

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2020/165569 A1

(43) International Publication Date

20 August 2020 (20.08.2020)

(51) International Patent Classification:

C09K 5/04 (2006.01)

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(21) International Application Number:

PCT/GB2020/050306

Published:

— *with international search report (Art. 21(3))*

(22) International Filing Date:

11 February 2020 (11.02.2020)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1901890.2 11 February 2019 (11.02.2019) GB
1901885.2 11 February 2019 (11.02.2019) GB
PCT/GB2019/052290
14 August 2019 (14.08.2019) GB

(71) Applicant: MEXICHEM FLUOR S.A. DE C.V.

[MX/MX]; Eje 106 (sin número), Zona Industrial, San Luis Potosí, S.L.P., C.P. 78395 (MX).

(71) Applicant (for MG only): MEXICHEM UK LIMITED
[GB/GB]; The Heath Business Park & Technical Park, Runcorn Cheshire WA7 4QX (GB).

(72) Inventor: LOW, Robert; Mexichem UK Limited, The Heath Business Park & Technical Park, Runcorn Cheshire WA7 4QX (GB).

(74) Agent: PUGH, Robert Ian; Potter Clarkson LLP, The Belgrave Centre, Talbot Street, Nottingham NG1 5GG (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

WO 2020/165569 A1

(54) Title: COMPOSITIONS

(57) Abstract: According to the present invention, there is provided a composition comprising 1,1-difluoroethylene (R-1132a), difluoromethane (R-32), 2,3,3,3-tetrafluoropropene (R-1234yf) and carbo dioxide (CO₂, R-744). The invention also provides a composition R-1132a, R-32, R-1234yf and at least one compound selected from the group consisting of: pentafluoroethane (R-125), 1,1-difluoroethane (R-152a), 1,1,1,2-tetrafluoroethane (R-134a), trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and 1,1,1,2,3,3-heptafluoropropane (R-227ea); optionally, the composition comprises at least one further compound selected from the group consisting of trifluoroethylene (R-1123), propane (R-290), propylene (R-1270), isobutane (R-600a) and carbon dioxide (CO₂, R-744). The present invention also provides a composition comprising R-1132a, R-32 and R-1234yf.

COMPOSITIONS

The invention relates to compositions, preferably to heat transfer compositions which may be suitable as replacements for existing refrigerants such as R-410A.

5

The listing or discussion of a prior-published document or any background in the specification should not necessarily be taken as an acknowledgement that a document or background is part of the state of the art or is common general knowledge.

10 Mechanical refrigeration systems and related heat transfer devices such as heat pumps and air-conditioning systems are well known. In such systems, a refrigerant liquid evaporates at low pressure taking heat from the surrounding zone. The resulting vapour is then compressed and passed to a condenser where it condenses and gives off heat to a second zone, the condensate being returned through an expansion valve to the evaporator, so completing the
15 cycle. Mechanical energy required for compressing the vapour and pumping the liquid is provided by, for example, an electric motor or an internal combustion engine.

20 Residential and light commercial air-conditioning and heat pump units are commonly charged with the non-flammable refrigerant R-410A, a mixture of R-32 (difluoromethane) and R-125 (pentafluoroethane). Although the use of this refrigerant results in high system efficiency and hence low energy consumption, the greenhouse (or global) warming potential (GWP) of R-410A is high (2107, using the IPCC AR4 data set).

25 R-32 (difluoromethane) has been proposed as an alternative to R-410A. R-32 is classed as mildly flammable ("2L" using the ASHRAE classification system). It offers comparable energy efficiency to R-410A in appropriately designed equipment and has a GWP of 675. However, R-32 has a number of disadvantages: its compressor discharge temperatures are significantly higher than R-410A and its operating pressures can also be higher than for R-410A. Compensating for these higher discharge temperatures, by for example using "demand
30 cooling" or liquid injection technologies is possible. These can however reduce the capacity and energy efficiency of the system. A further disadvantage of R-32 is that its GWP (675) is still high when compared to the GWPs of hydrofluoro-olefin refrigerants such as tetrafluoropropenes or hydrocarbons such as propane.

35 Binary blends of R-32 with R-1234yf (2,3,3,3-tetrafluoropropene) or R-1234ze(E) (*E*-1,3,3,3-tetrafluoropropene) and ternary blends of R-32, tetrafluoropropenes (either R-1234ze(E) or R-1234yf) and a third component have also been proposed as alternative fluids. Examples of

such fluids include R-454B, which is a binary mixture of R-32/R-1234yf (68.9%/31.1%) with a GWP of 466, and R-452B, a ternary mixture of R-32/R-125/R-1234yf (67%/7%/26%) with a GWP of 698. These fluids have reduced GWP compared to R-410A and can offer reduced discharge temperature. However, their GWP values are similar to R-32 and still high when

5 compared to the GWPs of hydrofluoro-olefin refrigerants or hydrocarbons.

In looking for alternative low temperature refrigerants, several other factors must also be considered. Firstly, if the fluid is to be used as a retrofit or conversion fluid in existing equipment, or as a “drop-in” to new equipment using an essentially unchanged R-410A system

10 design, then non-flammability is highly desired, as the existing design will have been based on the use of non-flammable fluid.

If an alternative fluid is to be employed in a wholly new system design, then a degree of flammability may be tolerable, but the use of highly flammable fluids may impose cost and

15 performance penalties to mitigate hazards. Acceptable charge size (refrigerant mass) in a system is also governed by the flammability classification of the fluid, with class 3 fluids, such as ethane, being the most strictly limited. In this case a weaker flammability characteristic is highly desirable since it may allow larger system charges.

20 Thirdly, the typical application of such fluids is in residual or commercial air-conditioning and heat pump units, which are usually located in buildings. It is therefore desirable to have acceptably low toxicity as a characteristic of the fluid.

25 Furthermore, the volumetric capacity (a measure of the cooling power achievable by a given size of compressor) and energy efficiency are important.

30 Thus, there is a need to provide alternative refrigerants having improved properties such as low GWP (so as to reduce the environmental impact of refrigerant leakage), yet possessing acceptable refrigeration performance, flammability characteristics and toxicology. There is also a need to provide alternative refrigerants that may be used in existing devices such as refrigeration devices with little or no modification.

35 More specifically, it would be advantageous to find refrigerant blends having comparable performance (capacity and energy efficiency, expressed as COP) to R-410A with compressor discharge temperature comparable to that of R-452B or R-454A but with a GWP significantly lower than that of R-32. As R-32 and R-454B are both considered weakly flammable blends

(flammability class “2L” according to ASHRAE Standard 34), it would also be desirable that such lower-GWP blends would be of flammability class 2L.

The subject invention addresses the above and other deficiencies, and the above needs, by
5 the provision of a composition comprising 1,1-difluoroethylene (R-1132a), difluoromethane (R-
32), 2,3,3,3-tetrafluoropropene (1234yf) and at least one compound selected from the group
consisting of: pentafluoroethane (R-125), 1,1-difluoroethane (R-152a), 1,1,1,2-
tetrafluoroethane (R-134a), trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and 1,1,1,2,3,3,3-
10 heptafluoropropane (R-227ea). Optionally, the composition comprises at least one further
compound selected from the group consisting of trifluoroethylene (R-1123), propane (R-290),
15 propylene (R-1270), isobutane (R-600a) and carbon dioxide (CO₂, R-744).

Such compositions are referred to hereinafter as compositions of the invention.

15 The compositions of the invention typically contain from about 1 or 2 or 3 or 4 to about 60% by
weight R-1132a. Advantageously, such compositions comprise from about 1 or 2 or 3 or 4 to
about 50% by weight R-1132a, such as from about 1 or 2 or 3 or 4 to about 40% by weight R-
1132a, for example from about 1 or 2 or 3 or 4 to about 30% by weight R-1132a. Conveniently,
20 the compositions of the invention comprise from about 1 or 2 or 3 or 4 to about 25% by weight
R-1132a, such as from 2 to about 20% by weight R-1132a, for example 3 or 4 to about 20%
by weight R-1132a. Preferably, such compositions comprise from about 5 to about 20% by
weight R-1132a.

25 The compositions of the invention typically contain from about 1 to about 99% by weight R-32
or from about 2 to about 98% by weight R-32. Advantageously, such compositions comprise
from about 2 to about 95% by weight R-32, such as from about 3 to about 95% by weight R-
32. Conveniently, the compositions of the invention comprise from about 5 to about 90% by
30 weight R-32, such as from about 5 to about 85% by weight R-32, for example from about 10
to about 80% by weight R-32. Preferably, such compositions comprise from about 15 to about
75% by weight R-32, such as from about 15 to about 70% by weight R-32.

35 The compositions of the invention typically contain from about 1 to about 99% by weight R-
1234yf or from about 2 to about 98% by weight R-1234yf. Advantageously, such compositions
comprise from about 2 to about 90% by weight R-1234yf, such as from 5 to about 90% by
weight R-1234yf. Conveniently, the compositions of the invention comprise from about 7 to
about 85% by weight R-1234yf, such as from about 8 to about 80% by weight R-1234yf.
Preferably, such compositions comprise from about 10 to about 75% by weight R-1234yf, such

as from about 10 to about 70% by weight R-1234yf, for example from about 10 to about 65% by weight R-1234yf.

Conveniently, compositions of the invention comprise from about 1 to about 60% by weight R-5 1132a, from about 1 to about 99% by weight R-32, and from about 1 to about 99% by weight R-1234yf. Such compositions typically contain from about 1 to about 50% by weight R-1132a, from about 2 to about 97% by weight R-32, and from about 2 to about 97% by weight R-1234yf.

Conveniently, compositions of the invention comprise from about 2 to about 60% by weight R-10 1132a, from about 1 to about 97% by weight R-32, and from about 1 to about 97% by weight R-1234yf. Such compositions typically contain from about 2 to about 50% by weight R-1132a, from about 2 to about 96% by weight R-32, and from about 2 to about 96% by weight R-1234yf.

Advantageously, compositions of the invention comprise from about 1 to about 40% by weight R-15 1132a, from about 5 to about 90% by weight R-32, and from about 5 to about 90% by weight R-1234yf; or from about 2 to about 40% by weight R-1132a, from about 5 to about 90% by weight R-32, and from about 5 to about 90% by weight R-1234yf; or from about 2 to about 40% by weight R-1132a, from about 4 to about 94% by weight R-32, and from about 4 to about 94% by weight R-1234yf.

20

Preferably, compositions of the invention comprise from about 3 to about 20% by weight R-1132a, from about 10 to about 80% by weight R-32 and from about 10 to about 75% by weight R-1234yf; or from about 3 to about 30% by weight R-1132a, from about 10 to about 91% by weight R-32 and from about 6 to about 87% by weight R-1234yf.

25

Conveniently, compositions of the invention comprise from about 5 to about 20% by weight R-1132a, from about 20 to about 70% by weight R-32 and from about 10 to about 65% by weight R-1234yf; or from about 4 to about 25% by weight R-1132a, from about 15 to about 88% by weight R-32 and from about 8 to about 81% by weight R-1234yf.

30

Typically, the compositions of the invention contain R-1132a, R-32 and 1234yf in a combined amount of from about 1 to about 99 weight %, optionally from about 1 to about 90 weight %, preferably from about 1 to about 80 weight %, such as from about 1 to about 75 weight %, for example from about 1 to about 70 weight %, based on the total weight of the composition.

35

Any of the above described compositions may additionally contain carbon dioxide (R-744, CO₂). Adding R-744 has the advantage of reducing the R-1132a in the vapour phase and

hence reducing potential flammability of the vapour phase, but tends to increase compressor discharge temperature and temperature glide.

When present, the compositions of the invention typically contain from about 1 to about 30% by weight CO₂. Preferably, such compositions contain from about 2 to about 15% or about 20% by weight CO₂. In one embodiment, the compositions of the invention contain R-1132a and CO₂ in a combined amount of from about 2 to about 50% by weight, such as from about 2 to about 40% by weight, for instance from about 4 to about 30% by weight, e.g. from about 5 to about 20% by weight.

10

Any of the above described compositions may additionally contain 1,1,2-trifluoroethene (R-1123). An advantage of using R-1123 in the compositions of the invention is that it gives similar capacity to R-32 but it has negligible GWP. By incorporation of a proportion of R-1123 the overall GWP of a composition having similar capacity to R-410A may then be reduced compared to an equivalent ternary R-1132a/R-32/R-1234yf composition at constant R-1132a and R-1234yf proportions. R-1123 may only safely be used as a diluted component in compositions of the invention. The proportion of R-1123 in the compositions of the typically is such that the maximum molar concentration of R-1123 either in the composition of the invention as formulated or in its worst-case fractionated compositions (as defined in ASHRAE Standard 34 Appendix B) should be less than 40%.

15

20

When present, the compositions of the invention typically contain from about 1 to about 30% by weight R-1123; or from about 2 or about 5 to about 30% by weight R-1123. Preferably, such compositions contain from about 5 to about 20% by weight R-1123 such as from about 5 to about 15% by weight, for example from about 5 to about 10% by weight R-1123.

25

30

Alternatively, the compositions of the invention may contain less than about 8% or about 7% or about 6% or about 5% by weight R-1123, such as less than about 4% or about 3% by weight R-1132a, for example less than about 2% or about 1% by weight R-1123. Preferably, such compositions are substantially free of R-1123. Advantageously, the compositions of the invention contain no (readily detectable) R-1123.

When the compositions of the invention contain R-134a, typically it is present in an amount of from about 1 to about 40 weight %, for example from about 2 to about 30 weight %.

35

When present, the compositions of the invention typically contain R-125 in an amount of from about 1 to about 20 weight %, for example from about 2 to about 15 weight %.

When the compositions of the invention contain R-1234ze(E), typically it is present in an amount of from about 1 to about 40 weight %, for example from about 2 to about 30 weight %.

5 When present, the compositions of the invention typically contain R-152a in an amount of from about 1 to about 30 weight %, for example from about 2 to about 20 weight %.

When the compositions of the invention contain R-600a, typically it is present in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10 weight %, for example

10 from about 1 to about 5 weight %.

When present, the compositions of the invention typically contain R-290 in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10 weight %, for example from about 1 to about 5 weight %.

15

When the compositions of the invention contain R-1270, typically it is present in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10 weight %, for example from about 1 to about 5 weight %.

20 Preferred compositions of the invention containing 4 components include R-1132a, R-32, R-1234yf and R-152a; R-1132a, R-32, R-1234yf and R-134a; R-1132a, R-32, R-1234yf and R-1234ze(E); R-1132a, R-32, R-1234yf and R-125; or R-1132a, R-32, R-1234yf and R-227ea. For the avoidance of doubt, these compositions may contain the amounts of the identified components as hereinbefore described.

25

Preferred compositions of the invention containing 5 components are set out in the following table, wherein “Base” represents R-1132a, R-32 and R-1234yf. For the avoidance of doubt, these compositions may contain the amounts of the identified components as hereinbefore described.

30

Base + CO ₂ and R-1234ze(E); Base + CO ₂ and R-125; Base + CO ₂ and R-152a; Base + CO ₂ and R-134a; Base + CO ₂ and R-227ea;	Base + R-1123 and R-1234ze(E); Base + R-1123 and R-125; Base + R-1123 and R-152a; Base + R-1123 and R-134a; Base + R-1123 and R-227ea;
Base + R-290 and R-1234ze(E);	Base + R-1270 and R-1234ze(E);

Base + R-290 and R-125; Base + R-290 and R-152a; Base + R-290 and R-134a; Base + R-290 and R-227ea;	Base + R-1270 and R-125; Base + R-1270 and R-152a; Base + R-1270 and R-134a; Base + R-1270 and R-227ea;
Base + R-600A and R-1234ze(E); Base + R-600A and R-125; Base + R-600A and R-152a; Base + R-600A and R-134a; Base + R-600A and R-227ea;	Base + R-1234ze(E) and R-125; Base + R-1234ze(E) and R-152a; Base + R-1234ze(E) and R-134a; Base + R-1234ze(E) and R-227ea;
Base + R-125 and R-152a; Base + R-125 and R-134a; Base + R-125 and R-227ea;	Base + R-152a and R-134a; Base + R-152a and R-227ea; Base + R-134a; and R-227ea

Preferred compositions of the invention containing 6 components are set out in the following table, wherein "Base" represents R-1132a, R-32 and R-1234yf. For the avoidance of doubt, these compositions may contain the amounts of the identified components as hereinbefore described.

Base + CO ₂ , R-1123 and R-1234ze(E); Base + CO ₂ , R-1123 and R-125; Base + CO ₂ , R-1123 and R-152a; Base + CO ₂ , R-1123 and R-134a; Base + CO ₂ , R-1123 and R-227ea;	Base + CO ₂ , R-290 and R-1234ze(E); Base + CO ₂ , R-290 and R-125; Base + CO ₂ , R-290 and R-152a; Base + CO ₂ , R-290 and R-134a; Base + CO ₂ , R-290 and R-227ea;
Base + CO ₂ , R-1270 and R-1234ze(E); Base + CO ₂ , R-1270 and R-125; Base + CO ₂ , R-1270 and R-152a; Base + CO ₂ , R-1270 and R-134a; Base + CO ₂ , R-1270 and R-227ea;	Base + CO ₂ , R-600a and R-1234ze(E); Base + CO ₂ , R-600a and R-125; Base + CO ₂ , R-600a and R-152a; Base + CO ₂ , R-600a and R-134a; Base + CO ₂ , R-600a and R-227ea;
Base + R-1234ze(E), R-125 and R-152a; Base + R-1234ze(E), R-125 and R-134a; Base + R-1234ze(E), R-125 and R-227ea; Base + R-1234ze(E), R-152a and R-134a; Base + R-1234ze(E), R-152a and R-227ea; Base + R-1234ze(E), R-134a and R-227ea;	Base + R-125, R-134a and R-227ea; Base + R-125, R-134a and R-152a; Base + R-125, R-152a and R-227ea; Base + R-227ea, R-152a and R-134a;
Base + R-1123, R-290 and R-1234ze(E); Base + R-1123, R-290 and R-125;	Base + R-1123, R-1270 and R-1234ze(E); Base + R-1123, R-1270 and R-125;

Base + R-1123, R-290 and R-152a; Base + R-1123, R-290 and R-134a; Base + R-1123, R-290 and R-227ea;	Base + R-1123, R-1270 and R-152a; Base + R-1123, R-1270 and R-134a; Base + R-1123, R-1270 and R-227ea;
Base + R-1123, R-600a and R-1234ze(E); Base + R-1123, R-600a and R-125; Base + R-1123, R-600a and R-152a; Base + R-1123, R-600a and R-134a; Base + R-1123, R-600a and R-227ea;	Base + R-290, R-1270 and R-1234ze(E); Base + R-290, R-1270 and R-125; Base + R-290, R-1270 and R-152a; Base + R-290, R-1270 and R-134a; Base + R-290, R-1270 and R-227ea;
Base + R-290, R-600a and R-1234ze(E); Base + R-290, R-600a and R-125; Base + R-290, R-600a and R-152a; Base + R-290, R-600a and R-134a; Base + R-290, R-600a and R-227ea;	Base + R-600a, R-1270 and R-1234ze(E); Base + R-600a, R-1270 and R-125; Base + R-600a, R-1270 and R-152a; Base + R-600a, R-1270 and R-134a; or Base + R-600a, R-1270 and R-227ea.

The invention further provides a composition comprising from about 6 to about 18 weight % R-1132a, from about 20 to about 65 weight % R-32 and from about 15 to about 60 weight % R-1234yf. For simplicity, this will be referred to hereinafter as the first ternary composition of the

5 invention.

Typically, the first ternary composition of the invention contains from about 6 to about 15 weight % R-1132a, preferably from about 6 to about 12 weight %, such as from about 7 to about 10 weight %. For example, the first ternary composition of the invention comprises from about 6

10 to about 7 weight % of R-1132a.

Conveniently, the first ternary composition of the invention contains from about 25 to about 65 weight % R-32, preferably from about 35 to about 60 weight %, such as from about 40 to about 60 weight %.

15

Typically, the first ternary composition of the invention contains from about 20 to about 60 weight % R-1234yf, preferably from about 25 to about 55 weight %, such as from about 30 to about 55 weight %.

20 In one embodiment, the first ternary composition of the invention comprises from about 6 to about 8 wt.% R-1132a, from about 42 to about 45 wt.% R-32 and from about 47 to about 51 wt.% R-1234yf.

Preferred first ternary compositions of the invention include blends of:

about 7 weight % R-1132a, about 50 weight % R-32 and about 43 weight % R-1234yf; about 7 weight % R-1132a, about 55 weight % R-32 and about 38 weight % R-1234yf; about 8 weight % R-1132a, about 40 weight % R-32 and about 52 weight % R-1234yf; about 8 weight % R-1132a, about 60 weight % R-32 and about 32 weight % R-1234yf; and

5 about 10 weight % R-1132a, about 55 weight % R-32 and about 35 weight % R-1234yf.

In one embodiment, the tolerances (e.g. manufacturing tolerances) in such compositions are +0.5% / -1% R-1132a; ±1% R-32; ±1.5% R-1234yf by weight

10 In one embodiment of the present invention, there is provided the use of a composition comprising a POE lubricant and the first ternary composition of the invention as a replacement for an existing heat transfer composition in a commercial air conditioning system. Preferably, the existing heat transfer composition is R-410A.

15 In another embodiment of the present invention, there is provided the use of a composition comprising a POE lubricant and the first ternary composition of the invention as a replacement for an existing heat transfer composition in a commercial refrigeration system. Conveniently, the existing heat transfer composition is R-410A.

20 The invention further provides a composition comprising from about 6 to about 18 weight % R-1132a, from about 5 to about 35 weight % R-32 and from about 47 to about 89 weight % R-1234yf. For simplicity, this will be referred to hereinafter as the second ternary composition of the invention.

25 Typically, the second ternary composition of the invention contains from about 6 to about 15 weight % R-1132a, preferably from about 7 to about 12 weight %, such as from about 7 to about 10 weight %.

Conveniently, the second ternary composition of the invention contains from about 6 to about 30 weight % R-32, preferably from about 7 to about 20 weight %, such as from about 8 to about 15 weight %, for example from about 9 to about 13 weight %.

35 Typically, the second ternary composition of the invention contains from about 55 to about 88 weight % R-1234yf, preferably from about 60 to about 87 weight %, such as from about 75 to about 85 weight % for example from about 78 to about 84 weight %.

A preferred second ternary compositions of the invention is a blend of about 7 weight % R-1132a, about 50 weight % R-32 and about 43 weight % R-1234yf;

According to another aspect of the present invention, there is provided a composition
5 comprising 1,1-difluoroethene (R-1132a), difluoromethane (R-32), 2,3,3,3-tetrafluoropropene (R-1234yf) and carbon dioxide (CO₂, R-744). For simplicity, this will be referred to hereinafter as an “alternative quaternary” composition of the invention.

The alternative quaternary composition of the invention may comprise from about 2 to about
10 15 weight % of R-1132a, from about 20 to about 60 weight % of R-32, from about 25 to about 70 weight % of R-1234yf and from about 2 to about 12 weight % of CO₂ based on the total weight of the composition.

The alternative quaternary composition of the invention may comprise from about 4 to about
15 10 weight % of R-1132a, from about 30 to about 48 weight % of R-32 from about 34 to about 64 weight % of R-1234yf and from about 2 to about 8 weight % of CO₂, such as from about 4 to about 10 weight % of R-1132a, from about 36 to about 48 weight % of R-32, from about 37 to about 57 weight % of R-1234yf and from about 3 to about 5 weight % of CO₂ based on the total weight of the composition.

20 Typically, the alternative quaternary composition of the present invention contains from about 4 or 5 or 6 to about 10 weight % of R-1132a, preferably from about 4 or 5 or 6 to about 9 weight %, such as from about 4 or 5 or 6 to about 8 weight % based on the total weight of the composition.

25 Conveniently, the alternative quaternary composition of the invention contains from about 32 to about 44 weight % of R-32, preferably from about 36 to about 44 weight %, such as from about 36 to about 40 weight % based on the total weight of the composition.

30 Typically, the alternative quaternary composition of the invention contains from about 34 to about 60 weight % of R-1234yf, preferably from about 39 to about 56 weight %, such as from about 43 to about 54 weight %, for example from about 43 to about 51 weight % based on the total weight of the composition.

35 Preferably, the alternative quaternary composition of the invention contains from about 2 or 3 to about 7 weight % of CO₂, such as from about 3 or 4 to about 6 weight %, for example from about 3 to about 5 weight % based on the total weight of the composition.

Preferred alternative quaternary compositions of the invention include the blends of:

- about 6 weight % R-1132a, about 40 weight % R-32, about 51 weight % R-1234yf and about 5 weight % CO₂;
- about 7 weight % R-1132a, about 36 weight % R-32, about 54 weight % R-1234yf and about 3 weight % CO₂;
- about 9 weight % R-1132a, about 44 weight % R-32, about 43 weight % R-1234yf and about 4 weight % CO₂; or
- about 7 weight % R-1132a, about 30 weight % R-32, about 60 weight % R-1234yf and about 3 weight % CO₂;

based on the total weight of the composition.

In one embodiment, the tolerances (e.g. manufacturing tolerances) in such compositions are

15 +1% / -0.5% CO₂; +0.5% / -1% R-1132a; ±1% R-32; ±2% R-1234yf by weight.

For completeness, it is noted that phrases such as “the compositions” or “the compositions of the invention” and the like as used in the paragraphs below refer to the compositions disclosed on pages 3 to 11 of the present specification; this includes “the compositions of the invention”

20 (e.g. pages 3 to 8), “first ternary compositions of the invention” (e.g. pages 8 to 9), “second ternary compositions of the invention” (e.g. pages 9 to 10) and “alternative quaternary compositions of the invention” (e.g. pages 10 to 11).

In an embodiment, the compositions may consist essentially of the stated components. By the

25 term “consist essentially of”, we include the meaning that the compositions of the invention contain substantially no other components, particularly no further (hydro)(fluoro)compounds (e.g. (hydro)(fluoro)alkanes or (hydro)(fluoro)alkenes) known to be used in heat transfer

compositions. The term “consist of” is included within the meaning of “consist essentially of”.

30 In an embodiment, the compositions of the invention are substantially free of any component that has heat transfer properties (other than the components specified). For instance, the compositions of the invention may be substantially free of any other hydrofluorocarbon compound.

35 By “substantially no” and “substantially free of”, we include the meaning that the compositions of the invention contain 0.5% by weight or less of the stated component, preferably 0.4%, 0.3%, 0.2% or 0.1% or less, based on the total weight of the composition.

In one embodiment, the compositions of the present invention are substantially free of trifluoroiodomethane (CF₃I).

5 All of the chemicals herein described are commercially available. For example, the fluoroochemicals may be obtained from Apollo Scientific (UK) and carbon dioxide may be obtained from liquefied gas suppliers such as Linde AG.

As used herein, all % amounts mentioned in compositions herein, including in the claims, are
10 by weight based on the total weight of the compositions, unless otherwise stated.

By the term "about", as used in connection with numerical values of amounts of components in % by weight, we include the meaning of ± 0.5 % by weight, for example ± 0.5 % by weight.

15 For the avoidance of doubt, it is to be understood that the stated upper and lower values for ranges of amounts of components in the compositions of the invention described herein may be interchanged in any way, provided that the resulting ranges fall within the broadest scope of the invention.

20 The compositions of the invention have zero ozone depletion potential.

Typically, the compositions of the invention have a GWP of less than about 650, such as less than about 600, for example less than about 500. Preferably, the compositions of the invention have a GWP of less than about 480, such as less than about 450, for example less than about
25 400. Conveniently, the compositions of the invention have a GWP of less than about 300, such as from about 220 to about 300, for example less than about 280, for instance less than about 250.

30 Typically, the compositions of the invention are of reduced flammability hazard when compared to R-1132a.

Flammability may be determined in accordance with ASHRAE Standard 34 incorporating the ASTM Standard E-681 with test methodology as per Addendum 34p dated 2004, the entire content of which is incorporated herein by reference.

35

In one aspect, the compositions have one or more of (a) a higher lower flammable limit; (b) a higher ignition energy (c) a higher auto-ignition temperature; or (d) a lower burning velocity

compared to R-1132a alone. Preferably, the compositions of the invention are less flammable compared to R-1132a in one or more of the following respects: lower flammable limit at 23°C; lower flammable limit at 60°C; breadth of flammable range at 23°C or 60°C; auto-ignition temperature (thermal decomposition temperature); minimum ignition energy in dry air or 5 burning velocity. The flammable limits and burning velocity being determined according to the methods specified in ASHRAE-34 and the auto-ignition temperature being determined in a 500ml glass flask by the method of ASTM E659-78.

In a preferred embodiment, the compositions of the invention are non-flammable. For 10 example, the compositions of the invention are non-flammable at a test temperature of 60°C using the ASHRAE-34 methodology. Advantageously, the mixtures of vapour that exist in equilibrium with the compositions of the invention at any temperature between about -20°C and 60°C are also non-flammable.

15 In some applications it may not be necessary for the formulation to be classed as non-flammable by the ASHRAE-34 methodology. It is possible to develop fluids whose flammability limits will be sufficiently reduced in air to render them safe for use in the application, for example if it is physically not possible to make a flammable mixture by leaking the refrigeration equipment charge into the surrounds.

20 In one embodiment, the compositions of the invention have a flammability classifiable as 1 or 2L according to the ASHRAE standard 34 classification method, indicating non-flammability (class 1) or a weakly flammable fluid with flame speed lower than 10 cm/s (class 2L).

25 Based on the burning velocity data for a ternary composition of R-1132a/R-32/R-1234yf (40/49/11 % by volume; burning velocity of 11.4 cm/s) and the literature values of burning velocities R-32/R-1234yf mixtures ("Laminar flame speeds of 2,3,3,3-tetrafluoropropene mixtures" Papas, P et al. Proceedings of the Combustion Institute 36 (2017) 1145-1154, which is incorporated herein by reference in its entirety), we estimate that the compositions of the 30 present invention will achieve a burning velocity of less than about 10 cm/s if the molar (volume) concentration of R-1132a in their worst-case fractionated formulations (WCFF, as defined in ASHRAE Standard 34 Appendix B), is less than about 35% v/v and preferably less than about 30% v/v.

35 Accordingly, without wishing to be bound by theory, it is postulated that the compositions of the present invention will achieve a burning velocity of less than about 10 cm/s (and hence a 2L flammability classification) if the molar (volume) concentration of R-1132a in their worst-

case fractionated formulations (WCFF, as defined in ASHRAE Standard 34 Appendix B), is less than about 35% v/v and preferably less than about 30% v/v.

Therefore, in one embodiment, the compositions of the present invention have the molar 5 (volume) concentration of R-1132a in their worst-case fractionated formulations (WCFF, as defined in ASHRAE Standard 34 Appendix B) of less than about 35% v/v and preferably less than about 30% v/v.

In one embodiment, the compositions of the present invention have a burning velocity of less 10 than about 10 cm/s, preferably less than about 9.5 cm/s, for example less than about 9 cm/s, such as less than about 8.5 cm/s or less than about 8 cm/s.

For example, a preferred alternative quaternary composition of the present invention has about 15 28% v/v of R-1132a in its WCFF and a burning velocity of about 8.7 cm/s.

The present invention also provides a vessel comprising the composition of the present invention in an amount of up to about 90% v/v based on the total volume of the vessel, wherein the vessel has a temperature of about -40°C and wherein the composition comprises R-1132a 20 in a molar volume concentration of less than about 35% v/v, preferably less than about 30% v/v, based on the total volume of the composition. Preferably, the vessel is a cylinder.

For the avoidance of doubt, it is to be understood that "v/v" as used herein denotes "molar volume concentration".

25 The compositions of the invention preferably have a temperature glide in an evaporator or condenser of less than about 10K, preferably less than about 7 or about 6K, even more preferably less than about 5K, such as less than about 4K and even more preferably less than about 1K.

30 It is believed that the compositions of the invention exhibit a completely unexpected combination of low-/non-flammability, low GWP, improved lubricant miscibility and improved refrigeration performance properties. Some of these refrigeration performance properties are explained in more detail below.

35 The compositions of the invention typically have a volumetric refrigeration capacity that is at least 80% of that of R-410A, such as at least 85% of that of R-410A. Preferably, the compositions of the invention have a volumetric refrigeration capacity that is at least 90% of

that of R-410A, for example from about 95% to about 130% of that of R-410A. In one embodiment, the compositions of the invention have a volumetric refrigeration capacity that is within about 15% of that of R-410A, such as about 10% of that of R-410A, even more preferably within about 5% of that of R-410A.

5

In one embodiment, the cycle efficiency (Coefficient of Performance, COP) of the compositions of the invention is within about 10% of R-410A, preferably within about 7% of R-410A, such as within 5% of R-410A. Preferably, the cycle efficiency is equivalent to or higher than R-410A.

10 Conveniently, the compressor discharge temperature of the compositions of the invention is within about 15K of the existing refrigerant fluid it is replacing (e.g. R-410A or R-32), preferably within about 10K or even about 5K. Advantageously, the compressor discharge temperature of the compositions of the invention is lower than that of R-32.

15 Conveniently, the operating pressure in a condenser containing a composition of the invention is lower than that of the condenser containing R-32. In one embodiment, the operating condenser pressure in a condenser containing a composition of the invention is within about 10% of that of the condenser containing R-410A, preferably within about 5%.

20 The compositions of the invention are typically suitable for use in existing designs of equipment, and are compatible with all classes of lubricant currently used with established HFC refrigerants. They may be optionally stabilised or compatibilised with mineral oils by the use of appropriate additives.

25 Preferably, when used in heat transfer equipment, the composition of the invention is combined with a lubricant.

Conveniently, the lubricant is selected from the group consisting of mineral oil, silicone oil, polyalkyl benzenes (PABs), polyol esters (POEs), polyalkylene glycols (PAGs), polyalkylene glycol esters (PAG esters), polyvinyl ethers (PVEs), poly (alpha-olefins) and combinations thereof. PAGs and POEs are currently preferred lubricants for the compositions of the invention.

Advantageously, the lubricant further comprises a stabiliser.

35

Preferably, the stabiliser is selected from the group consisting of diene-based compounds, phosphates, phenol compounds and epoxides, and mixtures thereof.

Conveniently, the composition of the invention may be combined with a flame retardant.

Advantageously, the flame retardant is selected from the group consisting of tri-(2-chloroethyl)-

5 phosphate, (chloropropyl) phosphate, tri-(2,3-dibromopropyl)-phosphate, tri-(1,3-dichloropropyl)-phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminium trihydrate, polyvinyl chloride, a fluorinated iodocarbon, a fluorinated bromocarbon, trifluoro iodomethane, perfluoroalkyl amines, bromo-fluoroalkyl amines and mixtures thereof.

10

In one embodiment, the invention provides a heat transfer device comprising a composition of the invention. Preferably, the heat transfer device is a refrigeration device.

Conveniently, the heat transfer device is a residential or commercial air conditioning system,

15 a heat pump or a commercial or industrial refrigeration system.

The invention also provides the use of a composition of the invention in a heat transfer device, such as a refrigeration system, as herein described.

20 According to another aspect of the invention, there is provided a sprayable composition comprising a material to be sprayed and a propellant comprising a composition of the invention.

According to a further aspect of the invention, there is provided a method for cooling an article which comprises condensing a composition of the invention and thereafter evaporating said 25 composition in the vicinity of the article to be cooled.

According to another aspect of the invention, there is provided a method for heating an article which comprises condensing a composition of the invention in the vicinity of the article to be heated and thereafter evaporating said composition.

30

According to a further aspect of the invention, there is provided a method for extracting a substance from biomass comprising contacting the biomass with a solvent comprising a composition of the invention, and separating the substance from the solvent.

35 According to another aspect of the invention, there is provided a method of cleaning an article comprising contacting the article with a solvent comprising a composition of the invention.

According to a further aspect of the invention, there is provided a method for extracting a material from an aqueous solution comprising contacting the aqueous solution with a solvent comprising a composition of the invention, and separating the material from the solvent.

- 5 According to another aspect of the invention, there is provided a method for extracting a material from a particulate solid matrix comprising contacting the particulate solid matrix with a solvent comprising a composition of the invention, and separating the material from the solvent.
- 10 According to a further aspect of the invention, there is provided a mechanical power generation device containing a composition of the invention.

Preferably, the mechanical power generation device is adapted to use a Rankine Cycle or modification thereof to generate work from heat.

15

- According to another aspect of the invention, there is provided a method of retrofitting a heat transfer device comprising the step of removing an existing heat transfer fluid, and introducing a composition of the invention. Preferably, the heat transfer device is a refrigeration device, such as an ultra-low temperature refrigeration system. Advantageously, the method further
- 20 comprises the step of obtaining an allocation of greenhouse gas (e.g. carbon dioxide) emission credit.

25

In accordance with the retrofitting method described above, an existing heat transfer fluid can be fully removed from the heat transfer device before introducing a composition of the invention. An existing heat transfer fluid can also be partially removed from a heat transfer device, followed by introducing a composition of the invention.

30

The compositions of the invention may also be prepared simply by mixing the R-1132a, R-32, R-1234yf (and optional components such as R-744, R-1123, hydrocarbons, a lubricant, a stabiliser or an additional flame retardant) in the desired proportions. The compositions can then be added to a heat transfer device (or used in any other way as defined herein).

35

In a further aspect of the invention, there is provided a method for reducing the environmental impact arising from operation of a product comprising an existing compound or composition, the method comprising replacing at least partially the existing compound or composition with a composition of the invention.

By environmental impact we include the generation and emission of greenhouse warming gases through operation of the product.

As mentioned above, this environmental impact can be considered as including not only those 5 emissions of compounds or compositions having a significant environmental impact from leakage or other losses, but also including the emission of carbon dioxide arising from the energy consumed by the device over its working life. Such environmental impact may be quantified by the measure known as Total Equivalent Warming Impact (TEWI). This measure has been used in quantification of the environmental impact of certain stationary refrigeration 10 and air conditioning equipment, including for example supermarket refrigeration systems.

The environmental impact may further be considered as including the emissions of greenhouse gases arising from the synthesis and manufacture of the compounds or compositions. In this case the manufacturing emissions are added to the energy consumption and direct loss effects 15 to yield the measure known as Life-Cycle Carbon Production (LCCP). The use of LCCP is common in assessing environmental impact of automotive air conditioning systems.

In a preferred embodiment, the use of the composition of the invention results in the equipment having a lower Total Equivalent Warming Impact, and/or a lower Life-Cycle Carbon Production 20 than that which would be attained by use of the existing compound or composition.

These methods may be carried out on any suitable product, for example in the fields of air-conditioning, refrigeration (e.g. low and ultra-low temperature refrigeration), heat transfer, aerosols or sprayable propellants, gaseous dielectrics, flame suppression, solvents (e.g. 25 carriers for flavorings and fragrances), cleaners, topical anesthetics, and expansion applications. Preferably, the field is refrigeration.

Examples of suitable products include heat transfer devices, sprayable compositions, solvents and mechanical power generation devices. In a preferred embodiment, the product is a heat 30 transfer device, such as a refrigeration device.

The existing compound or composition has an environmental impact as measured by GWP and/or TEWI and/or LCCP that is higher than the composition of the invention which replaces it. The existing compound or composition may comprise a fluorocarbon compound, such as a 35 perfluoro-, hydrofluoro-, chlorofluoro- or hydrochlorofluoro-carbon compound or it may comprise a fluorinated olefin.

Preferably, the existing compound or composition is a heat transfer compound or composition such as a refrigerant. Examples of refrigerants that may be replaced include R-410A, R454B, R-452B and R-32, preferably R-410A.

5 Any amount of the existing compound or composition may be replaced so as to reduce the environmental impact. This may depend on the environmental impact of the existing compound or composition being replaced and the environmental impact of the replacement composition of the invention. Preferably, the existing compound or composition in the product is fully replaced by the composition of the invention.

10

The invention is illustrated by the following non-limiting examples.

EXAMPLES

15 Performance Assessment

Two thermodynamic models of the fluid system were constructed, with pure component data and mixture equilibrium data fitted into each of them. The NIST REFPROP 9.1 software was used to build the first model. Mexichem in-house software coded in Matlab was used to build

20 the second model to correlate accurately the vapour-liquid equilibrium properties of the mixture components. The predictions of both models for a typical air-conditioning cycle were checked against each other and were found to be in good agreement. The Mexichem equilibrium model gave more accurate fitting of our experimental mixture equilibrium data. It was therefore used for both performance modelling and derivation of the worst-case composition for flammability.

25 The conditions used for the modelling are shown in Table 1 below; these represent an air-conditioning cycle application.

30

Parameter	Units	Value
Cooling duty	kW	14.2
Mean condenser temperature	°C	54.4
Mean evaporator temperature	°C	7.2
Condenser subcooling	K	8.3
Evaporator superheat	K	5.6

Evaporator pressure drop	bar	0.00	
Suction line pressure drop	bar	0.00	
Condenser pressure drop	bar	0.00	
Compressor suction superheat	K	11.1	
Isentropic efficiency		70.0%	

Table 1: Modelling conditions used for assessing performance

The measured performance data for the compositions of the present invention is listed in the following tables (Examples 1 to 26).

5

In addition, the Matlab thermodynamic property model for the compositions of the present invention was used to estimate WCFF compositions as the initial vapour in a cylinder filled to 90% maximum at -40°C. The following operating conditions were assumed:

Cylinder fill temperature (°C)	54.4
Cylinder fractionation temperature (°C)	-40
Liquid density model used	Quartic
VLE model used	Peng Robinson/Wong Sandler
Matlab workspace file	LFR databank June 25th 2019.mat'

10

Blending tolerances for ASHRAE (% mass)

Component	Upper bound	Lower bound
R-1132a	0.5	1
R-744	1	0.5
R-32	1	1
R-1234yf	1.5	1.5

The results are outlined in Examples 27 to 40.

15

It can be seen that in nearly all cases the initial vapour composition is less than 35% by volume of R-1132a.

Example 1 (Ternary blends of R-1132a/R-32/R-1234yf comprising 4 weight % R-1132a)

Results	R410A	Nominal composition (weight %)							
		R-1132a	4	4	4	4	4	4	4
		R-32	36	38	40	42	44	46	48
GWP (AR4 basis)		2107	244	257	271	284	298	311	325
Cooling COP relative to reference		100.0%	106.3%	106.2%	105.9%	105.7%	105.5%	105.3%	105.1%
Cooling Capacity relative to reference		100.0%	84.3%	85.7%	87.2%	88.6%	90.1%	91.5%	92.8%
Compressor discharge temperature difference	K	0.0	-4.2	-3.4	-2.4	-1.5	-0.6	0.4	1.2
Pressure ratio		3.32	3.49	3.48	3.47	3.46	3.46	3.45	3.44
Volumetric efficiency		94.5%	93.6%	93.7%	93.7%	93.8%	93.9%	94.0%	94.0%
Condenser glide	K	0.2	5.9	5.4	5.2	4.9	4.7	4.5	4.1
Evaporator glide	K	0.1	6.0	5.7	5.5	5.3	5.0	4.8	4.5
Evaporator inlet temperature	°C	7.2	4.2	4.4	4.5	4.6	4.7	4.8	5.0
Condenser exit temperature	°C	46.0	43.2	43.4	43.5	43.7	43.8	43.9	44.0
Condenser pressure	bar	33.7	27.5	27.9	28.4	28.8	29.3	29.7	30.1
Evaporator pressure	bar	10.2	7.9	8.0	8.2	8.3	8.5	8.6	8.7
Refrigeration effect	kJ/kg	151.2	157.1	159.0	161.2	163.2	165.4	167.6	169.6
Coefficient of Performance (COP)	°C	105.5	101.3	102.1	103.1	104.0	105.0	105.9	106.7
Discharge temperature	kg/hr	251	242	239	236	233	230	227	224
Mass flow rate	m³/hr	7.28	8.63	8.49	8.34	8.21	8.07	7.95	7.84
Volumetric flow rate	kJ/m³	5226	4403	4478	4558	4632	4709	4784	4851
Volumetric cooling capacity	Pa/m	163	189	184	179	174	170	165	161
Suction line pressure drop	kg/m³	34.6	28.0	28.2	28.3	28.4	28.5	28.6	28.6
Suction line gas density	kg/m³	155.3	128.6	129.1	130.0	130.5	131.1	131.7	131.8

Example 2 (Ternary blends of R-1132a/R-32/R-1234yf comprising 5 weight % R-1132a)

Results	R410A	Nominal composition (weight %)							
		R-1132a	5	5	5	5	5	5	5
GWP (AR4 basis)	2107	244	257	271	284	298	311	325	
Cooling COP relative to reference	100.0%	105.9%	105.7%	105.5%	105.3%	105.1%	104.9%	104.7%	
Cooling Capacity relative to reference	100.0%	85.4%	86.9%	88.4%	89.8%	91.4%	92.7%	94.1%	
Compressor discharge temperature difference	0.0	-3.8	-2.8	-1.9	-1.1	-0.1	0.8	1.7	
Pressure ratio	3.32	3.49	3.48	3.47	3.46	3.46	3.45	3.44	
Volumetric efficiency	94.5%	93.6%	93.7%	93.8%	93.8%	93.9%	94.0%	94.1%	
Condenser glide	K	0.2	6.0	5.7	5.4	5.0	4.9	4.6	4.3
Evaporator glide	K	0.1	6.2	6.0	5.7	5.5	5.2	4.9	4.7
Evaporator inlet temperature	°C	7.2	4.1	4.2	4.4	4.5	4.6	4.7	4.9
Condenser exit temperature	°C	46.0	43.1	43.3	43.4	43.6	43.7	43.8	44.0
Condenser pressure	bar	33.7	28.0	28.4	28.9	29.3	29.8	30.2	30.6
Evaporator pressure	bar	10.2	8.0	8.2	8.3	8.5	8.6	8.8	8.9
Refrigeration effect	kJ/kg	151.2	157.1	159.1	161.2	163.1	165.4	167.5	169.6
Coefficient of Performance (COP)		2.88	3.05	3.05	3.04	3.04	3.03	3.02	3.02
Discharge temperature	°C	105.5	101.8	102.7	103.6	104.4	105.5	106.3	107.2
Mass flow rate	kg/hr	251	242	239	236	233	230	227	224
Volumetric flow rate	m ³ /hr	7.28	8.52	8.37	8.23	8.10	7.96	7.85	7.73
Volumetric cooling capacity	kJ/m ³	5226	4463	4543	4622	4695	4775	4844	4915
Suction line pressure drop	Pa/m	163	186	181	176	172	167	163	159
Suction line gas density	kg/m ³	34.6	28.4	28.6	28.7	28.8	28.9	28.9	29.0
Condenser line gas density	kg/m ³	155.3	131.2	132.0	132.7	133.1	134.0	134.2	134.5

Example 3 (Ternary blends of R-1132a/R-32/R-1234yf comprising 6 weight % R-1132a)

Results	R410A	Nominal composition (weight %)							
		R-1132a	6	6	6	6	6	6	6
GWP (AR4 basis)	2107	244	257	271	284	298	311	325	
Cooling COP relative to reference	100.0%	105.5%	105.3%	105.1%	104.9%	104.7%	104.4%	104.3%	
Cooling Capacity relative to reference	100.0%	86.6%	88.2%	89.6%	91.1%	92.5%	93.8%	95.3%	
Compressor discharge temperature difference	K	0.0	-3.3	-2.4	-1.5	-0.6	0.3	1.2	2.1
Pressure ratio		3.32	3.49	3.48	3.47	3.46	3.45	3.44	3.44
Volumetric efficiency		94.5%	93.6%	93.7%	93.8%	93.8%	93.9%	94.0%	94.1%
Condenser glide	K	0.2	6.1	5.9	5.5	5.3	5.0	4.5	4.4
Evaporator glide	K	0.1	6.4	6.2	5.9	5.7	5.4	5.1	4.9
Evaporator inlet temperature	°C	7.2	4.0	4.1	4.3	4.4	4.5	4.7	4.8
Condenser exit temperature	°C	46.0	43.1	43.2	43.4	43.5	43.6	43.8	43.9
Condenser pressure	bar	33.7	28.4	28.9	29.4	29.8	30.3	30.7	31.1
Evaporator pressure	bar	10.2	8.2	8.3	8.5	8.6	8.8	8.9	9.0
Refrigeration effect	kJ/kg	151.2	157.0	159.1	161.1	163.2	165.3	167.2	169.5
Coefficient of Performance (COP)		2.88	3.04	3.03	3.03	3.02	3.02	3.01	3.01
Discharge temperature	°C	105.5	102.2	103.2	104.0	105.0	105.9	106.7	107.6
Mass flow rate	kg/hr	251	242	239	236	233	230	227	224
Volumetric flow rate	m ³ /hr	7.28	8.40	8.25	8.12	7.98	7.86	7.75	7.64
Volumetric cooling capacity	kJ/m ³	5226	4524	4607	4683	4761	4836	4903	4979
Suction line pressure drop	Pa/m	163	184	179	174	169	165	162	157
Suction line gas density	kg/m ³	34.6	28.8	29.0	29.1	29.2	29.3	29.3	29.4
Condenser line gas density	kg/m ³	155.3	133.8	134.8	135.4	136.2	136.6	136.9	137.2

Example 4 (Ternary blends of R-1132a/R-32/R-1234yf comprising 7 weight % R-1132a)

Results	R410A	Nominal composition (weight %)							
		R-1132a	7	7	7	7	7	7	7
R-32	36	38	40	42	44	46	48	48	48
R-1234yf	57	55	53	51	49	47	45	45	45
GWP (AR4 basis)	244	257	271	284	298	311	325		
Cooling COP relative to reference	100.0%	105.1%	104.8%	104.6%	104.5%	104.3%	104.1%	103.9%	
Cooling Capacity relative to reference	100.0%	87.8%	89.4%	90.8%	92.3%	93.8%	95.1%	96.5%	
Compressor discharge temperature difference	K	0.0	-2.9	-1.8	-1.0	-0.1	0.8	1.6	2.5
Pressure ratio		3.32	3.48	3.48	3.47	3.46	3.45	3.44	3.43
Volumetric efficiency		94.5%	93.6%	93.7%	93.8%	93.9%	93.9%	94.0%	94.1%
Condenser glide	K	0.2	6.3	6.1	5.7	5.4	5.1	4.8	4.6
Evaporator glide	K	0.1	6.6	6.4	6.1	5.8	5.6	5.3	5.0
Evaporator inlet temperature	°C	7.2	3.9	4.0	4.2	4.3	4.4	4.6	4.7
Condenser exit temperature	°C	46.0	43.0	43.1	43.3	43.4	43.6	43.7	43.8
Condenser pressure	bar	33.7	28.9	29.5	29.9	30.4	30.8	31.2	31.6
Evaporator pressure	bar	10.2	8.3	8.5	8.6	8.8	8.9	9.1	9.2
Refrigeration effect	kJ/kg	151.2	157.0	159.1	161.1	163.1	165.2	167.3	169.4
Coefficient of Performance (COP)		2.88	3.03	3.02	3.02	3.01	3.01	3.00	3.00
Discharge temperature	°C	105.5	102.7	103.7	104.5	105.4	106.3	107.2	108.0
Mass flow rate	kg/hr	251	242	239	236	233	230	227	224
Volumetric flow rate	m ³ /hr	7.28	8.29	8.14	8.01	7.88	7.76	7.65	7.54
Volumetric cooling capacity	kJ/m ³	5226	4588	4672	4747	4824	4899	4971	5042
Suction line pressure drop	Pa/m	163	181	176	172	167	163	159	156
Suction line gas density	kg/m ³	34.6	29.2	29.4	29.5	29.6	29.7	29.8	29.8
Condenser line gas density	kg/m ³	155.3	136.7	137.9	138.4	139.0	139.5	139.8	140.0

Example 5 (Ternary blends of R-1132a/R-32/R-1234yf comprising 8 weight % of R-1132a)

Results	R410A	Nominal composition (weight %)							
		R-1132a	8	8	8	8	8	8	8
GWP (AR4 basis)	2107	244	257	271	284	298	311	325	
Cooling COP relative to reference	100.0%	104.6%	104.4%	104.2%	104.0%	103.9%	103.7%	103.6%	
Cooling Capacity relative to reference	100.0%	89.0%	90.6%	92.1%	93.5%	94.9%	96.3%	97.6%	
Compressor discharge temperature difference	K	0.0	-2.3	-1.5	-0.6	0.2	1.1	2.0	2.8
Pressure ratio		3.32	3.48	3.47	3.46	3.45	3.44	3.44	3.43
Volumetric efficiency		94.5%	93.7%	93.7%	93.8%	93.9%	94.0%	94.0%	94.1%
Condenser glide	K	0.2	6.4	6.1	5.8	5.4	5.1	4.8	4.6
Evaporator glide	K	0.1	6.8	6.6	6.3	6.0	5.7	5.5	5.2
Evaporator inlet temperature	°C	7.2	3.8	3.9	4.1	4.2	4.3	4.5	4.6
Condenser exit temperature	°C	46.0	42.9	43.0	43.2	43.4	43.5	43.7	43.8
Condenser pressure	bar	33.7	29.5	29.9	30.4	30.8	31.3	31.7	32.1
Evaporator pressure	bar	10.2	8.5	8.6	8.8	8.9	9.1	9.2	9.4
Refrigeration effect	kJ/kg	151.2	157.0	159.0	161.0	162.9	165.0	167.1	169.2
Coefficient of Performance (COP)		2.88	3.02	3.01	3.00	3.00	2.99	2.99	2.98
Discharge temperature	°C	105.5	103.2	104.1	105.0	105.8	106.7	107.5	108.4
Mass flow rate	kg/hr	251	242	239	236	233	230	228	225
Volumetric flow rate	m ³ /hr	7.28	8.17	8.03	7.90	7.78	7.67	7.56	7.45
Volumetric cooling capacity	kJ/m ³	5226	4653	4734	4812	4884	4959	5031	5102
Suction line pressure drop	Pa/m	163	179	174	169	165	161	158	154
Suction line gas density	kg/m ³	34.6	29.6	29.8	29.9	30.0	30.1	30.1	30.1
Condenser line gas density	kg/m ³	155.3	139.8	140.6	141.4	141.8	142.2	142.5	142.7

EEExample 6 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 4 weight % of R-1132a and 3 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		4	4	4	4	4	4	4	4
R-1132a	4	3	3	3	3	3	3	3	3
R-744	3	36	38	40	42	44	46	48	48
R-32	36	57	55	53	51	49	47	45	45
R-1234yf	57	55	53	51	49	47	45	44.6	44.6
Results		Nominal composition (weight %)							
R410A		2107	100.0%	104.1%	103.9%	103.7%	103.5%	103.3%	103.1%
Cooling COP relative to reference			100.0%	92.8%	94.2%	95.6%	97.0%	98.4%	99.7%
Cooling Capacity relative to reference			100.0%	0.6	1.4	2.3	3.2	4.1	4.9
Compressor discharge temperature difference	K	0.0	-0.3	0.6	1.4	2.3	3.2	4.1	4.9
Pressure ratio		3.32	3.52	3.51	3.50	3.49	3.48	3.48	3.47
Volumetric efficiency		94.5%	93.6%	93.7%	93.8%	93.9%	93.9%	94.0%	94.1%
Condenser glide	K	0.2	7.9	7.6	7.2	6.8	6.5	6.2	5.9
Evaporator glide	K	0.1	7.5	7.2	6.9	6.6	6.4	6.1	5.8
Evaporator inlet temperature	°C	7.2	3.5	3.6	3.8	3.9	4.0	4.2	4.3
Condenser exit temperature	°C	46.0	42.2	42.3	42.5	42.7	42.9	43.0	43.1
Condenser pressure	bar	33.7	30.3	30.8	31.2	31.6	32.1	32.5	32.9
Evaporator pressure	bar	10.2	8.6	8.8	8.9	9.1	9.2	9.3	9.5
Refrigeration effect	kJ/kg	151.2	160.4	162.4	164.4	166.4	168.5	170.6	172.7
Coefficient of Performance (COP)		2.88	3.01	3.00	2.99	2.99	2.98	2.98	2.97
Discharge temperature	°C	105.5	105.2	106.1	107.0	107.8	108.7	109.6	110.5
Mass flow rate	kg/hr	251	237	234	231	228	226	223	220
Volumetric flow rate	m³/hr	7.28	7.97	7.84	7.72	7.61	7.50	7.39	7.29
Volumetric cooling capacity	kJ/m³	5226	4768	4849	4922	4997	5070	5142	5212
Suction line pressure drop	Pa/m	163	172	167	163	159	155	152	148
Suction line gas density	kg/m³	34.6	29.7	29.8	29.9	30.0	30.1	30.1	30.2
Condenser line gas density	kg/m³	155.3	141.7	142.5	143.0	143.6	144.1	144.4	144.6

Example 7 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 5 weight % of R-1132a and 3 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	5	5	5	5	5	5	5
	R-744	3	3	3	3	3	3	3	3
	R-32	36	38	40	42	44	46	46	48
	R-1234yf	56	54	52	50	48	46	46	44
Results		R410A	244	257	271	284	298	311	325
			103.9%	103.7%	103.4%	103.3%	103.1%	102.9%	102.7%
			92.4%	94.0%	95.5%	96.8%	98.2%	99.7%	101.0%
			0.1	1.0	1.9	2.7	3.6	4.5	5.4
			3.51	3.51	3.50	3.49	3.48	3.48	3.47
			93.6%	93.7%	93.8%	93.9%	94.0%	94.0%	94.1%
			8.0	7.7	7.3	6.9	6.6	6.3	6.0
			0.2	0.1	0.1	0.1	0.1	0.1	0.1
			7.7	7.4	7.1	6.8	6.5	6.2	5.9
			7.2	7.2	7.2	7.2	7.2	7.2	7.2
			46.0	46.0	46.0	46.0	46.0	46.0	46.0
			33.7	33.7	33.7	33.7	33.7	33.7	33.7
			33.7	33.7	33.7	33.7	33.7	33.7	33.7
			10.2	10.2	10.2	10.2	10.2	10.2	10.2
			151.2	151.2	151.2	151.2	151.2	151.2	151.2
			2.88	2.88	2.88	2.88	2.88	2.88	2.88
			105.5	105.5	105.5	105.5	105.5	105.5	105.5
			251	251	251	251	251	251	251
			7.28	7.28	7.28	7.28	7.28	7.28	7.28
			5226	5226	5226	5226	5226	5226	5226
			163	163	163	163	163	163	163
			34.6	34.6	34.6	34.6	34.6	34.6	34.6
			155.3	155.3	155.3	155.3	155.3	155.3	155.3

Example 8 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 6 weight % of R-1132a and 3 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	6	6	6	6	6	6	6
	R-744	3	3	3	3	3	3	3	3
	R-32	36	38	40	42	44	46	48	48
	R-1234yf	55	53	51	49	47	45	43	43
Results		R410A	244	257	271	284	298	311	325
GWP (AR4 basis)			100.0%	103.5%	103.0%	102.8%	102.6%	102.5%	102.3%
Cooling COP relative to reference			100.0%	93.7%	95.1%	96.6%	98.0%	99.4%	100.8%
Cooling Capacity relative to reference				0.5	1.4	2.2	3.1	4.0	4.8
Compressor discharge temperature difference					3.51	3.50	3.49	3.48	5.7
Pressure ratio									3.46
Volumetric efficiency									
Condenser glide									
Evaporator glide									
Evaporator inlet temperature									
Condenser exit temperature									
Condenser pressure									
Evaporator pressure									
Refrigeration effect									
Coefficient of Performance (COP)									
Discharge temperature									
Mass flow rate									
Volumetric flow rate									
Volumetric cooling capacity									
Suction line pressure drop									
Suction line gas density									
Condenser line gas density									

Example 9 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 7 weight % of R-1132a and 3 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	7	7	7	7	7	7	7
	R-744	3	3	3	3	3	3	3	3
	R-32	36	38	40	42	44	46	46	48
	R-1234yf	54	52	50	48	46	44	44	42
Results		R410A	2107	244	257	271	284	298	311
GWP (AR4 basis)			100.0%	103.0%	102.7%	102.6%	102.4%	102.2%	101.9%
Cooling COP relative to reference			100.0%	94.8%	96.3%	97.8%	99.3%	100.7%	102.1%
Cooling Capacity relative to reference			0.0	0.9	1.8	2.7	3.5	4.4	5.3
Compressor discharge temperature difference		K							6.1
Pressure ratio			3.32	3.51	3.50	3.49	3.48	3.47	3.46
Volumetric efficiency			94.5%	93.7%	93.8%	93.8%	93.9%	94.0%	94.1%
Condenser glide		K	0.2	8.1	7.6	7.4	7.0	6.7	6.4
Evaporator glide		K	0.1	8.0	7.7	7.4	7.1	6.8	6.5
Evaporator inlet temperature		°C	7.2	3.2	3.4	3.5	3.7	3.8	4.0
Condenser exit temperature		°C	46.0	42.1	42.3	42.4	42.6	42.8	42.9
Condenser pressure		bar	33.7	31.8	32.3	32.8	33.2	33.6	34.1
Evaporator pressure		bar	10.2	9.1	9.2	9.4	9.5	9.7	9.8
Refrigeration effect		kJ/kg	151.2	159.9	161.8	163.9	165.9	168.0	170.1
Coefficient of Performance (COP)			2.88	2.97	2.96	2.96	2.95	2.95	2.94
Discharge temperature		°C	105.5	106.4	107.3	108.2	109.1	109.9	110.8
Mass flow rate		kg/hr	251	238	235	232	229	226	224
Volumetric flow rate		m ³ /hr	7.28	7.67	7.56	7.44	7.33	7.23	7.13
Volumetric cooling capacity		kJ/m ³	5226	4954	5030	5113	5188	5262	5334
Suction line pressure drop		Pa/m	163	166	162	157	154	150	147
Suction line gas density		kg/m ³	34.6	31.0	31.1	31.2	31.3	31.4	31.4
Condenser line gas density		kg/m ³	155.3	150.7	151.7	152.6	153.1	153.6	154.0

Example 10 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 8 weight % of R-1132a and 3 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	8	8	8	8	8	8	8
R-744	3	3	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	46	48	48
R-1234yf	53	51	49	47	45	43	43	41	41
GWP (AR4 basis)		244	257	271	284	298	311	325	
Cooling COP relative to reference		100.0%	102.7%	102.1%	101.9%	101.6%	101.5%		
Cooling Capacity relative to reference		100.0%	96.1%	97.5%	99.0%	100.5%	102.0%	103.2%	104.6%
Compressor discharge temperature difference	K	0.0	1.3	2.2	3.1	3.9	4.8	5.5	6.5
Pressure ratio		3.32	3.50	3.49	3.49	3.48	3.47	3.46	3.45
Volumetric efficiency		94.5%	93.7%	93.8%	93.9%	93.9%	94.0%	94.1%	94.2%
Condenser glide	K	0.2	8.2	7.7	7.4	7.0	6.9	6.3	6.1
Evaporator glide	K	0.1	8.2	7.9	7.6	7.2	7.0	6.6	6.3
Evaporator inlet temperature	°C	7.2	3.1	3.3	3.4	3.6	3.7	3.9	4.0
Condenser exit temperature	°C	46.0	42.0	42.2	42.4	42.6	42.7	42.9	43.1
Condenser pressure	bar	33.7	32.3	32.8	33.3	33.7	34.2	34.5	35.0
Evaporator pressure	bar	10.2	9.2	9.4	9.5	9.7	9.8	10.0	10.1
Refrigeration effect	kJ/kg	151.2	159.9	161.7	163.7	165.7	167.9	169.7	171.9
Coefficient of Performance (COP)		2.88	2.96	2.95	2.94	2.94	2.94	2.93	2.93
Discharge temperature	°C	105.5	106.8	107.7	108.6	109.4	110.3	111.1	112.0
Mass flow rate	kg/hr	251	238	235	232	229	226	224	221
Volumetric flow rate	m ³ /hr	7.28	7.57	7.46	7.35	7.24	7.13	7.05	6.95
Volumetric cooling capacity	kJ/m ³	5226	5022	5097	5175	5249	5331	5392	5466
Suction line pressure drop	Pa/m	163	160	156	152	148	145	142	
Suction line gas density	kg/m ³	34.6	31.4	31.5	31.6	31.7	31.8	31.8	31.8
Condenser line gas density	kg/m ³	155.3	154.0	155.1	155.9	156.5	157.0	157.3	

Example 11 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 9 weight % of R-1132a and 3 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	9	9	9	9	9	9	9
		R-744	3	3	3	3	3	3	3
		R-32	36	38	40	42	44	46	48
		R-1234yf	52	50	48	46	44	42	40
Results		R410A	2107	100.0%	101.7%	101.5%	101.3%	101.2%	101.1%
GWP (AR4 basis)			244	102.0%	98.6%	100.2%	101.6%	104.4%	105.8%
Cooling COP relative to reference			257	97.2%	2.6	3.4	4.2	5.1	6.8
Cooling Capacity relative to reference			271	1.7	101.7%	100.2%	103.1%	104.4%	105.8%
Compressor discharge temperature difference			284	101.7%	101.5%	101.3%	101.2%	101.1%	101.1%
Pressure ratio			298	1.7	101.5%	101.3%	101.2%	101.1%	101.1%
Volumetric efficiency			311	1.7	101.3%	101.2%	101.1%	101.1%	101.1%
Condenser glide			325	1.7	101.2%	101.1%	101.1%	101.1%	101.1%
Evaporator glide									
Evaporator inlet temperature									
Condenser exit temperature									
Condenser pressure									
Evaporator pressure									
Refrigeration effect									
Coefficient of Performance (COP)									
Discharge temperature									
Mass flow rate									
Volumetric flow rate									
Volumetric cooling capacity									
Suction line pressure drop									
Suction line gas density									
Condenser line gas density									

Example 12 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 10 weight % of R-1132a and 3 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	10	10	10	10	10	10	10
R-744	3	3	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	46	48	48
R-1234yf	51	49	47	45	43	41	41	39	39
GWP (AR4 basis)		244	257	271	284	298	311	325	
Cooling COP relative to reference		100.0%	101.4%	101.2%	101.1%	100.9%	100.8%	100.7%	
Cooling Capacity relative to reference		100.0%	98.2%	99.8%	101.3%	102.8%	104.2%	105.6%	107.0%
Compressor discharge temperature difference	K	0.0	2.1	2.9	3.8	4.6	5.4	6.3	7.1
Pressure ratio		3.32	3.50	3.48	3.48	3.47	3.46	3.45	3.44
Volumetric efficiency		94.5%	93.8%	93.8%	93.9%	94.0%	94.1%	94.1%	94.2%
Condenser glide	K	0.2	7.9	7.6	7.3	7.0	6.7	6.4	6.1
Evaporator glide	K	0.1	8.4	8.1	7.8	7.5	7.2	6.9	6.6
Evaporator inlet temperature	°C	7.2	3.0	3.2	3.3	3.5	3.6	3.8	3.9
Condenser exit temperature	°C	46.0	42.2	42.3	42.4	42.6	42.8	42.9	43.1
Condenser pressure	bar	33.7	33.4	33.9	34.3	34.8	35.2	35.6	36.0
Evaporator pressure	bar	10.2	9.6	9.7	9.9	10.0	10.2	10.3	10.5
Refrigeration effect	kJ/kg	151.2	159.1	161.0	163.2	165.1	167.2	169.3	171.4
Coefficient of Performance (COP)		2.88	2.92	2.92	2.92	2.91	2.91	2.90	2.90
Discharge temperature	°C	105.5	107.7	108.5	109.3	110.2	111.0	111.8	112.6
Mass flow rate	kg/hr	251	239	236	233	230	227	225	222
Volumetric flow rate	m ³ /hr	7.28	7.41	7.29	7.18	7.08	6.98	6.89	6.80
Volumetric cooling capacity	kJ/m ³	5226	5131	5213	5296	5372	5446	5519	5589
Suction line pressure drop	Pa/m	163	160	157	153	149	146	142	139
Suction line gas density	kg/m ³	34.6	32.3	32.4	32.5	32.5	32.6	32.6	32.6
Condenser line gas density	kg/m ³	155.3	161.2	162.0	162.9	163.5	164.0	164.2	164.3

Example 13 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 4 weight % of R-1132a and 4 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	4	4	4	4	4	4	4
GWP (AR4 basis)		2107	100.0%	103.7%	103.4%	103.2%	103.0%	102.8%	102.4%
Cooling COP relative to reference			100.0%	93.6%	95.1%	96.5%	98.0%	99.4%	100.7%
Cooling Capacity relative to reference			100.0%	0.9	1.8	2.6	3.5	4.4	5.3
Compressor discharge temperature difference	K	0.0							6.1
Pressure ratio		3.32	94.5%	93.6%	93.7%	93.8%	93.9%	93.9%	94.0%
Volumetric efficiency			K	0.2	8.5	8.1	7.7	7.4	7.0
Condenser glide			K	0.1	8.0	7.7	7.4	7.1	6.8
Evaporator glide			°C	7.2	3.2	3.4	3.5	3.7	3.8
Evaporator inlet temperature			°C	46.0	41.9	42.1	42.2	42.4	42.6
Condenser exit temperature			bar	33.7	31.2	31.7	32.1	32.6	33.0
Condenser pressure			bar	10.2	8.9	9.0	9.2	9.3	9.5
Evaporator pressure			kJ/kg	151.2	161.4	163.3	165.3	167.3	169.4
Refrigeration effect				2.88	2.99	2.98	2.97	2.97	2.96
Coefficient of Performance (COP)			°C	105.5	106.4	107.3	108.2	109.1	109.9
Discharge temperature			kg/hr	251	236	233	230	227	224
Mass flow rate			m ³ /hr	7.28	7.77	7.65	7.54	7.43	7.32
Volumetric flow rate			kJ/m ³	5226	4891	4968	5044	5119	5192
Volumetric cooling capacity			Pa/m	163	167	162	159	155	151
Suction line pressure drop			kg/m ³	34.6	30.3	30.4	30.5	30.6	148.7
Suction line gas density			kg/m ³	155.3	146.1	146.9	147.6	148.2	149.1
Condenser line gas density									149.2

Example 14 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 5 weight % of R-1132a and 4 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	5	5	5	5	5	5	5
R-744	4	4	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	46	48	48
R-1234yf	55	53	51	49	47	45	45	43	43
GWP (AR4 basis)		244	257	271	284	298	311	325	
Cooling COP relative to reference		100.0%	103.2%	103.0%	102.7%	102.5%	102.4%	102.2%	102.0%
Cooling Capacity relative to reference		100.0%	94.8%	96.3%	97.8%	99.2%	100.7%	101.9%	103.3%
Compressor discharge temperature difference	K	0.0	1.4	2.2	3.2	4.0	4.9	5.6	6.6
Pressure ratio		3.32	3.52	3.51	3.51	3.50	3.49	3.48	3.48
Volumetric efficiency		94.5%	93.7%	93.7%	93.8%	93.9%	94.0%	94.0%	94.1%
Condenser glide	K	0.2	8.6	8.2	7.9	7.5	7.3	6.8	6.5
Evaporator glide	K	0.1	8.1	7.8	7.5	7.2	6.9	6.6	6.3
Evaporator inlet temperature	°C	7.2	3.2	3.3	3.5	3.6	3.8	3.9	4.1
Condenser exit temperature	°C	46.0	41.8	42.0	42.2	42.4	42.5	42.7	42.9
Condenser pressure	bar	33.7	31.8	32.2	32.7	33.1	33.6	34.0	34.4
Evaporator pressure	bar	10.2	9.0	9.2	9.3	9.5	9.6	9.8	9.9
Refrigeration effect	kJ/kg	151.2	161.3	163.2	165.3	167.2	169.4	171.3	173.5
Coefficient of Performance (COP)		2.88	2.97	2.97	2.96	2.96	2.95	2.95	2.94
Discharge temperature	°C	105.5	106.9	107.8	108.7	109.5	110.4	111.2	112.1
Mass flow rate	kg/hr	251	236	233	230	227	224	222	219
Volumetric flow rate	m ³ /hr	7.28	7.67	7.55	7.43	7.33	7.22	7.14	7.04
Volumetric cooling capacity	kJ/m ³	5226	4955	5033	5113	5185	5263	5326	5398
Suction line pressure drop	Pa/m	163	164	160	156	153	149	146	143
Suction line gas density	kg/m ³	34.6	30.7	30.8	30.9	31.0	31.1	31.1	31.1
Condenser line gas density	kg/m ³	155.3	149.4	150.2	151.2	151.6	152.2	152.2	152.5

Example 15 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 6 weight % of R-1132a and 4 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	6	6	6	6	6	6	6
		R-744	4	4	4	4	4	4	4
		R-32	36	38	40	42	44	46	48
		R-1234yf	54	52	50	48	46	44	42
Results		R410A	2107	100.0%	102.8%	102.5%	102.0%	101.8%	101.6%
GWP (AR4 basis)		96.1%	97.5%	98.9%	100.3%	101.7%	103.1%	104.5%	
Cooling COP relative to reference		1.8	2.6	3.4	4.4	5.2	6.0	6.9	
Cooling Capacity relative to reference		0.0							
Compressor discharge temperature difference		K	3.32	3.52	3.51	3.50	3.49	3.48	3.47
Pressure ratio		94.5%	93.7%	93.8%	93.8%	93.9%	94.0%	94.1%	
Volumetric efficiency		K	0.2	8.7	8.2	7.8	7.3	7.0	6.7
Condenser glide		K	0.1	8.3	8.0	7.7	7.4	7.0	6.7
Evaporator glide		°C	7.2	3.1	3.2	3.4	3.5	3.7	3.8
Evaporator inlet temperature		°C	46.0	41.7	42.0	42.2	42.5	42.6	42.8
Condenser exit temperature		°C	46.0	41.7	42.0	42.2	42.5	42.6	42.8
Condenser pressure		bar	33.7	32.3	32.7	33.2	33.7	34.1	34.5
Evaporator pressure		bar	10.2	9.2	9.3	9.5	9.6	9.8	9.9
Refrigeration effect		kJ/kg	151.2	161.2	163.0	164.9	166.8	168.9	171.0
Coefficient of Performance (COP)		kg/hr	2.88	2.96	2.95	2.95	2.94	2.93	2.93
Discharge temperature		°C	105.5	107.3	108.2	109.0	109.9	110.7	111.6
Mass flow rate		kg/hr	251	236	233	231	228	225	222
Volumetric flow rate		m ³ /hr	7.28	7.57	7.46	7.36	7.26	7.15	7.06
Volumetric cooling capacity		kJ/m ³	5226	5022	5095	5168	5240	5313	5386
Suction line pressure drop		Pa/m	163	162	159	155	152	148	145
Suction line gas density		kg/m ³	34.6	31.1	31.3	31.3	31.4	31.5	31.5
Condenser line gas density		kg/m ³	155.3	152.7	153.5	154.0	154.9	155.3	155.5

Example 16 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 7 weight % of R-1132a and 4 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	7	7	7	7	7	7	7
GWP (AR4 basis)		2107	100.0%	102.0%	101.8%	101.7%	101.4%	101.3%	101.2%
Cooling COP relative to reference			100.0%	98.6%	100.0%	101.6%	102.9%	104.4%	105.7%
Cooling Capacity relative to reference			100.0%	97.2%	100.0%	101.6%	102.9%	104.4%	105.7%
Compressor discharge temperature difference	K	0.0	2.1	3.0	3.8	4.7	5.6	6.4	7.3
Pressure ratio			3.32	3.52	3.50	3.49	3.48	3.47	3.47
Volumetric efficiency			94.5%	93.7%	93.8%	93.9%	93.9%	94.0%	94.2%
Condenser glide	K	0.2	8.6	8.1	7.7	7.5	7.0	6.8	6.5
Evaporator glide	K	0.1	8.4	8.1	7.8	7.5	7.2	6.9	6.6
Evaporator inlet temperature	°C	7.2	3.0	3.2	3.3	3.5	3.6	3.8	3.9
Condenser exit temperature	°C	46.0	41.8	42.1	42.3	42.4	42.6	42.7	42.8
Condenser pressure	bar	33.7	32.8	33.2	33.7	34.2	34.6	35.0	35.4
Evaporator pressure	bar	10.2	9.3	9.5	9.6	9.8	9.9	10.1	10.2
Refrigeration effect	kJ/kg	151.2	160.9	162.7	164.6	166.8	168.6	170.9	173.0
Coefficient of Performance (COP)		2.88	2.95	2.94	2.93	2.93	2.92	2.92	2.92
Discharge temperature	°C	105.5	107.7	108.5	109.4	110.3	111.1	111.9	112.8
Mass flow rate	kg/hr	251	236	234	231	228	225	222	220
Volumetric flow rate	m ³ /hr	7.28	7.49	7.38	7.27	7.16	7.07	6.97	6.88
Volumetric cooling capacity	kJ/m ³	5226	5078	5152	5227	5309	5375	5453	5523
Suction line pressure drop	Pa/m	163	161	157	154	150	147	143	140
Suction line gas density	kg/m ³	34.6	31.6	31.7	31.8	31.9	31.9	31.9	31.9
Condenser line gas density	kg/m ³	155.3	155.9	156.7	157.5	158.2	158.7	158.9	159.1

Example 17 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 8 weight % of R-1132a and 4 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	8	8	8	8	8	8	8
R-744		4	4	4	4	4	4	4	4
R-32		36	38	40	42	44	46	48	48
R-1234yf		52	50	48	46	44	42	40	40
Results		R410A	2107	100.0%	244	257	271	284	298
GWP (AR4 basis)		100.0%	101.8%	98.3%	101.6%	99.8%	101.4%	101.3%	100.9%
Cooling COP relative to reference		100.0%	98.2%	93.7%	101.6%	99.8%	101.3%	102.8%	100.5%
Cooling Capacity relative to reference		0.0	2.5	3.4	4.2	5.0	5.9	6.7	100.7%
Compressor discharge temperature difference		K	3.32	3.51	3.50	3.49	3.48	3.48	3.47
Pressure ratio		94.5%	94.5%	93.8%	93.9%	93.9%	94.0%	94.0%	94.1%
Volumetric efficiency		K	0.2	8.6	8.2	7.8	7.5	7.1	94.2%
Condenser glide		K	0.1	8.6	8.3	7.9	7.6	7.3	6.3
Evaporator glide		°C	7.2	2.9	3.1	3.3	3.4	3.6	6.7
Evaporator inlet temperature		°C	46.0	41.8	42.0	42.2	42.4	42.6	3.9
Condenser exit temperature		°C	46.0	41.8	42.0	42.2	42.4	42.6	42.9
Condenser pressure		bar	33.7	33.3	33.8	34.3	34.7	35.1	35.9
Evaporator pressure		bar	10.2	9.5	9.7	9.8	10.0	10.1	10.4
Refrigeration effect		kJ/kg	151.2	160.6	162.5	164.5	166.6	168.5	170.6
Coefficient of Performance (COP)		kg/hr	2.88	2.93	2.93	2.92	2.92	2.91	2.90
Discharge temperature		°C	105.5	108.1	108.9	109.8	110.6	111.4	113.1
Mass flow rate		kg/hr	251	237	234	231	228	226	220
Volumetric flow rate		m³/hr	7.28	7.40	7.29	7.18	7.08	6.98	6.82
Volumetric cooling capacity		kJ/m³	5226	5139	5218	5295	5372	5443	5515
Suction line pressure drop		Pa/m	163	159	155	152	148	145	142
Suction line gas density		kg/m³	34.6	32.0	32.1	32.2	32.3	32.3	32.3
Condenser line gas density		kg/m³	155.3	159.3	160.3	161.1	161.6	162.2	162.5

Example 18 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 9 weight % of R-1132a and 4 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	9	9	9	9	9	9	9
R-744	4	4	4	4	4	4	4	4	4
R-32	36	38	40	42	44	44	46	48	48
R-1234yf	51	49	47	45	43	41	41	39	39
GWP (AR4 basis)									
Cooling COP relative to reference	2107	244	257	271	284	298	311	325	
Cooling Capacity relative to reference	100.0%	101.3%	101.2%	101.0%	100.8%	100.6%	100.5%	100.3%	
Compressor discharge temperature difference	100.0%	99.4%	101.1%	102.5%	103.9%	105.3%	106.6%	107.9%	
Pressure ratio	0.0	2.8	3.7	4.6	5.3	6.2	7.0	7.9	
Volumetric efficiency									
Condenser glide	K	0.2	8.5	8.2	7.7	7.3	7.1	6.7	6.3
Evaporator glide	K	0.1	8.7	8.4	8.1	7.7	7.4	7.1	6.8
Evaporator inlet temperature	°C	7.2	2.9	3.0	3.2	3.4	3.5	3.7	3.8
Condenser exit temperature	°C	46.0	41.9	42.0	42.2	42.4	42.6	42.8	43.0
Condenser pressure	bar	33.7	33.8	34.3	34.8	35.2	35.6	36.0	36.4
Evaporator pressure	bar	10.2	9.7	9.8	10.0	10.1	10.3	10.4	10.6
Refrigeration effect	kJ/kg	151.2	160.2	162.3	164.2	166.1	168.2	170.2	172.2
Coefficient of Performance (COP)									
Discharge temperature	°C	105.5	108.4	109.2	110.1	110.9	111.8	112.5	113.4
Mass flow rate	kg/hr	251	237	234	232	229	226	223	221
Volumetric flow rate	m ³ /hr	7.28	7.32	7.20	7.10	7.01	6.91	6.82	6.74
Volumetric cooling capacity	kJ/m ³ /hr	5226	5195	5281	5355	5427	5504	5573	5639
Suction line pressure drop	Pa/m	163	158	154	150	147	143	140	138
Suction line gas density	kg/m ³	34.6	32.4	32.5	32.6	32.7	32.7	32.7	32.7
Condenser line gas density	kg/m ³	155.3	162.6	163.7	164.7	165.0	165.8	166.0	166.8

Example 19 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 10 weight % of R-1132a and 4 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)									
		R-1132a	10	10	10	10	10	10	10	10	10
GWP (AR4 basis)	2107	244	257	271	284	298	311	325			
Cooling COP relative to reference	100.0%	100.8%	100.7%	100.6%	100.5%	100.3%	100.2%	100.1%	100.0%		
Cooling Capacity relative to reference	100.0%	100.6%	102.1%	103.7%	105.1%	106.4%	107.9%	107.9%	109.2%		
Compressor discharge temperature difference	0.0	3.3	4.1	4.9	5.7	6.5	7.4	8.2			
Pressure ratio		3.32	3.50	3.49	3.48	3.47	3.46	3.46	3.45		
Volumetric efficiency		94.5%	93.8%	93.9%	93.9%	94.0%	94.1%	94.2%	94.2%		
Condenser glide	K	0.2	8.5	8.1	7.8	7.3	6.9	6.7	6.4		
Evaporator glide	K	0.1	8.8	8.5	8.2	7.8	7.5	7.2	6.9		
Evaporator inlet temperature	°C	7.2	2.8	3.0	3.1	3.3	3.5	3.6	3.8		
Condenser exit temperature	°C	46.0	41.9	42.1	42.2	42.4	42.6	42.8	42.9		
Condenser pressure	bar	33.7	34.4	34.8	35.3	35.7	36.1	36.6	37.0		
Evaporator pressure	bar	10.2	9.8	10.0	10.1	10.3	10.4	10.6	10.7		
Refrigeration effect	kJ/kg	151.2	160.0	161.9	163.9	165.8	167.8	169.9	172.1		
Coefficient of Performance (COP)		2.88	2.91	2.90	2.90	2.89	2.89	2.88	2.88		
Discharge temperature	°C	105.5	108.8	109.6	110.4	111.3	112.0	112.9	113.7		
Mass flow rate	kg/hr	251	238	235	232	229	227	224	221		
Volumetric flow rate	m ³ /hr	7.28	7.23	7.12	7.02	6.92	6.84	6.74	6.66		
Volumetric cooling capacity	kJ/m ³	5226	5258	5338	5418	5490	5561	5637	5707		
Suction line pressure drop	Pa/m	163	156	152	149	145	142	139	136		
Suction line gas density	kg/m ³	34.6	32.9	33.0	33.1	33.1	33.1	33.2	33.2		
Condenser line gas density	kg/m ³	155.3	166.6	167.7	168.3	169.1	169.3	169.8	169.9		

Example 20 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 4 weight % of R-1132a and 5 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	4	4	4	4	4	4	4
	R-744	5	5	5	5	5	5	5	5
	R-32	36	38	40	42	44	46	48	48
	R-1234yf	55	53	51	49	47	45	43	43
Results		R410A	244	257	271	284	298	311	325
			103.0%	102.7%	102.5%	102.3%	102.1%	101.9%	101.7%
			96.0%	97.5%	98.9%	100.3%	101.7%	103.1%	104.4%
			2.2	3.0	3.9	4.8	5.6	6.5	7.4
			3.32	3.54	3.53	3.52	3.51	3.50	3.49
			94.5%	93.7%	93.7%	93.8%	93.9%	94.0%	94.1%
	K	0.2	9.1	8.7	8.3	7.9	7.5	7.3	6.9
	K	0.1	8.4	8.1	7.8	7.5	7.2	6.9	6.6
	°C	7.2	3.0	3.2	3.3	3.5	3.6	3.8	3.9
	°C	46.0	41.6	41.8	42.0	42.1	42.4	42.5	42.6
	bar	33.7	32.2	32.7	33.1	33.6	34.0	34.4	34.8
	bar	10.2	9.1	9.3	9.4	9.6	9.7	9.9	10.0
	kJ/kg	151.2	162.4	164.3	166.3	168.3	170.3	172.5	174.6
		2.88	2.97	2.96	2.95	2.95	2.94	2.94	2.93
	°C	105.5	107.7	108.6	109.4	110.3	111.1	112.1	112.9
	kg/hr	251	234	231	229	226	223	220	218
	m ³ /hr	7.28	7.58	7.46	7.35	7.25	7.16	7.06	6.97
	kJ/m ³	5226	5016	5093	5169	5244	5313	5387	5455
	Pa/m	163	162	158	154	150	147	144	141
	kg/m ³	34.6	30.9	31.0	31.1	31.2	31.2	31.3	31.3
	kg/m ³	155.3	151.0	151.9	152.6	153.3	153.5	154.0	154.2

Example 21 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 5 weight % of R-1132a and 5 weight % of CO₂ (R-744))

Example 22 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 6 weight % of R-1132a and 5 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	6	6	6	6	6	6	6
R-744	5	5	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	46	48	48
R-1234yf	53	51	49	47	45	43	43	41	41
GWP (AR4 basis)		244	257	271	284	298	311	325	
Cooling COP relative to reference	100.0%	102.0%	101.7%	101.5%	101.2%	100.8%	100.4%	100.9%	101.0%
Cooling Capacity relative to reference	100.0%	98.3%	99.7%	101.2%	102.8%	104.0%	105.3%	106.8%	106.8%
Compressor discharge temperature difference	K	0.0	2.9	3.8	4.7	5.5	6.3	7.2	8.1
Pressure ratio		3.32	3.53	3.52	3.51	3.50	3.49	3.48	3.48
Volumetric efficiency	94.5%	93.7%	93.8%	93.9%	93.9%	94.0%	94.1%	94.2%	
Condenser glide	K	0.2	9.1	8.5	8.1	8.1	7.5	7.1	7.0
Evaporator glide	K	0.1	8.7	8.4	8.1	7.8	7.4	7.1	6.8
Evaporator inlet temperature	°C	7.2	2.9	3.0	3.2	3.3	3.5	3.7	3.8
Condenser exit temperature	°C	46.0	41.6	41.9	42.1	42.1	42.4	42.6	42.6
Condenser pressure	bar	33.7	33.2	33.7	34.2	34.6	35.0	35.5	35.9
Evaporator pressure	bar	10.2	9.4	9.6	9.7	9.9	10.0	10.2	10.3
Refrigeration effect	kJ/kg	151.2	161.9	163.7	165.6	168.0	169.8	171.7	174.1
Coefficient of Performance (COP)		2.88	2.94	2.93	2.93	2.93	2.92	2.91	2.91
Discharge temperature	°C	105.5	108.5	109.3	110.2	111.0	111.8	112.8	113.6
Mass flow rate	kg/hr	251	235	232	230	226	224	221	218
Volumetric flow rate	m ³ /hr	7.28	7.40	7.30	7.19	7.07	6.99	6.91	6.81
Volumetric cooling capacity	kJ/m ³	5226	5138	5210	5286	5374	5437	5504	5582
Suction line pressure drop	Pa/m	163	158	155	151	147	144	141	138
Suction line gas density	kg/m ³	34.6	31.7	31.8	31.9	32.0	32.0	32.0	32.1
Condenser line gas density	kg/m ³	155.3	157.6	158.5	159.3	159.3	160.1	160.7	160.7

Example 23 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 7 weight % of R-1132a and 5 weight % of CO₂ (R-744))

Results	R410A	Nominal composition (weight %)							
		R-1132a	7	7	7	7	7	7	7
R-744	5	5	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	46	48	48
R-1234yf	52	50	48	46	44	44	42	40	40
GWP (AR4 basis)		244	257	271	284	298	311	325	
Cooling COP relative to reference		100.0%	101.3%	101.1%	101.0%	100.8%	100.7%	100.6%	
Cooling Capacity relative to reference		100.0%	101.0%	102.5%	103.9%	105.2%	106.6%	108.0%	
Compressor discharge temperature difference	K	0.0	3.3	4.2	5.0	5.9	6.6	7.5	8.4
Pressure ratio		3.32	3.52	3.51	3.50	3.49	3.48	3.48	3.47
Volumetric efficiency		94.5%	93.7%	93.8%	93.9%	94.0%	94.0%	94.1%	94.2%
Condenser glide	K	0.2	9.0	8.6	8.2	7.9	7.4	7.1	7.0
Evaporator glide	K	0.1	8.8	8.5	8.2	7.9	7.5	7.2	6.9
Evaporator inlet temperature	°C	7.2	2.8	3.0	3.1	3.3	3.5	3.6	3.8
Condenser exit temperature	°C	46.0	41.6	41.8	42.0	42.2	42.4	42.6	42.6
Condenser pressure	bar	33.7	33.8	34.2	34.7	35.2	35.5	36.0	36.4
Evaporator pressure	bar	10.2	9.6	9.8	9.9	10.1	10.2	10.3	10.5
Refrigeration effect	kJ/kg	151.2	161.6	163.6	165.5	167.5	169.5	171.5	173.8
Coefficient of Performance (COP)		2.88	2.93	2.92	2.92	2.91	2.91	2.90	2.90
Discharge temperature	°C	105.5	108.8	109.7	110.6	111.4	112.2	113.0	113.9
Mass flow rate	kg/hr	251	235	232	230	227	224	222	219
Volumetric flow rate	m ³ /hr	7.28	7.31	7.20	7.10	7.00	6.91	6.83	6.73
Volumetric cooling capacity	kJ/m ³	5226	5199	5277	5354	5429	5498	5569	5645
Suction line pressure drop	Pa/m	163	157	153	149	146	143	140	136
Suction line gas density	kg/m ³	34.6	32.2	32.3	32.3	32.4	32.4	32.5	32.5
Condenser line gas density	kg/m ³	155.3	161.0	162.0	162.8	163.5	163.6	163.9	164.1

Example 24 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 8 weight % of R-1132a and 5 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	8	8	8	8	8	8	8
		R-744	5	5	5	5	5	5	5
		R-32	36	38	40	42	44	46	48
		R-1234yf	51	49	47	45	43	41	39
Results		R410A	2107	100.0%	100.9%	100.8%	100.6%	100.5%	100.2%
			100.0%	100.6%	102.1%	103.8%	105.1%	106.5%	107.8%
			0.0	3.7	4.5	5.3	6.2	7.0	7.9
GWP (AR4 basis)			244	257	271	284	298	311	325
Cooling COP relative to reference			101.1%	100.9%	100.8%	100.6%	100.5%	100.2%	100.1%
Cooling Capacity relative to reference			100.6%	102.1%	103.8%	105.1%	106.5%	107.8%	109.1%
Compressor discharge temperature difference		K	0.0	3.7	4.5	5.3	6.2	7.0	7.9
Pressure ratio			3.32	3.51	3.50	3.49	3.48	3.47	3.46
Volumetric efficiency			94.5%	93.8%	93.9%	94.0%	94.1%	94.1%	94.2%
Condenser glide		K	0.2	9.0	8.5	8.4	7.9	7.6	7.1
Evaporator glide		K	0.1	9.0	8.6	8.3	8.0	7.6	7.3
Evaporator inlet temperature		°C	7.2	2.7	2.9	3.1	3.2	3.4	3.6
Condenser exit temperature		°C	46.0	41.6	41.9	41.9	42.2	42.3	42.5
Condenser pressure		bar	33.7	34.3	34.7	35.2	35.7	36.1	36.5
Evaporator pressure		bar	10.2	9.8	9.9	10.1	10.2	10.4	10.5
kJ/kg		151.2	161.3	163.2	165.4	167.3	169.3	171.3	173.4
Refrigeration effect		°C	105.5	109.2	110.0	110.9	111.7	112.5	113.4
Coefficient of Performance (COP)		kg/hr	251	236	233	230	227	225	219
Discharge temperature		m ³ /hr	7.28	7.23	7.13	7.01	6.92	6.83	6.75
Mass flow rate		kJ/m ³	5226	5259	5334	5422	5491	5566	5634
Volumetric flow rate		Pa/m	163	155	151	147	144	141	138
Volumetric cooling capacity		kg/m ³	34.6	32.6	32.7	32.8	32.8	32.9	32.9
Suction line pressure drop		kg/m ³	155.3	164.6	165.4	166.5	167.0	167.4	167.9
Suction line gas density		kg/m ³	167.9	167.4	166.5	165.4	164.6	163.6	162.7
Condenser line gas density		kg/m ³	162.7	163.6	164.6	165.4	166.5	167.0	167.9

Example 25 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 9 weight % of R-1132a and 5 weight % of CO₂ (R-744))

		Nominal composition (weight %)								
		R-1132a	9	9	9	9	9	9	9	9
R-744		5	5	5	5	5	5	5	5	5
R-32		36	38	40	42	44	46	46	48	48
R-1234yf		50	48	46	44	42	40	40	38	38
Results		R410A	244	257	271	284	298	311	325	
GWP (AR4 basis)		2107	100.0%	100.7%	100.5%	100.3%	100.2%	99.8%	99.6%	
Cooling COP relative to reference		100.0%	101.8%	103.4%	104.8%	106.3%	107.5%	109.0%	110.2%	
Cooling Capacity relative to reference		0.0	4.0	4.9	5.6	6.4	7.3	8.2	9.0	
Compressor discharge temperature difference		K								
Pressure ratio		3.32	94.5%	93.8%	93.9%	93.9%	94.0%	94.1%	94.2%	94.2%
Volumetric efficiency		K	0.2	9.0	8.7	8.2	7.8	7.2	7.1	6.6
Condenser glide		K	0.1	9.1	8.7	8.4	8.1	7.7	7.4	7.1
Evaporator glide		°C	7.2	2.7	2.8	3.0	3.2	3.4	3.5	3.7
Evaporator inlet temperature		°C	46.0	41.6	41.8	42.0	42.2	42.5	42.6	42.8
Condenser exit temperature		bar	33.7	34.8	35.3	35.7	36.2	36.6	37.0	37.4
Condenser pressure		bar	10.2	9.9	10.1	10.2	10.4	10.5	10.7	10.8
Evaporator pressure		kJ/kg	151.2	161.1	163.1	164.9	167.0	168.7	170.9	172.9
Refrigeration effect			2.88	2.90	2.90	2.89	2.89	2.88	2.88	2.87
Coefficient of Performance (COP)		°C	105.5	109.5	110.4	111.2	112.0	112.9	113.7	114.5
Discharge temperature		kg/hr	251	236	233	230	228	225	222	220
Mass flow rate		m ³ /hr	7.28	7.14	7.03	6.94	6.85	6.77	6.68	6.60
Volumetric flow rate		kJ/m ³	5226	5322	5404	5477	5554	5615	5694	5758
Volumetric cooling capacity		Pa/m	163	153	150	146	143	140	137	134
Suction line pressure drop		kg/m ³	34.6	33.0	33.1	33.2	33.3	33.3	33.3	33.3
Suction line gas density		kg/m ³	155.3	168.2	169.4	170.2	170.7	171.4	171.7	171.5

Example 26 (Quaternary blends of R-1132a/CO₂/R-32/R-1234yf comprising 10 weight % of R-1132a and 5 weight % of CO₂ (R-744))

		Nominal composition (weight %)							
		R-1132a	10	10	10	10	10	10	10
	R-744	5	5	5	5	5	5	5	5
	R-32	36	38	40	42	44	46	48	48
	R-1234yf	49	47	45	43	41	39	37	37
Results		R410A	244	257	271	284	298	311	325
GWP (AR4 basis)			100.1%	99.9%	99.8%	99.6%	99.5%	99.4%	99.3%
Cooling COP relative to reference			100.0%	100.0%	104.3%	105.9%	107.3%	108.7%	110.1%
Cooling Capacity relative to reference			100.0%	102.9%	105.9%	107.3%	108.7%	110.1%	111.4%
Compressor discharge temperature difference		K	0.0	4.4	5.1	6.0	6.8	7.6	8.4
Pressure ratio			3.32	3.50	3.49	3.49	3.47	3.47	3.46
Volumetric efficiency			94.5%	93.8%	93.9%	94.0%	94.0%	94.1%	94.2%
Condenser glide		K	0.2	8.8	8.3	8.0	7.6	7.3	7.0
Evaporator glide		K	0.1	9.2	8.8	8.5	8.1	7.8	7.5
Evaporator inlet temperature		°C	7.2	2.6	2.8	3.0	3.1	3.3	3.5
Condenser exit temperature		°C	46.0	41.7	42.0	42.1	42.3	42.5	42.6
Condenser pressure		bar	33.7	35.4	35.8	36.3	36.7	37.1	37.5
Evaporator pressure		bar	10.2	10.1	10.3	10.4	10.6	10.7	10.9
Refrigeration effect		kJ/kg	151.2	160.6	162.5	164.5	166.4	168.5	170.5
Coefficient of Performance (COP)			2.88	2.89	2.88	2.88	2.87	2.87	2.86
Discharge temperature		°C	105.5	109.9	110.7	111.5	112.3	113.2	114.0
Mass flow rate		kg/hr	251	237	234	231	229	226	223
Volumetric flow rate		m ³ /hr	7.28	7.07	6.97	6.87	6.78	6.69	6.61
Volumetric cooling capacity		kJ/m ³	5226	5377	5452	5533	5605	5682	5753
Suction line pressure drop		Pa/m	163	152	149	145	142	139	136
Suction line gas density		kg/m ³	34.6	33.5	33.6	33.6	33.7	33.7	33.7
Condenser line gas density		kg/m ³	155.3	172.3	173.1	174.3	175.4	175.6	175.6

Example 27 (ternary compositions comprising 4, 5 and 6 weight % of R-1132a)

Nominal composition (% mass)							
R-1132a	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	60	58	56	54	52	50	48
Worst-Case Formulation (% mass)							
R-1132a	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	60.5	58.5	56.5	54.5	52.5	50.5	48.5
Worst-Case Flammable Formulation (% volume)							
R-1132a	22.8%	22.2%	21.7%	21.1%	20.6%	20.0%	19.6%
R-32	59.9%	61.6%	63.2%	64.7%	66.1%	67.5%	68.8%
R-1234yf	17.3%	16.2%	15.2%	14.2%	13.3%	12.4%	11.6%

Nominal composition (% mass)							
R-1132a	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	59	57	55	53	51	49	47
Worst-Case Formulation (% mass)							
R-1132a	5.5	5.5	5.5	5.5	5.5	5.5	5.5
R-32	35	37	39	41	43	45	47
R-1234yf	59.5	57.5	55.5	53.5	51.5	49.5	47.5
Worst-Case Flammable Formulation (% volume)							
R-1132a	26.6%	25.9%	25.3%	24.6%	24.0%	23.5%	23.0%
R-32	57.2%	58.9%	60.5%	62.0%	63.4%	64.8%	66.1%
R-1234yf	16.2%	15.2%	14.3%	13.4%	12.5%	11.7%	10.9%

Nominal composition (% mass)							
R-1132a	6	6	6	6	6	6	6
R-32	36	38	40	42	44	46	48
R-1234yf	58	56	54	52	50	48	46
Worst-Case Formulation (% mass)							
R-1132a	6.5	6.5	6.5	6.5	6.5	6.5	6.5
R-32	35	37	39	41	43	45	47
R-1234yf	58.5	56.5	54.5	52.5	50.5	48.5	46.5
Worst-Case Flammable Formulation (% volume)							
R-1132a	30.1%	29.3%	28.6%	28.0%	27.2%	26.7%	26.1%
R-32	54.7%	56.4%	58.0%	59.5%	61.0%	62.3%	63.6%
R-1234yf	15.3%	14.3%	13.4%	12.6%	11.8%	11.0%	10.3%

Example 28 (ternary compositions comprising 7 and 8 weight % of R-1132a)

Nominal composition (% mass)							
R-1132a	7	7	7	7	7	7	7
R-32	36	38	40	42	44	46	48
R-1234yf	57	55	53	51	49	47	45
Worst-Case Formulation (% mass)							
R-1132a	7.5	7.5	7.5	7.5	7.5	7.5	7.5
R-32	35	37	39	41	43	45	47
R-1234yf	57.5	55.5	53.5	51.5	49.5	47.5	45.5
Worst-Case Flammable Formulation (% volume)							
R-1132a	33.2%	32.3%	31.6%	30.9%	30.3%	29.6%	29.0%
R-32	52.5%	54.1%	55.7%	57.2%	58.7%	60.0%	61.3%
R-1234yf	14.4%	13.5%	12.7%	11.9%	11.1%	10.4%	9.7%
Nominal composition (% mass)							
R-1132a	8	8	8	8	8	8	8
R-32	36	38	40	42	44	46	48
R-1234yf	56	54	52	50	48	46	44
Worst-Case Formulation (% mass)							
R-1132a	8.5	8.5	8.5	8.5	8.5	8.5	8.5
R-32	35	37	39	41	43	45	47
R-1234yf	56.5	54.5	52.5	50.5	48.5	46.5	44.5
Worst-Case Flammable Formulation (% volume)							
R-1132a	36.1%	35.3%	34.4%	33.8%	33.0%	32.3%	31.7%
R-32	50.4%	52.0%	53.6%	55.1%	56.5%	57.9%	59.2%
R-1234yf	13.6%	12.7%	11.9%	11.2%	10.5%	9.8%	9.1%

Example 29 (quaternary compositions comprising 3 weight % CO₂)

Nominal composition (% mass)							
R-1132a	4	4	4	4	4	4	4
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	57	55	53	51	49	47	45
Worst-Case Formulation (% mass)							
R-1132a	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	58	56	54	52	50	48	46
Worst-Case Flammable Formulation (% volume)							
R-1132a	18.2%	17.8%	17.4%	17.0%	16.6%	16.3%	16.0%
R-744	20.5%	20.2%	19.8%	19.5%	19.2%	18.9%	18.6%
R-32	48.1%	49.7%	51.2%	52.6%	54.0%	55.3%	56.5%
R-1234yf	13.1%	12.3%	11.6%	10.9%	10.2%	9.5%	8.9%

Nominal composition (% mass)							
R-1132a	5	5	5	5	5	5	5
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	56	54	52	50	48	46	44
Worst-Case Formulation (% mass)							
R-1132a	5.5	5.5	5.5	5.5	5.5	5.5	5.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	57	55	53	51	49	47	45
Worst-Case Flammable Formulation (% volume)							
R-1132a	21.4%	20.9%	20.5%	20.1%	19.6%	19.2%	18.8%
R-744	19.7%	19.4%	19.1%	18.8%	18.6%	18.3%	18.0%
R-32	46.4%	47.9%	49.4%	50.8%	52.2%	53.5%	54.7%
R-1234yf	12.4%	11.7%	11.0%	10.3%	9.6%	9.0%	8.4%

Example 30 (quaternary compositions comprising 3 weight % CO₂)

Nominal composition (% mass)							
R-1132a	6	6	6	6	6	6	6
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	55	53	51	49	47	45	43
Worst-Case Formulation (% mass)							
R-1132a	6.5	6.5	6.5	6.5	6.5	6.5	6.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	56	54	52	50	48	46	44
Worst-Case Flammable Formulation (% volume)							
R-1132a	24.4%	23.9%	23.4%	22.9%	22.4%	22.0%	21.5%
R-744	19.0%	18.8%	18.5%	18.2%	18.0%	17.7%	17.5%
R-32	44.8%	46.3%	47.8%	49.2%	50.5%	51.8%	53.0%
R-1234yf	11.8%	11.1%	10.4%	9.8%	9.1%	8.6%	8.0%

Nominal composition (% mass)							
R-1132a	7	7	7	7	7	7	7
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	54	52	50	48	46	44	42
Worst-Case Formulation (% mass)							
R-1132a	7.5	7.5	7.5	7.5	7.5	7.5	7.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	55	53	51	49	47	45	43
Worst-Case Flammable Formulation (% volume)							
R-1132a	27.2%	26.6%	26.1%	25.5%	25.0%	24.5%	24.1%
R-744	18.4%	18.1%	17.9%	17.6%	17.4%	17.2%	17.0%
R-32	43.3%	44.8%	46.2%	47.6%	48.9%	50.2%	51.4%
R-1234yf	11.2%	10.5%	9.9%	9.3%	8.7%	8.1%	7.6%

Example 31 (quaternary compositions comprising 3 weight % CO₂)

Nominal composition (% mass)							
R-1132a	8	8	8	8	8	8	8
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	53	51	49	47	45	43	41
Worst-Case Formulation (% mass)							
R-1132a	8.5	8.5	8.5	8.5	8.5	8.5	8.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	54	52	50	48	46	44	42
Worst-Case Flammable Formulation (% volume)							
R-1132a	29.7%	29.1%	28.6%	28.0%	27.5%	27.0%	26.5%
R-744	17.8%	17.6%	17.3%	17.1%	16.9%	16.7%	16.5%
R-32	41.9%	43.4%	44.8%	46.2%	47.5%	48.7%	49.9%
R-1234yf	10.6%	10.0%	9.4%	8.8%	8.2%	7.7%	7.2%

Nominal composition (% mass)							
R-1132a	9	9	9	9	9	9	9
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	52	50	48	46	44	42	40
Worst-Case Formulation (% mass)							
R-1132a	9.5	9.5	9.5	9.5	9.5	9.5	9.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	53	51	49	47	45	43	41
Worst-Case Flammable Formulation (% volume)							
R-1132a	32.1%	31.5%	30.9%	30.3%	29.7%	29.2%	28.7%
R-744	17.2%	17.0%	16.8%	16.5%	16.3%	16.1%	16.0%
R-32	40.6%	42.1%	43.4%	44.8%	46.1%	47.3%	48.5%
R-1234yf	10.1%	9.5%	8.9%	8.3%	7.8%	7.3%	6.8%

Example 32 (quaternary compositions comprising 3 weight % CO₂)

Nominal composition (% mass)							
R-1132a	10	10	10	10	10	10	10
R-744	3	3	3	3	3	3	3
R-32	36	38	40	42	44	46	48
R-1234yf	51	49	47	45	43	41	39
Worst-Case Formulation (% mass)							
R-1132a	10.5	10.5	10.5	10.5	10.5	10.5	10.5
R-744	2.5	2.5	2.5	2.5	2.5	2.5	2.5
R-32	35	37	39	41	43	45	47
R-1234yf	52	50	48	46	44	42	40
Worst-Case Flammable Formulation (% volume)							
R-1132a	34.4%	33.7%	33.1%	32.5%	31.9%	31.3%	30.8%
R-744	16.7%	16.5%	16.3%	16.1%	15.9%	15.7%	15.6%
R-32	39.3%	40.8%	42.2%	43.5%	44.8%	46.0%	47.2%
R-1234yf	9.6%	9.0%	8.4%	7.9%	7.4%	6.9%	6.4%

Example 33 (quaternary compositions comprising 4 weight % CO₂ (R-744))

Nominal composition (% mass)							
R-1132a	4	4	4	4	4	4	4
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	56	54	52	50	48	46	44
Worst-Case Formulation (% mass)							
R-1132a	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	57	55	53	51	49	47	45
Worst-Case Flammable Formulation (% volume)							
R-1132a	16.8%	16.5%	16.1%	15.8%	15.4%	15.1%	14.8%
R-744	26.6%	26.2%	25.8%	25.4%	25.1%	24.7%	24.4%
R-32	44.6%	46.1%	47.6%	48.9%	50.3%	51.5%	52.7%
R-1234yf	11.9%	11.2%	10.5%	9.9%	9.2%	8.7%	8.1%

Example 34(quaternary compositions comprising 4 weight % CO₂)

Nominal composition (% mass)							
R-1132a	5	5	5	5	5	5	5
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	55	53	51	49	47	45	43
Worst-Case Formulation (% mass)							
R-1132a	5.5	5.5	5.5	5.5	5.5	5.5	5.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	56	54	52	50	48	46	44
Worst-Case Flammable Formulation (% volume)							
R-1132a	19.9%	19.4%	19.0%	18.6%	18.3%	17.9%	17.6%
R-744	25.7%	25.3%	25.0%	24.6%	24.3%	23.9%	23.6%
R-32	43.2%	44.6%	46.0%	47.4%	48.7%	50.0%	51.2%
R-1234yf	11.3%	10.6%	10.0%	9.4%	8.8%	8.2%	7.7%

Nominal composition (% mass)							
R-1132a	6	6	6	6	6	6	6
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	54	52	50	48	46	44	42
Worst-Case Formulation (% mass)							
R-1132a	6.5	6.5	6.5	6.5	6.5	6.5	6.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	55	53	51	49	47	45	43
Worst-Case Flammable Formulation (% volume)							
R-1132a	22.7%	22.2%	21.8%	21.3%	20.9%	20.5%	20.1%
R-744	24.9%	24.5%	24.2%	23.9%	23.5%	23.2%	22.9%
R-32	41.8%	43.2%	44.6%	46.0%	47.3%	48.5%	49.7%
R-1234yf	10.7%	10.1%	9.5%	8.9%	8.3%	7.8%	7.3%

Example 35 (quaternary compositions comprising 4 weight % CO₂)

Nominal composition (% mass)							
R-1132a	7	7	7	7	7	7	7
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	53	51	49	47	45	43	41
Worst-Case Formulation (% mass)							
R-1132a	7.5	7.5	7.5	7.5	7.5	7.5	7.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	54	52	50	48	46	44	42
Worst-Case Flammable Formulation (% volume)							
R-1132a	25.3%	24.8%	24.3%	23.8%	23.4%	23.0%	22.5%
R-744	24.1%	23.8%	23.4%	23.1%	22.8%	22.6%	22.3%
R-32	40.5%	41.9%	43.3%	44.6%	45.9%	47.1%	48.3%
R-1234yf	10.2%	9.6%	9.0%	8.4%	7.9%	7.4%	6.9%

Nominal composition (% mass)							
R-1132a	8	8	8	8	8	8	8
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	52	50	48	46	44	42	40
Worst-Case Formulation (% mass)							
R-1132a	8.5	8.5	8.5	8.5	8.5	8.5	8.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	53	51	49	47	45	43	41
Worst-Case Flammable Formulation (% volume)							
R-1132a	27.8%	27.2%	26.7%	26.2%	25.7%	25.2%	24.8%
R-744	23.3%	23.0%	22.7%	22.5%	22.1%	21.9%	21.6%
R-32	39.2%	40.7%	42.0%	43.3%	44.6%	45.8%	47.0%
R-1234yf	9.7%	9.1%	8.6%	8.0%	7.5%	7.0%	6.6%

Example 36 (quaternary compositions comprising 4 weight % CO₂)

Nominal composition (% mass)							
R-1132a	9	9	9	9	9	9	9
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	51	49	47	45	43	41	39
Worst-Case Formulation (% mass)							
R-1132a	9.5	9.5	9.5	9.5	9.5	9.5	9.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	52	50	48	46	44	42	40
Worst-Case Flammable Formulation (% volume)							
R-1132a	30.1%	29.5%	29.0%	28.4%	27.9%	27.4%	26.9%
R-744	22.7%	22.3%	22.1%	21.8%	21.6%	21.3%	21.1%
R-32	38.1%	39.5%	40.8%	42.1%	43.4%	44.6%	45.7%
R-1234yf	9.2%	8.7%	8.1%	7.6%	7.1%	6.7%	6.2%

Nominal composition (% mass)							
R-1132a	10	10	10	10	10	10	10
R-744	4	4	4	4	4	4	4
R-32	36	38	40	42	44	46	48
R-1234yf	50	48	46	44	42	40	38
Worst-Case Formulation (% mass)							
R-1132a	10.5	10.5	10.5	10.5	10.5	10.5	10.5
R-744	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R-32	35	37	39	41	43	45	47
R-1234yf	51	49	47	45	43	41	39
Worst-Case Flammable Formulation (% volume)							
R-1132a	32.3%	31.6%	31.1%	30.6%	30.0%	29.5%	29.0%
R-744	22.0%	21.7%	21.5%	21.3%	21.0%	20.8%	20.5%
R-32	37.0%	38.4%	39.7%	41.0%	42.2%	43.4%	44.6%
R-1234yf	8.8%	8.3%	7.7%	7.3%	6.8%	6.3%	5.9%

Example 37(quaternary compositions comprising 5 weight % CO₂)

Nominal composition (% mass)							
R-1132a	4	4	4	4	4	4	4
R-744	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	55	53	51	49	47	45	43
Worst-Case Formulation (% mass)							
R-1132a	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	56	54	52	50	48	46	44
Worst-Case Flammable Formulation (% volume)							
R-1132a	15.6%	15.3%	15.0%	14.7%	14.4%	14.1%	13.9%
R-744	31.9%	31.4%	31.0%	30.6%	30.2%	29.8%	29.4%
R-32	41.6%	43.1%	44.4%	45.8%	47.0%	48.2%	49.4%
R-1234yf	10.8%	10.2%	9.6%	9.0%	8.4%	7.9%	7.4%

Nominal composition (% mass)							
R-1132a	5	5	5	5	5	5	5
R-744	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	54	52	50	48	46	44	42
Worst-Case Formulation (% mass)							
R-1132a	5.5	5.5	5.5	5.5	5.5	5.5	5.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	55	53	51	49	47	45	43
Worst-Case Flammable Formulation (% volume)							
R-1132a	18.5%	18.1%	17.8%	17.4%	17.1%	16.8%	16.4%
R-744	30.9%	30.5%	30.1%	29.7%	29.3%	28.9%	28.5%
R-32	40.3%	41.7%	43.1%	44.4%	45.7%	46.9%	48.0%
R-1234yf	10.3%	9.7%	9.1%	8.5%	8.0%	7.5%	7.0%

Example 38 (quaternary compositions comprising 5 weight % CO₂)

Nominal composition (% mass)							
R-1132a	6	6	6	6	6	6	6
R-744	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	53	51	49	47	45	43	41
Worst-Case Formulation (% mass)							
R-1132a	6.5	6.5	6.5	6.5	6.5	6.5	6.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	54	52	50	48	46	44	42
Worst-Case Flammable Formulation (% volume)							
R-1132a	21.2%	20.7%	20.3%	20.0%	19.6%	19.2%	18.9%
R-744	29.9%	29.5%	29.2%	28.8%	28.4%	28.1%	27.8%
R-32	39.1%	40.5%	41.9%	43.2%	44.4%	45.6%	46.7%
R-1234yf	9.8%	9.2%	8.7%	8.1%	7.6%	7.1%	6.6%

Nominal composition (% mass)							
R-1132a	7	7	7	7	7	7	7
R-744	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	52	50	48	46	44	42	40
Worst-Case Formulation (% mass)							
R-1132a	7.5	7.5	7.5	7.5	7.5	7.5	7.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	53	51	49	47	45	43	41
Worst-Case Flammable Formulation (% volume)							
R-1132a	23.7%	23.2%	22.8%	22.4%	21.9%	21.6%	21.2%
R-744	29.1%	28.7%	28.3%	28.0%	27.7%	27.3%	27.0%
R-32	38.0%	39.4%	40.7%	42.0%	43.2%	44.4%	45.5%
R-1234yf	9.3%	8.8%	8.2%	7.7%	7.2%	6.8%	6.3%

Example 39 (quaternary compositions comprising 5 weight % CO₂)

Nominal composition (% mass)							
R-1132a	8	8	8	8	8	8	8
R-744	5	5	5	5	5	5	5
R-32	36	38	40	42	44	46	48
R-1234yf	51	49	47	45	43	41	39
Worst-Case Formulation (% mass)							
R-1132a	8.5	8.5	8.5	8.5	8.5	8.5	8.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	35	37	39	41	43	45	47
R-1234yf	52	50	48	46	44	42	40
Worst-Case Flammable Formulation (% volume)							
R-1132a	26.0%	25.5%	25.0%	24.6%	24.2%	23.8%	23.4%
R-744	28.1%	27.9%	27.5%	27.2%	26.9%	26.6%	26.3%
R-32	36.9%	38.3%	39.6%	40.8%	42.0%	43.2%	44.3%
R-1234yf	8.9%	8.4%	7.9%	7.4%	6.9%	6.4%	6.0%

Nominal composition (% mass)							
R-1132a	9	9	9	9	9	9	9
R-744	5	5	5	5	5	5	5
R-32	46	46	46	46	46	46	46
R-1234yf	40	40	40	40	40	40	40
Worst-Case Formulation (% mass)							
R-1132a	9.5	9.5	9.5	9.5	9.5	9.5	9.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	45	45	45	45	45	45	45
R-1234yf	41	41	41	41	41	41	41
Worst-Case Flammable Formulation (% volume)							
R-1132a	25.9%	25.9%	25.9%	25.9%	25.9%	25.9%	25.9%
R-744	26.0%	26.0%	26.0%	26.0%	26.0%	26.0%	26.0%
R-32	42.1%	42.1%	42.1%	42.1%	42.1%	42.1%	42.1%
R-1234yf	6.1%	6.1%	6.1%	6.1%	6.1%	6.1%	6.1%

Example 40 (quaternary compositions comprising 5 weight % CO₂)

Nominal composition (% mass)							
R-1132a	10	10	10	10	10	10	10
R-744	5	5	5	5	5	5	5
R-32	46	46	46	46	46	46	46
R-1234yf	39	39	39	39	39	39	39
Worst-Case Formulation (% mass)							
R-1132a	10.5	10.5	10.5	10.5	10.5	10.5	10.5
R-744	4.5	4.5	4.5	4.5	4.5	4.5	4.5
R-32	45	45	45	45	45	45	45
R-1234yf	40	40	40	40	40	40	40
Worst-Case Flammable Formulation (% volume)							
R-1132a	27.8%	27.8%	27.8%	27.8%	27.8%	27.8%	27.8%
R-744	25.3%	25.3%	25.3%	25.3%	25.3%	25.3%	25.3%
R-32	41.1%	41.1%	41.1%	41.1%	41.1%	41.1%	41.1%
R-1234yf	5.8%	5.8%	5.8%	5.8%	5.8%	5.8%	5.8%

CLAIMS

1. A composition comprising:
 - (a) from about 2 to about 15 weight % of 1,1-difluoroethene (R-1132a);
 - 5 (b) from about 20 to about 60 weight % of difluoromethane (R-32);
 - (c) from about 25 to about 70 weight % of 2,3,3,3-tetrafluoropropene (R-1234yf); and
 - (d) from about 2 to about 12 weight % of carbon dioxide (CO₂, R-744);

based on the total weight of the composition.

10

2. A composition according to claim 1, wherein the composition comprises:
 - (a) from about 4 to about 10 weight % of R-1132a;
 - (b) from about 30 to about 48 weight % of R-32;
 - 15 (c) from about 34 to about 64 weight % of R-1234yf; and
 - (d) from about 2 to about 8 weight % of CO₂;

based on the total weight of the composition.

20 3. A composition according to claim 1 or claim 2, wherein the composition comprises from about 4 or 5 or 6 to about 10 weight % of R-1132a, preferably from about 4 or 5 or 6 to about 9 weight %, such as from about 4 or 5 or 6 to about 8 weight % based on the total weight of the composition.

25 4. A composition according to claims 1 to 3, wherein the composition comprises from about 32 to about 44 weight % of R-32, preferably from about 36 to about 44 weight %, such as from about 36 to about 40 weight % based on the total weight of the composition.

30 5. A composition according to claims 1 to 4, wherein the composition comprises from about 34 to about 60 weight % of R-1234yf, preferably from about 39 to about 56 weight %, such as from about 43 to about 54 weight %, for example from about 43 to about 51 weight % based on the total weight of the composition.

6 A composition according to claims 1 to 5, wherein the composition comprises from about 2 or 3 to about 7 weight % of CO₂, such as from about 3 or 4 to about 6 weight %, for example from about 3 to about 5 weight % based on the total weight of the composition.

5 7. A composition according to claims 1 to 6, wherein the composition comprises:

about 6 weight % R-1132a, about 40 weight % R-32, about 51 weight % R-1234yf and about 3 weight % CO₂;

about 7 weight % R-1132a, about 36 weight % R-32, about 54 weight % R-1234yf and about 10 3 weight % CO₂;

about 9 weight % R-1132a, about 44 weight % R-32, about 43 weight % R-1234yf and about 4 weight % CO₂; or

about 7 weight % R-1132a, about 30 weight % R-32, about 60 weight % R-1234yf and about 15 3 weight % CO₂;

based on the total weight of the composition.

8. A composition according to claims 1 to 7, wherein the manufacturing tolerances are +1 / -0.5 weight % CO₂; +0.5 / -1 weight % R-1132a; ±1 weight % R-32; ±2 weight % R-1234yf.

20 9. A composition according to claims 1 to 8, wherein the Worst-Case Formulation for Flammability (WCFF) of the composition in accordance with ASHRAE Standard 34 Appendix B has a molar volume concentration of R-1132a which is less than about 35% v/v and preferably less than about 30% v/v based on the total volume of the composition.

25 10. A composition comprising 1,1-difluoroethylene (R-1132a), difluoromethane (R-32), 2,3,3,3-tetrafluoropropene (R-1234yf) and at least one compound selected from the group consisting of: pentafluoroethane (R-125), 1,1-difluoroethane (R-152a), 1,1,1,2-tetrafluoroethane (R-134a), trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and 1,1,1,2,3,3,3-heptafluoropropane (R-227ea), optionally wherein the composition comprises at least one 30 further compound selected from the group consisting of trifluoroethylene (R-1123), propane (R-290), propylene (R-1270), isobutane (R-600a) and carbon dioxide (CO₂, R-744).

35 11. A composition according to claim 10, wherein the composition comprises R-1132a, R-32 and R-1234yf in a combined amount of from about 1 to about 99 weight %, optionally from about 1 to about 90 weight %, preferably from about 1 to about 80 weight %, such as from

about 1 to about 75 weight %, for example from about 1 to about 70 weight %, based on the total weight of the composition.

12. A composition according to claim 10 or 11, wherein the composition comprises CO₂ in
5 an amount of from about 1 to about 30 weight %, for example from about 2 to about 20 weight
%.
15

13. A composition according to any of claims 10 to 12, wherein the composition comprises
R-1123 in an amount of from about 1 to about 30 weight %, for example from about 2 or 5 to
10 about 20 weight %.

14. A composition according to any of claims 10 to 13, wherein the composition comprises
R-134a in an amount of from about 1 to about 40 weight %, for example from about 2 to about
30 weight %.
20

15. A composition according to any of claims 10 to 14, wherein the composition comprises
R-125 in an amount of from about 1 to about 20 weight %, for example from about 2 to about
15 weight %.
25

16. A composition according to any of claims 10 to 15, wherein the composition comprises
R-1234ze(E) in an amount of from about 1 to about 40 weight %, for example from about 2 to about
30 weight %.
30

17. A composition according to any of claims 10 to 16, wherein the composition comprises
R-152a in an amount of from about 1 to about 30 weight %, for example from about 2 to about
20 weight %.
35

18. A composition according to any of claims 10 to 17, wherein the composition comprises
R-600a in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10
weight %, preferably from about 1 to about 5 weight %.
40

19. A composition according to any of claims 10 to 18, wherein the composition comprises
R-290 in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10
weight %, preferably from about 1 to about 5 weight %.
45

20. A composition according to any of claims 10 to 19, wherein the composition comprises R-1270 in an amount of from about 1 to about 20 weight %, such as from about 1 to about 10 weight %, preferably from about 1 to about 5 weight %.

5 21. A composition according to any claims 10 to 20, wherein the composition comprises:

R-1132a, R-32, R-1234yf and R-152a;

R-1132a, R-32, R-1234yf and R-134a;

R-1132a, R-32, R-1234yf and R-1234ze(E);

R-1132a, R-32, R-1234yf and R-125; or

10 R-1132a, R-32, R-1234yf and R-227ea.

22. A composition according to claims 10 to 20, wherein the composition comprises:

R-1132a, R-32, R-1234yf, CO₂ and R-1234ze(E);

R-1132a, R-32, R-1234yf, CO₂ and R-125;

15 R-1132a, R-32, R-1234yf, CO₂ and R-152a;

R-1132a, R-32, R-1234yf, CO₂ and R-134a;

R-1132a, R-32, R-1234yf, CO₂ and R-227ea;

R-1132a, R-32, R-1234yf, R-1123 and R-1234ze(E);

R-1132a, R-32, R-1234yf, R-1123 and R-125;

20 R-1132a, R-32, R-1234yf, R-1123 and R-152a;

R-1132a, R-32, R-1234yf, R-1123 and R-134a;

R-1132a, R-32, R-1234yf, R-1123 and R-227ea;

R-1132a, R-32, R-1234yf, R-290 and R-1234ze(E);

R-1132a, R-32, R-1234yf, R-290 and R-125;

25 R-1132a, R-32, R-1234yf, R-290 and R-152a;

R-1132a, R-32, R-1234yf, R-290 and R-134a;

R-1132a, R-32, R-1234yf, R-290 and R-227ea;

R-1132a, R-32, R-1234yf, R-1270 and R-1234ze(E);

R-1132a, R-32, R-1234yf, R-1270 and R-125;

30 R-1132a, R-32, R-1234yf, R-1270 and R-152a;

R-1132a, R-32, R-1234yf, R-1270 and R-134a;

R-1132a, R-32, R-1234yf, R-1270 and R-227ea;

R-1132a, R-32, R-1234yf, R-600A and R-1234ze(E);

R-1132a, R-32, R-1234yf, R-600A and R-125;

35 R-1132a, R-32, R-1234yf, R-600A and R-152a;

R-1132a, R-32, R-1234yf, R-600A and R-134a;

R-1132a, R-32, R-1234yf, R-600A and R-227ea;

R-1132a, R-32, R-1234yf, R-1234ze(E) and R-125;
R-1132a, R-32, R-1234yf, R-1234ze(E) and R-152a;
R-1132a, R-32, R-1234yf, R-1234ze(E) and R-134a;
R-1132a, R-32, R-1234yf, R-1234ze(E) and R-227ea;
5 R-1132a, R-32, R-1234yf, R-125 and R-152a;
R-1132a, R-32, R-1234yf, R-125 and R-134a;
R-1132a, R-32, R-1234yf, R-125 and R-227ea;
R-1132a, R-32, R-1234yf, R-152a and R-134a;
R-1132a, R-32, R-1234yf, R-152a and R-227ea; or
10 R-1132a, R-32, R-1234yf, R-134a; and R-227ea.

23. A composition according to any of claims 10 to 20, wherein the composition comprises:

R-1132a, R-32, R-1234yf, CO₂, R-1123 and R-1234ze(E);
R-1132a, R-32, R-1234yf, CO₂, R-1123 and R-125;
15 R-1132a, R-32, R-1234yf, CO₂, R-1123 and R-152a;
R-1132a, R-32, R-1234yf, CO₂, R-1123 and R-134a;
R-1132a, R-32, R-1234yf, CO₂, R-1123 and R-227ea;
R-1132a, R-32, R-1234yf, CO₂, R-290 and R-1234ze(E);
R-1132a, R-32, R-1234yf, CO₂, R-290 and R-125;
20 R-1132a, R-32, R-1234yf, CO₂, R-290 and R-152a;
R-1132a, R-32, R-1234yf, CO₂, R-290 and R-134a;
R-1132a, R-32, R-1234yf, CO₂, R-290 and R-227ea;
R-1132a, R-32, R-1234yf, CO₂, R-1270 and R-1234ze(E);
R-1132a, R-32, R-1234yf, CO₂, R-1270 and R-125;
25 R-1132a, R-32, R-1234yf, CO₂, R-1270 and R-152a;
R-1132a, R-32, R-1234yf, CO₂, R-1270 and R-134a;
R-1132a, R-32, R-1234yf, CO₂, R-1270 and R-227ea;
R-1132a, R-32, R-1234yf, CO₂, R-600a and R-1234ze(E);
R-1132a, R-32, R-1234yf, CO₂, R-600a and R-125;
30 R-1132a, R-32, R-1234yf, CO₂, R-600a and R-152a;
R-1132a, R-32, R-1234yf, CO₂, R-600a and R-134a;
R-1132a, R-32, R-1234yf, CO₂, R-600a and R-227ea;
R-1132a, R-32, R-1234yf, R-1234ze(E), R-125 and R-152a;
R-1132a, R-32, R-1234yf, R-1234ze(E), R-125 and R-134a;
35 R-1132a, R-32, R-1234yf, R-1234ze(E), R-125 and R-227ea;
R-1132a, R-32, R-1234yf, R-1234ze(E), R-152a and R-134a;
R-1132a, R-32, R-1234yf, R-1234ze(E), R-152a and R-227ea;

R-1132a, R-32, R-1234yf, R-1234ze(E), R-134a and R-227ea;
R-1132a, R-32, R-1234yf, R-125, R-134a and R-227ea;
R-1132a, R-32, R-1234yf, R-125, R-134a and R-152a;
R-1132a, R-32, R-1234yf, R-125, R-152a and R-227ea;
5 R-1132a, R-32, R-1234yf, R-227ea, R-152a and R-134a;
R-1132a, R-32, R-1234yf, R-1123, R-290 and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-1123, R-290 and R-125;
R-1132a, R-32, R-1234yf, R-1123, R-290 and R-152a;
R-1132a, R-32, R-1234yf, R-1123, R-290 and R-134a;
10 R-1132a, R-32, R-1234yf, R-1123, R-290 and R-227ea;
R-1132a, R-32, R-1234yf, R-1123, R-1270 and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-1123, R-1270 and R-125;
R-1132a, R-32, R-1234yf, R-1123, R-1270 and R-152a;
R-1132a, R-32, R-1234yf, R-1123, R-1270 and R-134a;
15 R-1132a, R-32, R-1234yf, R-1123, R-1270 and R-227ea;
R-1132a, R-32, R-1234yf, R-1123, R-600a and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-1123, R-600a and R-125;
R-1132a, R-32, R-1234yf, R-1123, R-600a and R-152a;
R-1132a, R-32, R-1234yf, R-1123, R-600a and R-134a;
20 R-1132a, R-32, R-1234yf, R-1123, R-600a and R-227ea;
R-1132a, R-32, R-1234yf, R-290, R-1270 and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-290, R-1270 and R-125;
R-1132a, R-32, R-1234yf, R-290, R-1270 and R-152a;
R-1132a, R-32, R-1234yf, R-290, R-1270 and R-134a;
25 R-1132a, R-32, R-1234yf, R-290, R-1270 and R-227ea;
R-1132a, R-32, R-1234yf, R-290, R-600a and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-290, R-600a and R-125;
R-1132a, R-32, R-1234yf, R-290, R-600a and R-152a;
R-1132a, R-32, R-1234yf, R-290, R-600a and R-134a;
30 R-1132a, R-32, R-1234yf, R-290, R-600a and R-227ea;
R-1132a, R-32, R-1234yf, R-600a, R-1270 and R-1234ze(E);
R-1132a, R-32, R-1234yf, R-600a, R-1270 and R-125;
R-1132a, R-32, R-1234yf, R-600a, R-1270 and R-152a;
R-1132a, R-32, R-1234yf, R-600a, R-1270 and R-134a; or
35 R-1132a, R-32, R-1234yf, R-600a, R-1270 and R-227ea.

24. A composition according to any of claims 10 to 23 essentially of the stated components.

25. A composition according to any of claims 10 to 24, wherein the composition is less flammable than R-1132a alone, preferably wherein the composition has:

- a. a higher flammable limit
- 5 b. a higher ignition energy; and/or
- c. a lower flame velocity

compared to R-1132a alone.

26. A composition according to any of claims 10 to 25 wherein the composition is non-

10 flammable, for example wherein the composition is non-flammable at ambient temperature, preferably wherein the composition is non-flammable at 60 °C.

27. A composition according to any of the preceding claims, wherein the composition has a temperature glide in an evaporator or condenser of less than about 15K, preferably less than

15 about 10K, for example less than about 6K such as less than about 5K, even more preferably less than about 4K.

28. A composition according to any of the preceding claims wherein the composition has a

volumetric refrigeration capacity which is within about 15% of that of R-410A, preferably within

20 about 10% of R-410A.

29. A composition according to any of the preceding claims, wherein the operating

condenser pressure in a condenser containing the composition is within about 10% of that of the condenser containing R-410A, preferably within about 5%.

25

30. A composition according to any of the preceding claims, wherein the operating condenser pressure in a condenser containing the composition is lower than that of the condenser containing R-410A.

31. A composition according to any of the preceding claims, wherein the composition has

30 a Global Warming Potential (GWP) of less than about 300, such as less than about 280.

32. A composition according to any of the preceding claims wherein the composition has a burning velocity of less than about 10 cm/s as measured by ASHRAE Standard 34.

35 33. A composition comprising a lubricant and a composition according to any of the preceding claims, optionally wherein the lubricant is selected from mineral oil, silicone oil, polyalkyl benzenes (PABs), polyol esters (POEs), polyalkylene glycols (PAGs), polyalkylene

glycol esters (PAG esters), polyvinyl ethers (PVEs), poly alpha-olefins and combinations thereof, preferably wherein the lubricant is selected from PAGs or POEs.

34. A composition comprising a stabiliser and a composition according to any of the
5 preceding claims, optionally wherein the stabiliser is selected from diene-based compounds, phosphates, phenol compounds and epoxides, and mixtures thereof.

35. A composition comprising a flame retardant and a composition according to any of the preceding claims, optionally wherein the flame retardant is selected from the group consisting
10 of tri-(2-chloroethyl)-phosphate, (chloropropyl) phosphate, tri-(2,3-dibromopropyl)-phosphate, tri-(1,3-dichloropropyl)-phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminium trihydrate, polyvinyl chloride, a fluorinated iodocarbon, a fluorinated bromocarbon, trifluoro iodomethane, perfluoroalkyl amines, bromo-fluoroalkyl amines and mixtures thereof.

15 36. A heat transfer device containing a composition as defined in any one of claims 1 to 35, preferably wherein the heat transfer device is a refrigeration device, preferably wherein the heat transfer device comprises a residential or commercial air conditioning system, a heat pump or a commercial or industrial refrigeration system.

20 37. A sprayable composition comprising material to be sprayed and a propellant comprising a composition as defined in any of claims 1 to 35.

25 38. A method for cooling an article which comprises condensing a composition defined in any of claims 1 to 35 and thereafter evaporating the composition in the vicinity of the article to be cooled.

30 39. A method for heating an article which comprises condensing a composition as defined in any one of claims 1 to 35 in the vicinity of the article to be heated and thereafter evaporating the composition.

40. A method for extracting a substance from biomass comprising contacting biomass with a solvent comprising a composition as defined in any of claims 1 to 35 and separating the substance from the solvent.

35 41. A method of cleaning an article comprising contacting the article with a solvent comprising a composition as defined in any of claims 1 to 35.

42. A method of extracting a material from an aqueous solution or from a particulate solid matrix comprising contacting the aqueous solution or the particulate solid matrix with a solvent comprising a composition as defined in any of claims 1 to 35 and separating the material from
5 the solvent.

43. A mechanical power generation device containing a composition as defined in any of claims 1 to 35, preferably wherein the mechanical power generating is adapted to use a Rankine Cycle or modification thereof to generate work from heat.

10

44. A method of retrofitting a heat transfer device comprising the step of removing an existing heat transfer composition, and introducing a composition as defined in any one of claims 1 to 35, preferably wherein the heat transfer device is a commercial or industrial refrigeration device, a heat pump, or a residential or commercial air conditioning system.

15

45. A method for reducing the environmental impact arising from the operation of a product comprising an existing compound or composition, the method comprising replacing at least partially the existing compound or composition with a composition as defined in any one of claims 1 to 35, optionally wherein the use of the composition of the invention results in a lower

20 Total Equivalent Warming Impact, and/or a lower Life-Cycle Carbon Production than is attained by use of the existing compound or composition, preferably wherein the method is carried out on a product from the fields of air-conditioning, refrigeration, heat transfer, aerosols or sprayable propellants, gaseous dielectrics, flame suppression, solvents, cleaners, topical anaesthetics, and expansion applications, such as wherein the product is selected from a heat

25 transfer device, a sprayable composition, a solvent or a mechanical power generation device, preferably a heat transfer device, for example wherein the product is a heat transfer device, preferably a residential or commercial air conditioning system, a heat pump or a commercial or industrial refrigeration system.

30 46. A method according to claims 44 or 45 wherein the existing compound or composition is a heat transfer composition, preferably wherein the heat transfer composition is a refrigerant selected from R-410A, R-454B, R-452B and R-32.

47. A composition comprising:

35

- (a) from about 6 to about 18 weight % of 1,1-difluoroethene (R-1132a);
- (b) from about 20 to about 65 weight % of difluoromethane (R-32);

(c) from about 15 to about 60 weight % of 2,3,3,3-tetrafluoropropene (R-1234yf) based on the total weight of the composition.

48. A composition according to claim 47 comprising from about 6 to about 15 weight % of 5 R-1132a, preferably from about 6 to about 12 weight %, such as from about 7 to about 10 weight % based on the total weight of the composition.

49. A composition according to claim 47 or 48 comprising from about 25 to about 65 weight % of R-32, preferably from about 35 to about 60 weight %, such as from about 40 to about 60 10 weight % based on the total weight of the composition.

50. A composition according to claims 47 to 49 comprising from about 20 to about 60 weight % of R-1234yf, preferably from about 25 to about 55 weight %, such as from about 30 to about 55 weight % based on the total weight of the composition.

15

51. A composition according to any of claims 47 to 50, wherein the composition comprises: about 7 weight % R-1132a, about 50 weight % R-32 and about 43 weight % R-1234yf; about 7 weight % R-1132a, about 55 weight % R-32 and about 38 weight % R-1234yf; 20 about 8 weight % R-1132a, about 40 weight % R-32 and about 52 weight % R-1234yf; about 8 weight % R-1132a, about 60 weight % R-32 and about 32 weight % R-1234yf; or about 10 weight % R-1132a, about 55 weight % R-32 and about 35 weight % R-1234yf; based on the total weight of the composition.

25 52. A composition according to any of claims 47 to 51, wherein the composition comprises from about 6 to about 7 weight % R-1132a.

53. A composition according to any of claims 47 to 52, wherein the composition has a volumetric cooling capacity that is within about 15% of that of R-410A, preferably within about 30 10% of that of R-410A.

54. A composition according to any of claims 47 to 53, wherein the composition has a temperature glide in an evaporator or condenser of less than about 10K, preferably less than about 7K, such as less than about 5K.

35

55. A composition according to any of claims 47 to 54, wherein the operating condenser pressure in a condenser containing the composition is within about 10% of that of the condenser containing R-410A, preferably within about 5%.

5 56. A composition according to any of claims 47 to 55, wherein the operating condenser pressure in a condenser containing the composition is lower than of that of the condenser containing R-410A.

10 57. A composition according to any of claims 47 to 56, wherein the composition has a Global Warming Potential (GWP) of less than about 300, such as less than about 280.

15 58. A composition according to any of claims 47 to 57, wherein the Worst-Case Formulation for Flammability (WCFF) of the composition in accordance with ASHRAE Standard 34 Appendix B has a molar volume concentration of R-1132a which is less than about 35% v/v and preferably less than about 30% v/v based on the total volume of the composition.

20 59. A composition according to any of claims 47 to 58, wherein the composition has a compressor discharge temperature which is within about 10K of that of R-410A, such as within about 5K of that of R-410A.

60. A composition according to any of claims 47 to 59 wherein the manufacturing tolerances of the composition are +0.5 / -1 weight % R-1132a; ± 1 weight % R-32; ± 1.5 weight % R-1234yf.]

25 61. Use of a composition comprising a POE lubricant and a composition according to claims 47 to 60 as a replacement for an existing heat transfer composition in a commercial air conditioning system.

30 62. Use of a composition comprising a POE lubricant and a composition according to claims 47 to 60 as a replacement for an existing heat transfer composition in a commercial refrigeration system.

63. The use according to claim 61 or 62 wherein the existing heat transfer composition is R-410A.

35 64. A vessel comprising a composition according to any of claims 47 to 60 in an amount of up to about 90% v/v based on the total volume of the vessel, wherein the vessel has a

temperature of about -40°C and wherein the composition comprises R-1132a in a molar volume concentration of less than about 35% v/v, preferably less than about 30% v/v, based on the total volume of the composition, preferably wherein the vessel is a cylinder.

5

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2020/050306

A. CLASSIFICATION OF SUBJECT MATTER
INV. C09K5/04
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 2019/030508 A1 (MEXICHEM UK LTD) 14 February 2019 (2019-02-14) page 1, lines 1-23; examples; table 4 page 3, line 5 - page 5, line 34 page 8, line 29 - page 11, line 10 -----	1-64
X	WO 2017/098238 A1 (MEXICHEM FLUOR SA DE CV [MX]; MEXICHEM UK LTD [GB]) 15 June 2017 (2017-06-15) claims 1,8,16,20-39 -----	10-46
X	US 2016/002518 A1 (TANIGUCHI TOMOAKI [JP] ET AL) 7 January 2016 (2016-01-07) paragraphs [0002] - [0008], [0079]; tables 6-8 ----- -/-	10,11, 13-16, 21-32

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
7 April 2020	06/05/2020

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Martinez Marcos, V

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2020/050306

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	<p>WO 2020/035690 A1 (MEXICHEM FLUOR SA DE CV [MX]; MEXICHEM UK LTD [GB]) 20 February 2020 (2020-02-20)</p> <p>page 4, line 1 - page 5, line 8 page 6, line 29 - page 7, line 32; examples 4,8,18-21,23-25</p> <p>-----</p>	<p>1-3,5,6, 8-12, 17-23, 26-33, 36-39, 47,50, 53-64</p>

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/GB2020/050306

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 2019030508	A1 14-02-2019	AU CA GB WO	2018315022 A1 3072300 A1 2566809 A 2019030508 A1		20-02-2020 14-02-2019 27-03-2019 14-02-2019
WO 2017098238	A1 15-06-2017	EP JP KR US WO	3387095 A1 2019504175 A 20180083385 A 2018355269 A1 2017098238 A1		17-10-2018 14-02-2019 20-07-2018 13-12-2018 15-06-2017
US 2016002518	A1 07-01-2016	BR CN EP JP JP RU US WO	112015025238 A2 105164227 A 2993213 A1 6379391 B2 W02014178352 A1 2015151178 A 2016002518 A1 2014178352 A1		18-07-2017 16-12-2015 09-03-2016 29-08-2018 23-02-2017 05-06-2017 07-01-2016 06-11-2014
WO 2020035690	A1 20-02-2020	GB WO	2576389 A 2020035690 A1		19-02-2020 20-02-2020