example, include
messages indicating that a network connection exists or has been deleted. The network
observer 54 can also respond to certain commands generated by the analysis service 70.
Such commands can include, for example, a command to retrieve details about a network
connection. The network observer 54 can also generate messages in response to
commands, such as a message providing details about a network connection.

The database observer 56 communicates with a relational or other type of database
using an appropriate method, such as Oracle OCI libraries, MS SQL Server DB-LIB, or a
vendor’s Java Database Connectivity (JDBC) driver. The database observer 56 generally
scans the metadata in the database and reports this information through events to the
analysis service 70. The metadata can include the definition of tables, columns,
constraints, triggers, stored procedures, permissions, ownership, and other information.
This information can be used to track changes to the database metadata, which allows an
event message about these modifications to be generated. The database observer 56 can
be used primarily for tracking changes to components in the IT system.

The database observer 56 can generate a variety of messages regarding events
relating to databases in the system. These messages can, for example, include messages
indicating that a database schema exists, has been modified, or has been deleted. The
database observer 56 can also respond to certain commands generated by the analysis
service 70. Such commands can include, for example, a command to retrieve details
about a database schema. The database observer 56 can also generate messages in

response to commands, such as a message providing details about a schema.
Page 13

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

The package observer 60 interfaces with operating system specific repositories of
known installed applications, which are sometimes referred to as installed packages. For
a Solaris embodiment, this repository is the package database as defined by the pkginfo
command. Typically, these operating system repositories are incomplete in that they only
contain a partial list of installed applications. For the set of applications that the operating
system indicates as being installed, the package observer 60 can generate an event
message to be sent to the analysis service 70 regarding the applications. Such a message,
for example, can be a message indicating that an installation exists. The analysis service
70 can then verify whether the application exists through the discovery methods detailed
throughout this specification.

A number of other observers that are not shown in Figure 2 can also be used.
Some of these observers include platform observers, domain name service (DNS)
observers, load balancer observers, and registry observers. A platform observer is an
observer that collects information regarding the server hardware and operating system.
Generally, such an observer generates an event message with information about the
hardware and operating system and sends it to the analysis service 70. The server
hardware information that is collected can include the total RAM memory, the
architecture type (i.e., Intel x86, Sun Sparc, etc.), the number of CPUs, the speed of
CPUs, information regarding the hard disks (number, sizes, etc), information regarding
local and remote mounted file systems, and information regarding network adapters, such
as IP and MAC addresses. The operating system information can include the vendor of
the operating system, such as Microsoft® or Sun, the operating system version, the
installation directory(ies), and the patch level.

A DNS observer retrieves the DNS names that correspond to the IP addresses in
use by an IT organization and reports this information to the analysis service 70. The
DNS observer communicates with a DNS server using appropriate industry standard
protocols. This allows the network server 54 to organize the managed servers 11, 13, 15
by both the numeric IP address, as reported by a platform observer, and the corresponding
DNS names used when interacting with the managed servers 11, 13, 15.

A load balancer observer communicates with various Layer-4/load balancer
switches, such as a Cisco LocalDirector, to collect mapping information. The primary

role of the load balancer observer is to retrieve the Universal Resource Locators (URLS)
Page 14

l

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

to network IP address translation mappings, and report this information to the analysis
service 70. This allows the network server 10 to organize the managed servers 11, 13, 15
by both the numeric IP address as reported by the platform observer and the
corresponding URL's that are commonly used when interacting with the managed servers
11, 13, 15.]

A registry observer generates messages regarding changes to a Microsoft®
Windows registry database. These messages can, for example, include messages
indicating that a registry key exists, has been modified, or has been deleted. The registry
observer can also respond to certain commands generated by the analysis service 70.
These commands to which the registry observer responds can include commands to crawl
through the registry keys beginning at a certain registry key to collect event information,
a command to retrieve details about a registry key, a command to copy a registry key, and
a command to filter certain registry information. The registry observer can also generate
messages in response to the commands indicated above, such as a message providing
details about a registry key in response to a command message or a message indicating
that a registry key has been copied in response to a command message.

The analysis service 70 of the agent 12 of FIGURE 2 processes the event
messages generated by the observer service 50 to detect components, track changes to
components, and discover dependencies between components on the local agent 12.
Generally, a dependency is a relationship or association between two or more components
in which one component uses another component in some way, or in which one
component requires the existence of another component, such as another application,
database, or piece of hardware, in order for the component to function properly. In the
embodiment of FIGURE 2, the analysis service contains filters 72, a rule engine 74,
component detection rules 76, dependency detection rules 78, an accumulator 80 and
persist map 82 (any storage device), and a fingerprint database 84.

The analysis service 70 can, in one embodiment, use fingerprints to analyze event
information to determine if any of the components in the fingerprint database 84 exist on
the server 11 of the agent 12. As will be described in more detail below, the accumulator
80 can be used to determine if all of the elements of a fingerprint exist, which indicates
the presence of the component indicated by that fingerprint. The rule engine 74, along

with the component detection rules 76 and dependency detection rules 78, contain the
Page 15

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

instructions used for the discovery and tracking procedures. The functions of the analysis
service 70 will be described in greater detail below.

2. The Network Server

FIGURE 3 is a block diagram that depicts the core services of the network server
10 in one embodiment. The architecture of the network server 10 can be similar to the
architecture of the agent 12 described above in connection with FIGURE 2. The network
server 10, for instance, contains a connection service 140 and an analysis service 100.
Each of these services provides substantially the same functionality as the corresponding
services within the agent 12. For instance, the connection service 140 handles
communications, including event messages and commands between the agents (or the
gateway server 20) and the network server 10 and ensures that communications are
secure. Unlike the architecture of the agents, the network server 10 does not typically
contain an observer service. This is because the network server 10 collects event
information from a number of agents, which each contain an observer service 50. The
network server 10, however, does contain a user interface service 150 in one embodiment,
as well as a modeling service 120. The user interface service 150 allows a user to interact
with the system to monitor components and changes to the components that have been
tracked.

The modeling service 120 allows for the creation of models that can be used in
discovery along with fingerprints, as will be described in more detail below. The
modeling service 120 contains a model creation service 122, a fingerprint creation service
124, and a rule creation service 126 that can create a database 130 of models, fingerprints,
and rules. A

The analysis service 100 of server 10 can be similar to the analysis service 70 of
the agent 12 of FIGURE 2. The analysis service 100 contains filters 102, a rule engine
104, component detection rules 106, dependency detection rules 108, and an accumulator
110 and persist map 112. The analysis service 100 of the network server 10 can discover
components and dependencies that span more than one server. In addition, in some
embodiments, the analysis service 100 of the network server 10 can also discover

components that exist solely on a single server.

Page 16

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

B. Model-Based Discovery
The system and method described herein can discover components in the IT
system, determine dependencies between the components, generate a visual map of the
components in the IT system, and then track changes to the discovered components and
the dependencies between the components. The first step in one embodiment, therefore,
is the discovery of components in the IT system, which determines what is installed and
where it is installed.

Generally, a variety of discovery methods can be used within the scope of the
invention. One discovery method that can be used, and will be described in greater detail
below, is model-based discovery. As noted above, the observers of the agents (FIGURE
2) collect event information in the IT system, and the event information is then analyzed
by the analysis service 70. A first level of analysis takes place within the analysis service
70 of the agent 12, and a second level of analysis takes place within a similar analysis
service 100 of the network server 10 (FIGURE 3), as will be described in greater detail
below. In both levels of analysis, models can be used in discovery.

In a model-based discovery method, a model is constructed that defines a
component, such as an application, and all of its component items, such as files and
registry keys. The model, therefore, is a collection of data that defines the presence and
attributes of the elements of an application or component. Using the model, a matching
set that describes key elements of the application can be generated. This matching set,
which can also be called a fingerprint, is a subset of the model for the application or
component that uniquely identifies it, and the matching set can contain information about
the types of components, how the components should relate (for example, directory
structures), and attribute information about the components, such as the size of a file. A
fingerprint can contain, for instance, the directory structure and filenames of an
application’s files, the registry entries for the application (for Windows), and the contents
of a few selected files or registry keys.

As an example of model-based discovery, the agent 12 or network server 10 can
use a fingerprint to discover that an existing component has been installed on the IT
system through the use of the accumulaﬁon of real-time event information or by
inspecting the actual contents of the IT system to see if components are present that

match the fingerprint of the model of a known component. If components are present that
Page 17

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

match the fingerprint of the known component, the existing component on the IT system
is discovered. The term “known component” will be used in this specification to refer to
a component whose elements are known and can therefore be modeled, whether that
component exists on the IT system or not. An “existing component,” on the other hand,
will be used to refer to an actual component that is installed on the IT system or is being
installed on the IT system.

As an example, a model for a component that is an application, such as
Microsoft® Word, can first be generated. Such a model will contain a collection of all of
the data that define the presence, attributes, and dependencies of the components, such as
the filenames and directory structure of the files that make up Microsoft® Word.

Because the model for Microsoft® Word will contain a large amount of data, a smaller
subset of this data will be compiled into a fingerprint that can be used for discovery
purposes. The fingerprint for Microsoft® Word, for instance, could contain the key
executable files and data that make up and uniquely define Microsoft® Word. During a
discovery process, information about a number of events (that is, file or registry entry
creations or deletions) can be accumulated that form parts of the fingerprint for
Microsoft® Word. When the last of these events is discovered, the fingerprint for
Microsoft® Word has been matched and the existing Microsoft® Word component on the
IT system has been discovered.

1. Model Generation

In a model-based discovery method, a model of the component is first generated
so that a fingerprint can be created for use in discovery. A number of methods can be
used to create models. FIGURE 3 depicts a modeling service 120 in the network server
10 through which a user can interact to create a model for a component. The modeling
service 120 contains a model creation service 122, a fingerprint creation service 124, and
a rule creation service 126 that can be used to define rules for use during discovery. In
the network server 10 of FIGURE 3, fingerprints can be contained in the database 130 of
models, fingerprints, and rules. In the agent 12 of FIGURE 2, similarly, fingerprints can
be contained within the fingerprint database 84.

A model of a component can be generated using a variety of methods, including

using manual inputs, tracked installs, kit scans, or auto discovery. In each of these

Page 18

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

methods, the elements of a model for a component can be generated, and then these
elements can be presented to the user for verification. A graphical user interface, for
instance, can be used to present the elements to the user. The user can then check off
elements that should not be used in the model so that the accuracy of the model can be
controlled by the user.

A manual input method of model generation allows a person to select the items
that make up a component from a list of files, registry keys, dependencies, and other
items. One such manual input method, for instance, uses an installed instance of the
application of the same type as a source of the file lists and registry keys. A user can then
select all of the directories, files, and registry keys that make up an application in one
manual input method of generating a model for a component.

A tracked install method of generating a model of a component, on the other hand,
allows a person to denote the start and end of the installation of a c()mponent, such as an
application. All of the files, registry keys, directory information, and other items that are
created, modified, or deleted between the start time and end time of the installation can be
considered parts of the application when building the application model. This list of parts
can then be modified by the user to reduce the set of resources to be used by the
application model. A user interface 150 (FIGURE 3) can be provided to allow a user to
denote the start and stop time of the installation of an application.

A kit scan is another method that can be used to generate a model for a
component. A kit scan allows a kitted form of the component, such as an InstallShield
image, to be processed, and the internal list of components used to create the application
can be modeled. In addition, the uninstall log of an already installed application can be
scanned. This uninstall log lists the actions taken to actually perform the installation,
which can be a good source of input for a model. In this manner, a scan of the elements
of the component are collected into a model of the component. This type of model,
therefore, can be generated before the component is installed on the system. Kit scans
can be performed for a number of components that might later be used on a system so that
a model (and also a fingerprint) of the component will exist for the purpose of discovery.

Auto discovery is another method that can be used to generate a model to be used
for discovery. An auto discovery method uses clues provided by the operating system to

discover the elements of a component. These clues can include operating system
Page 19

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

pointers, process image file names, and framework knowledge. An operating system can
contain pointers to files that make up an application. For example, Windows has registry
entries that point to various pieces of an application, such as uninstall scripts. In addition,
the operating system might contain a list of installed applications along with components
of the application and dependencies. For example, the Windows Installer database, the
Solaris packages database and the RedHat Linux RPM database can contain a list of
certain installed applications. A model of each installed application can therefore be
readily constructed from operating system pointers. In another embodiment, operating
system pointers can be used to discover applications without first explicitly using the
pointers to create models.

Process description clues used in auto discovery methods of model generation
include the observance of processes running on the operating system that are loaded from
files that can be tracked back to a directory. An examination of the executable image that
a process is running can be used to identify the directory from which the process was
launched. This allows for the determination of which package launched the process. An
application can therefore be modeled by the directory and file structure that is present in
the identified directories.

Framework knowledge clues used in auto discovery can be used to create a model
for some application frameworks that have a standardized way to represent applications
supported by the framework. For example, JSP implementations install applications
within a WEBAPPS directory and Microsoft® ASP represents applications as directories
that contain a global definition. An examination of the contents of these directories can
therefore be used to create a model of the components.

2. Fingerprint Generation

After a model of a component has been created, a fingerprint, or matching set, of
the model can be constructed. This fingerprint, which is a subset of the model for a
known component, can be used to discover the presence of an existing component in the
IT system. A model for a component, for instance, might contain hundreds of elements,
but a fingerprint for the same component might contain only ten to twenty elements.
Although use a model of a known component may be ultra-precise in the discovery of an

existing component because a full bill of materials for the component will be matched,

Page 20

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

system constraints make the use of fingerprints containing a subset of the elements of a
model beneficial. '
A fingerprint can be constructed from a model in a number of ways. In one

embodiment, all of the executable files of a model for a known component can be

selected. In addition, the shared libraries and DLLs, which are libraries of executable

functions or data that can be used by an application, can be selected, along with other
elements that naturally define a component. Some percentage of these pieces can then be
used in a fingerprint, and the pieces used should unambiguate the fingerprint so that it is
unique for the component. In order to unambiguate the pieces for the fingerprint, the
executable files can be assigned one weight, the shared libraries can be assigned another
weight, and the DLLs can be assigned a third weight. In culling the pieces into a
fingerprint, the weights can be used to ensure that key pieces of the component are
included in the fingerprint. For example, the executable files can have the highest
weights, which will ensure that they will be included in the fingerprint. The DLLs could
have the next highest weights, which could ensure that a large number of DLLs will be
included in the fingerprint.

As described above, a fingerprint contains a number of pieces that can be matched
in order to discover a component. The pieces that can be discovered can be either passive
elements or active elements. The term “passive element” will be used throughout this
specification to refer to the elements of a fingerprint that are matched or checked off for
the discovery of a component. These elements can also be referred to as low-level
elements. “Active elements,” on the other hand, are elements of a fingerprint that trigger
further searching, matching of elements, or matching of other subfingerprints in
discovery.

The passive elements of a fingerprint for an application can, in one embodiment,
be a list of files that uniquely define the application. After all of these passive elements
have been matched, one or more active elements can be used to further search for
information that can identify a version of an application or other optional components that
are commonly associated with an application. A “subfingerprint” is a fingerprint that is
used by the active elements of a parent fingerprint to discover a “refined component,”
which can be either a specific version of the component defined by the parent fingerprint

or an optional piece that might be contained under the application defined by the parent
Page 21

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

fingerprint. Typically, a subfingerprint will contain information that is more refined than
the information contained in a parent fingerprint. For example, a parent fingerprint might
contain a list of file names to search for, and the subfingerprint might contain not only file
names, but the size of files as well. In addition, a subfingerprint can contain items that
are not in the parent fingerprint.

In one embodiment, an active element might send a command to check the size
and checksum of one or more files, and the result of this check could lead to the discovery
of a certain version of an application. A fingerprint could, for instance, be generic for all
or more than one version of a component. FIGURE 4 depicts one sample fingerprint F1
that is generic to different versions of a component. The fingerprint F1 contains a number
of passive elements, such as filel.exe, file2.txt, file3.dat, and organizational information,
such as a directory structure, that uniquely identify more than one version of the
application. After all of the passive elements of the fingerprint F1 have been matched,
the active elements of fingerprint F1 might cause a command message (FIGURES 2 and 3
illustrate commands 92 in transit), such as a message to retrieve more detailed
information, to be sent to an observer to retrieve the size and checksum of filel.exe and
then to attempt to match one or more subfingerprints. One or more subfingerprints for
fingerprint F1 can therefore exist, and these subfingerprints can be for different versions
of the application. FIGURE 5a depicts subfingerprint SUB1 and FIGURE 5b depicts
subfingerprint SUB2. These subfingerprints SUB1 and SUB2 for the different versions
of the application can include information about the size and checksum of filel.exe, and a
certain version of the application can be discovered upon the matching of this
size/checksum information of subfingerprint SUB1 or subfingerprint SUB2.

In some embodiments, a single generic fingerprint fnay not be definable to
uniquely identify all versions of an application. In such a situation, more than one parent
fingerprint can be used to define the versions of the component. For instance, fingerprint
F1 could be used for versions 1.0 to 1.9 of an application, and fingerprint F2 could be
used for versions 2.0 to 2.9 of the application. Each fingerprint F1, F2 could contain its
own list of active and passive elements for discovery, and each fingerprint F1, F2 could
rely on different subfingerprints for the discovery of a specific version of the application.

In another embodiment, an active element of a fingerprint could send one or more

commands that cause an attempt to match other fingerprints for optional pieces of a
Page 22

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

component. For instance, a fingerprint for Microsoft® Office might have a number of
passive elements that are matched to indicate the discovery of the Microsoft® Office
component. After these passive elements have been matched, an active element may
cause the attempt to match one or more subfingerprints of the Microsoft® Office
fingerprint. These subfingerprints could be for applications that commonly exist within
Microsoft® Office, such as Microsoft® Word, Excel, or Spell Checker. The
subfingerprints for these applications become active upon the generation of a message
from an active element within the Microsoft® Office fingerprint, and this message causes
the attempt to discover the components defined by these subfingerprints. In other
embodiments, the subfingerprints can remain active at all times. In such embodiments,
the elements of the fingerprint in addition to the elements of the subfingerprint would
have to be matched in order to discover the refined component of the subfingerprint.

In some embodiments of the invention, fingerprints and subfingerprints can have
multiple sets of elements used for different purposes. In one of these embodiments,
fingerprints and subfingerprints can have three sets of elements: a detect set, a complete
set, and a minimum set. When all of the elements in the detect set have been matched,
the component of the fingerprint (or subfingerprint) can be considered to be installed. In
this embodiment, the detect set can have only a portion of the elements necessary for a
complete match of the component. In other words, when the elements of the detect set
have been matched, the component can be considered to be installed, but the level of
certainty that the component exists can be somewhat low. When the complete set is
matched, the component can be considered to be fully installed so that it is known with
certainty that the component has been installed. The minimum set comes into play when
a component is removed or deleted from the IT system. Generally, when all of the
elements of the minimum set have been removed and are no longer present in the IT
system, the component can be considered to be uninstalled. Because a full removal of all
of the elements of a component from the IT system does not always occur upon the
removal or deletion of a component, the minimum set can contain fewer elements than
the detect or complete set in some embodiments.

C. Dependency Discovery
After components of the IT system have been discovered, discovery of

dependencies between different components of the system can be carried out. Generally,
Page 23

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

as discussed above, a dependency is a relationship or association between two or more
components in which one component uses another component in some way, or in which
one component requires the existence of another component, such as another application,
database, or piece of hardware, in order for the component to function properly. After
two components are discovered in the IT system, certain relationships (dependencies)
between components can be discovered. These dependencies can be useful for an IT
system administrator if one or more components of a system crash or are not functioning
properly. If the relationship of those components to other system components is known,
resolving problems in the IT system can be accomplished more easily.

A number of types of dependencies can exist between components in a system.
One type of dependency is a shared library or object usage dependency. In such a
dependency, the functionality of a first application is dependent on a second application if
the second application exposes the first application through the use of a shared library,
registry key, DLL, COM object, Java class, Inter-Process Communication (IPC), shared
memory segments, or other service. The first application can, for instance, use the shared
library, DLL, or other elements of the second application. A variety of dependency
discovery methods can be used to discover these dependencies. Generally, event
information can be received that indicates directory structures and other activities that can
be examined to determine dependencies. For known applications, it is possible to match a
process running in the system with the libraries and class files that were used to start the
process. This, in turn, allows an agent to associate an operating system process with an
application. In some instances, information regarding the operating system processes,
shared libraries, registry keys, and other program and class files are available from the
operating system. If one component uses the libraries, registry keys, or files of another
component, a relationship exists between the components and one of the components is
dependent upon the other component. In the agent 12 of FIGURE 2, the process observer
52 and accumulator 80 can be used to discover these dependencies.

A second type of dependency is a network usage. In such a dependency, a first
application is dependent on a second application if the second application uses resources
that are exposed by a network connection, such as TCP/IP, by the first application. The
second application’s API, which is a set of routines, protocols, and tools used to build-a

software application, can, for instance, be called by the first application during execution
Page 24

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

of the first application. In general, in order to discovery network dependencies, outbound
network connections are matched with network listeners so that the applications and
servers in the dependency relationship can be determined. In the agent 12 of FIGURE 2,
the network observer 54 and accumulator 80 can be used to discover these dependencies.

A third type of dependency is a containment dependency. In a containment
dependency, a first application executes a second application, and the second application
is therefore dependent on the first application. In some configurations of containment
dependencies, a first application contains a second application in the directory structure of
the first application. In such a situation, the second application is dependent on the first
application. In another configuration, a first application has pointers to a second
application that resides outside the directory structure of the first application. In such a
situation, the second application is dependent on the first application. Another
containment dependency can be the existence of a component on a server. In such a
situation, the component depends on the server.

Discovery of containment dependencies can be accomplished using at least two
approaches. In the first approach, the outermost application can be probed to determine
the applications contained or used by that outermost application. For instance, code that
interacts with the API of the outermost application can be used to find the active
applications within the outermost application, and hence to discover the dependencies.
Another approach is to model the containment association so that the dependencies can be
inferred. For example, for a first application, any application stored in a particular
directory of that first application can be considered to be contained within the first
application. In addition, the model for a first application can describe a component of the
first application that contains information about other applications that the first
application will execute. This allows for the detection of which other applications are
executed by the first application.

FIGURE 6 is a diagram of two machines, machines 1 and 2, which are designated
by numerals 160 and 162, that can be used to illustrate network and containment
dependencies. Machine 1 contains the TOMCAT application. The TOMCAT application
contains the WEBAPPS directory, which contains the EMPLOYEE PROFILES
application. The EMPLOYEE PROFILES application is contained within TOMCAT,

and a containment dependency is present.
Page 25

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

Discovery of network usage dependencies can use processes running on the IT
system that establish network listeners to accept incoming network connections. These
processes can also create outbound network connections to remote systems. By tracking
these listeners and outbound connections, dependencies between systems and applications
can be determined. Referring again to FIGURE 6, a Microsoft® SQL server can be
installed on machine 2 to listen for incoming connections on a certain port, port 1433, of
the system. If a different application on machine 1 creates an outbound connection to
port 1433 of machine 2, an agent can collect this information and can determine that a
dependency exists between the two applications. The direction of the dependency is
dictated by which application initiated the contact. In FIGURE 6, the EMPLOYEE
PROFILES application makes an outbound request 180 to port 1433 of machine 2, and
therefore EMPLOYEE PROFILES is dependent on Microsoft® SQL server on machine
2. In the agent 12 of FIGURE 2, the network observer 54 can be used to discover these
dependencies. In one embodiment, inbound network requests can be ignored during
discovery for efficiency purposes, and instead outbound requests can be monitored.

In discovering network dependencies, it is possible to discover which applications
on the servers are dependent upon each other in a progressive manner. For instance, if an
outbound network request is detected, a dependency between two servers can be
discovered. If it is known which applications are running on those servers, this
information can be pieced together with the network connection information to determine
the dependencies between specific applications on the servers.

FIGURES 7a-7e are flow charts that illustrate embodiments that can be used to
discover dependencies in an IT system. FIGURE 7a illustrates the processing of
messages generated by the network observer 54 (FIGURE 2). In particular, FIGURE 7a
at block 700 shows the processing of messages generated upon the establishment of
outbound network connections and inbound network listeners. A connection rule (block
702) is used to process these messages. Initially, at block 704, a determination is made as
the whether the outbound network connection or network listener is an unknown, or new,
connection or listener. If the connection or listener is unknown, then a message
indicating a resource usage is generated (block 706). A resource usage indicates that
some resource, such as a network connection endpoint, file, registry key, component, or

application, is being used by one of the components in the IT system. In the context of
Page 26

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

network outbound connections or network listeners, such a resource usage message can
indicate the server making the outbound connection or network listener and the port used.
As will be explained below in connection with FIGURES 7d and 7e, these resource usage
messages can be used to discover components, such as software applications, that use the
same resources and therefore have a dependéncy relationship..

If the network connection or listener is not new, then the connection or listener
existed in the past. A determination can then be made as to whether the application using
the listener or connection has changed (block 708). If there has been no change, the
resource usage message previously generated for that network connection or listener need
not be changed, and the connection or listener message is dismissed (block 712). If the
application using the listener or connection has changed, a message is generated to
modify the resource usage message previously generated for that resource usage to reflect
the new application (block 710).

FIGURE 7b shows the processing of a network listener or connection deleted
message (block 720), which can be generated by the network observer 54 (FIGURE 2).
The connection rule processes the message, as indicated by block 722 of FIGURE 7b.
Initially, at block 724, a determination is made as to whether the connection or listener
being deleted corresponds to a connection or listener that has previously been detected. If
the connection or listener has not previously been detected, the connection or listener
deleted message is dismissed (block 728). If the connection or listener has previously
been detected, a resource usage modify message is generated to indicate that the resource
is not currently being used by an application.

FIGURE 7c illustrates the processing of messages generated by the process
observer 52 (FIGURE 2). In particular, FIGURE 7c shows the processing of process
exist and process detail messages (block 730) using a process rule (block 732). Initially,
at block 734, a determination is made as to whether the process is an unknown or new
process. If the process is not unknown (that is, if the process was known), a
determination is made as to whether the list of open files used in running the process is
different than the previous list of open files (block 736). If the current list of open files is
different, for any files that are no longer open, resource modify messages are generated to
indicate that those files are no longer in use (block 738). In addition, for any new files

that are open, resource add messages are generated to indicate the usage of those files
Page 27

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

(block 738). Such a resource usage message can indicate, for example, the name of the
resource being used (such as a file name, registry key, or network port), the application
that owns the resource, and the application that is using the resource.

If the process is unknown, a determination is made as to whether the owning
component (or application) can be determined. If this application cannot be determined,
the message is dismissed (block 744) because it will not be useful in dependency
discovery if the application using the resource is not known. If the component owning
the process can be determined, a resource usage message is generated (block 742). The
list of open-‘files used by the process can be examined, and for each file that is not owned
by the application, a resource usage message can be generated. Such a message can
indicate, for example, the name of the resource being used (such as a file name), the
application that owns the resource, and the application that is using the resource.

FIGURES 7d and 7e illustrate theAprocessing of resource usage messages in some
embodiments. Generally, after the resource usage messages are generated as indicated
above yvith respect to FIGURES 7a-7c¢, the accumulator 80 (FIGURE 2) is used to
discover dependencies and the direction of those dependencies.

Referring to FIGURE 7d, the processing of a resource usage message (block 750)
using a resource rule 752 is shown. FIGURE 7d shows the processing of resource usage
messages relating to outbound network connections and network listeners, as well as
processes or files. Initially, at block 754, the resource usage messages are added to the
accumulator 80 (FIGURE 2). The accumulator 80 attempts to match outbound
connections with listener resources based on information about the resources used (block
756 and 758). In some embodiments, the times of the usages can be used in matching
connections with listeners, although in other embodiments, specific time stamps are not
used. The accumulator, for instance, can search for resource usage messages indicating
that an outbound connection and a listener use the same port of a server (that is, the
outbound connection points to a port that is the same port used by the listener on a
server). If a match is found, the direction of the dependency is determined at block 762.
Generally, the application and server that originated the outbound connection are
dependent on the application and server having the port used the listener. In addition, a
dependency discovered message is generated at block 764. The resource usage message

can then be dismissed (block 766).
Page 28

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

The accumulator 80 can also attempt to match resource usages for files and
processes on the same server (block 760). If the accumulator finds that two applications
use the same resource (such as a file), then a dependency has been found. The direction
of the dependency can then be determined (block 762) according to one of three different
rules, although other rules could be used in other embodiments. For resources that have
no owning application (that is, no application was discovered in which the resource is
contained), each of the applications that is using the resource is dependent upon the
resource (this is a containment dependency). For resources that have owning applications
(that is, the resource is in the directory or model of an application), the application using
the resource is dependent on the application that owns the resource unless the application
using the resource is executing the application that owns the resource, in which case the
relationship is reversed. Similar logic can be followed in determining these dependencies
if there are multiple levels of applications running other applications.

FIGURE 7e shows the processing of a resource usage removal message (block
770) using a resource rule 772. FIGURE 7e shows the processing of resource usage
removal messages relating to outbound network connections and network listeners, as
well as processes or files. Initially, at block 774, the resource usage removal messages
are added to the accumulator 80 (FIGURE 2). The accumulator 80 attempts to determine
if a dependency exists for the outbound connections that have been removed (block 778).
If so, the dependency is marked as being suspect (block 782). The accumulator 80 does
nothing with messages regarding removed network listeners because a connection could
still exist with the listener being inactive. If the resource usage removal message relates
to a file, the accumulator 80 finds the dependencies associated with that file and marks
those dependencies as being suspect (blocks 780, 782). Those dependencies marked as
being suspect are then dealt with as detailed below.

In some embodiments, messages indicating that dependencies are removed are not
generated immediately upon the labeling of a dependency as suspect in block 782.
Network connections are not typically maintained constantly, so dependencies spanning
between servers are not indicated by constant network connections and listeners.
Similarly, files are not constantly used by applications that might be dependent upon each
other. For these reasons, messages indicating that dependencies are removed are not

always generated immediately upon a dependency being labeled as suspect. Instead,
Page 29

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

certain criteria can be examined to determine if the dependency should be removed (block
784). If, for instance, a certain length of time (perhaps hours, days, or a week) passes
with a dependency being labeled as suspect, a message indicating that the dependency is
removed could be generated. Such a message can be generated because the dependency
relationship is not active. In another embodiment, other criteria, such as absolute
knowledge that the application has been removed, can be used to generate dependency
removed messages. The resource usage message can then be dismissed (block 786).

D. Tracking Changes and Filtering Events

After a component has been discovered and all of the pieces of the component are
known, it can be desirable to track any changes that are made to the component,
determine the differences in the contents of those modified components, and track
changes to dependencies that exist in the IT system. If a problem occurs in the
functioning of the IT system, the tracked changes can be used to readily identify the
application that has stopped working and the changes that may have caused the
application to stop working properly. Because a primary hindrance to the successful
upgrade and correction of IT system malfunctions is a lack of an accurate record of
changes made to the IT system, a visual map of the IT system, including changes made to
components of the IT system over time, can be invaluable in remedying system
malfunctions.

In order to track these changes, any changes made to one or more of the files,
directories, registry settings, or system configuration elements in the fingerprints for the
discovered components can be monitored. In some embodiments, only key elements of
the fingerprint for an application are monitored. In other embodiments, all of the
elements in the fingerprint are monitored. In still other embodiments, more than what is
in the fingerprint, such as all of the items in an application, can be monitored. For
example, all of the items in a model for the component can be tracked, and all of the items
in the installation directory of an application can be tracked. In any event, this list of
elements to be tracked can be generated by compiling all of the elements for discovered
components that are of interest. For example, the executable files for a discovered
application can be tracked so that modifications can easily be discovered. In order to
track content changes to components of the IT system, the analysis service of an agent 12

or the network server 10 determines that an event message relates to an application that
Page 30

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

has already been discovered. The event message will then be logged so that a record of
the modification exists. After an event message has been logged, it can be determined
what content change was made. For instance, if a file for a discovered application is
modified, the current version of the file can be compared to the previous version of the
file, and the differences between the content of the two versions can be determined. The
modifications to the file can therefore be tracked so that a user can easily see the changes
made.

Another aspect of the invention involves the creation of a visual map of the files
for each application, along with the structure of the entire IT system. The visual map can
list the application, the files of the application, and an icon for the last change made to the
file. Upon clicking this icon, the user can be presented with the text of the file and the
changes made to the file. The changes can be indicated by placing deleted information in
brackets and underlining added material, or by using any other comparing method. This
illustration of the actual changes to a file can be useful in troubleshooting for system
administrators. In addition to information about changes that have been made to
applications of the IT system, the visual map can allow a user to readily view the entire
hardware platform of the IT system, as well as the applications and infrastructure
applications, such as web servers, databases, and other infrastructure applications
installed on a particular server. The visual map can also allow a user to select an
application and view the list of files and registry entries associated with the application.
The visual map can also be used to illustrate the dependencies between the various
components of the IT system. The visual map can be automatically updated as the IT
system changes.

FIGURE 8 shows the use of filtering to reduce the amount of event information
transmitted and processed in the system. Because a large number of events, such as file
creations or deletions, can take place within a server in the IT system, filters can be used
to reduce the amount of information transmitted using the system. Generally, each filter
used in the IT system should let through the event information that matters for discovery
and tracking, and filter out the remaining event information. The event information that
matters, generally, is event information that corresponds to elements of a fingerprint or

that corresponds to a detected or discovered component. In order to determine which

Page 31

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

event information to pass through a filter, therefore, the fingerprints used in the system
can be analyzed.

Filters can be either exclusionary filters or inclusionary filters. Inclusionary filters
let certain event messages that match a list of elements in the filter pass through the filter
and exclude or filter out all other event messages. The list of elements that matter for the
filter, and that will thus be passed through, are those elements that correspond to elements
in fingerprints. These will be the elements that will be matched during discovery and
tracked after they are discovered. A list of all files in fingerprints of the system, along
with all other elements of the fingerprints, can therefore be created for use in the filters of
the system. Exclusionary filters, on the other hand, let through all event messages except
certain messages that fit certain criteria. For example, an exclusionary filter could filter
out all event information regarding the creation of any files with “.log” extensions or any
files that are larger than a certain size, and all other event information could pass through
the exclusionary filter.

In the embodiment of FIGURE 8, event information can first be filtered in an
observer 52, 54, 56, 60, 62 of the agent 12. After this event information has been
transmitted to the analysis service 70 of the agent 12 and analyzed there, some of the
event information can again be filtered out. If an application is purely local to an agent,
for instance, all event information that matches a fingerprint for that application need not
be passed through to the network server 10. Instead, the fingerprint for that application
can be matched locally at the agent 12 and then, after the application has been discovered,
an application discovered message and other information about the application can be
passed through to the network server 10. In this manner, only a limited amount of event
information will be passed through to the network server 10 from the agents of the
system. A final filtering process can take place within the analysis service 100 of the
network server 10. This filtering process can filter out unneeded event messages so that
every event that takes place within the IT system and is sent to the network server 10 is
not saved within the network server 10.

E. Operation of Component Discovery

FIGURE 9 is a flow chart illustrating the operation of the network in one

embodiment. At block 200, fingerprints and subfingerprints are created. The modeling

service 120 depicted in FIGURE 3 can be used for the creation of these fingerprints and
Page 32

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

subfingerprints. Event information is then collected by an observer, as depicted at block
202 of FIGURE 9. The observer service 50 of the agents 12 of the system can be used to
detect these events (FIGURE 2) as discussed above.

At block 204 of FIGURE 9, the fingerprints and subfingerprints are used to
discover components in the IT system. Referring to FIGURE 2, the analysis service 70 of
the agent 12, including the rule engine 74, accumulator 80, and fingerprint database 84
can be used for the discovery of components at the agent-level. The analysis at the agent
level generally focuses on the local system of the agent or the remote server that the agent
monitors. As described above, event information of a fingerprint from the fingerprint
database 84 can be matched in the accumulator 80 until all of the passive elements of the
fingerprint have been matched. At that point, an application discovered message can be
generated by the fingerprint and the rule engine 74. In some embodiments, the active
elements of the fingerprint can then trigger command messages to search for certain types
of elements, and subfingerprints can then be matched to discover subcomponents that
relate in some way to the component of the original fingerprint (that is, versions of the
component or optional pieces that can be used with the component). The subfingerprints
can then be matched in the same manner as the fingerprints.

The processing within the network server is similar to that within the agent.
Referring to FIGURE 3, the analysis service 100 of the network server 10, including the
rule engine 104, accumulator 110, and database 130 can be used for the discovery of
components at the network-level, including components that span more than one server of
the system.

It should be noted that an event message can be processed by more than one
processing service. Some types of event messages, for instance, can be directed to
component or subcomponent discovery through fingerprints. Other types of event
messages, on the other hand, can be directed to a dependency analysis service to discover
dependencies between components. Block 206 of FIGURE 9 depicts the act of
discovering the dependencies between components. Block 208 then depicts the tracking
of changes to discovered components in the IT system, as discussed in more detail above.

A visual map can be generated to show the components of the system, as well as
the dependencies between components and the changes made to components of the

system. Block 210 of FIGURE 9 depicts this act of generating a visual map. This visual
Page 33

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

map can also show locations and associations between components of the system. For
example, servers existing in one location or owned by particular entities can be indicated
so that relations between hardware and software components of the system can be readily
seen. FIGURE 10 shows one possible embodiment of a visual map of the components of
one computer of a system. In FIGURE 10, a summary section of the visual map contains
information regarding the computer itself, such as the computer name 240. Another
section of this visual map shows information regarding the storage devices 242 of the
computer. A third and final section shows information regarding the installed
applications 244, or discovered applications, of the computer. A first column in this
section gives the name 250 of the application, a second column gives the version 252 of
the application that was discovered, a third column gives the date of the last change 254
to the application, and a fourth column gives the installation date 256 of the application.
In one embodiment, a user can click on a date in the last change column 254 to be given
details of the recent changes to the application.
F. Examples of Operation

FIGURES 11-14 depict flow charts of the operation of the method and system in
an agent in response to four different types of messages that can be created in the
network: exist messages; delete messages; modified messages; and application
discovered messages. FIGURES 11-14 depict only four varieties of event messages. In
addition to these type of messages, other event messages, such as those discussed above
in relation to the observers, can be processed. Event messages regarding outbound
network requests, for instance, can be analyzed for dependency relationships.

1. Exist Messages

FIGURE 11 shows the functions in one embodiment after a message indicating
that a file, registry, or database schema exists or has been created is generated by an
observer. FIGURE 11 lists exist messages relating to files, registries, and schemas (see
block 300). For simplicity, however, the following discussion relating to exist messages
refers specifically to files, although it should be noted that the same procedures can be
followed for registries and schemas. In addition, the functions depicted in FIGURE 11
can be carried out in the either in the agent or in the network server 10 of the system.

Initially, as indicated by block 300 of FIGURE 11, a message indicating that a file

has been created is received. Such a message can be generated, in one embodiment, by
Page 34

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

the file observer 62 of the agent 12 (FIGURE 2) whenever a new file is detected. The
detection of a new file can occur through reactive notification by a driver that detects the
file being created in real-time or through proactive notification by crawling of the file
system of the server on which an agent resides.

In the embodiment of FIGURE 11, each file create message is a.candidate for .
three possible system rules: a component (or package) detect rule 302, a track changes
rule 315, and a track install rule 324. Each file create message can be subject to one or
more of these rules, and generally a filter can be used for the logic set for each rule to
determine if the functions associated with the rule will be performed. For example, a
filter can determine if a created file is of the type of file that might matter for component
detection and, if so, the message for the created file will be passed on to the logic of the
component detect rule 302. If the event message fails the filter, the event message is
discarded.

The component detect rule 302 is generally responsible for adding the information
received in the file create message to an accumulator that can be used for discovery, as
indicated by block 304 of FIGURE 11. In an embodiment in which the component is an
application, for instance, a number of files and registry keys could make up the passive
elements of a fingerprint for a known component. Referring to FIGURE 2, the
component detection rules 76 along with the accumulator 80 and fingerprint database 84
will be used to determine if the passive portions of any fingerprints have now been fully
matched (block 306 of FIGURE 11 depicts this determination). If all of the passive
elements of a fingerprint have been matched, a component detected message will be
generated, as indicated by block 308. Such a message will then be used in the application
discovered embodiment illustrated in FIGURE 14.

Referring again to FIGURE 11, if all of the passive elements of a fingerprint do
match, a determination will be made as to whether any active elements exist for the
fingerprint, as indicated by block 310. If a fingerprint does contain active elements, the
active elements subfingerprints will be activated and these subfingerprints will be added
to the set of fingerprints being considered by the accumulator. As discussed above in
connection with model-based discovery, subfingerprints can be used to discover, in some
embodiments, versions of an application or optional pieces that can be used with a

component. Each of these active element subfingerprints can have one or more active
Page 35

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

elements associated with them that can be executed, as indicated by block 312. These
actions can, for instance, allow the agents to gather additional information that can be
used in the discovery process to match the subfingerprints for subcomponents that might
exist in the IT system. These actions can include, for instance, commands to gather more
detailed information about files, such as the size of certain files, or about registry keys or
directory structures. Referring again to FIGURE 2, the commands 92 to gather more
detailed information can be sent to the observer service 50 of the agent 12 for use in
discovery. Further event messages 94 (FIGURE 2) received during this active discovery
process can then be used to determine if a subfingerprint has been matched, thus
indicating the presence of a subcomponent on the IT system. After these processes of the
component detect rule 302 (FIGURE 11) have been completed, the file create message
can be logged and the event message can be dismissed as having been processed, as
indicated by block 314.

The track changes rule 315 is the second possible rule set that can be carried out
for a file create message. Generally, a file exists message will be subject to the track
changes rule 315 if the created file passes through a filter set that the file is of the type for
which changes are being tracked. Generally, file changes are tracked for files that are part
of applications that have been discovered in the system already (that is, installed
components). A determination is therefore made as to whether the file has been created
and is part of an installed component or application for which tracking changes would be
appropriate. Block 316 of FIGURE 11 depicts this determination. If the file is not part of
an installed component, the message is dismissed, as indicated by block 322.

If the file is part of an installed component, the event message is forwarded to the
network server (block 317). The event message can include information such as the user
name of the person who created the file and when it was created. If the file is one of the
items for which changes are being tracked (block 318), the agent generates a command to
copy the contents of the file at block 319. This command is forwarded to the appropriate
observer (block 320) so that the contents of the file can be copied. A copy of the file
contents is then made so that these contents can later be used in tracking changes to the
file contents if the file is modified.

The track install rule 324 is the third possible rule set than can be performed for a

file create message 300. Initially, this rule determines if a track install is in progress, as
Page 36

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

indicated by block 326 of FIGURE 11. In one embodiment, a track install can be
indicated by a user of the system who is installing an application. If such a track install is
in progress, a determination can be made as to which installation and application the
created message should be attributed. Block 328 depicts the determination of the
initiating process identifier (“PID”). Block 330 depicts the selection of target track
details lists. Block 332 indicates the addition of the file create message to the list of
selected details of the application being installed. After the processing of the track install
rules, or if a track install is not in progress, the file create message can be dismissed, as
indicated by block 334.

2. Delete Messages

FIGURE 12 shows the functions in one embodiment after a message indicating
that a file, registry setting, or schema has been deleted is generated by the system. It
should be noted that the functions depicted in FIGURE 12 can be carried out in either an
agent or in the network server 12 of the system. The discussion below for FIGURE 12
will focus on registry settings, but it should be noted that the same procedures can be
followed for deleted files and schemas as well.

Initially, as indicated by block 400 of FIGURE 12, a message indicating that a
registry setting has been deleted is received. A registry deleted message can be generated
by the registry observer of the agent 12 (FIGURE 2) whenever a registry deletion is
detected, and reactive notification or proactive notification can be used.

In the embodiment of FIGURE 12, each registry setting deleted message is a
candidate for three possible system rules: a component detect rule 402, a track changes
rule 417, and a track install rule 426. Fewer or more rules could be used in other
embodiments. The component detect rule 402 is generally responsible for removing the
information received in the registry setting deleted message from an accumulator that can
be used for discovery, as indicated by block 404 of FIGURE 12. A determination is made
as to whether any fingerprints have lost elements. FIGURE 12 depicts the determination
of whether any elements from a complete set of a fingerprint have been lost, as indicated
by block 406. If one or more fingerprints have lost an element from the complete set, a
component damaged message can be generated, as indicated by block 408. Such a
component damaged message can indicate to users of the IT system that something has

changed for components that had previously been discovered.
Page 37

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

If a component had previously been discovered and later loses an element, a
“weak” match for the corresponding fingerprint can exist. Such a weak match indicates
that, at some point, all of the elements of the fingerprint were matched, but one or more
files changed so that the fingerprint is no longer entirely matched. This weak match can
indicate, in some embodiments, that the component still exists, but may need to be

reconstructed to be useful. In other words, if the component is an application, the

- application has been damaged, but it is believed that the application still exists.

If the minimum set a fingerprint becomes empty such that no elements in the
minimum set of the fingerprint remain matched (block 410), a component uninstalled
message can be generated, as indicated by block 412. If none of the elements of the
minimum set of the fingerprint are matched any longer, it can be assumed that the
component has been uninstalled, deleted, or is thoroughly damaged. If the minimum set
of a fingerprint becomes empty, any active element subfingerprints can be deactivated so
that discovery of the corresponding subcomponents will no longer be attempted (block
414 of FIGURE 12). The deactivation of the active element subfingerprints also
decreases the amount of information sought to be discovered by the agents of the IT
system. The active element subfingerprints can be deactivated and removed from the set
of fingerprints being considered by the accumulator. After the deactivation of active
elements for any fingerprint that is empty, the registry setting deleted message can be
dismissed (block 416) as having been fully processed. In other embodiments, all of the
subfingerprints remain active at all times.

The track changes rule 417 is the second possible rule set that can be carried out
for aregistry setting deleted message. Block 418 of FIGURE 12 depicts an act of
determining if the registry setting is part of an installed component. If not, the message is
discarded, as indicated at block 422. If the registry setting is part of an installed
application, the message is forwarded to the network server so that the deletion can be
noted. If the registry setting is a registry setting for which content changes are being
tracked, as determined at block 420, the contents of the registry setting that were saved
when the registry setting was created or modified are deleted so that unneeded
information is not retained on the system (block 421).

The track install rule 426 is the third possible rule set than can be performed for a

registry setting deleted message. Initially, this rule determines if a track install is in
Page 38

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

progress, as indicated by block 428 of FIGURE 12. In one embodiment, a track install
can be indicated by a user of the system who is installing an application. If such a track
install is in progress, a determination can be made as to which installation and application
the message should be attributed. Block 430 depicts the determination of the initiating
process identifier. Block 432 depicts the selection of target track details list. Block 434
indicates the addition of the file delete message to the list of selected details of the
application being installed. After the processing of the track install rules, the registry
setting deleted message can be dismissed, as indicated by block 436.

3. Modify Messages

FIGURE 13 shows the functions in one embodiment after a message indicating
that a file, registry, or schema has been modified is generated by an observer. FIGURE
13 lists modify messages relating to files, registries, and schemas (see block 450). For
simplicity, however, the following discussion reiating to modify messages refers
specifically to files, although it should be noted that the same procedures can be followed
for registries and schemas. In addition, the functions depicted in FIGURE 13 can be
carried out in the either in the agent or in the network server 10 of the system.

Initially, as indicated by block 450 of FIGURE 13, a message indicating that a file
has been modified is received. The detection of a modified file can occur through
reactive notification by a driver that detects the file being modified in real-time or through
proactive notification by crawling of the file system of the server on which an agent
resides.

In the embodiment of FIGURE 13, each file modified message is a candidate for
three possible system rules: a component (or package) detect rule 452, a track changés
rule 466, and a track install rule 478. Each file modified message can be subject to one or
more of these rules, and generally a filter can be used for the logic set for each rule to
determine if the functions associated with the rule will be performed.

The component detect rule 452 works generally the same as the component detect
rule 302 for an exist message in FIGURE 11, and the component detect rule 452 is
generally responsible for adding the information received in the file modify message to an
accumulator that can be used for discovery, as indicated by block 454 of FIGURE 13. In
an embodiment in which the component is an application, for instance, a number of files

and registry keys could make up the passive elements of a fingerprint for a known
Page 39

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

component. Referring to FIGURE 2, the component detection rules 76 along with the
accumulator 80 and fingerprint database 84 will be used to determine if the passive
portions of any fingerprints have now been fully matched (block 456 of FIGURE 13
depicts this determination). If all of the passive elements of a fingerprint have been
matched, a component discovered message will be generated, as indicated by block 458.
Such a message will then be used in the application discovered embodiment illustrated in
FIGURE 14.

Referring again to FIGURE 13, if all of the passive elements of a fingerprint do
match, a determination will be made as to whether any active elements exist for the
fingerprint, as indicated by block 460. If a fingerprint does contain active elements, the
active elements subfingerprints will be activated and these subfingerprints will be added

to the set of fingerprints being considered by the accumulator. Generally, the active

‘elements of the fingerprint can then be executed, as block 462 indicates. Such features

work substantially the same as discussed in connection with blocks 310 and 312 of
FIGURE 11. After these processes of the component detect rule 452 (FIGURE 13) have
been completed, the file modified message can be logged and the event message can be
dismissed as having been processed, as indicated by block 464.

The track changes rule 466 is the second possible rule set that can be carried out
for a file modified message. Generally, file modifications are tracked for files that are
part of applications that have been discovered in the system already (that is, installed
components). A determination is therefore made as to whether the file is part of an
installed component or application for which tracking changes would be appropriate.
Block 468 of FIGURE 13 depicts this determination. If the file is not part of an installed
component, the message is dismissed, as indicated by block 477.

If the file is part of an installed component, the event message is forwarded to the
network server for analysis (block 470). If the file is one of the items for which content
changes are being tracked (block 472), a copy command is generated (block 473) and
forwarded to the observer. The observer then copies the contents of the file and forwards
these contents to the analysis engine of the agent (block 474). The analysis engine of the
agent will then have the current contents of the file and the previous contents of the file
(that is, the contents before the modification). The analysis engine can therefore compare

the current contents to the previous contents and determine the differences in content
Page 40

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

(block 475). A message containing the differences in content can then be forwarded to
the network server (block 476). In addition, the analysis engine can save the current
contents of the file so that they can be used to determine differences if the file is modified
again. The event message can then be discarded, as indicated by block 477.

The track install rule 478 is the third possible rule set that can be performed for a
file modified message 450. Initially, this rule determines if a track install is in progress,
as indicated by block 480 of FIGURE 13. In one embodiment, a track install can be
indicated by a user of the system who is installing an application. If such a track install is
in progress, a determination can be made as to which installation and application the
created message should be attributed. Block 482 depicts the determination of the process
identifier (“PID”). Block 484 depicts the selection of target track details lists. Block 486
indicates the addition of the file modified message to the list of selected details of the
application being installed. After the processing of the track install rules, or if a track
install is not in progress, the file modified message can be dismissed, as indicated by
block 334.

4, Application Discovered Messages

FIGURE 14 shows the functions in one embodiment after a message indicating
that an application has been discovered has been generated by the system. As noted
earlier, an accumulator within an agent or network server generates an application
discovered message when a.fingerprint has been matched (or when the complete or detect
set of a fingerprint has been matched). Initially, as indicated by block 500 of IGURE
14, a message indicating that an application has been discovered is received.

In the embodiment of FIGURE 14, each application discovered message is a
candidate for three possible system rules: a component detect rule 502, a track changes
rule 508, and a track install rule 520. Fewer or more rules can be used in other
embodiments. In some embodiments, filters are not used for application discovered
messages or other messages generated by the agents or network server. Generally, these
filters are not used in this embodiment because every discovered application can be
considered important for some aspects of the IT system.

The component detect rule 502 is generally responsible for the limited task of
forwarding a message to the network server 10 indicating that an application has been

installed, as indicated by block 504 of FIGURE 14. Block 506 then depicts the dismissal
Page 41

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

of the application discovered message. Generally, the file create rules of FIGURE 11 and
the file delete rules of FIGURE 12 can be processed within the agents of the system, and,
as indicated in block 504 of FIGURE 14, application discovered messages can be
delivered to the network server 10 for further processing.

. The track changes rule 508 is the second possible rule set that can be carried out
for an application discovered message. Generally, this rule is responsible for determining
if the application that has just been discovered has content change tracking enabled and, if
s0, it determines any processing that needs to be done to set up such tracking. Initially,
therefore, a track changes list and filters for the application can be retrieved, as indicated
by block 510 of FIGURE 14. If this list of files, registry keys, and other elements to be
tracked and the list of filters is empty, the application discovered message can be
dismissed by this rule, as indicated by block 518. If the determination of whether there
are files and filters for which changes will be tracked (block 512) shows that such files
and filters exist, a copy message will be generated to get the initial version of items to
track for the application, as indicated by block 514. Block 516 then shows the delivery of
a message to an observer (FIGURE 2) of the agents so that the tracking of changes can
take place within the agents of the system.

The track install rule 520 is the third possible rule set than can be performed for an
application discovered message. This rule is responsible for matching up the set of
tracked installation details with any applications that are discovered. This procedure can
be complicated because a number of track installs can be present at any given time. If
such a track install is in progress (determined at block 522 of FIGURE 14), a
determination can be made as to which installation and application the created message
should be attributed. If a track install is in progress, block 524 depicts the retrieval of a
list of tracked installs that are in progress. An attempt is then made to match the new
application with the correct set of installation details, which can be indicated by a PID
(block 525). If the details of the track install are available, as determined at block 526, an
application install details message can be generated (block 528). The installation details
can then be forwarded to the network server 10. After the processing of the track install
rules, the application discovered message can be dismissed, as indicated by block 532.

The agents can also perform actions in response to other event messages received

in the system. For instance, event messages can be generated that indicate that a copy
Page 42

WO 03/054747 PCT/US02/27348

10

Attorney Docket No. 111345-122

procedure, such as the copy of a file, registry key, or schema, has been completed. In
response to such a message, the track changes rule can determine if the previous version
of the file, registry key, or schema is available. If the previous version is available, the
new copy of the file, registry key, or schema is compared to the old copy, and the
differences are determined. A message containing the differences between the copies can
then be generated and forwarded to the server. Difference messages can then be readily
used for tracking changes in the IT system.

The accompanying Figures depict embodiments of the methods and devices of the
present invention, and features and components thereof. While the present invention has
been described with reference to several embodiments thereof, those skilled in the art will
recognize various changes that may be made without departing from the spirit and scope
of the claimed invention. Accordingly, the invention is not limited to what is shown in the

drawings and described in the specification, but only as indicated in the appended claims.

Page 43

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

What is claimed is:
Claims

1. A method for collecting information on components in an information
technology (IT) system, comprising:

discovering the existence of at least one of the components in the I'T system;

determining at least one dependency between two or more of the components;
and

tracking changes to at least one of the components and the dependency between
two or more of the components.

2. The method of claim 1, further comprising generating a visual map of the
IT system, the visual map including a depiction of at least one of the components and the
at least one dependency between two or more of the components.

3. The method of claim 2, wherein the visual map includes tracked changes

to at least one of the components.

4, The method of claim 1, wherein at least one of the components is an
application.
5. The method of claim 1, wherein discovering the existence of at least one of

the components includes:

receiving event information regarding an occurrence in the IT system, the
occurrence relating to a first component;

comparing the first component along with other components to at least one
fingerprint, wherein the fingerprint represents key low-level elements of a model of a
known component; and

determining that at least one of the components exists when all of the elements of
the fingerprint corresponding to the known component are matched.

6. The method of claim 5, wherein the occurrence is selected from one or
more of a file creation, a file deletion, and a file modification.

7. The method of claim 5, wherein the occurrence is selected from one or
more of a registry key creation, a registry key deletion, and a registry key modification.

8. The method of claim 5, wherein the occurrence is information regarding

detection of a particular component in the IT system.

Page 44

WO 03/054747 PCT/US02/27348

10

15

20

25

30

Attorney Docket No. 111345-122

9. The method of claim 5, further comprising indicating that a particular
component has been damaged if the occurrence is a deletion and at least one of the
elements of the fingerprint are no longer matched by the components in the IT system.

10. The method of claim 5, further comprising indicating that a particular
component has been uninstalled if the occurrence is a deletion and all of the elements of
a minimum set of the fingerprint are no longer matched by the components in the IT
system.

11. The method of claim 1, wherein the at least one dependency is selected
from the group consisting of shared library usage, network usage, and containment
dependencies.

12. The method of claim 1, further comprising:

generating a component discovered message upon the discovery of one of the
components;

retrieving a list of elements to track for the discovered component; and

using the list of elements to track changes to the discovered component.

13. An agent for collecting information on components in an information
technology (IT) system, the agent residing on a computer in the IT system, the agent
comprising:

an observer module to detect event information about elements of the computer;
and

an analysis module to process the event information, the analysis module
including: (a) component discovery rules to process event information and match event
information with elements of one or more fingerprints of known components using an
accumulator to discover the existence on the IT system of at least one of the components,
and (b) dependency discovery rules to detect relationships between components of the I'T
system.

14. A system for collecting information on components in an information
technology (IT) system, comprising:

means for discovering the existence of at least one of the components in the I'T
system;

means for determining at least one dependency between two or more of the

components; and
Page 45

WO 03/054747 PCT/US02/27348
Attorney Docket No. 111345-122

means for tracking changes to at least one of the components and the dependency

10

15

20

25

30

between two or more of the components.

15. An apparatus for collecting information on components in an information
technology (IT) system, comprising:

a memory storing a program;

a processor in communication with the memory; in which the processor is
directed by the program to:

discover the existence of at least one of the components in the IT system;

determine at least one dependency between two or more of the
components; and

track changes to at least one of the components and the dependency
between two or more of the components.

16. A method for discovering components in an information technology (IT)
system, comprising: '

receiving event information regarding an occurrence in the IT system, the
occurrence relating to a first component;

comparing the first component along with other components to at least one
fingerprint, wherein the fingerprint represents key low-level elements of a model of a
known component; and

if the first component and the other discovered components match substantially
all of the key low-level elements of the fingerprint, using a subfingerprint of a known
refined component to discover the existence of a second component that corresponds to
the known refined component.

17. The method of claim 16, wherein the known refined component is a
version of the known component.

18. The method of claim 16, wherein the known refined component is an
optional piece of the known component.

19. The method of claim 16, further comprising generating a command
message to collect further information if all of the low-level elements of the fingerprint
are matched.

20. The method of claim 19, further comprising receiving event information in

response to the command message, wherein the event information is used with the
Page 46

WO 03/054747 PCT/US02/27348

Attorney Docket No. 111345-122

subfingerprint of the known refined component to discover the existence of the second
component.

21. The method of claim 16, further comprising detecting low-level items in
the IT systems and generating event information regarding the low-level items.

5 . 22. The method of claim 21, wherein the low-level items are selected from one
or more of files, registry settings, and database schemas.

23. A computer-readable medium for discovering components in an
information technology (IT) system, the computer-readable medium storing instructions
that direct a microprocessor to:

10 receive event information regarding an occurrence in the IT system, the
occurrence relating to a first component;

compare the first component along with other components to at least one
fingerprint, wherein the fingerprint represents key low-level elements of a model of a
known component; and

15 if the first component and the other discovered components match substantially
all of the key low-level elements of the fingerprint, use a subfingerprint of a known
refined component to discover the existence of a second component that corresponds to
the known refined component.

24. An apparatus for discovering components in an information technology

20 (IT) system, comprising:

a memory storing a program;

a processor in communication with the memory; in which the processor is
directed by the program to:

receive event information regarding an occurrence in the IT system, the
25 occurrence relating to a first component;
compare the first component along with other components to at least one
fingerprint, wherein the fingerprint represents key low-level elements of a model of a
known component; and
if the first component and the other discovered components match

30 substantially all of the key low-level elements of the fingerprint, use a subfingerprint of a

known refined component to discover the existence of a second component that

corresponds to the known refined component.
Page 47

WO 03/054747 PCT/US02/27348

Attorney Docket No. 111345-122

25. A method for managing components in an information technology (IT)
system, comprising:
receiving a first event message for a first occurrence in the IT system, the first
occurrence relating to a first component;
5 if the first component matches at least one low-level element of a fingerprint of a
model of a known component, adding the first component to an accumulator;
if all of the low-level elements of the fingerprint have been matched by the first
component and other components, generating a command to detect further information;
receiving, in response to the command, a second event message providing further
10 details about one of the components; and
using a subfingerprint of a known refined component and the further details
about one of the components to discover a refined component.
26. The method of claim 25, wherein the first occurrence is one of a file
creation, file deletion, file modification, registry key creation, registry key modification,
15 and registry key deletion.
27. The method of claim 25, further comprising:
generating a component detected message upon the discovery of the refined
component;
retrieving a list of elements to track for the refined component; and
20 using the list of elements to track changes to the refined component.
28. A method for discovery of a refined component in an information
technology (IT) system, comprising:
using a fingerprint of a model of a known component to discover an existing
component in the IT system by matching passive elements in the fingerprint with event
25 information of the IT system;
generating and transmitting a command message defined by active elements of
the fingerprint to discover the refined component;
receiving event information relating to the active elements of the fingerprint of
the known component; and
30 using a subfingerprint of the refined component to discover the refined

component, the refined component relating to the known component, wherein the

Page 48

WO 03/054747 PCT/US02/27348

Attorney Docket No. 111345-122

subfingerprint of the refined component becomes active upon the discovery of the
existing component using the fingerprint.
29. The method of claim 28, wherein receiving event information relating to
active elements includes receiving an event message.
5 30. A method for determining dependencies between at least two components
in an information technology (IT) system, comprising:
discovering the at least two components in the IT system;
monitoring the usage of resources by the two components in the IT system and, if
aresource is used by one of the two components, generating a message indicating the
10 use of that resource by that component;
accumulating each message indicating the use of one of the resources by one of
the two components; and
if the accumulated messages indicate that the two components use the same
resource, then indicating that a dependency between the two components has been
15 detected.
31. The method of claim 30, further comprising determining a direction of the
dependency between the two components.
32. The method of claim 30, wherein the component is selected from the
group consisting of an application, a network connection endpoint, and a server.
20 33. The method of claim 32, wherein at least one message indicates a network
outbound connection by one of the two components.
34. The method of claim 32, wherein at least one message indicates a network
listener by one of the two components.
35. The method of claim 32, wherein at least one message indicates a use of a
25 file by one of the two components.
36. The method of claim 30, further comprising tracking changes to the
dependency between the two components.
37. The method of claim 30, wherein the dependency is a containment
dependency.
30 38. The method of claim 30, wherein the dependency is a network

dependency.

Page 49

WO 03/054747 PCT/US02/27348

Attorney Docket No. 111345-122

39. The method of claim 30, wherein the dependency is a shared usage
dependency.
40. An apparatus for determining dependencies between at least two
components in an information technology (IT) system, comprising:
5 a memory storing a program;
a processor in communication with the memory; in which the processor is
directed by the program to:
discover the at least two components in the IT system;
monitor the usage of resources by the two components in the IT system
10 and, if a resource is used by one of the two components, generating a message indicating
the use of that resource by that component;
accumulate each message indicating the use of one of the resources by one
of the two components; and
if the accumulated messages indicate that the two components use the
15 same resource, then indicate that a dependency between the two components has been
detected.
41. A method for tracking content changes to a component in an information
technology (IT) system, comprising:
generating an event message for an occurrence in the IT system, the occurrence
20 relating to the component;
if contents are to be tracked for the component, comparing current contents of the
component with a previous version of the contents of the component; and
logging differences between the current contents of the component and the
previous version of contents of the component.
25 42. The method of claim 41, further comprising:
generating a command to copy the current contents of the component; and
in response to the command, receiving the current contents of the
component.
43. An apparatus for tracking content changes to a component in an
30 information technology (IT) system, comprising:

a memory storing a program;

Page 50

WO 03/054747 PCT/US02/27348

10

15

Attorney Docket No. 111345-122

a processor in communication with the memory; in which the processor is

directed by the program to:

generate an event message for an occurrence in the IT system, the
occurrence relating to the component;

if contents are to be tracked for the component, compare current contents
of the component with a previous version of the contents of the component; and

log differences between the current contents of the component and the
previous version of contents of the component.

44. A system for collecting information on components in an information
technology (IT) system, comprising:

a plurality of agents, wherein each agent resides on a computer of the IT system,
and wherein each agent includes instructions to: (a) discover components in the IT
system, (b) determine at least one dependency between two or more of the discovered
components, and (c) track changes to the discovered components and the dependency
between two or more of the discovered components; and

a network server in communication with the plurality of agents, wherein the
network server includes instructions to receive component detection messages from the

agents and generate a visual map of the discovered components.

Page 51

WO 03/054747 PCT/US02/27348

117
18 26
BROWSER
A
28 y 24
BROWSER |« > «—|Ul SERVER
/20 v /10
GATEWAY NETWORK
SERVER | > »| SERVER
‘ ‘ FIREWALL 1 5
11 13
SERVER | VSERVER v 16
AGENT AGENT AGENT DATABASE |
\ \
D \
' 12 14
|
I
1
i
1
i
SERVER

FIG. 1

PCT/US02/27348

WO 03/054747

~ .
p ¢ Bl
\ A
Jsvaviva 3
INRIJHIONIE e HOLVINWNOOY Ngg
A A
09 85 0 S e
/ / / / /
A s3ny SER NN A
871 Nollo3lza | Nolloatza | o4 s
| AoNaNadg3a | ININOJINOD 29 A
zL T \
_\m_www__\mow 4 / YIAYISA0|¥IAYTSA0 | ¥IAYTSE0 | MIAYISEO [HIAYTSEO
‘ ! JOWMOVd | 374 |3SvavLiva| MHOMLIN | SSI00ud
17} INIONT TNy SYILTIS |
; ; ———
JOIAYIS
NOILO3INNOD FIINGIS SISATVNY JOINYIS YIAYISHO
06 1 0L/ 1 05~
56— SIN3AT b6~ SINIAZ
25— SANVININOD 25— SONVANOD

¢l INJOV

PCT/US02/27348

WO 03/054747

317

€ 'Oid

y dVI 1SIS¥3d
cLl A SATNE R
~ | a
O__‘\ HOLVINNNDOY . < 3Svavivda
ogL” T
- A
o] sT1INY SN Ngo| 9l Vel ezl
NOILO3L3d | NOILO3LIA
_mwum__m& AONIANIJ3A | ININOLNOD
701 NOILYIHO | NOILVIMO | NOILYIND
4 4 p IINY [LNINAYIONI | 15a0n
| |
¥01 7 INIONT 31NN SHALTIS
; ; H ; :
N omﬂww\wm__,_mzmoo JDIAYIS SISATYNY F0IAY3S ONITIAONW
ovi” 4 4 * o0/ 4 3 0z’
26— SANVINNOD !
6~ SLN3AZ
3| JOVAHTINI ||
osi-] ¥3sn

0l ¥dAY3S MHOMLIN

WO 03/054747

PCT/US02/27348

4/17
F1
FILE1.exe ORGANIZATIONAL
ELEMENTS FILE3.dat
FILEX .xxx
COMMAND: CHECK SIZESND
CHECKSUM OF
ACTIVE
ELEMENTS FILE1.exe
MATCH: SUB1 OR SUB2

FIG. 4

SUB 1

MATCH F1 ACTIVE ELEMENTS
SIZE OF FILE1.exe =XXX
CHECKSUM OF FILE 1.exe=YYY

FIG. 5A

SuUB 2

MATCH F1 ACTIVE ELEMENTS
SIZE OF FILE1.exe =227
CHECKSUM OF FILE 1.exe=BBB

FIG. 5B

WO 03/054747

5117

PCT/US02/27348

L -180

MACHINE 1
TOMCA\T 160
WEBAPPS
————————————————— EMPLOYEE PROFILES
MACHINE 2
162
MS SQL SERVER
PORT
1433

FIG. 6

WO 03/054747

6/17

NO

PCT/US02/27348

700
CONNECTION.LISTENER.EXISTS

CONNECTION.EXISTS

Y 702
CONNECTION RULE |~
ACTION
/706
GENERATE RESOURCE.
UNKNOWN LISTENER ADD MESSAGE

OR OUTBOUND
?

708

LISTENER
OWNING PACKAGE
CHANGE?

GENERATE RESOURCE. 710

MODIFY MESSAGE

712
»| DISMISS

FIG. 7A

WO 03/054747 PCT/US02/27348

77

CONNECTION.LISTENER.DELETED 720

CONNECTION.DELETED

4
CONNECTION RULE

ACTION

722

724

DELETE

OF PREVIOUS

CONNECTION OR

LISTENER
?

YES
726

GENERATE RESOURCE.
MODIFY MESSAGE

Y 728
(DISmISS):

FIG. 7B

WO 03/054747

PCT/US02/27348

817

PROCESS.EXISTS
PROCESS.DETAIL

| -730

'

PROCESS RULE

| -732

ACTION

PREVIOUSLY

UNKNOWN

PROCESS
?

CAN
DETERMINE
OWNING
PACI§AGE

740

OPENED
FILE LIST
DIFFERENT?

GENERATE
APPROPRIATE
RESOURCE ADD AND
MODIFY MESSAGES

YES
GENERATE 742
RESOURCE.
ADD MSG
744

DISMISS

FIG. 7C

| -738

PCT/US02/27348

WO 03/054747

o7

ds ©id

9L

JOVSS3IN d310313d
AONIAN3I43A
ALVIHd0HddY

EIN=ENED;

SSINSIA

99/

¢9L—

AON3IAN3d3d 40
NOILOZHIA ININGI L=

I<EIR=ELS
dNVS NO 30dN0S3Y 40
Sd3SN ¥3HLO ANI4 ‘T4 Al

|09/

S30HNOSTY YANILSIT
ONIHOLVIN
dNId ‘aNNOg.LNO A

| 1+-89/

S304N0S3d ANNOYLNO
ONIHOLVYIN ANI4 “Y3INTLSIT 4

_loss

1475l

dOLYINNNDOJVY Ol aavy

NoLLOV 4

26)— 31NY 30dNOS3Y

A

06/~ adv'30dN0os3d

PCT/US02/27348

WO 03/054747

10117

= VAN E

AONIANI4IA ILVHINID

J9VSS3IN A3IAONIYH

(390FIMONY FLNJOSav SSINSIa
, 1NO3NIL"e") 98/
¥8.—1 QAIASILYS VIHILINO 4| 8
S3ION3IANI43A

d31vIO0SSY aNId ‘3714 i

| —

28.

™

103dSNS SY

SIIONIANILdIA MHVIN

S3ION3AN3d3d
d31vIOOSSY
aNI4 ‘aNNOg.LNO

HOLYTINNNOJY WOYH IAONIY

- 081

8.1

y2,-1
NOILOVY |
2, 31Nd 30¥NOSIY
012 —|PNONTE30UNOS Y

WO 03/054747 PCT/US02/27348

1117

AGENT 12

OBSERVER SERVICE K_—_——]—— FILTERING

70
4

ANALYSIS SERVICE K——1 — FILTERING

NETWORK
SERVER 10

h 4
ANALYSIS SERVICE K———— FILTERING

WO 03/054747

12117

~~200
CREATE FINGERPRINTS
FOR DISCOVERY
\ 4
202
COLLECT EVENTS USING
OBSERVERS
\ 4
USE FINGERPRINTS AND 204
SUBFINGERPRINTS TO
DISCOVER COMPONENTS
\ 4
206
DISCOVER DEPENDENCIES
BETWEEN COMPONENTS
\ '
TRACK CHANGES TO 208
DISCOVERED COMPONENTS
\ 4
210
GENERATE A VISUAL
MAP OF THE SYSTEM

FIG. 9

PCT/US02/27348

PCT/US02/27348

WO 03/054747

13/17

0L "©Old

JaueiiU| [B20] _ _ _)
jouequj eso7 | | | @
ol Jooljoy
WdZev L00Z "LC JelN 0's 5002 SMOPUIR 1002 WYbLAdOD
L'e Teswo
0l 810018
L00Z ‘61 god Wdee¥ 100¢ 'Z¢ e 0°Z 19A8g TOS HOSOIOIN
1002 'y uep oLs VIS P NEET LTI
L00Z ‘0l uep 271 UORIPT PIEPUEIS HIAS ¢ EAEP
um__mwmc_ abueyn u\mm._ co_m“m> 0GZ — sweN
957 vz 28z pyg—Suonedlddy pajejsu|
WOY-ad e
%19 . 928¢ 6819 Ysig pleH [e907 20
9814 Jusdiad (aw) ssifg eaig (g)ezis felol adAL aAuQ g
seoIn8(] ebelo
gyg— SeONed SLEIOS Moday
| JUNoY) J0SS800.d suogeao
. siswosny
0 [9PO ‘|i winuad (8| J0ss9201d sieneS
612 PIING 000Z SMOPUIAA uoisiep SO suopnjog
(z'0°891'261) HIv1g ewen Jeindwod wco;&_aa,« »
\ . H
0ve Arewiwing oo A [
aquosa(d <
nobo; dipy yodees SIswWoIsno Ajijou il 1sul doel) AlojsIy MalA
YIV1g < SI9AISS < SUONE[jEIsu| %u
UIvg Jonies 2 M
« SN | 09 J b_ = = —— mcwﬁmcmlm:mn.__umumEmEmmE.nm.ﬁml_oo__E\amwm._ou__mtmos_woo.\\az:@mmwﬁv«‘_u =
woo'[eay ssnosig Ip3 Juld ey AloslH sejloAed yoleag swoH yseyey doyg piemiog - yoeq —
A A
B FE B BRI TE &5l
_) digq slo0l sejioAeT melA YpF e)iT = lﬂw
[Ol[=] Ja10/dx3 Joulaju JosoXI - 2i00jey (@

WO 03/054747

14/17

PCT/US02/27348

FILE.EXISTS ~300
REGISTRY.SETTING.EXISTS
SCHEMA.EXISTS
vy 302 v 315 v 324
PACKAGE_DETECT TRACK_CHANGE TRACK_INSTALL
RULE RULE RULE
ACTIONy 304 ACTION
ADD TO 316
ACCUMULATOR CREATED TRACK NO
& PART OF INSTALL- INSTALL IN
ED PACKAGE PROGRESS
ALL ? ?
NO PASSIVE YES 317
ELEMENTS FORWARD MESSAGE YESy 328
TO SERVER DETERMINE
308 518 INITIATING PID
GENERATE PACKAGE TRAC l
DETECTED MESSAGE DETAILS FOR SNO 330
310 SELECT TARGET
DO TRACK DETAILS LIST
NO ACTIVE 1
ELEMENTS 332
EXIST? GENERATE COPY ADD MESSAGE TO
312 COMMAND SELECTED
YES - l 320 DETAILS LIST
EXECUTE ACTIVE =t Df 334
ELEMEN
MENT ACTIONS FORWARD DISMISS |
314 4 COPY
Y CONTENTS
y DISMISS 329

DISMISS

FIG. 11

WO 03/054747

15/17

PCT/US02/27348

FIG. 12

FILE.DELETED | -400
REGISTRY.SETTING.DELETED
SCHEMA.DELETED
vy 402 v M7 | 426
PACKAGE_ TRACK_CHANGE TRACK_INSTALL
DETECT RULE RULE RULE
ACTIONy 404 ACTION
REMOVE FROM 418
ACCUMULATOR PART OF
NO - |NSTALLED INSTALL IN \NO
APPLICATION PROG?RESS
? .
YES 419 YES 430
FORWARD MESSAGE DETERMINE
TO SERVER INITIATING PID
408 420
GENERATE PACKAGE TRACK
DAMAGED MESSAGE DETAILS FOR SNO
432
ALD 410 SELECT TARGET
NO MINIMUM TRACK DETAILS LIST
SET ENTRIES
GONE? DELETE SAVED
VES 412 CONTENTS
GENERATE PACKAGE v 422 ~434
UNINSTALLED MESSAGE DISMISS ADD MESSAGE TO
| S SELECTED
| 416 DETAILS LIST
: 436
| DISMISS DISMISS |

WO 03/054747 PCT/US02/27348

4 16/17
FILE.MODIFIED 450
REGISTRY.SETTING.MODIFIED
SCHEMA.MODIFIED
vy 452 v 466 \ 4r8
PACKAGE_ TRACK_CHANGE TRACK_INSTALL
DETECT RULE “RULE ROLE
ACTIONy 454 ACTION ACTION
UPDATE 480
ACCUMULATOR | NO TRACK NO
OF INSTALLED INSTALL IN
APPLICATION PROGRESS
ALL 456 1 ?
PASSIVE 470 YES 482
ELEMENTS - -
MATCH? FORWARD MESSAGE DETERMINE
TO SERVER | INITIATING PID
458 7
GENERATE PACKAGE TRACK 484
DETECTED MESSAGE DETAILS FORSSNO Vs
THIS ITEM? SELECT TARGET
50 460 TRACK DETAILS LIST
NO ACTIVE 473
ELEMENTS GE(I:\I(I)EmLIiI C%PY 486
D
FORWARD TO ADDS“QEESS%E TO
OBSERVER DETAILS LIST
EXECUTE ACTIVE v
ELEMENTS ACTIONS COPY CONTENTS 474 488
IN OBSERVER & DISMISS
SEND TO

y 464 [ANALYSIS SERVICE
: ¥
DISMISS DETERMINE | {475
DIFFERENCES
BETWEEN
CURRENT
CONTENTS &
PREVIOUS
CONTENTS
¥
SEND | 476
DIEFERENCES
TO NETWORK
SERVER

477

i 1

WO 03/054747

17117

PCT/US02/27348

APPLICATION 500
DETECTED MESSAGE

vy 502 v 508 v 520
~ COMPONENT TRACK CHANGE TRACK INSTALL
DETECT RULE RULE RULE
y 504 v 510
FORWARD RETRIEVE TRACK '
MESSAGE TO CHANGES LIST TRACK
NETWORK SERVER AND FILTERS INSTALL IN

PROGRES
?

4 506
(5 512
DISMISS YES LIST AND 524
FILTERS RETREIVE LIST
EMPTY? OF TRACKED
INSTALLS
NO 514 | 525
GENERATE COPY SELECT INSTALL
COMMAND TO GET DETAILS BASED
INITIAL VERSION UPON PID
OF ITEMS TO TRACK
SEND MESSAGE TO
OBSERVER TO
START TRACKING
CHANGES WITH
LISTS

518
DISMISS

FIG. 14

INSTALL DETAILS

GENERATE
APPLICATION

NOTIFICATION

| 530

FORWARD
INSTALL
DETAILS TO
SERVER

y 532

DISMISS

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

