[S

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

GOGF 13/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 92/16895

I October 1992 (01.10.92)

A ool

(21) International Application Number: PCT/US92/02147

(22) International Filing Date: 17 March 1992 (17.03.92)

(30) Priority data:
671,036 18 March 1991 (18.03.91) Us

(71) Applicant: ECHELON CORPORATION [US/US}; 4015
Miranda Avenue, Palo Alto, CA 94304 (US).

(72) Inventors: DOLIN, Robert, A., Jr. ; 700 Wallea Drive,
Menlo Park, CA 94025 (US). EINKAUF, Robert, L. ;
636 Pinot Blanc Way, Fremont, CA 94539 (US). KA-
GAN, Richard, S. ; Flat 2, Langland Gardens, London
NW3 6QO (GB). RILEY, Glen, M. ; 918 Bicknell Road,
Los Gatos, CA 95030 (US). VON DE BUR, James, M. ;
2308 Price Way, San Jose, CA 95124 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff,
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE
(European patent), BF (OAPI patent), BG, BJ (OAPI
patent), BR, CA, CF (OAPI patent), CG (OAPI patent),
CH, CH (European patent), CI (OAPI patent), CM
(OAPI patent), DE, DE (European patent), DK, DK
(European patent), ES, ES (European patent), FI, FR
(European patent), GA (OAPI patent), GB, GB (Euro-
pean patent), GN (OAPI patent), GR (European pa-
tent), HU, IT (European patent), JP, KP, KR, LK, LU,
LU (European patent), MC (European patent), MG, ML
(OAPI patent), MR (OAPI patent), MW, NL, NL (Euro-
pean patent), NO, RO, RU, SD, SE, SE (European pa-
tent), SN (OAPI patent), TD (OAPI patent), TG (OAPI
patent).

Published
With international search report.

(54) Title: NETWORKED VARIABLES

[

(57) Abstract

An improved apparatus and method for commu-
nicating information in a networked system wherein var-
iables are employed to accomplish such communication.
Network variables allow for standarized communication
of data between nodes (301-305) in a network. A first
node (301) may be programmed, for example, to sense
certain information and to report the information as a
network variable X. A second node (302) may be pro-
grammed to receive the variable X and to control devices
based on the current value of the variable. The present
invention provides for defining connections (201) be-
tween the first and second node to facilitate such com-
munication and for determining addressing information
to allow for addressing of messages, including updates
to the value of the variable X, between the nodes.

Cell_1 T-2
10] 103 Connection_2

applications under the PCT.

AT
Al
BB

BE
BF
BG
BJ

BR
CA
CF
G
CH
Ci

™M

DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Aunstria
Australia
Barbados
Bulgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Ceatril African Republic
Congo
Switzetlund
(ot d'lvoire
Cameroon
Crechoslovakia
Germany
Denmark
Spain

Fi

FR
GA
GB
GN

HU
IE

Jp
Kp

KR
Ll
LK
Ly
MC
MG

Finland

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

ircland

taly

Japan

Democratic People’s Republic
of Korea

Republic of Korca
Licchtensicin

Sri Lanka
Liuxcmbourg
Mouaco
Madagascar

Mi.
MN
MR
MW
NL
NO

Mali

Mongolia
Mauritania

Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Senegal

Sovict Union

Chad

Togo

United States of Amierica

.

WO 92/16895 PCT/US92/02147

-1-
NETWORKED VARIABLES
BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

The present invention relates to the field of systems for distributed
computing, communication and control and, more specifically,
communication of information between devices in a distributed

computing environment.

2. DESCRIPTION OF THE RELATED ART

In distributed computer systems it is necessary to provide for
communication of information between nodes in the system. A number of
methods for providing such communication are known in the art.

These methods include message passing techniques in which
messages are passed, over a medium, from one node to another in a
network. In message passing techniques, messages are built by a
sender node and sent to one or more recsiver nodes. The message is
then parsed by the receiver node in order to correctly interpret the data.
Message passing allows the advantage of passing large amounts of data
in an expected format. Of course, over time the format of the message
may be required to change to support new applications or features. This
typically leads to compatibility issues between nodes on the network.

A second technique involves remote procedure calls in which a
first node, requiring data which exists on a second node, calls a
procedure executing on the second node where the data exists and
requests the procedure to manipulate the data and provide a result to the

first node. Remote procedure calls are typica!ly suited to passing small

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-2-

amounts of data; however, a separate procedure call is typically required
for each interchange. Therefore, it is likely in any networking system that
over time additional procedure calls will be required in the network as
new functions are carried out by the network. The addition of new
procedure calls to certain nodes of the network leads to incompatibility
between nodes, bacause the existing nodes do not know of and cannot
execute the new remote procedure calls.

A third technique for communication of data in a network involves
data sharing. Bal, Henri E., Steiner, Jennifer G., and Tanenbaum,
Andrew S., Programming Lanquages for Distributed Computing
Systems, ACM Computing Surveys, Vol. 21, No. 3, September, 1989, pp.
261-322 (hereinafter Bal et al.) describes certain data sharing
techniques. A discussion of data sharing may be found in the Baletal
article at pages 280, et seq. (It should also be noted that a discussion of
messaging may be found in the Bal et al. article at pages 276, et seq.
along with a general overview of interprocess communication and
synchronization.)

Bal et al. describes how parts of a distributed program can
communicate and synchronize through use of shared data. Baletal.
states that, if two processes have access to the same variable,
communication can take place by one processor setting the variable and
the other processor reading the variable. This communication is
described as being allowed to take place whether the two processors are
both running on a host where the shared data is stored and thus can

manipulate the shared data directly, or if the processes are running on

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-3-

different hosts and access to the shared data is accomplished by sending
a message to the host on which the shared data resides.

Two types of shared data are described: (1) shared logical
variables; and (2) distributed data structures. Briefly, shared logical
variables are described as facilitating a communication channel between
processes through a "single-assignment” property. Initially, a shared
logical variable is unbound, but once a value is assigned to the variable
the variable is considered to be bound. An example is provided in which
the three goals of conjunction:

goal_1(X,Y), goal_2(X,Y), andgoal_3(X)

are assumed and solved in parallel by processes P1, P2 and P3.
The variable X is initially unbound and represents a communication
channel between the three processes. If any of the processes binds X to
a value, the other processes can use this value. Likewise, Y is a channel
between P1 and P2. Processes synchronize by suspending on unbound
variables. For example, if Y is to be used to communicate information
from P1 to P2, then P2 may suspend until Y is bound by P1.

It should be emphasized that in the described concept of shared
logical variables, the term binding is used to describe a process of
assigning a value to a variable. As will be seen below, the term binding
is also used to describe the present invention, however, the meaning of
the term is significantly different and the reader is cautioned to avoid
confusion between the concepts represented by these two uses of this
term. Generally, in the present invention, the term binding is used to

indicate a process of associating a variable of one node with a variable

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-4-

of at least one other node. It is not necessary that the variable of either
node has yet been assigned a data value.

Distributed data structures are data structures which may be
manipulated simultaneously by several processes. in concept, all
processes share one global memory termed "tuple space” or TS. The
elements of TS are ordered sequences of values, similar to records in a
language such as Pascal. Three operations may take place on TS: (1)
"OUT" adds a tuple to TS; (2) "READ" reads a tuple from TS; and (3) "IN"
reads a tuple from TS and deletes it from TS. Thus, in order to change
the value of a tuple in TS it is necessary to first perform an IN operation,
then to manipulate the data, and then perform an OUT operation. The
requirement that a tuple must first be removed by the IN operation makes
it possible to build distributed systems without conflict between accesses
by the various processes.

Bal et al. contrasts distributed data structures with interprocess
communication techniques noting that communication accomplished by
distributed data structures is anonymous. A process reading a tuple from
TS does not know or care which other process inserted the tuple.
Further, a process executing an OUT does not specify which process the
tuple is intended to be read by.

Bal et al. states that in concept distributed data structures utilizing
the tuple space implement conceptually a shared memory, although in
implementation a physical shared memory is not required. However, as
can be seen, in a system utilizing such distributed data structures a
single copy of the data is stored in tuple space whether or not such tuple

space is implemented as a single physical shared memory. Separate

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-5-

copies of the data are not maintained for the various processes or on the
various hosts. In fact, maintaining separate copies woulkd lead to data
conflict possibilities as the various nodes attempted to coordinate
updates of the variable between the various process and hosts. Thus,
the reason for requiring use of the IN command to delete a tuple before
allowing manipulation of the data represented by the tuple.

The present invention discloses a networked communication
system which is perhaps closest in certain concepts to the described
distributed data structures. However, it can, of course, be appreciated
that certain advantages may be gained from development of a system
which utilizes certain features of distributed data structures while
retaining flexibility in allowing multiple copies of a data value to be stored
on the various nodes.

The present invention discloses certain improved programming
language and data structure support for communication, sensing and
control as may be used by nodes of the present invention. |t is known in
the art to allow for scheduling of tasks through use of a programming
statement such as a "when" clause or the like. However, in known
systems such tasks may only be scheduled to be executed on the
occurrence of a predefined event such as may be defined by the
compiler writer. Examples of such events typically include expiration of a
timer or input pin state changes. Such known systems do not allow for
definitions of events, other than such predefined events. It has been
discovered that it is useful to provide for definition of events as any valid
programming language statement which may be evaluated to a true or

false condition.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-6-

Of course, any number of known systems allow for declaration of
variables and when declaring such variables certain parameters may be
specified which may be set to a state indicative of a desired characteristic
of the variable. For example, a variable may be declared as input or
output, as a given variable type (e.g., boolean, numeric, etc.). However,
once declared such characteristics are static and may only be changed
by changing the source program which declares the variables. it has
been discovered that it would be useful to provide for a system in which
the state of at least certain parameters may be changed during system
configuration allowing for greater fiexibility in optimizing the system of the
preferred embodiment.

Finally, in known systems it is necessary to call certain VO library
procedures to declare and use /O devices. Such calls to /O procedures
may be quite complex and require significant skill on the part of the
programmer to properly code and utilize the routines. The present

invention discloses a system having improved methods for declaration

and use of /O devices.

OBJECTS OF THE PRESENT INVENTION
It is a primary object of the present invention to provide for
improved communication of information between nodes of a distributed
network.
It is more specifically an object of the present invention to provide
for improved communication of information in a highly distributed
computer system in which a problem may be broken down into small

units in which each node accomplishes a small part of the entire

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-7-

application. In such a system, data communication may be typically
accomplished in relatively small units of data—however, significant
communication of data between nodes of the network is required.

It is further an object of the present invention to provide for
improved communication of information in a distributed computing
system by allowing for standard communication techniques between
nodes.

It is still further an object of the present invention to provide for
improved communication of information by providing certain facilities,
structures and tools for such communication.

It is also an object of the present invention to provide improved
data structures and programming language support for communication
and other aspects of the present invention.

As one aspect of providing such improved data structures and
programming language support, it is one aspect of the present invention
to provide for declaration of variables having configurable parameters
leading to improved ability to maintain and optimize networks of the
present invention.

As another aspect of providing such improved data structures and
programming language support, it is desired to provide for increased
ease in declaring and communicating with 1/0O devices of the present
invention.

As still another aspect of providing such improved data structures
and programming language support, it is desired to provide for improved
scheduling functions allowing for use of programmer-defined or

predefined events in scheduling of tasks to be executed.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-8-

it is also an object of the present invention to provide simplified
installation and network maintenance. Such an objective may be
accomplished by storing in each node the node's application interface
such that nodes may identify themselves and their application
requirements to a network management node at installation time and
when it is necessary to recover the complete network database.

To accomplish such a simplified installation and maintenance
objective, it is a further objective of the present invention to define an
interface file format which may efficiently store and aliow retrieval of such
identification and application requirement information.

These and other objects of the present invention will be better
understood with reference to the Detailed Description of the Preferred

Embodiment, the accompanying drawings, and the claims.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-9-

SUMMARY OF THE INVENTION

A network for communicating information having at least a first and
second node is described in which each node includes data storage for
storing data representing a variable V and further includes a processor
coupled with the data storage. In the case of the first node, the processor
may manipulate and write to new vaiues to the variable V. After having
updated the variable V with a new value, the processor then assembles
and communicates a packet for transmission on the network. The packet
includes the new data value for the variable V. The second node then
receives the packet and stores the new value for the variable V in its data
storage.

In particular, during programming of the first node, it is declared as
a writer of the variable V and likewise during programming of the second
node, it is declared as a reader of the variable V. During configuration of
the network, a communication connection between the first node and the
second node is defined and during later communication of message
packets, addressing of message packets between the various nodes is
accomplished through use of address tables based on the definition of
such connections.

Further, it is disclosed to utilize a standardized set of variable
types in accomplishing such communication. Use of a standardized set
of variable types leads to increased compatibility between nodes of
different manufacture as well as increased ease in configuring networks.

Finally, certain extensions are provided to standard programming
languages to provide for increased ease of use of the data

communication features of the present invention.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-10-

These and other aspects of the present invention will be apparent
to one of ordinary skill in the art with further reference to the below
Detailed Description of the Preferred Embodiment and the

accompanying drawings.

SUBSTITUTE SHEET

WO 92/16895 - PCT/US92/02147
-11-

BRIEF DZSCRIPTION OF THE DRAWINGS

Figure 1 is a logical view of a configuration of devices as may be

networked using methods and apparatus of the present invention.

Figure 2 is a diagram illustrating an embodiment of the network of

Figure 1 as may be accomplished by the present invention.

Figure 3(a) is a diagram illustrating a second embodiment of the.

network of Figure 1 as may be accomplished by the present invention.

Figure 3(b) is a second diagram illustrating the second
embodiment of Figure 3(a) and including a logical view of certain

connections of nodes of the network.

Figure 4 is an overall block diagram of a single node of the

present invention coupled with a communication medium.

Figure 5 is an overall flow diagram illustrating a method of
programming and configuring a network as may be accomplished by the

present invention.
Figure 6 is a flow diagram illustrating a method for defining

hardware requirements of a node as may be utilized by the present

invention.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-12-

Figure 7 is a flow diagram illustrating a method for defining
network and logical parameters of a node as may be utilized by the

present invention.

Figure 8(a) is a flow diagram illustrating a method for defining
connections among network variables as may be utilized by the present

invention.

Figure 8(b) is a flow diagram illustrating a method for binding

network variables as may be utilized by the present invention.

Figure 9 is an illustration of certain data structures which may be

utilized by the present invention.

Figure 10 is a flow diagram illustrating a method of configuring a

network using standard network variable types, as may be utilized by the

present invention.

Figure 11 is a flow diagram illustrating a method of declaring and

configuring a network variable as may be used by the present invention.

Figure 12 is a flow diagram illustrating a method of declaring and

accessing I/O devices as may be utilized by the present invention.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-13-

For ease of reference, it might be pointed out that reference
numerals in all of the accompanying drawings typically are in the form
"drawing number” followed by two digits, xx; for example, reference
numerals on Figure 1 may be numbered 1xx; on Figure 9, reference
numerals may be numbered 9xx. In certain cases, a reference numeral
may be introduced on one drawing, e.g., reference numeral 201
illustrating a communication medium, and the same reference numeral

may be utilized on other drawings to refer to the same item.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-14-

DETAILED DESCRIPTION OF
THE PREFERRED EMBODIMENT

An improved computer network including facility for
communication of information between nodes in the network is
described. In the following description, numerous specific details are set
forth in order to provide a thorough understanding of the present
invention. It will be obvious, however, to one skilled in the art that the
present invention may be practiced without these specific details. In
other instances, well-known circuits, structures and techniques have not

been shown in detail in order not to unnecessarily obscure the present

invention.
QVERVIEW OF THE NETWORK
.OF THE PRESENT INVENTION

The network of the preferred embodiment is of the type which
provides for sensing, control and communication. The network of the
present invention and nodes utilized within the network of the present
invention are described in greater detail with reference to United States
Patent No. 4,918,690 Markkuia et al. titled "Network and intelligent cell
for providing sensing, bi-directional communications and control", which
patent is assigned to the assignee of the present invention (referred to
herein as the '690 patent).

in an exemplary network, the network of the present invention may
provide for sensing of current environmental factors and control of
apparatus affecting the environmental factors. Further, the network may
allow for communication of information packets providing information on
the environmental factors between nodes in the network. The present

application will utilize, as an example, a network for control of fans based

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-15-

on sensing and commuaicating information regarding temperature in
different zones in a controlled environment.

It might be worthwhile noting that in an expected scenario, various
manufacturers will include a node of the type defined by the present
invention in their products. For example, a thermostat manufacturer may
include such a node in its thermostats. A fan manufacturer may include
such a node in its fans. The various nodes may be programmed for
specific applications by their respective manufacturers and, when
configured in an environmental control system, are useful for
communication, sensing and conirol between various components of the
system. A node of the preferred embodiment is illustrated in block
diagram form with reference to Figure 4. Such nodes may be
programmed, for example, using the "C" computer programming
language. As one aspect of the present invention, certain extensions
have been provided to the "C" language to facilitate network
communications.

As a further and important aspect of the present invention, network
variables are described which provide for communication of information
between nodes of the network. A network variable may be thought of as
a data object shared by multiple nodes where some nodes are "readers”
and some nodes are "writers" of the object. This will be discussed in
greater detail below.

impl ilizi ' ion

Referring now to Figure 1, a logical view of a network as may

utilize the present invention is shown. The network may, for exampie,

include three separate temperature sensors 115-117 located in three

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-16-

séparate zones of a building for sensing and communicating temperature
information. The network may further include two control cells 101 and
121 coupled to receive temperature information from the sensors
115-117 and to control two fans 131-132 (by turning the fans 131-132 on
and off).

in the exemplary network, network variable temp_out 151 is
coupled to a first network variable temperature input 102 of control cell
101. Network variable temp_out 152 is coupled with a second network
variable temperature input 104 of control cell 101. In the illustrated
embodiment, a third network variable temperature input 103 is not
utilized. On/Off control network variable 105 of control cell 101 is
coupled to control an input network variable, On/Off, of a fan 131. Thus,
in this embodiment, sensing a temperature above a given level in the
zone of the building sensed by temperature sensor 115 or by
temperature sensor 116 will cause fan 131 to be turned on. Likewise,
when the temperature in these zones is again lowered below a given
level, the fan 131 may be turned off.

Network variable temp_out 152 is also coupled to a first
temperature input network variable 122 of control cell 121. In addition,
network variable temp_out 153 is coupled to a second temperature input
network variable 123 of control cell 121. A third temperature input 124 of
control cell 121 is not utilized in this embodiment. Control cell 121 is
coupled through an On/Off control output network variable 125 to control
fan 132. Thus, sensing a temperature above a given level in the zone of
the building sensed by temperature sensor 116 or by temperature sensor

117 will cause fan 132 to be turned on. Likewise, when the temperature

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-17-

in these zones is again lowered below a given level, the fan 132 may be
turned off. As is appreciated, in the described configuration, when
temperature sensor 116 detects a high temperature, both fan 131 and fan
132 are turned on.

Figure 1 has been labeled to illustrate logical connections
between the various components. Connection 141 is illustrated as the
connection between temperature sensor 115 and control cell 101.
Connection 142 is illustrated as the connection including temperature
sensor 116, control cell 101 and control cell 121. Connection 143 is
illustrated as the connection between control cell 101 and fan 131.
Connection 144 is illustrated as the connection between sensor 117 and
control cell 121. Connection 145 is illustrated as the connection between
control cell 121 and fan 132. The connection of network variables will be
discussed in greater detail below. However, it may now be useful to
introduce three new terms: network variables, readers, and writers. In
addition, general definitions for certain other terms used in this
specification may be found with reference to Table XV.

As one important aspect of the present invention, the present
invention provides for allocation and uée of network variables by
processes running on nodes in a network. As stated above, network
variables may be thought of as a data object shared by multiple nodes
where some nodes are "readers” of the object and other nodes are
"writers” of the object. Additionally, a node may be both a reader and a
writer with "turnaround®. Writing with turnaround is discussed in greater
detail below. Although the data object may be thought of as being

shared by multiple nodes, as will be understood from the discussion

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/0214"
-18-

below, the network variable of the preferred embodiment is not stored in
shared memory but rather separate memory is provided in each of the
multiple nodes to store a copy of the data object. A writer node may
modify the value of the data object and all reader nodes of that network
variable have their memories updated to reflect the change. Thus, for
example, each of the temperature sensors 115-117 may run a process
which declares a data object as follows:

network output boolean temp_high.

Each of the controller cells 101 and 121 may declare data objects
as follows: |

network input boolean temp_high
network output boolean fan_on.

Each of the fans 131-132 may declare a data object as follows:

network input boolean fan_on.

The complete syntax for declaration of network variables in the
system of the preferred embodimer}t is given in Table VIIl. The keyword
"network” indicates the data object is a network variable. A network
variable declared as output will result in transmission of the new value of
the network variable on the network when the program stores the
variable—thus, nodes having declared an output network variable are
considered writer nodes for that variable. For example, each time a
process running on temperature sensor 115 stores the variable
temp_high, a network message is generated communicating the new
value of temp_high. The message is communicated to all reader nodes
connected in connection_1 141, i.e., to control cell 101. Inthe case of

temperature sensor 116 changing the value of its temp_high variable, a

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-19-

message is generated and transmitted to all nodes connected in
connection_2 142, i.e., to both control cell 101 and to controi cell 121.
The process for configuring connections as disclosed by the present
invention will be discussed in greater detail below.

Although the preferred embodiment declares nodes as either
writers or readers of network variables, it should be noted that in an
alternative embodiment a node may be declared as a both a reader and
writer of a particular variable. Such an embodiment may be envisioned
without departure from the spirit and scope of the present invention.

It might be that the present invention in its preferred embodiment
allows an output network variable to be initialized using an initialization
command without causing a message to be transmitted on the network.
Using this comrhand, a node may be initially configured or reset without
affecting other nodes on the network.

Network variables declared as input may change values
asynchronously with program execution—this declaration is used for
"reader” nodes. In the preferred embodiment, input network variables
may also change values at program initialization or at other points under
program control; however, the changed value will not be transmitted on
the network.

At anytime, a reader node may force an update of its input network
variables utilizing a polling function of the present invention. When this
function is called, the specified network variables are updated by
requesting over the network the cuirent value from the writer node or
nodes. This facility may be useful, for example, after a node reset to

allow the node to determine the current value of network variables

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-20-

without need to wait until the next time the writer nodes update the value
of those variables.

Thus, temperature sensors 115-117 are writer nodes of the
variable temp_high. Control cells 101 and 121 are reader nodes of the
variable temp_high and also are writer nodes of the variable fan_on.
Fans 131-132 are reader nodes of the variable fan_on.

Of course, many other applications and configurations are within
the scope of the teachings of the present invention and the network
described with reference to Figure 1 is merely exemplary.

It should be noted that multiple readers and multiple writers may
be provided within a single connection without departure from the spirit
and scope of the present invention. Multiple readers are illustrated with
reference to connection_2 142. Multiple writers have not been illustrated
by Figure 1. However, variation in which multiple writers are employed
will be readily apparent to one of ordinary skill in the art.

Turning to Figure 2, an embodiment of the network of Figure 1 is
illustrated in which each of cell 101, cell 121, temperature sensor 115,
temperature sensor 116, temperature sensor 117, fan 131 and tan 132
are each coupled to communicate over common communication medium
201. The communication medium 201 may be, for example, twisted pair
wiring, radio frequency, power lines, or other communication channels or
multiple physical channels connected together with bridges and/or
routers. In this embodiment, and in order to accomplish the connections
illustrated by Figure 1, temperature sensor 115 must be configured to
address and communicate with cell 101; temperature sensor 116 must

be configured to address and communicate with cell 101 and cell 121;

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-21-

temperature sensor 117 must be configured to address and
communicate with cell 121; control cell 101 must be configured to
address and communicate with fan 131; and control cell 121 must be
configured to address and communicate with fan 132.

Of course, providing for such addressing may be and typically is a
significant task. It is appreciated that each of control cells 101 and 121,
temperature sensors 115-117 and fans 131-132 may be engineered,
programmed and/or manufactured by different sources. Further,
although the exemplary network is, in itself, complicated having 5
separate connections, 141-145, it can of course be imagined that other
networks may be substantially more complicated having even hundreds
or more connections. Therefore, the present invention implements
methods and apparatus which allow for straightforward and efficient
configuration of nodes in a network.

Turning now to Figure 3(a), a modified embodiment of the
configuration of Figure 2 is illustrated. In this embodiment, controller cells
101 and 121 have been removed from the configuration and each of
temperature sensors 115-117 and fans 131-132 are illustrated as
comprising nodes 301-305, respectively. These nodes are preferably of
the type which are capable of sensing, communicating and controlling as
have been described in the '690 patent and which are shown in greater
detail with reference to Figure 4. Thus, these nodes 301-305 are
capable of replacing certain control functions of the control cells 101 and
121, eliminating the need for separate control cells in the described
embodiment. In the embodiment of Figure 3(a), and in order to

accomplish the logical connections illustrated by Figure 1, node 301

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-292.

must be configured to communicate with node 304; node 302 must be
configured to communicate with nodes 304 and 305; and node 303 must
be configured to communicate with node 305. Again it is important to
note that the temperature sensors 115-117 and fans 131-132 may be
manufactured by different sources. It is preferable that the manufacturing
sources are not required to have prior knowledge as to what devices
their products will communicate with in a network. Thus, the
manufacturer of temperature sensor 115 is preferably not required to be
aware, during programming and manufacture of temperature sensor 115,
whether temperature sensor 115 will be configured in a network to
communicate with a controller cell, such as controller cell 101 (as shown
in Figure 2), or to communicate directly with a fan, such as fan 131 (as
shown in Figure 3(a)), or even with some other device (perhaps a heater,
air conditioner, fire extinguishing equipment, etc.). Likewise, it is
preferable that the manufacturer of fans 131-132 are similarly allowed to
manufacture devices without requirement of prior knowledge as to the
eventual uses of those devices in a network.

In order to allow for such flexibility in configuring networks and to
allow for efficient communication between nodes in a network, the
present invention provides network variables which may be used to
facilitate standards of communication between nodes in the network.

Table lillustrates a temperature sensor control program as may be
used to program nodes 301-303 coupled with temperature sensors
115-117. As can be seen, the program of Table | is written to
communicate onto the medium 201 a network variable indicative of the

state of temp_in. The value of this variable may be, for example, used by

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-23.

a control program runr.ng on a control cell, such as control cell 101 or
121, or used directly by a control program running on a fan, such as fans
131-132.

Table Il illustrates a fan control program which may be used for
controlling a fan such as fans 131-132 by turing the fan on and off
responsive to receiving changes in state of a network variable on_off. As
can be seen, the program of Table Il is written to allow receiving from the
medium 201 the network variable on_off as a binary network variable
regardless of the source (e.g., whether from a control cell such as control
cell 101 or 121, or directly from a temperature sensor, such as
temperature sensor 115-117).

Table lil illustrates a binding set which connects temperature
sensors 115-117 with fans 131-132 as illustrated by Figure 3(a). Figure
3(b) is provided to further an understanding of the binding set. As can be
seen, the binding set provides for three connections illustrated as
temp1_controls 321, temp2_controls 322, and temp3_controls 323 of
Figure 3(b). The connection temp1_controls connects the output variable
temp_high of temperature sensor 115 with the input variable fan_on of
fan_1 131. The connection temp2_controls connects the output variable
temp_high of temperature sensor 116 with the input variable fan_on of
both fan_1 131 and tan_2 132. Finally, the connection temp3_controls
connects the output variable temp_high of temperature sensor 117 with
the input variable fan_on of ‘an_2 132.

It should be noted that although tables |, Il and il illustrate
programs which are useful for illustrative concepts of the present

invention, an attempt has not been made to ensure these programs are

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-24-

syntactically correct. Rather, these programs are provided for the
exemplary teaching of concepts of the present invention. It is understood
from an examination of the programs of tables | and Il that the program of
Table | may write the variable temp_high without regard to the eventual
recipient of the variable and likewise the program of Table Il may read
the variable tan_on without regard to the writer node of the variable.
Thus, these programs work equally well in a network such as illustrated
by Figure 2 including separate control cells 101 and 121 or in a network
such as iliustrated by Figure 3(a) which does not include such control
cells. The binding set illustrated by Table Il determines the relationship
between the various nodes of the network. Table IV illustrates a binding

set which may be used to establish connections in a network such as

illustrated by Figure 2.
A node of tt { invent

Figure 4 illustrates a block diagram of a node such as nodes
301-305 as may be utilized by the present invention. The node 421 is
coupled in communication with medium 201 through control 411, clock
and timer circuitry 412, and communication port 408. In addition, the
node provides a general purpose I/O port 407 allowing for
communication with various external devices. The node further
comprises three separate processors 404-406, a read only memory
(ROM) 403, a random access memory 402, and an EEPROM 401. The
processors 404-406 are useful for executing programs such as the
programs illustrated in Tables | and I, as well as other communication,
control and operating programs. The ROM 403 may be useful for storing

such programs. As will be seen, the EEPROM 401 may be usetul for

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

.25

storing certain data values which, although configurable, are not subject
to frequent changes in value. Each of the processors 404-406, ROM 403,
RAM 402, EEPROM 401, control 411, clock 412, /O port 407, and
communication port 408 are coupled in communication through internal

address bus 410, internal data bus 420 and timing and control lines 430.

PROGRAMMING AND CONFIGURING
ANETWORK OF THE PRESENT INVENTION

Tuming now to Figure 5, steps for programming and configuring a
network of the present invention are illustrated. It should be noted that
steps illustrated by Figure 5 are implemented in a development system
which allows for development and management of networks such as may
be implemented by the present invention. However, certain of these
steps may also take place outside of the development environment (e.g.,
connection of network variables and binding). The development system
is an integrated hardware and software environment that operates in
conjunction with a host computer, an IBM PC/AT compatible in the
currently preferred embodiment, allowing a manufacturer or other party to
design and build components compatible for communication with a
network of the present invention.

The development system includes an IBM PC/AT-compatible
computer having an interface adapter card for coupling with a control
processor located in a separate card cage. In addition to the control
processor, the card cage may hold other cards designed to emulate
routing functions in a network and transceiver evaluation boards allowing
evaluation of the physical interface with various media, e.g., twisted pair,

power line, or radio frequency.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-26-

Initially certain hardware parameters are defined for each node in
the network, block 501. This step includes naming or otherwise
identifying the node, block 601. A node type is specified, block 602. in
the development environment, the node type may be specified as the
control processor, an emulator board, or a custom node type. The
location of the node ié then specified—the location specifies whether or
not the node resides in a card cage and, if the node resides in a card
cage, the card cage number and slot number, block 603. Next, the
channel to which the node is connected is specified, block 604, and the
channel's priority is specified, block 605. If the node has been assigned
‘the priority privilege, then the node's priority is set at this time. Finally,
certain hardware properties may be specified, block 605. Hardware
properties may include model numbers for the node, clock rates,
operating system revision levels, ROM size, RAM size, EEPROM size,
RAM start address, and EEPROM start address. Finally, the hardware
definitions are downloaded to the node, block 606.

Next, network and certain logical parameters are specified for
each node, block 502. Currently, this step involves specifying a node
name, block 701, and then specifying a program file, block 702, and
hardware device name, block 703 associated with the node. Hardware
names were specified above in step 601. Program files will be discussed
in greater detail below in connection with block 503. The definition of the
node is then saved, block 704.

The development environment provides an editor for developing
and editing program code, block 503, such as the code illustrated in

tabies | and Il. .The preferred embodiment allows programming in the "C"

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-27-

ianguage and, further, provides certain extensions to the "C" language
which will be discussed in greater detail below. After developing
program code, the programs are compiled, linked and loaded as
executable programs, block 504, onto the nodes specified in definition of
network and logical parameters, block 502.

Connections are then specified for the network, block 505. This
step is better illustrated with reference to Figure 8(a). Initially, a
connection name is entered (for example, the connection names
specified in the binder script of Table Il are temp1_controls,
temp2_controls and temp3_controls), block 801. In the preferred
embodiment, the connection name is entered as a unique name having
from one to 16 characters consisting of letters, numbers and
underscores; no spaces are allowed.

Next, a node name is selected, block 802. In the preferred
embodiment, a list of defined nodes (i.e., nodes which have been
previously defined as described in connection with block 502) is
displayed and a valid node name may be selected from the displayed
list. For example, the node temp_sensor_1 may be selected. After
selecting a node name, block 802, a nétwork variable name is selected,
block 803. Again, a list of network variable names for the selected node
are preferably displayed and a network variable name is selected from
the displayed list. For example, the network variable temp_high may be
selected.

After completing this process for a first node, a second node may
be selected, block 804. Again, a node list is preferably displayed and the

second node is selected from the displayed node list. For example, the

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-28-

node fan_1 may be selected. A network variable associated with the
second node is then selected, block 805, again preferably from a
displayed list. Continuing the example, the selected network variable
may be fan_on.

Finally, certain parameters may be set, block 806. In the preferred
embodiment, settable parameters include the retry count set to the
maximum number of times the message will be sent, the retry timer for
acknowledged services, and the repeat timer for
unacknowledged/repeated messages. This aspect of the present
invention will be discussed in greater detail below.

The connection is then added to a connection list using an add
function, block 807. Itis noted that if additional nodes are to be
connected in the connection, they are specified in a similar manner to the
first and second nodes after having specified the first and second nodes.
An example of such a connection is illustrated in Table lli as
temp2_controls which includes three nodes: temp_sensor_2, fan_1 and
fan_2.

The process of Figure 8(a) is repeated for each desired
connection. In the case of the binding set of Table lil, the process is
repeated three times: (1) once for the connection named temp1_controls;
(2) once for the connection named temp2_controls; and (3) once for the
connection named temp3_controls. In the case of the binding set of
Table IV, the process is repeated five times, once for each of

connection_1, connection_2, connection_3, connection_4, and

connection_5.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-29.

In the preferred embodiment, the output of the connection process
is a binary script file that provides commands to drive the subsequent
binding process. In order to provide a textual version of what this binary
file looks like, Table lll and Table IV have been provided.

It is also within the power of one of ordinary skill in the art to
develop a graphical user interface for drawing the connections between
iconic representations of the nodes and creating a binder script based on
such drawings.

Finally, the network variables are bound, block 506, to their
respective nodes in order to allow communication within the connections
defined during execution of the steps of Figure 8(a). The preferred
method of binding network variables is described in greater detail with
reference to Figure 8(b).

Initially, the list of connections developed during execution of the
steps of Figure 8(a) is read, block 821. Then, certain type checking and
message constraint checking is performed for each connection, block
822. The type and message constraint checking includes the following
checks:

(1) Ensure that there are at least two members in each connection;

(2) Ensure that there is at least one output member and one input
member for each connection;

(3) In the preferred embodiment, no more than one input and one
output network variable from the same node may appear in the
same connection;

(4) A warning is given if polled output variables are not attached to

at least one polled input;

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-30-

(5) An estimate for message rates may be declared for network
variables; a warning is given if the estimated message rates do
not match for all members of a connection;

(6) Network variables may be synchronized or
non-synchronized—a warning message is provided if
synchronized variables are bound to non-synchronized
variables;

(7) Network variables may be sent as authenticated—a warning is
provided if some, but not all, members of a connection are
declared as authenticated; and

| (8) Variable types are checked field-by-field for size and sign type
matching and for type definition matching. The currently
preferred list of type definitions are provided in Table V.

After completing type and message rate constraint checking, the
addressing mode for the network variable is determined, block 824. If
there is only one destination (e.g., temp1_controls), subnet-node
addressing is used using the subnetnode structure given below to create
an entry in address table 901. Address table 901 will be discussed in
greater detail below. The address entered in the address table 801 is the
address of the destination node (e.g., in the case of temp1_controls, the
address of fan_1 is entered in the address table of temp_sensor_1;
conversely, the address of temp_sensor_1 is entered in the address
table of fan_1 to allow for such functions as polling of the current status of
the network variable). The address table index entry 912 is set to
correspond to the location in the address table 901 corresponding with

the address entered in the address table 901. For example, in the case

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-31-

of the bind set of Table ill, if the address of FAN_1 is entered as a
network address 913 in the address table 901 at entry 001, the address
table index entry 912 of the network variable table 303 corresponding to
the network variable id assigned to the connection temp1_controls is
written with the address 001. In this way, whenever messages are sent
on the network by temp_sensor_1 indicating the value of temp_high has
been updated, the address table index is used to lookup the address of
the destination node of such a message. A message is then sent,
addressed to the destination node, including the network variaple id and
the new value. The destination node then receives the message and is
able to update the value of its corresponding network variable "fan_on".

if there is more than one destination node (e.g., temp2_controls),
group addressing is used using the above group address structure to
create an entry in the address table 901. In the case of group
addressing, a set of sender and destinations for the network variable is
constructed. For example, in the case of the connection temp2_controls,
the set of sender and destinations includes temp_sensor_2, fan_1 and
fan_2.

Other optimization steps are also provided by the binder of the
preferred embodiment and are described in further detail below.

After determining an addressing mode, for each unique set of
sender and destinations (unique without respect to which nodes are
senders and which nodes are receivers), a group address is assigned to
the set, block 825. The group address is propagated to the address table
of each of the nodes in the set and stored in their respective address

tables 901. The address table index value 912 for the entry

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147
-32-

corresponding to the group address is updated to index the address
table 901 at the new entry. For example, group1 is defined to include
temp_sensor_2, fan_1 and fan_2 and the group address is stored at
entry 002 of the address table 901. Then, the address table index 912 for
each of the three nodes temp_sensor_2, fan_1 and fan_2 is updated to
point to the new address table entry.

For group address table entries, as described above, only the
output network variable nodes actually set their network variable table
entries to index the address table. The nodes with input network
variables will not index the address table. This allows the same network
variable to reside in several network variable connections, and many
network variable groups. When an incoming message arrives for one of
these input network variables, the correct network variable table entry is
found using the network variable ID (the software matches the network
variable ID in the message to one in the table).

This "intersecting connection" ability makes the network variable
concept more powerful by allowing the same variable to be updated by
several groups, thus reducing both the overall network traffic and
reducing network variable table space by sharing the same table entry
among several connections.

Finally, a single network variable identification number (netvar_ID)
is assigned to each network variable in the connection, block 823. This
may be better understood with reference to Figure 9 which illustrates a
network variable table 902 having a network variable identification field
911 and an address table index field 912. Further, an address table 901
is illustrated having a network address field 913. It should be noted that

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147
-33-

these tables preferably reside in each individual node's EEPROM 401
and have additional fields in the preferred embodiment. However, for
simplicity only the above-mentioned fiekds are illustrated in Figure 9. The

network variable table is preferably of a structure as follows:

struct nv_table

{ unsigned priority:1; /*1=priority network variable, O=non-priority nv*/
unsigned dir:1; [direction O=input, 1=output®/
unsigned idhi:6; ["network variable id, most significant bits*/
unsigned idlo; I"network variable id, least significant bits*/
unsigned ta:1; [urnaround: 1= turnaround*/
unsigned st:2: I*service*/
unsigned auth:1; authenticated: 1=authenticated*/
unsigned addr:4 [*address table index*/

k

where the priority field indicates whether messages to update the
network variable are to be sent as priority or non-priority messages;
direction indicates the direction of the target ID, for example, a network
variable update going from an output variable to an input variable would
have the direction bit set to a 0; the network variable id is a 14 bit
identification number allowing for a maximum of 16,384 unique network
variables per domain in the network and corresponds to the network
variable id 911 of Figure 9; turnaround indicates an output network
variable may be connected to an input network variable of the same
node; service indicates whether acknowiedged or unacknowledged
services is utilized; auth indicates whether message are authenticated
prior to being accepted and processed by identifying the sender node
through an authentication process; priority indicates whether messages
are transmitted as priority or normal messages; and the address table
index corresponds to address table index 912 and is an index into the
address table 901.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-34-

The Address Table preferably follows one of two formats given
below; the first format is for group address table entries and the second

format is for single destination node address table entries:

struct group
{ unsigned type:1; lindicates whether the structure is for a group or
single node*/
unsigned size:7; I*group size (0 for groups > 128 members®/

unsigned domain:1; /“domain reference*/
unsigned member:7; /*node's member # (0 for groups > 128

members*/
unsigned rpttimer:4; /*unacknowledged message service repeat
timer*/
unsigned retry:4; lretry count*/
unsigned rcvtimer:4; /“receive timer index"/
unsigned tx_timer:4; /*transmit timer index */
} int group; [group id*/
struct subnetnode
{ unsigned type; I'indicates whether the structure is for a group or
single node*/
unsigned domain:1; /*domain reference*/
unsigned node:7; I'node's #*/
. unsigned rpttimer:4; /*'unacknowledged message service repeat
timer*/
unsigned retry:4; I'retry count*/
unsigned rsvd:4; Ireserved*/
unsigned tx_timer:4; /“transmit timer index */
int subnet; I*subnet*/

}
It should be noted here that many of the present invention's

concepts of groups, domains, subnets, acknowledged messages, etc. are
described in greater detail with refereﬁce to United States Patent
Application Serial Number 07/621,737 filed December 3, 1990 titled
Network Communication Protocol (the 737 application) which is
assigned to the assignee of the present invention and which is
incorporated herein by reference.

Continuing with the description of assigning a network variable id
to a connection, block 823, the first unassigned network id is assigned to

the connection and the neti:vork variable id is written to the network

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-35-

variable table 902 for each node using the network. Thus, in the above
example, the network variable id 000000000000002 may be assigned to
the connection temp1;controls of Table lll; the network variable id
000000000000012 may be assigned to the connection temp2_controls
of Table lll; and the network variable id 000000000000102 may be
assigned to the connection temp3_controls of Table lIl. It should be
noted that network variable ids need not be unique domain”wide, but
only need be unambiguous within the nodes involved.

Certain advantages gained through use of network variables have
now been described such as the ability to automatically generate
network addressing schemes from application level connections. In
addition to allowing for such ease of use, network variables lead to
generally smaller and less complicated application programs over other
forms of network communication, such as prior art messaging
techniques. Tables V and VI better illustrate differences between and
certain advantages of use of the present invention's techniques over, for
example, prior messaging techniques. Table V is a program written
using network variables of the present invention. Table Vi is a
functionally equivalent program written using prior art messaging
techniques. It is useful to note the comparative program statistics at the
end of each program listing in which it is shown that the message
program requires 626 bytes of ROM; 177 bytes of EEPROM; and 1314
bytes of RAM. By way of comparison, the network variables program
requires only 335 bytes of ROM while using 231 bytes of EEPROM and
only 1126 bytes of RAM.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-36-

SELF-IDENTIFYING STANDARD NETWORK VARIABLE TYPES

It is desirable to provide for interoperability between nodes in a
network. To provide for such interoperability, it is necessary to assure
compatibility between network variables in the various nodes of a
network. To facilitate such compatibility, as one feature of the present
invention, a list of standard network variable types is provided by the
assignee of the present invention. The currently preferred list of standard
network variable types is provided as Table Vil. By utilizing the list of
standard network variable types, nodes in the network may be
interrogated for information on the network variables employed by the
node and the network. may then be configured based on this information.
This process is better illustrated with reference to Figure 10.

Initially, a node which must be configured is coupled to the
network medium, block 1001. After the node is coupled fo the medium,
an address of the node may be determined through any number of
methods. At least one of such methods is described with reference to the
‘737 application. After having determined an address for the node,
messages may be communicated to the node over the medium. In the
preferred embodiment, a network management node is coupled to the
medium which is useful for configuring the network. The network
management node may communicate a command to the new node
requesting its information on the network variables employed by the
node, block 1002, or may alternatively read such information from a file

which has already been placed in the network management node's

memory.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-37-

In the preferred embodiment, in order to allow for the information
to be stored in the network management node's memory, such
information is made available for importation into the network
management node via a binder interface file (BIF). The BIF file is a
byproduct of the compilation process for each node, and contains all the
information necessary to install the node on the network. This
information is also referred to as the exposed interface of the node.

The BIF file for a new node may by provided to the network
management node prior to installation of the new node on the network in
order to allow a complete network database to be constructed in advance
of, and separate frorﬁ. the physical installation of the new node on the
network. For example, the BIF file may be supplied to the network
management node on diskette, over phone lines, or on through other
computer readable media. |

Information equivalent to the information stored in the BIF file is
also preferably stored in the memory of the node. In this case the
preferred embodiment confines the application writer to use of a list of
standard network variable types when developing an application
program designed to run on the node. The list of standard network
variable types used by the system of the preferred embodiment is
enumerated in Table VII. Use of the list of standard network variables
minimizes the required space for storing the exposed interface in the
node's memory. Storing the exposed interface in the node's memory
offers the advantage of alldwing the information to be retrieved without
need for the network management node to include a floppy disk drive or

other device for receiving externally communicated computer readable

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-38-

information. However, absent the option of providing the BIF file over
such an external interface, the node must be physically connected on the
same network with the network management node prior to construction of
the network database. In the preferred embodiment, both options are
available and the choice of how the exported interface is imported into
the network management node is left up to the node designer.

The file layout for the BIF file of the preferred embodiment is given
in Table IX. An example of a BIF file is given in Table X. This exemplary
BIF file has been generated for the program given in Table V.

As was mentioned, in the preferred embodiment nodes may utilize
the standard network variable types in declaration of network variables.
The information describing its network variables is communicated (or
exposed) by the node to the network management node, block 1003,
using standard messaging features of the network. It will be understood
that in alternative embodiments, information describing other,
non-standard variable types may also be communicated in a manner
similar to communicating the information on standard network variables.

The network management node receives the exposed network
variable information, block 1004, and may then use information,
including the network variable type, in verifying valid connections and in
the binding process. Only network variables of identical types may be
bound together in a single connection—thus, use of standard network
variable types facilitates interoperability of nodes in the network as well
as facilitating identification of network variables when a command is

issued to expose the network variables of a node.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-39-

As one extension to the concept of self-identifying standard
network types as just described, it is possible to include in the information
transmitted responsive to receiving the command to expose network
variable's text strings and even graphical icons to the network
management node. Such information would make the nodes largely
self-documenting.

EXTENSIONS TO THE "C" LANGUAGE

The present invention has implemented certain extensions and
features to the "C" programming languages to support use of network .
variables—these extensions include (1) the already disclosed
declarations of variables as network variables and the ability to declare
such variables as standard network variable types; (2) declaration and
use of I/O objects; and (3) scheduling clauses. Each of these extensions
will be discussed in greater detail below. it should be noted that
although the extensions have been preferably implemented in the "C"
programming language, the idea and concepts of these extensions are
not limited to use in this programming language and, in fact, these ideas
and concepts may readily be extended to other programming languages.

N ¢« variable declarati

As has been discussed, the present invention provides for
declaration of network variables in C programs. Importantly, the
declaration of network variables allows for declaring certain information
for use by the above-described binding process. This process is better
understood with reference to Figure 11. Initially, a network variable is
declared in a computer program intended to run on a node of the

network of the present invention, block 1101. The preferred format for the

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-40-

declaration may be found with reference to Table VIil, below. As can be
seen with reference to Table VI, the declaration format preferably
includes a set of parameters called bind_info. These parameters allow
the network variable to be declared with an initial specification of protocol
services. When the program is compiled, this initial information is output
as part of the BIF file. The format of the BIF file may be found with
reference to Table IX. As one option in declaring network variables,
these parameters may be declared as configurable or non-configurable,
block 1102. In this way, a programmer programming a node may make
an initial determination as to the state the parameter should normally be
set to. For example, the programmer may determine in a typical
configuration, a particular network variable should use acknowledged
message services. However, the programmer may also allow a network
administrator flexibility in configuring and optimizing the network by
declaring the acknowledged parameter as configurable. The program is
then compiled and a compiled output is produced in the conventional
manner. In addition to producing the conventional outputs of a compiler,
e.g., object code, the compiler of the present invention produces the
above-mentioned BIF file which includes information on the declared
network variables such as the state of parameters and whether or not
such parameters are configurable, block 1103.

During configuration of the network of the present invention, the
state of these configurable parameters may be modified by the network
administrator, block 1104. In the above-discussed example, the network
administrator may determine the network will be optimally configured if

the variable declared as acknowledged is actually configured as

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-41-

unacknowledged and repeated. It is worthwhile to again refer to Figure
8(a) which illustrates, in addition to other steps in the connection process,
the step of setting parameters for the connection, block 806. The
parameters which are settable in this step of the configuration process
are those parameters declared as configurable in the network variable
declarations. These parameters are displayed on a display screen
during the configuration process and may be modified by changing the
state of the parameters on the display screen. For example, one of three
states may be set to tell the network the type of service to be used for a
network variable—unacknowledged, unacknowledged and repeated,
and acknowledged. The authentication feature may be set to an on state
in which message authentication is used or to an off state in which
message authentication is not used. Also, network variable may be set to
a priority state or a non-priority state indicating whether messages
associated with the variable are to be sent as priority messages or as
normal messages. '

Declarati ! t Object

Each node of the present invention comprises its own scheduler,
timers, and logical I/O devices. The "C" programming language
employed by the present invention provides access to these devices
through use of predefined objects; namely, an event scheduler which
handles task scheduling for the node, timer objects which provide both
millisecond and second timers, and I/O objects which provide for
declaration of a number of logical I/O devices. Importantly, once

declared a logical link is created between the object name and the

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-42-

physical device and references may be made to the object name to gain
access to the physical device.

Declaration and use of objects will be discussed in greater detail
by referring to declaration of I/O objects. Each node of the network of the
present invention has a number of built-in electrical interface options for
performing input and output. Prior to performing input or output, a
program must declare an /O object which interfaces with one of eleven
I/O pins on the node; three serial pins 441 and eight parallel pins 445.
The eleven pins are referred to with the reserved pin names: 10_0, 10_1,
10_2,10_3,10_4,10_5,10_6,10_7,10_8,10_9, and I0_10. The
declaration syntax for an I/O object and use of the eleven pins in the
present invention is discussed further with reference to Table XI.

It is worthwhile to turn to Figure 12 to discuss this concept in
somewhat greater detail. Initially, a program statement is coded to
declare an /O device giving a pin designation, a device type and a
device name; when the program is compiled the declaration statement
causes declaration of the /O device, block 1201. Other parameters and
the format of the declaration for an O device in the preferred
embodiment may be found with reference to Table XI. Responsive to
declaring the /O device, the pins are configured to perform the function
specified by the device type, block 1202. The device types of the
preferred embodiment may be found with reference to Table XI.

This process is further illustrated with reference to the exemplary
network variable program of Table V and the associated assembly
language code resulting from a compile of the program given in Table

XIV. As can be seen with reference to the program source code in Table

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-43-

V, two /O devices are Jeclared, |0_0 as a bit output named MotorCtri
and 10_5 as a pulsecount input named pulseamps.

The specified device name is logically associated with the
specified device to perform the designated I/O, block 1204. In this way, a
reference may be simply made to the device name to accomplish the
designated I/O with necessity of continued reference to specific pins and
without need for special coding to implement the desired device types.
As can be seen with reference to Table XII, built-in functions are provided
to allow communication with the /O devices. One of the built-in functions
may be used to perform the built-in function referring to the desired
device name to specify a hardware device, block 1204. The desired /O
is then performed in accordance with the device type specified in the
device declaration, block 1205.

Scheduling

Scheduling on a node in the present invention is event driven.
When a given condition bacomes true, a body of code termed a task
associated with that condition is executed. In the preferred embodiment,
scheduling is accomplished through "when" statements. The syntax of a
when statement of the préferred embodiment is given in Table XIll. An
example of a when statement is given below:

when (timer_expires (led_timer)) [* This line is the when
clause */

{

io_out (led, OFF); I* This is the task - tum the led off
*/

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-44-

In the above example, when the application timer led_timer
expires, the body of code following the when statement is executed (and
the LED is tumed off). When statements provide for execution of a task
(the bracketed code) when the condition specified (e.g., the led_timer
expires) evaluates to true. It is known in the art to provide structures in
programming languages which allow for conditional execution of a task
when a statement evaluates to true. However, in known systems which
include a scheduling statement (a when statement or the equivalent), the
event which is evaluated is a predefined event. As is noted in Table XiIii,
the present invention provides for use of predetermined events in
scheduling statements. However, as one important aspect of the present
invention, events may also be any valid C expression. For example, the

following statement may be coded in a system of the present invention:

when (x == 3) [* This line is the when clause
*/
{
io_out (led, OFF); [* This is the task - tum the led off
*/
}

In this case, whenever the event x==3 occurs, the LED is turned
off. Of course, significantly more complicated C programming statements
may be envisioned to define an event. As will be understood by one of
ordinary skill in the art, allowing evaluation of any valid language
expression to define an event offers significant flexibility over known
systems. The present invention further allows for use of multiple when

statements to be associated with a single task. For example:

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-45-

when (powerup) I* This line is one when clause
*/

when (reset) [* This line is another when
clause */

when (io_changes(io_switch)) /* This line is another when

clause */
when (x = 3) * This line is another when
clause */
{
io_out (led, OFF); [* This is the task - turn the led off
*/
}

In this case, when any of the above events evaluates to true, the
task is executed—e.g., the LED is turned off. |

Importantly, as one aspect of the present invention, /0 objects
may be referred to in an event clause allowing improved ease of
programming of the system of the present invention. For example, two
methods may be used to determine if an input value is new: (1) the
io_update_occurs event may be used, ‘referring to the desired device in a
when statement or the io_in function may be used. The below two

programs accomplish the same goal.

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

10_5 input puisecount dev;
when (io_update_occurs (dev))

{

/* perform the desired function */

stimert;

10_5 input pulsecount dev;
when (timer_expires(t))
{ io_in (dev);
if (input_is_new)
{
/* perform the desired function */
}

I S

The particular method chosen will depend on the individual case;

however, the above is exemplary of the flexibility and ease of use of the

system of the present invention.
Further, as an additional feature of the present invention and as is

described with reference to Table VIII, the present invention provides for
two levels of when clauses, priority when clauses and normal when

clauses. Using this feature, it is possible to handle events which must be

dealt with on a priority basis.

PERFORMANCE OPTIMIZATIONS PERFORMED

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-47-

BY THE BINDCR OF THE PREFERRED EMBODIMENT

As was discussed above, when more than two nodes are used in
a connection, the nodes may be recognized as a group and a group
address may be assigned to the group of nodes.

The preferred embodiment also carries out other performance
optimization routines to achieve minimal network traffic with resulting
optimized response time. For example, the binder determines optimal
protocol service class and addressing allocation at the time of binding
variables in order. lllustrative of this, with reference to Figure 3(b), three
separate connections are shown, 321-323. Aithough this represents a
typical optimal configuration, these three connections could be combined
by the binder into a single group resulting in nodes sometimes receiving
messages about network variable updates which are not used by those
nodes. In such a configuration, although there are additional messages
received by the nodes, no effect is seen by the application running on the
node because the network variable messages include a 14-bit network
variable identification. Therefore, nodes which have no need for a
variable sent to them simply discard and, in the case of acknowledged
service, acknowledge the message.

An advantage of grouping many nodes in a single group in the
system of the preferred embodiment is that such grouping simplifies tasks
for the binder process and further uses only one group address (the
preferred embodiment is limited to 255 group addresses per domain).

Further, the binder of the present invention dynamically selects an
optimal protocol class of service at the time of binding. This is done by

first computing the number of messages it would take to complete a

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-48-

transaction on the first using acknowledged service (including the
original message and the acknowledgements). (Note that this number is
the group size which is known by the network variable binder process at
the beginning of the connection process). Second, this number is
compared with the repeat count for repeating message. |f the repeat
count is less than the group size, and none of the programs require
acknowledged services (each program allows the config option for its
network variables), then the binder dynamically converts the service from

acknowledged to unacknowledged repeat. This reduces network traffic,

thus improving response time.

Thus, an improved communication network having capability for

communication of information between nodes in the network is

described.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-49-

TABLE |

I/‘t t*/
/** Temperature sensor control program writes an output network variable ~ **/
/** wemp_high responsive to changes in temperature sensed by a thermostat **/
/‘i

tlr/
/ /
/** 1O Declarations **/
I0_1 input bit temp_in;

/** Network variables declaration **/
network output boolean temp_high;
/** working variables declarations and initializations **/

int on_threshold = 72;
int off_threshold = 68;

r * tt;
/** Event driven code; update temp_high responsive to changes in tcmperature w4/
/** input 1o the program by temp_in ./
Vaged] **/
/ /
when (powerup)

when (reset)

{
i]o__change_ixﬁt (temp_in);

when (i?_chmgcs(wmp_m))
if (temp_in > on_threshold)
temp_high = true;
if (temp_in < off_threshold)
temp_high = faise;

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—50—
TABLE II
SR R

/ !
P »/
/** Fan control program reads an input network variable fan_on to control ~ **/
/‘: turning a fan on and off using output bit fan_active. :://
/ /
/** 1/O Declarations **/
10_1 output bit fan_active;
/¢* Network variables declaration **/
network input boolean fan_on;
/ /
Thid s/
/** Event driven code; updates fan_active each time a change in state occurs ~ **/
/** for the network variable fan_on s/
land]

/

'
whc? (nv_update_occurs(fan_on))

io_out(fan_active, fan_on);

SUBSTITUTE SHEET

WO 92/16895

— 5] —

TABLE Il

PCT/US92/02147

@N (temp1_controls)
temp_sensor_1.temp_high
fan_l.fan_on

@N (temp2_controls)

temp_sensor_2.temp_high
fan_l.fan_on
fan_2.fan_on

@N (temp3_controls)
temp_sensor_3.temp_high
fan_2.fan_on

This connection associates the

temnperature sensor control output variables
(temp_high) to a fan control input variable (fan_on). Specifically,

#
#
temperature
sensor 1 is connected to fan 1; temperature sensor 2 is connected to fan 1 and
and fan 2; and temperature sensor 3 is connected to fan 2.
#

/'. wnw ‘./
/** reader **/

/** writer **/
/** reader **/
[** reader *¢/

,t‘ wﬂm ‘t/
1** reader **/

SUBSTITUTE SHEET

WO 92/16895

—52

TABLEIV
.

PCT/US92/02147

@N (connection_1)
temp_sensor._1.temp_high
cell_l.temp_high

@N (connection_2)
temp_sensor_2.temp_high
cell_l.temp_high
cell_2.temp_high

@N (connection_3)
temp_sensor_3.temp_high
cell_2.temp_high

@N (connection_4)
cell_l.fan_on
fan_l.fan_on

@N (connection_S)
cell_2.fan_on
fan_2.fan_on

#
This connection associates the temperature

(temp_] hxgh)toaconuolccll.ﬂmeconnolcclllsconnewdtofmconml

input variable (fan_on). Specifically, temperature seasor 1 is connected to
:eonudoelll ; femperature sensar 2 2 is connected to coatrol cell 1 and control
#
#

sensor control output variables

zmamsemormsconnectednconmlcellz.cmmlcenlxs
connectad to fan 1; and control cell 2 is connected to fan 2

/t. wﬁm ‘t/
/** reader **/

[** writer *¥/
/** reader **/
/** reader **/

[+ writer **/
/** reader **/

,tt wnlﬂ tt/
/¢ reader **/

/“ wn'w t‘/
/** reader **/

P N e i

SUBSTITUTE SHEET

»

WO 92/16895

—53

TABLE V
NETWORK VARIABLE PROGRAM EXAMPLE

PCT/US92/02147

#pragma receive_trans_count 8

/‘Ihnennplehslllﬂwmpomwonﬁmuonbalmmm
gm;ly.gmmmm wesaqxthcymgysmheused
ve no knowledge of the setpoints. Teport new temp
/* values when the old one changes by a threshold value. Additionally,
/* the iemperature value can be reported 10 many nodes which can each
/* use the temperature for their specific function - even applying
/* different set points to the temperature value. In the old snady,
* actual temperature values were not seat on the network. Messages
/";mesemfa above high setpoint, at setpoint & below lowsctpo;r:l:.
/* Since no temperature values were sent, the messages seat could only
/* be used by this node - defamgﬂnvdued:mwkedngxch
/* This division of function in the old study was done to save EEPROM
/* in this node since storing the setpoints takes EEPROM.

#define true 1
#define false 0
#define on true
#define off . false

typedef signed int fahrenheit;
typedef signed int PoundsPerSqln;
struct tc;npSeqaoints
fahrenheit LowSet,
} HighSet;
struct yr[essmeSetpoims
PoundsPerSqin LowSet,
| HighSet;

/* EEPROM nodal configuration parameters: Minimum time the motor must
/* remain on, minimum time the motor must remain off. Temperature &

*/
*/

"SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—54_
'F;nssmesetpmms.l.ocaﬁmanddevwetype.mo!! s/
config network input

signed long int MinOfiTime,
MinOnTime;
config netwark input
struct tempSetpoints OutletWater,
CndnsrHead,
CoolAir,
config network input

struct pressureSetpoints CmprssrinltGas;
#pragma set_id_string "HVAComp"

/* Network variable declarations for temperature & pressure inputs */
/* used to decide when the motor should be turned on and off ¥/

network input fahrenheit OutletWaterTemp,
CndnsrHeadTemp,
CoolAirTemp;

network input PoundsPerSqln CmprssrGasPrssr;

network input boolean BuildingCooling;

* Network variable declarations used to report status to the HVAC
/* system controller. Reparted conditions are: node offline/online,
/* motor on/off, and motor overloaded/O.K. These conditions are only

/* reported when they change.

network output boolean MotorOn,
MotorOverioad,
AmOntine;

/* Definitions of the Neuron® I/O pins. The previous study used an */
/* onchip AtoD to measure the current that the motor used. This version */
/* uses a $.50 external AtoD to coavert current t0 a number of pulses */
/* over a 1 second interval. These pulses are accumulated via the on */
/* chip timer/counter block to determine the current the motor uses ¥

10_0 output bit MotorCui;
10_5 input pulsecount PulscAmps;

SUBSTITUTE SHEET

a9

WO 92/16895

PCT/US92/02147

—55—
imer no space —~ are 1n
stimer MinOff Timer,
MinOnTimer,
MotorMeasurementTimer;

/* number of pulses that equal the maximum amount of current the motor

/* can draw. The cheap AtoD gives O to 255 pulses per second depending
/* on the analog current value.

const int CompressorMotorMaxDraw=180,
Measurementinterval=10;

int strikes; /* motor overdraw counter s/

/* now for some real code! initialization for reset, powerup and online
/* events. Online means the node received a network management message
/* 10 go online.

\{/oid motor(boolean on_off_flag)

MotorOn = on_off_flag;
io out(MotorCrrl, on_off_flag);

if (on_off_flag == on)
minOn'ﬁmcr = MinOnTime;
e
} MinOffTimer = MinOff Time;

w{loid control_action()

B uidingoo o

Buildi ling

MinOff Timer = 0 &&
OutletWaterTemp > QutletWater.HighSet &&
CndnsrtHead Temp < CndnsrHead.LowSet &&

< CmprssrinltGas.LowSet &&
)GoolAir’I‘mp > CoolAir.HighCet
motor(on);
clse

‘/7

*

*/
*/

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895
—56—
T BuldingCooing 73
MinOnTimer a=(&&
OutiesWaterTemp < OutletWaterLowSet &&
CndnsrHeadTemp > CndnsrHead HighSet &&
CmprssrGasPrsst > CmprssrinitGas.HighSet &&
) CoolAirTemp < CoolAirLowSet
{
(motor{off);
)
}
when (reset)
{
MotorOn= false;
MotorOverioad = false;
AmOnline= true;
motor(off);

/* initialize all input variables so that other nodes ¥/

/* don't have 1o all update this one before thisone ¥/

/* begins operation. */
OutietWaterTemp = OutletWater.LowSet;
CndnstHeadTemp = CndnsrHead LowSet;
CoolAirTemp = CoolAir.LowSet;
CmprssrGasPrssr = CmprssrinitGas.LowSet;
strikes = 14
poll(BuildingCooling); /* ask the controllerif ACison */

}

when (o{nline)
AmOnline = tue;
motor(off);

/* perhaps someone repaired it
MotorOverload = false;

/¥ if the motor was overloaded & and we just came back online

*/

SUBSTITUTE SHEET

WO 92/16895

—57—

PCT/US92/02147

1

\vhen(ol;ﬂim)
AmOnline = false;
t]notor(oﬁ);

when (nv update occurs)

c.}:muol action();

when (t?ma expires(MotorMeasurementTimer))
MotorMeasurementTimer = Measurementinterval;

if (io_i:l:(PulscAmps) > CompressortMotorMaxDraw)

}

Link Memory Usage Statistics:
ROM Usage: User Code & Constant Data 335 bytes

EEPROM Usage: (not necessarily in order of physical hyout)
Parameters

System Data &

Domain & Address Tables 105 bytes
Network Variable Config Tables 42 bytes
User EEPROM Variables 12 bytes
User Code & Constant Data 0 bytes
Total EEPROM Usage 231 bytes
RAM Usage: (not necessarily in order of physical layout)
System Data & Parameters 549 bytes
Transaction Control Blocks 132 bytes
User Timers & 1/O Change Events 12 bytes
Network & Application Buffers 424 byres
User RAM Varnables 9 bytes

if (++su{'ikcs >=3) /* motor is really overloaded */
motor(off);
) i s
else
strikes = 0

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

— 58—

Usage 1126 bytes
End of Link Statistics

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—~59

TABLE V1
MESSAGING PROGRAM EXAMPLE
#pragma receive_trans_count 8
/* This example has all the setpoint configuration local to this node. s
/* In this way, generic and sensors can be used */

: temperature and pressure
/* which have no knowledge of the setpoints. They

only report new temp ¥/

/* values when the old one changes by a threshold value. Additionally, */

/* the value can be reported to many nodes which can each)
/* use the eemperature for their specific function — even applying */
/* different set points to the temperature value. In the old study, */
/* actual values were not sent on the network. Messages */

/* were sent for above high setpoint, at setpoint & below low setpoint. */

/* Since no temperature values were sent, the messages sentcould only */
/‘beusedbythisnode—dcfuﬁngdwvnlueoﬁnetwtedwh */

/* This division of function in the old study was done to save EEPROM %/

/* in this node since storing the setpoints takes EEPROM. */
#define true 1

#define false 0

#define on true

#define off false

/* Add In some message codes */

#define CondensrTemp 0 /* net in condensor temp */
#define CoolTemp 1 /* net in air temp */
#define GasPress 2 /% net in gas pressure */
#define BldCool 3 /* net in building cooling stat */
#define MotOn 4 /* net out cprsr mot on */
#define MotOvld 5 /* net out cmprsr mot overload */
#define NdOnline 6 /* net out online ¥/
#define Poll BidCool 7 /* poll building status */
#define TimeMinOff_c 8 /* Config Msg code for time off */
#define TimeMinOn_c 9 /* Config Msg code for time on */
#define QutletH20 10 /* Netin H20 temperature %/
#define CndnsrHd_c 11 /® cndsr head emp config %/
#define ColdAir_c l§ //:Coldainempmg :5
#define CompGasPress_c 1 pressure 4
#define OutletH20_c 14 /‘(gn“ﬁﬁ Ms;codefor water tmp */

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

typedef signed int fahrenheit;
typedef signed int PoundsPerSqln;

fahrenheit LowSet,

HighSey;
struct p!;mm'eSctpoims

PoundsPerSqln LowSet,

HighSeg,
/* EEPROM nodal configuration parameters: Minimum time the motor must
/* remain on, minimum time the motor must remain off. Temperature &
/* pressure setpoints. Location and device type, too!!
signed long int MinOffTime,

MinOnTime;

struct tempSetpoints OutletWater,
CndnsrHead,
CoolAir;
struct pressureSetpoints CmprssrinltGas;
#pragma set_id_string "HVA Comp”

/* Network variable declarations for temperature & pressure inputs */
/* used to decide when the motor should be turned on and off */

fahrenheit OutletWaterTemp,
CndnsrHeadTemp,
CoolAirTemp;

PoundsPerSqin CmprssrGasPrssr;

boolean BuildingCooling;

/* Network variable declarations used to report status to the HVAC */
/* system controlier. Reported conditions are: node offline/online, */

*/
*/

l_/‘ motor on/off, and motor overloaded/O.K. These conditions are only */

SUBSTITUTE SHEET

WO 92/16895

—61 —

boolean MotorOn,
MotorOverioad,
AmOaline;

/* Definitions of the Neuron® 1/O pins. The previous study used an */

/* onchip AtoD to measure the current that the motor used. This version */
/* uses 2 $.50 external AtoD to convert current to an number of pulses */
/* overa 1 second interval These pulses are accumulated via the on */

/* chip timer/counter block to determine the current the motor uses */

10_0 output bit MotorCtrl;
10_5 input pulsecount PulseAmps;

/* Timer declarations */
MinOnTimer,
MotorMeasurementTimer;
/* number of pulses that equal the maximum amount of current the motor */

/*candnw.'I‘bccheapAungivesOtoZSSptﬂscspersecmddcpending‘/
/* on the analog current value.*/

const int CompressorMotorMaxDraw=180,
Measurementinterval=10,

int strikes; /* motor overdraw counter*/

/* Define all the message tags */
msg mg air_temp in;
msg tag gas_press_in;
msg g bidstate_in;

msg tag motsOn_our
msg tag motlsOvrid_out;
msg wg Im_onin_out;
msg tag getBldSuarc;
msg tag config msg;
msg tag water_temp_in;
msg tag cndsr_temp_in;

/* now for some real code! initialization for reset, powerup and online %/

I/‘evcntsOnlinememsﬂnenodcmcivedanetwork ement message */

Freporied when they change. ol]

PCT/US92/02147

SUBSTITUTE SHEET

WO 92/16895

— 62—

PCT/US92/02147

7% 10 go online. °

void motor(boolean on_off_flag)

MotorOn =on_off_flag;

io_out(MotorCrrl, on_off_flag),

msg_outtag = motlsOn_out;

msg_out.code = MotOn;

msg_out.dataf0] = MotorOn;

msg_send();

if (on_off_flag == on)

s MinOnTimer = MinOnTime;
MinOffTimer = MinOffTime;

void control_action()

if(AmOnline
BuildingCooling
MinOffTimer ==0
OutletWaterTemp > OutletWater HighSet
CndnsrHeadTemp < CndnsrHead LowSet
CmprssrGasPrssr < CmprssrinliGas.LowSet
CoolAirTempt > CoolAir.HighSet

REEFER

motor(on);

if(BuildingCooling
MinOnTimer ==0
OutletWaterTemp < OutletWater.LowSet
CndnsrHeadTemp > CadnsrHead HighSet
CmprssrGasPrssr > CmprssrinltGas.HighSet
CoolAirTemp < CoolAirLowSet

{

REERE

SUBSTITUTE SHEET

WO 92/16895

when (reset)

MotorOn
MotorOverioad
AmOnline

msg_out.tag
msg_out.code
msg_out.data[0}
msg_send();

msg_out.tag
msg_out.code
msg_out.data[0]
msg_send();

msg_out.tag
msg_out.code

msg_out.data[0]
msg_send();

motor(off);

—63 —

/* initialize all input variables so that other nodes */
/* don't have to all update this one before this one®/

/* begins operation.*/
OutletWaterTemp = OutletWaterLowSer;
CndnsrHeadTemp = CndnsrHead LowSet;
CoolAirTemp = CoolAir.LowSet;
CmprssrGasPrssr = Cmprssr~nll Ga~.~owSet;
strikes = 3
msg_outtag = getBldState;
msg_out.code = Poll BldCool;
msg_out.service = REQUEST;
ms&scndO;

PCT/US92/02147

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895
—64—
1
whcn(or{ﬂine)
AmOnline = true;
msg_out.tag = Im_onln_out;
msg_out.code = NdOnline;
msg_out.dataf0] = AmQOaline;
msg_send();
motor(off);
/* if the motor was overloaded & and we just came back online */
/* perhaps someone repaired it*/
MotorOverioad = false;
msg_out.tag = motlsOvrid_out;
msg_out.code = MotOvid;
msg_out.data[0] = MoworOverload;
| msg_send();
when (c{)fﬂim)
out. = _Ofnin_out,
ﬁg_g.out.:o%e = NdOnline;
msg_out.dataf0] = AmOnline;
| motor(off);
when (:{mg_an'ivw(CondcnsrT emp))
CndnsrHeadTemp = (msg_in.data[0]<<8) + msg_in.data[1};
| control_action();
wbcn(m(sg_arrives((!ool’l‘emp))
CoolAirTemp =(msg_in.data[0]<<8) + msg_in.dataf1];
control_acton();

SUBSTITUTE SHEET

LN

WO 92/16895 PCT/US92/02147

—65—
when (r{nsg_urives(Gn.sPrcss))
CmprssrGasPrssr = (msg_in.data[0]<<8) + msg_in.data[1];
| control_action();
when (?ng_mivu(BldCool))
BuildingCooling = msg indata[0};
} control_action();
when (1{nsg_urives(0mled-120))
OutetWaterTemp = (msg_in.data[0)<<8) + msg_in.data[1];
, control_action();
- fwhen (msg_arrives(TimeMinOff_c))
MinOffTime = (msg in.data[0)<<8) + msg_in.data[1];

when (t{nsg_uﬁves('r imeMinOn_c))
MinOnTime = (msg_in.data[0]<<8) + msg_in.data[1];

when (r{nsg arrives(CndnsrHd_c)
CndnsrHeadLowSet = (msg_in.data[0]<<8) + msg_in.data[1];
| CndnsrHead HighSet = (mg_in.dm[21<<8)+ms§:in.data[3];
when (?sg_mives(ColdAir_c)) B
CoolAirLowSet = (msg_in.data{0}<<8) + msg_in.data[1];
CoolAir HighSet = (msg_in.data[2]<<8) + msg_in.data{3};
when (t[nsg_mives(CompGasPrcss_c))
tGas.LowSet = (msg_in.data{0}<<8) + msg_in.data[1};

Cmprssrinl : i
anrssrlnltGas.I-hEhScts (msE m.da:a|2|<<8)+lmi in.data[3];

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

}
when (msg_arrives(OutetH20_c))

OutletWater.LowSet = (msg_in.data[0]<<8) + msg_m.daxa[1%
) OutletWater HighSet = (msg_in.data[2]<<8) + msg_in.data{3];

when (t{im:r_cxpims(MotnrMeasmenmmer))
MotorMeasurementTimer = Measurementinterval;

if (io_ix{n(mlscAmps) > CompressortMotorMaxDraw)

if (++strikes >= 3) /* motar is really overloaded */
motor(off); ,

MotorOverload = true;

msg_outtag = motlsOvrid out;
msg_out.code = MotOvid;

msg_out.dataf0] = MosorOverload;
msg_send(;

Link Memory Usage Statistics:
ROM Usage: User Code & Constant Data 626 bytes

EEPROM Usage: (not necessarily in order of physical layout)

System Data & Parameters

Domain & Address Tables 105 bytcs
Network Variable Config Tables 0 bytes
User EEPROM Variables 0 bytes
User Code & Constant Data 0 bytes
Total EEPROM Usage 177 bytes
RAM Usage: (not necessarily in order of physical layout)
System Data & Parameters 9 bytes
Transaction Control Blocks 132 bytes
User Timers & 1/O Change Events 12 bytes
Network & Application Buffers 600

User RAM Variables 21 bytes
Total RAM UEE 1314 bytes

SUBSTITUTE SHEET

-

WO 92/16895

—67 —

PCT/US92/02147

End of Link Statistics

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—68 —~
TABLE VI
£ Name Quantity Units Range Bits Resolution
1 SNVT_amp current amps -3,276 - 3276 16 0.1 ampere
2 SNVT_amp_mil current milliAmps -3,276 - 3276 16 0.1 milliampere
3 SNVT_angle phase/rotation radians 0-65 16 0.001 radian
4 SNVT_angle_vel angular
velocity radians/sec 3,276 - 3276 16 0.1 radians/sec
5 SNVT _char_ascii cbaracter character 0-25 8 1 character
6 SNVT_count count,event counts 0 - 65535 16 1 count
7 SNVT_count_inc incremental
counts counts -32,768 - +32,767 16 1 counmt
8 SNVT_date_cal date YYYYMMDD 1-3000,0-12,0-31, 32 1 day
9 SNVT_date_day day of Week Enum list M,Tu,W.Th,F.Sa.Su 8 N/A
10 SNVT_date_time time of day HH:MM:SS 00:00:00 10 23:59:59 24 1 second
11 SNVT_elec_kwh epergy, elec Kilowatt-Hours 0 - 65,535 16 1 KWH
12 SNVT_elec_whr energy, elec watt-hours 0 - 6553 16 0.1 WHR
13 SNVT_flow_mil flow milliters/sec 0 - 65,535 16 1ml/s
14 SNVT_length length meters 0 - 6,553 16 0.1m
15 SNVT_length_kilo length kilometers 0 - 6553 16 0.lkm
16 SNVT_length_micr length microns 0 - 6553 16 0.1km
17 SNVT_length_mil length millimeters 0 - 6553 16 0.lmm
18 SNVT_lev_contin level, contin percent 0 - 100% 8 5%
19 SNVT_lev_disc level, discrete Enumerated list 8 N/A
20 SNVT_mass mass grams 0 - 6553 16 0.1g
21 SNVT_mass_kilo mass kilograms 0 - 6553 16 0.lkg
22 SNVT_mass_mega mass metric tons 0 - 6553 16 0.1 tonme
23 SNVT_mass_mill mass milligrams 0 - 6553 16 0.lmg
24 SNVT_power power watts 0 - 6553 16 0.1 watt
25 SNVT_power_kilo power walts 0 - 6553 16 0.1 kwau
26 SNVT_ppm concentration ppm 0-65,535 16 lppm
27 SNVT_press pressure pascals -32,768 - 32,767 16 1 pascal
28 SNVT _press_psi pressure Ibs/sq-in -3,276 - 3,276 16 0.1 psi
29 SNVT_res resistance Ohms 0 - 6553 16 0.1 Ohm
30 SNVT_res_kilo resistance kiloOhms 0 - 6553 16 0.1 kilo-Ohm
31 SNVT_sound_db sound Level dBspl -327 - 3271 16 0.01 dB
32 SNVT_speed speed meters/second 0 - 655 16 0.01lm/s
33 SNVT_speed_kmh speed km/hour 0 - 655 16 0.01 kmh
34 SNVT_state_supr sensor state Enumerated list 8§ N/A
35 SNVT_str_asc char string ASCII
characters(s) 30 characters 248 N/A
|36 SNVT str int char_string __Int'l

SUBSTITUTE SHEET

L2

WO 92/16895 PCT/US92/02147

—69—
char set (s) 14 characters 248 N/A
£ Name Quantity Units Range Bits Resolution
37 SNVT_telecom pbone state Enumerated list 8§ N/A
38 SNVT_temp temperature Celsius -3,276 - 43,276 16 0.1 degree
39 SNVT_time_passed eclapsed time HH:MMSSLL 0 - 65,536 48 0.001 sec
40 SNVT_vol volume liters 0 - 6553 16 0.1 liter
41 SNVT_vol_kilo volume kiloliters 0 - 6,553 16 0.1 kiloliter
42 SNVT_vol_mil volume milliliters 0 - 6553 16 0.1 milliliter
43 SNVT_volt volage volts <3,276 - 3,276 16 0.1 volt
44 SNVT _voli_dbmv voltage dB microvolts -327 - 327 16 0.0! db uv dc
45 SNVT_voli_kilo voltage kilo volts -3,276 - 3,276 16 0.1 kilovolt
46 SNVT_volt_mil voltage millivolts -3,276 - 3,276 16 0.1 millivolt

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

70—

TABLE VII

NETWORK VARIABLE DECLARATION

The preferred syntax for declaration of a network variable is as follows:

network input | output [netvar modifier] [class] type [bind_info (fields)] identifier;

where:

netvar modifier are the following optional modifiers which can be included in the
declaration of a network variable:
sync | synchronized — specifies that all values assigned to this
network variable must be propagated, and in their original order.
However, if a synchronous network variable is updated multiple
times within a single critical section, only the last value is sent out
If this keyword is omitted from the declaration, the scheduler docs
not guarantee that all assigned values will be propagated. For
example, if the variable is being modified more rapidly than its
update events can be processed, the scheduler may discard some ‘
intermediate data values. However, the most recent data value for a

network variable will never be discarded.

polled — is used only for output network variables and specifies
that the value of the output network variable is to be sentonly in

response to a poll request from a node which reads the network

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147
!

—71—

. variable. When this keyword is omitted, the value is propagated
over the network every time the variable is assigned a value.

class Certain classes of storage may be specified for network variables.
Specifically, the following keywords may be entered in the network
variable declaration statement:
const — specifies that the network variable may not be changed by
the application program;
eeprom — allows the application program to indicate the value of
the network variable is to be preserved across power outages. In the
prefmedembodimem,v:ﬁabl&dechredwithdﬁsmgechssm
stored in the eeprom 401. EEPROM variabics have a limited
capubilitytowocptchmgesbefommeEEPROMunnolongabc
guaranteed to operate properly. ﬂm;zfm. initializers for the
eeprom class take effect when the program is loaded and not each
time the program is started. Reloading a program has the effect of
reinitializing all eeprom variables.
config — specifies a const network variable in EEPROM that can
be changed only by a network management node node. This class
of network variable is typically used for application configuration by
a network manager.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/0214%

—T72—
|
Network variable typing serves two purposes: (1) typing ensures

7

proper use of the variable in the compilation, and (2) typing ensures
proper connection of network variables at bind time. Network
variables may be declared as any one of the following types:

[signed] long integer

unsigned long integer

signed character

[unsigned] character

[signed] {short] integer

unsigned [short] integer

enumerated lists

structures and unions of the above types

standard network variable types (see Table VII)

bind_info (fields) The following optional fields may be included in the declaration of a
network variable; the compiler builds the BIF file utilizing
information declared in these fields and the information in the BIF
file is used for binding the network variable inputs and outputs. The
fields are each optional and may be specified in any order.
offline — is used to signal to the bind process that a node should be
taken offline before an update can be made to the network variable.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—73—

This option is commonly used with the config class network
variable. |

bind | bind(var_name) — specifies whether the network variable is
bound to network variables on other nodes (the usual case) or to a
network variable on the same node. The default is bind which
indicates that the network variable can be bound to network
variables on other nodes. The other form, bind (var_name) allows
binding an output to an input on the same node. The var_name is
the name of another network variable on the same node. It should be
noted that this option has been omitted from the currently preferred
embodiment of the present invention.

unackd | unackd_rpt | ack [(config | nonconfig)] — tells the
protocol layer of the network management software of the present
invention the type of service to use for the variable. An
unacknowledged (unackd) network variable uses minimal network
resources to propagate its values to other nodes. As a result,
propagation failures are more likely to occur, and such failures are
not detected by the node. This class is typically used for variables
which are updated on a frequent, periodic besis, where the loss of
an update is not critical, or in cases where the probebility of a

collision or transmission error is extremely low. The unackd_rpt

class of service is used when a variable is sent 10 a large group of

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—T74 —

other nodes; with this class the message is sent multiple times to
gain a greater probability of delivery. Acknowledged (ackd) service
provides for receiver node acknowledged delivery with retries. The
keyword config, indicates the service type can be changed at the
time connections are specified for the network variable. The
keyword nonconfig indicates the service type cannot be changed at
configuration time.

authenticated | nonawhensicated [(corfig | nonconfig)] — speciﬁc;
whether the network variable requires usc of an authentication to
verify the identity of the sender node. The config | nonconfig
keywords specify whether the authentication designation is
configurable. The default in the system of the preferred embodiment
is nonauth (config).

priority | nonpriority [(config | noncorfig)] — specifies whether
the network variable receives priority or not. The keywords config

| nonconfig specify whether priority is configurable. The default is
nonpriority (config).

rate_est (const_expression) — specifies the estimated average
message rate, in tenths of messages per second, that an associated
network variable is expected to transmit o receive. This value
assists the network administrator in configuring the network.
max_rate_est (const_expression) — specifies the estimated

maximum message rate, in tenths of messages per second, that the

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—-75—

associated network variable is expected to transmit or receive. This
value assists the network administrator in configuring the network.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—T76—

TABLEIX
BIEFILE FORMAT

The Binder Interface File (BIF) format comprises a number of records—one record per
network variable and one record per message tag plus some overhead records. The format is
designed to be concise with few lines of physical lines per record. The format of the file generally
allows for the following record types: (1) File Header comprising timestamp and other general
informarion (one record); (2) Global information comprising general information of indicating
general information about the node and the application program running on the node; and (3)
Network variable and message tag records for each network variable and message tag comprising
information about the network variable or message 1ag.

Importantly, network variables and message tags may require differing amounts and formats
of information. Therefore, as one aspect of the present invention, a record structure has been
developed to allow efficient storage of the differing required information and efficient retrieval of the
records. In addition, in order to conserve storage, the present invention discloses an encoding
scheme to encode numeric information present in the records.

In general, string fields contain an asterisk if they are not applicable. Integer fields contain a
zero. The first record in the file is a header which comprises three lines of commentary and
copyright notice text and a timestamp. Following this header is one blank line foliowed by global

information used by the- binder process.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—_T77 —

Global Information
The first global value line is a Program ID oompnsmg cight 2-digit hexadecimal values,
- | separated by colons. The second global value line comprises several numeric fickis separated by
spaces. The fields are defined in order as follows:
. Either a 1 or a 2 which specifies the number of domains.
. ‘The number of address table 901 slots in the range of decimal 1-15.
. Either a0 or 2 1. Indicates whether the node application program handles incoming
messages.
. The number of network variables defined by the application program in the range of 0 to 62.
. The number of message tags defined by the application program in the range 0 to 15.
. The number of network input buffers (encoded, see below).
. The number of network output buffers (encoded, see below).
. The number of priority network output buffers (encoded, see below).
. The number of priority application output buffers (encoded, see below).
. The number of application output buffers (encoded, see below).
* The number of application input buffers (encoded, see below).
. The size of a network input buffer (encoded, see below).
. The size of a network output buffer (encoded, see below).
. The size of an application input buffer (encoded, see below).
. The size of an application output buffer (encoded, see below).

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—78—

The third line is used for node-specific parameters and has not been fully defined in the
currently preferred embodiment. The fourth and following lines are optional and may include a node
documentation string which may be transmitted to the network management node for documenting,
for example, the general function of the node. If not supplied, these nodes comprise a single
asterisk_ If supplied, these lines each begin with a double-quote character which is not included as
part of the documentation string. Mnlﬁpleﬁmmmmmdwﬂhommyinmeningchmcm.
There is no ead double quote. The global values section ends with a blank line.

As noted above, buffer sizes and count fields are encoded. The encoded values allow
selected values, given below, to be stored in a nibble, thus reducing the size of the database.In the
preferred embodiment, buffer sizes must be one of 20, 21, 22, 24, 26, 30, 34, 42, 50, 66, 82, 114,
146, 210 or 255 (i.e., 15 allowed buffer size values where the buffer sizes are given in bytes);
non-priority buffer counts must be one of 1, 2,3, 5,7, 11,

15, 23, 31, 47, oc 63 (i.e., 11 allowed buffer size values). Priority buffer counts must be one of 0,
1,2,3,5,7, 11, 15, 23, 31, 47, or 63 (i.c., 12 allowed buffer size values).

In order to represent these values in a single nibble (4 bits), the following formulas are used
1o transform the nibble value (n) to the above values:

for buffer sizes: 272 + (n&1) * 20/2-1 4 18 (except where n = 0; size = 255); and

for count (priority and non-priority): 2%/2 + (n&1) * 20/2-1 . g

where n is the nibble value and the & symbol indicates a logical AND function between the
four bit n value and 0001 (¢.g., for n =310, the result of n&1 is 0011&0001=0001 or 110, for n=2,
the result is 010; in general for any even number n, the value of this function will be 0 and for any
odd number n, the value will be 1). Also, in the above equations, integer arithmetic is used;

SUBSTITUTE SHEET

WO 92/16895

therefore, where fractional values result in the computation of a value (e.g., V2 where n = 1), the
fractional values are rounded down to the next lowest integer (e.g., for n=1, n/2 = 1/2, is rounded
down to0 0). Use of the above formula, as opposed to, for example a table lookup routine, leads to
decreased requirements for static memory.

Network Variable and Message Tag Records

Zero or more records are produced which correspond to the network variables and message
tag definitions in the program. Message tag records begin with the word "TAG"; Network variable
messages begin with "VAR". Following the “TAG" or "VAR" identifier is a string of at maximum
16 characters which is the name of the tag or variable. Next,
ﬁ)cre is a decimal number (0-61 for network variables; 0-14 for message tags) which translates the
name into an internal program index for the object code. Finally, there are two rate estimates, each &
decimal number from 0-255, which are the rate_est and max_rate_est, respectively, in units of tenths

of a message per second. .
The second line of each record corresponds to the bind_info fields and other numeric fields in
the order and as defined below:
Eicld Yalues
offline specifier Qorl
bindable specifier Oorl
bind target index 0-61 (63 if no bind target is specified)
direction O=input, 1=output
service type O=acknowledged, 1=unackd_rpt, 2=unackd
service type configurable? 1=yes, O=no -

PCT/US92/02147

—-T9 —

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

— 80—

authenticated? I=yes, O=no
authenticated configurable? 1=yes, O=no
priority 1=yes, O=no
peiority configurable? 1=yes, O=no
polled 1=yes, O=no
synchronized 1=yes, O=no
config 1=yes, O=no

The third and any subsequent lines optionally contain variable documentation in the same
format as the node documentation described above. If no documentation is supplied, a single asterisk
is used.

For network variables, the remaining lines following any documentation comprise the
following information. Message tags do not require this information.

The first line following the documentation lines is a header in which a first field indicates
whether the variable is a standard network varisble type; if 5o, the remaining fields are ignored and
there are no more lines in the record. The format of the line, in order of the fields, is as follows:

beld Yalues ;

Standard network variable type number 1-255 (0 if not a standard type)

First typedef name used in the definition maximum length 16 characters, * if none

Number of elements in the type 1 unless stroctured or union, 256 max

There is one additional line per element, (where the number of elements was given
immediately above). The format of these lines is as follows, in order of the fields presented:

Eeld Values

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—81—
pr——— — s——
Basic Type O=char, 1=integer, 2=long, 3=bitfiecld, 4=union
Bitfield Offset 0-7, 0 if not applicable
Bitfield / union size 1-7 for bitfield; 1-31 for union; 0 if not applicable
Signedness O=unsigned, 1=signed
Armay bound 1-31, 0 if not an armay

SUBSTITUTE SHEET

WO 92/16895

—82—

TABLEX

BIF FILE FOR PROGRAM OF TABLE Y

PCT/US92/02147

File: node_31_right.bif generated by APC Revision 0.99

Copyright (c) 1990 Echelon Corporation
Run on Mon Feb4 10:31:40 1991

48:56:41:43:6F:6D:70:00
3150140333333 11942

*

VAR MinOffTime 000
01630010101001
*

—-%cu
AN
g P ot
g
-t
oF
—
oh
~ N

[~}

o

OO #

1630010101001

CL O #0 L~ —O #0LNVNO »
oo # ;
w
(=}
(=

AR CoolAir 400
630010101001

D B
(= = N
oo
-t D

(=X =]

5

CmprssrinltGas 500

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

—83 —

o g o o

o o o)
— o Co o9 oo =1
=3 o o0 o ™
i =} o o pog =] “mO g
pra — — — - Lanl
o o = =) nM_.n...
Lt — — wl —
zo (] Ho o [~}
— — -y — - —
o o o (=) "o
[=X=3- P4 ofs =N = OWO o835
[K X 0 o o o -t o o — ™ lIABs
cooxwo o oo OM,O OMG =Y 4]
00 — »* O — * O — » O - . O —

Ot PONR O~ POR OO O~TORO—ION

SUBSTITUTE SHEET

1

VAR MotorOverioad 1200

01631010101000

1
1

01631010101000

*
01631010101000

-

VAR AmOnline 1300
0 boolean

10010

0 boolean

10010

0 boolean

WO 92/16895 PCT/US92/02147

Each 1/O device is declared in the application program as an external "device name”.
The syntax for such declaration is as follows:
<pin> <type> [<assign>] <device-name> [=<initial-output-level>];
where <pin> is one of the eleven reserved pin names: 10_0, I0_1, 10_2, 10_3,10_4,
10_5,10_6,10_7,10_8,10_9, and I0_10;

<ype> is one of the following types, may specify the indicated pins and is subject
to the indicated restrictions:

(1) ouzput bit — Used to control the Jogical output state of a single pin, where 0
equals Jow and 1 equals high; may specify any pin I0_0 to I0_10 and is unrestricted.

(2) inpur bit — Used to read the logical output state of a single pin, where 0 equals
low and 1 equals high; may specify any pin I0_0 to 10_10 and is unrestricted.

(3) [ouspus] bitshift [numbits (<expr>)] [clockedge ({ + [- })] [kbaud (<expr>)] —
Used o shift a daza word of up to 16 bits out of the node. Data is clocked out by an
internally generated clock. numbits specifies the number of bits 1o be shifted; clockedge
specifies whether the data is stable on the positive going or negative going edge; and kbaud
specifies the baud rate. Requires adjacent pin pairs; the pin specification specifies the low

|pumbered pin of the pair and may be 10_0 through 10_6orI0_8 or 10._9.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—85—

(4) [inpus] bisshift [mumbits (<expr>)] [clockedge ({ + / -))] [kbaud (<expr>)] —

Used to shift a data word of up to 16 bits into the node. Data is clocked in by an internally
generated clock. numbits specifies the number of bits to be shifted; clockedge specifies
whether the data is read on the positive going or negative going edge; and kbaud specifies
the baud rate. Requires adjacent pin pairs; the pin specification specifies the low numbered
pin of the pair and may be I0_0 through I0_6 or IO_8 or 10_9.

(5) [outpus] frequency [invert] [clock (<expr>)] — This device type produces a
repeating square wave output signal whose period is a function of an output value and the
selected clock, clock (<expr>), where clock (<expr>) specifies one of 8 clocks provided by
the node. Must specify 10_0 or I0_1. The mux keyword (see below) must be specified for
10_0 and the ded keyword (see beiow) must be specified for 10_1.

(6) [ousput] triac sync <pin> [invert] [clock (<expr>)] — This device type is used
o control the delay of an output pulse signal with respect to an input trigger signal, the
sync input. Must specify J0_0 or 10_1. The mux keyword (see below) must be specified
for 10_0 and the ded keyword (see below) must be specified for I0_1. If 10_0is
specified, the sync pin must be 10_4 through I0_7; if IO_1 is specified, the sync pin must
be 10_4.

(7) [outpws] pulsewidth [invert] [clock (<expr>)] — This device type is used to
produce a repeating waveform which duty cycle is a function of a specified output value
mdv?hoscpeﬁod is a function of a specified clock period. Must specify I0_0 or IO_1.
The mux keyword (see below) must be specified for 10_0 and the ded kcyword-(see

‘ belowz must be M ed for 10_1.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

— 86—

E—

(8) inpiat pulsecount [invert] — This device type counts the number of input edges
at the input pin over a period of 0.839 seconds. Must specify 10_4 through 10_7.

(9) ousput pulsecount [invert] [clock (<expr>)] — This device type produces 2
mquenceofpulmvmoscpaiodisaﬁmcdonofmespeciﬁedclockpaiod. Must specify
10_0 or I0_1. The mux keyword (see below) must be specified for I0_0 and the ded
keyword (see below) must be specified for I0_L.

(10) [inpus] onsime [invert] [clock (<expr>)] — This device type measures the high
period of an input signal in units of the specified clock period. Must specify I0_4 through
10_7.

(11) {output | inpus } serial [baud (<expr>)] — This device type is used to transfer
data using an asynchronous serial data format, as in RS-232 communications. Output
serial must specify 10_10; input serial must specify 10_8.

(12) parallel — This device type is used to transfer eight bit data words between
two nodes across an eleven pin parallel bus. This is a bidirectional interface. Requires all
pins and must specify 10_0.

(13) newrowire select <pin> [kbaud (<expr>)] — This device type is used to
transfer data using a synchronous serial data format Requires three adjacent pins and must
specify I0_8. The select pin must be one of 10_0 through 10_7.

(14) [input] quadrature — This device type is used to read a shaft or positional
encoder input on two adjacent pins. Requires adjacent pin pairs; the pin specification
specifies the low numbered pin of the pair and may be 10_0 through I0_6 or I0_8 or

10_9.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—87 —

(15) [inpus] period [invert] [clock (<expr>)] —— This device type measures the total
period from negative going edge to negative going edge of an input signal in units of the
specified clock period. Must specify 10_4 through 10_7.

(16) [ouspus] omeshot [invert] [clock (<expr>)] — This device type produces a
single output pulse whose duration is a function of a specified output value and the selected
clock value. Must specify 10_0 or IO_1. The mux keyword (see below) must be specified
for 10_0 and the ded keyword (see below) must be specified for I0_1.

(17) {owspws | inpus } nibble — This device type is used to read or control-four
adjacent pins simultaneously. Requires four adjacent pins; the pin specifies denotes the
lowest number pin of the quartet and may be pin 10_0 through I0_4.

(18) {owspws [inpus } byte — This device type is used to read or control cight pins
simultancously. Requires eight adjacent pins; the pin specification denotes the lowest
number pin and must be 10_0.

(In general, pins may appear in a single device declaration only; however, a pin
may appear in multiple declarations if the types belong to the set of {bit, nibble and byte});

where <assign> is one of "mux" which indicates the device is assigned to a
multiplexed timer counter circuit or "ded” which indicates the device is assigned to a

dedicated timer counter circuit; and

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—88 —

the channel to an initial state at initialization time (¢.g., when the application program is

reset).

where <initial-output-state> is a constant expression used to st the output pin of

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

— 89—

TABLE X1I
ACCESS TO /0 DEVICES VIA BUILT IN FUNCTIONS

To access one of the [/O devices (after declaring it as shown above), the application
programmer merely calls one of the built-in functions defined below. These built-in functions
appear syntactically to be nothing more than procedure calls. However, these procedure calls
are not be defined as external functions to be linked in. Instead, these procedure names are
"known" to the compiler, and the compiler enforces type checking on the parameters of the

procedures.
The built-in function syntax is as follows:
<return-value> jo_in (<device> [<args>})

<return-value> io_out (<device>, <output-value> [<args>])
where the <device> name corresponds to an I/O device declaration and <args> are as

follows, depending on the type of device:
bitshift [, <numbits>]
serial (output only) , <count>
serial (input only) , <input-value>, <count>
neurowire (output only) , <count>
neurowire (input only) , <input-value>, <count>
paraliel (output only) , <count>

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—90—

perallel (input only) , <input-value>, <count>

All other devices do not permit extra arguments in the calls w0 io_in or io_out.

Some of the above arguments may also appear in the device declaration. If the
attribute is specified in the declaration and the anribute is supplied as an argument, the
argument overrides the declared value for that call only. These attributes may be specified in
both places, either place ornot at all. If left unspecified, the default is used (see defauits
below).

The data type of the <return-value> for the function io_in, and the data type of the
<output-value> for io_out is given by the following table. The data values will be implicitly
converted as necessary. A waming is output by the compiler if an io_in that retumns a 16-bit

quantity is assigned to a smaller value.
bit short bit O used; others are 0
bitshift long shifted value
frequency long period in nanoseconds
pulsewidth short pulsewidth in nanoseconds
pulsecount Jong count in .84 seconds
ontime, period long period in nanoseconds
Quadrature short signed count
oneshot short count
nibble short bit 0-3 used; others arc 0
byte short all bits used

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—91 —

For period, pulsecount and ontime input devices, the built-in variable "input_is_new"
is set to TRUE whenever the io_in call returns an updated value. The frequency with which
updates occur depends on the device declaration

For parallel, serial and nevrowire, io_out and io_in require a pointer to the data buffer
as the <output-value> and the <input-value>, respectively. For parallel and serial, io_in
returns a short integer which contains the count of the actual number of bytes received.

Ranges and defaults

The following ranges and defaults apply to the various IO attributes:

* The bitshift "numbits" may be specified in the bitshift declaration as any
number from 1 to 16 and, if not specified, defaults to 16. In the calls o io_in
and io_out, the shift value may be any number from 1 to 127. For io_in, only
the last 16 bits shifted in will be returned. For io_out, after 16 bits, zeroes are
shifted out.

« The bitshift output clock may be either '+' or '-'. It defaults to '+. This
defines whether the dam is shifted on the positive-going or negative-going
edge of the clock. This can only be specified in the declaration. .
+ The initial frequencies of the frequency output, triac output, pulsewidth
output and pulsecount output are 0.

« The clock value specifies a clock in the range 0...7 where 0 is the fastest
clock and 7 is the slowest. The defaults are as follows: ”

frequency output 0

triac output 7

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-—02 —

pulsewidth output
pulsecount output
oneshot output
ontime input
period input

The baud rate of serial may be 300, 1200 or 2400 baud with a default of
2400.
+ The beud rate for neurowire and bitshift may be 1,10 or 25 kbits/second
and defaults to 25 kbits/second.

(=T S R B -

Example
An example follows—t0 read & switch anached to pin 1 and light an LED attached to

pin 2 when the switch is closed, the following would be coded by the application
programmer:

I0_1 input bit chl switch;
IO 2 output bit led;
if (io_in(switch))

{
io_out (led, TRUE);

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—93

1O Mulriplexi

The timer counter circuit may be multiplexed among pins 4 to 7. To facilitate this, the
following built-in function is provided:

jo_sclect (<device>);

This function causes the specified device to become the new owner of the timer
counter circuit. Any reinitialization of the timer counter circuit is handled by this function. It
is under the application's control when the timer counter is connected to which pin. The
multiplexed timer counter is initially assigned to the mux device which is declared first

For example, the application may choose to select a new device after a when change
clause has executed for the current connected device. Altematively, the selection could be
done based on a timer, ¢.g., select a new device every 100 milliseconds.

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—94

TABLE XTIl
WHEN STATEMENT SYNTAX

The syntax of a when statement in the system of the preferred embodiment is given

below:
[priority] when (event) task
where:
priority is an option used to force evaluation of the following when'clause

each time the scheduler runs. This allows priority when clauses to
be evaluated first. Within a program having multiple priority when
clauses, priority when clauses are evaluated in the arder coded in the
program. If any priority when clause evaluates to true, the
corresponding task is run and the scheduler starts over at the top of
the priority when clauses. If no priority when clause evaluates to
true then a non-priority when clause is evaluated and selected in a
round robin fashion. The scheduler then starts over with the priority
when clauses. This process may be best understood by example:
Assume the following when clauses coded in the following order:
priority when (A)

priority when (B)

when (C)

SUBSTITUTE SHEET

7

WO 92/16895 PCT/US92/02147

—95—

when (D).
Assume only C and D are true; first A is evaluated, then B is
evaluated and finally C is evaluated and the task associated with C is
executed. A is then evaluated again, then B is evaluated and then, in
round robin fashion, D is evaluated and executed.

event may be either a predefined event ar, importantly, may be any valid C
expression. Predefined events include, by way of example, input
pin state changes (io changes, io update occurs); network variable
changes (network variable update completes, network variable
update fails, network variable update occurs, network variable
update succeeds); timer expiration; message reception information
(message arrives, message completes, message fails, message
succeeds); and other status information (powerup, reset, online,
offline).

task is a C compound statement consisting of a series of C declarations
and statements enclosed in braces.

The following predefined events exist in the system of the preferred embodiment:

flush_completes A flush function is available in the system of the preferred
embodiment which causes the node to monitor the status of all
incoming and outgoing messages. When the node has

completed processing of all messages the flush_complete event

SUBSTITUTE SHEET

WO 92/16895

io_changes

io_update_occurs

msg_arrives

msg_completes

msg_fails
msg_succeeds

nv_update_completes

nv_update_fails
nv_update occurs

nv_update_succeeds

offline
online
powerup
reset

resp arrives

PCT/US92/02147

— 96—

becomes true indicating all outgoing Tansactions have been
completed, no more incoming messages are outstanding, and no
network variable updates are occuwring.

This event indicates the status of one or more /O pins associated
with a specified input device have changed state.

This event indicates that a timer/counter device associated with 2
specified pin has been updated.

This event indicates a message has arrived for processing.

This event indicates a message has completed (either
successfully or by failure).

This event indicates & message has failed.

This event indicates a message has completed successfully.
This event indicates a network variable update has completed
(cither successfully or by failure).

This event indicates a network variable update has failed

This event indicates a network variable update has occurred.
This event indicates a network variable update has completed
successfully.

This event indicates the node has been taken offline.

This event indicates the node has been brought online.

This event indicates the node has been powered up.

This event indicates the node has been reset.

This event indicates a response has arrived to a message.

SUBSTITUTE SHEET

7S

WO 92/16895 PCT/US92/02147

-97 —

timer_expires This event indicates the designated timer has expired.

Predefined events may be used within other control expressions in addition to in the
when statement; for example, in an if, while or for statement.

As noted above, & user-defined event may be any valid C expression and may
include assignment statements to assign values to global variables and functioa calls.

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

—98—
TABLE XTIV
ASSEMBLY LANGUAGE LISTING FOR THE
NETWORK VARIABLE PROGRAM OF TABLE Y
: on- 1 (-9
H Gopynght (c) 1990, Echelon Corpounon
; Assembly code from APC Revision 0.99
; Code generated from ‘node _ 31 _ right.nc’ on Mon Feb 4 10:31:40 1991
SUBHEAD Generated from the input file: node_ 31_right.nc
RADIX HEX
SEG EECODE.
ORG (OF000
NBMTS EQU 000
NNVS EQU OOE
PROTECT EQU 00
NEURONID
RES 8
DIRECTORY
data.b PTR TEVT-3*NNVS,PROTECT+NNVS,0,0
PROGID
datab 048,056,041,043,06F,06D,070,000
M(DETABLE
data b 053
data.b 0F0,037
datab 024,09B
datab 033,033,033
EENEARBYTES
data.b 000
datab 000,000
datab 001,000,000,047
LOCATION
RES 8
CcoMM
RES 10
MSG
RES 1
DOMAIN

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—99_

ADDR

RES 04B
TNVCNFG

RES 3 *NNVS
CONFIGCHECKSUM

RES 1

PAGE ¢
; file for -generated assembly output
,Copyu;ht(c) 1990, 1 lEchclonOa-ponnon.AlleghuResaved.
; Date last modified: 1/30/91
; List of symbols

RT APINIT,DOMAIN EENEARBYTES, MODETABLE, TEVT
; Listof mpomd symbols - Library functions
application _ restart.delay,error log

IMPORT flush,flush _ cnneel.ﬂush wait,go _ offline,go _ unconfigured
IMPORT node nset.ofﬂme conﬁrgn._ponevents.pomp

_abs8, lbsl6 _addl16, _and16, _ alloc
dealloc

i , _bin2b
IMPORT div8, _div85, _div16, _divlés
IMPORT _drop_n, _drop_n _preserve_1, _drop_n_preserve_ 2
IMPORT _drop _n_return_ 1, _drop_ n_ return_ 2
IMPORT _ecprom_write, _eeprom _write _long
IMPORT _eeprom_far_: wme._eepmm_fu write_ long
IMPORT —equal 8, _equal 116
IMPORT -gequs,_ gequss,_ gequi6,_ gequlés
IMPOR; }esss8 llt:slsgs._l lesslg lesslel 6
IMPOR 0g0,_ 108 lognot8,_ lognot
IMPORT lslnfts lshxftSs._l shiftl6, _ 1_ shift16s
IMPORT _1_shift8 3, 1 shift8_4, 1_shift8_S, 1_shift8_6, 1 shift8_7
IMPORT _max8,_max 85, max16,_ maxi6s
IMPORT _memcpy,_ memcpyl, memset, memsed
IMPORT -min8,_ min8s, minl6, _ mini6s
IMPORT _minus_16_s
IMPORT _mod8,_ mod8s,_ mod16,_ mod16s, mui8, mull6
DPORT pop. o

-pop
IMPORT _r_shift8, r_shifi8s,_r_ shiftl6,_r_ shift16s
IMPORT J_shift_3, r_shift8_4,_r_shifi8 5, r_shift8_6,_r_ shift8_7
IMPORT _register_ call,_ sign_ extend16
IMPORT -subl6, _xorl6

SUBSTITUTE SHEET

WO 92/16895

list of imported symbols - Messaging support
IMPORT _bound_ mt

; List of imported
IMPORT

IMPORT
; List of imported
IMPORT

IMPORT
; List of imported
IMPORT

PCT/US92/02147

- 100 —

- /O tunctons
_bit_input,_ bit_ input_ d,_ bit_ output
bitshift input, _ bitshift_ output
_byte_input,_ byte_output
nibble input,_nibble_ input_ d._ nibble_ output
frequency_ output,_ leveldesect_ input
neurowire input, neurowire_ output
—oneshot_ output, _ oatime._ input
_panalie!_input, _parallel _ input_ ready
—panaliel_ output, parallel_ output_ ready, parallel_output_request

period input

pulsecount input,_ pulsecount_ output
pulsewidth output

quadrature input

serial input,_ serial_ output

otalize input,_ triac_ output, _ triggered_ count_ output
_jnit_timer_ counterl,_ init_ timer_ coun
_init_baud,_io_set_ clock

jo_input_ value,_io_ change_init,_select_input_fn

_msg_alloc,_ msg_alloc_ priority, msg cancel,_ msg_free
_msg_receive,_ msg_ send

“msg_addr_blockget, msg_addr_get, msg auth_get, msg_code_get
“msg_data_blockget,_ msg_data_get, msg_len_get. msg_service_get
_msg_addr_blockset._mg_addr.m._m;_amh_mhmsg_code_ set
_msg_dgu__blockset._mg_dug_set._mg_domain_ set,_msg node_ set
msg priority_ set_,_ mSg_ service_ set,_msg_ tag_ set
_resp_alloc,_resp_ cancel,_resp_ free,_resp_receive,_ resp_ send
_resp_code_ set,_resp_data_ blockset, resp_data_ set

symbols - Network Variable support
_bound_nv,_nv_poll,_av_poll_all
_nv_update,_nv_update_ int,_ nv_update_ long
“nv_update_int_ offset,_nv_ update_ long_ offset

symbols - Timer support
timer get, timer_ off
“timer_ mset, timer_mset_repeat, timer_ sset, timer_sset_repeat
symbols - Event support .
flush completes
Tio_changes,_io_ changes_to,_io_changes_ by, io_update_occurs
_msg_ammives,_msg_code_arives |
msg completes, msg_fails, msg_ succeeds
_nv_update_ completes,_ nv_ update_ fails, nv_update_ succeeds
_nv_update_ occurs

SUBSTITUTE SHEET

WO 92/16895

—101—

PCT/US92/02147

m, aime. —online, resp_ amves

timer expires,_ timer_ expires_ any, wink
hstofhnpm?symbols - Misc builtin function support

] sleep

; End boilerplate file
PAGE

SEG ENEAR

ORG CONSTRAINED
%MinOf Time

RES 02

EXPORT SMinOff Time

SEG EENEAR

ORG CONSTRAINED
%MinOnTime)

RES 02

EXPORT %MinOnTime

SEG EENEAR

ORG CONSTRAINED
%OutletWater

RES 02

EXPORT %OutletWater

SEG EENEAR

ORG CONSTRAINED
%CndnsrHead

RES 02

EXPORT %CndnsrHead

SEG EENEAR

ORG CONSTRAINED
%CoolAir

RES 02

EXPORT %CoolAir

SEG EENEAR

ORG CONSTRAINED
%CmprssrinltGas

RES 02

EXPORT %CmprssrinltGas

SEG RAMNEAR

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895
—102—

— TR
%0utietWaterTemp

RES 01

EXPORT %OutletWaterTemp

SEG RAMNEAR

ORG CONSTRAINED
%CodnsrHeadTemp

RES 01

EXPORT %CadnstHeadTemp

SEG

ORG CONSTRAINED
%CoolAirTemp

RES 01

EXPORT %CoolAirTemp

SEG RAMNEAR
% ORG CONSTRAINED

CmprssrGasPrssr

RES 01

EXPORT %CmprssrGasPrssr

SEG RAMNEAR

ORG CONSTRAINED

RES o

EXPORT %BuildingCooling

SEG RAMNEAR

ORG CONSTRAINED
%MotorOn

RES 01

EXPORT %MotorOn

SEG RAMNEAR

ORG CONSTRAINED
%MotorOverioad

RES 01

EXPORT %MotorOverload

SEG RAMNEAR

ORG CONSTRAINED
%AmOnline

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147
- 103 —
RES 01
EXPORT %AmOnline
SEC RAMNEAR
ORG
% strikes
RES 01
EXPORT %strikes
SEG CODE
ORG

push tos

push #0B

call _nv_update_ int
push tos

pushs #00

call _bit _output
pushs

push next

call _equal8

sbrnz 44

bef S%motor+01D
push %MinOnTime
push %MinOnTime+01
pushs #01

call _timer _sset
bef %motor+026
push %MinOff Time
push %MinOff Time+01
pushs #00

call timer_ sset
dealloc #01

SEG OODE

ORG

EXPORT %control action
%control_ action ; Function body

push [1] [@NEAR (%CoolAirTemp)]
sh %CoolAir+1

call _less8s

push %CmprssrinltGas

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

L PR B O B R R I I T

TG NEAR (CmprssrCastssT)]
Jess8s
%CndnsrHead

[1] [@ NEAR (%CndnsrHeadTemp)]
{1] [@NFAR (%OudetWatch emp)]

timer_ get

_equallé
[1] [@NEAR(%BuildingCooling)]
[1] [(@NEAR(%AmOnline)]

14
%control_ action+038
#01

%motor

Scontrol_ action+06A

%CoolAir

{11 [@NEAR (%CoolAirTemp)]
11] [(@NEAR (%CmprssrGasPrssr)]
%Nmm:cuwl
{@NEAR(%CndnsrHeadTemp)]
%andnerudwl

%OutietWater
MI[@NEAR(%OutletWaterTemp)]
_less8s

#00

#00

#01

timer get

_equallé
[{@NEAR(%BuildingCooling)]

SUBSTITUTE SHEET

L

WO 92/16895 PCT/US92/02147
— 105~
and
and
and
sbenz 4
bef %control _ action+06A
pushs #00
calif % motor
ret
SEG CODE
ORG
WHENI
EXPORT WHENI
callf %control_ action
ret
SEG CODE
ORG
WHEN2
EXPORT WHEN2
push #0A
call ;aign_ extend16
pushs
call _timer_ sset
push #040
call _pulsecount_ input
push #0B4
call _sign _extend16
call _less16
sbenz 44
bef WHEN2+02E
pushs #03
push [1}{ @NEAR (%strikes)]
inc
push tog
pop [1] [@NEAR (%strikes)]
call _gequds
sbmz 44
bef WHEN2+02B
pushs #00
callf %motor
pushs #01
push #0C
call _nv_update_ int
bef WHEN2+031

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

— 106 —
pus
g [II[@NEAR(%strikes)]
SEG CODE
ORG
APINIT : Init & event code
push #084
push #072
call _jnit _timer_ counter]
ret
EXPORT RESET
RESET ; When-unit body
pushs #00
push #0B
call _nv_update_int
pushs #00
push #0C
cal _nv_update_int
pushs #01
push #0D
;.ul;hs igvo, update_ int
callf %motor
push %OutletWater
pop [1{@NEAR(%OutletWaterTemp)]
push %CndnsrHead
pop [1] [@NEAR(%CndnsrHeadTemP)]
push %CoolAir
pop [11 (@NEAR(%CoolAirTemp)]
push %CmprssrinltGas
pﬁsphs [1] [@NEAR (%CmprssrGasPrssr)]
P
pop [1][@NEAR(%smkes)]
push #0A
call _nv_poll
et
EXPORT OFFLINE
OFFLINE; When-unit body
pushs #00
push #D
call _nv_update_int
pushs
calif % motor
et

SUBSTITUTE SHEET

WO 92/16895

; Resource usage information
RES CE NADDR OF
RESOURCE NDOM 2
RESOURCE NRCVTX 08
RESOURCE NTMR .03
RESOURCE NNIB 02

PCT/US92/02147
—107 —
[EXORT ONINE
ONLINE pu’shs When-unit t:bdy
1
push #0D
call _hv_update_ int
pushs #00
w
5

push #0C
call _nv_update_int
et
SEG CODE
ORG

TNVFIX ; NV Fixed table
datab 022,PTR %MinOffTime
data.b 022,PTR %MinOnTime
datab 022,PTR %OutletWater
danab 022,PTR %CndnsrHead
data.b 022,PTR %CoolAir
dannb 022,PTR %CmprssrinliGas
datab 021,PTR %OutletWaterTemp
danah 021, PTR %CndnrHeadTemp
danb 021,PTR %CoolAirTemp
daab 021,PTR %CmprssrGasPrssr
datab 021,PTR %BuildingCooling
data.b 021,PTR %MotorOn
data.b 021,PTR %MotorOverioad
data.b 021,PTR %AmOnline - -

TEVT ; Event table
data.b PTR APINIT-2
datab O,RESET-APINIT+]
data.b OFFLINE-APINIT+1,ONLINE-APINIT+!
data.b 00,02
datab OFF,PTR WHEN]-1
danab 0A PTR WHEN2-1

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

RESOURCE NAIB 02
RESOURCE NAOB 02
RESOURCE NNPOB 02
RESOURCE NAPOB 02

RESOURCE SNIB 042
RESOURCE SNOB 02A
RESOURCE SAIB 016

RESOURCE SAOB 014
RESOURCE NNVS 0E

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—109 —

TABLE XV
GENERAL DEFINITIONS

-
The following definitions are generally applicable to terms used in this specification;
Neuron, or pode: A neuron or node is an intelligent, programmable element or

clements providing remote control, sensing, and/or communications, that when

interconnected with other like elements forms a communications, control and/or sensing

network. Nodes are named with Neuron ids (see below). Nodes may be addressed as a

part of a domain and subnet using a node number. The node number in the preferred

embodiment is 7 bits. Multiple nodes may be addressed using a group id. The group id in
the preferred embodiment is 8 bits.

Neuron id: Nodes in the present invention are assigned a unique identification
number at the time of manufacture. The identification number is preferably 48-bits long.
This 48-bit identification number does not change during the lifetime of node. As is
appreciated, the assignment of a unique identification to each individual node allows for
numerous advantages. This 48-bit identification number may be referred 0 as the node_id.|

Domain addresses: The term "domain” is used to describe a virtual network
wherein all communication, as supported by the network of the present invention, must be
within a single domain. Any required inter-domain communication must be facilitated by
application level gateways. In the preferred embodiment, domains are identified with
48-bit domain identifiers. However, in certain applications the size of the domain field may

vary.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

—110—

Subnet — In the preferred embodiment, a subnet is a subset of a domain
containing from 0 to 127 nodes. In the preferred embodiment, subaets are identified with
an 8-bit subnet identification number. A single domain may contain up to 255 subnets.

Group; A group is a set of nodes which work together to perform a common
function. In the preferred embodiment, groups are ideatified with an 8-bit group
identification number. A single domain may coatain up to 255 groups. For example, 2
groupnnybeaumdtoincludeallnoduinaconnecﬁon.wummcﬁmj 142in
which case the group would include a node at temperature sensor_2 116, a node at cell_1
101 and a node at cell 2 121.

Addressing — The present invention provides for a hierarchical address structure
lndmppauthmehsicaddmssingmodes:(l)(Domﬁn.Sumeodenumbu);(Z)
(Domain, Subnet, Node._id); and (3) (Domain, Group).

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

-111-

CLAIMS

What is claimed is:

1.

A network for communicating information, said network comprising

at least a first node and a second, said first node comprising:

(a) first data storage means for storing a variable V;

(b) first processing means coupled with said first data storage
means, said first processing means for writing said first storage
location with a new value A, said processing means further for
assembling a communication packet for transmission on said
network, said communication packet comprising said new
value A;

(c) first communication means coupled with said first processing
means, said first communication means further coupled with a
medium, said first communication means for receiving said
communication packet from said first processing means and for
communicating said communication packet onto said medium;

said second node comprising:

(d) second data storage means for storing said variable V;

(e) second communication means coupled with said medium for
receiving said communication packet on said medium;

(f) second processing means coupled with said second
communication means for receiving said communication
packet from said second communication means, said second
processing means further coupled with said second data

storage means, said second processing means writing said

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-112-

sacond data storage means with said new value A responsive

to receiving said communication packet.

2. The network as recited by claim 1 wherein said communication
packet further comprises identification information identifying said

new value A as being associated with said variable V.

3. The network as recited by claim 1 wherein said identification
information is a network variable id comprising 14 bits of

information.

4, The network as recited by claim 1 wherein said first node further
comprises an address table for storing addressing information of

said second node.

5. The network as recited by claim 4 wherein said first node further
comprises a network variable table comprising identification
information for identifying said variable V and address table index
information corresponding to said identification information for

indexing said address table.

6. A method of providing shared data from a first node of a network to
a second node of said network comprising the steps of:
a) declaring a first node W as a writer of a variable V;

b) declaring a second node R as a reader of said variable V;

SUBSTITUTE SHEET

WO 92/16895

g)
h)

PCT/US92/02147

-113-

providing first storage S1 on said first node W for storage of
said variable V;

providing second storage S2 on said second node R for
storage of variable V;

said first node modifying said first storage S1;

said first node W transmitting a message on said network
responsive to modifying said storage S1, said message
comprising a new value for said variable V;

said second node R receiving said message; and

said second node modifying said second storage S2

responsive to receiving said message.

7. The method as recited by claim 6 wherein said message further

10.

comprises identifying information for identifying said variable V.

The method as recited by claim 6 further comprising the step of
declaring a type of communication service for said message wherein

said type of communication service may be declared as configurable.

The method as recited by claim 6 further comprising the step of
declaring an authentication parameter for said message wherein

said authentication parameter may be declared as configurable.

The method as recited by claim 6 further comprising the step of
declaring a priority parameter for said message wherein said priority

parameter may be declared as configurable.

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-114-

11. A method for providing communication between a first node and a
second node in a network, said first node coupled in communication
with said second node through a medium, said first node comprising
a first processor for processing a first process, a first memory for
storing a first network variable, said first process writing said first
network variabie to said first memory, and a first communication port
for communicating information onto said medium, said second node
comprising a second processor for processing a second process, a
second memory for storing a second network variable, said second
process reading said second network variable from said second
memory, and a second communication port for receiving information
from said medium, said method comprising the steps of:

(a) programming said first node with said first process;

(b) programming said second node with said second process;

(c) logically connecting first network variable with said second
network variable by defining a relationship between said first
node and said second node; and |

(d) binding said first network variable with said second network

variable.

12. The method as recited by claim 11 wherein said step of logically

connecting said first network variable with said second network

variable comprises the steps of:

(a) defining a connection name, said connection name for

identifying said connection;

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-115-

(b) selecting said first node from a list of nodes;

(c) selecting said first network variable from a first list of network
variables;

(d) selecting said second node from said list of nodes;

(e) selecting said second network variable from a second list of
network variables;

(f) said steps (a) - (e) defining a connection; and

(g) adding said connection to a set of connections.

13. The method as recited by claim 11 wherein said step of binding said
first network variable with said second network variable comprises
the steps of:

(a) Vperforming edit checks on said logical connection;

(b) assigning identification information to said connection, said
identification information uniquely identifying said connection
to said first node and said second node; and

(c) determining an addressing mode for messages associated

with said connection.
14. The method as recited by claim 13 wherein said addressing mode is
determined to a group addressing mode and said method further

comprises the step of assigning a group address to said connection.

15. Theﬁ method as recited by claim 13 further comprising the step of

storing said identification information in a network variable table

SUBSTITUTE SHEET

WO 92/16895

16.

17.

PCT/US92/02147

-116-

subsequent to assigning said identification information to said

connection.

The method as recited by claim 13 further comprising the step of

storing address information in an address table subsequent to

determining said addressing mode.

A network of nodes for communicating, controlling and sensing
information, said network comprising a first node and a second node,
said first node and said second node couplied in communication over
a communication medium, said first node comprising:

(a) an internal communication bus for communicating information;

(b) storage means for storing at least information on a first
variable, said storage means coupled in communication with
said internal communication bus;

(c) interface means coupled in communication with said medium
for receiving a first command and for providing said first
command to a processing means, said interface means further
coupled in communication with said internal communication
bus for receiving said information on said first variable and for
outputting said information on said first variable on said
medium responsive to receiving said information on said first
variable; and

(d) said processing means for processing information, said
processing means coupled in communication with said

internal communication bus to receive said first command and

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

117-

to communicate a request to read said first variable to said
storage means responsive to receiving said first command,
said information on said first variable being communicated to

said interface means for communication on said medium.

18. The network as recited by claim 17 wherein said information on said
first variable comprises variable type information and variable

identifying information.

19. The network as recited by claim 18 wherein said variable type
information is one of a set of standard variable types defined for said
network.

20. A method for configuring nodes of a network, said network
comprising a first node and a second node, said first node and said
second node coupled in communication with a medium, said first |
node comprising first storage for storing a first variable, said method
comprising the steps of:

() a network management node communicating a first
command to said first node on said medium, said first
command requesting said first node communicate
configuration information to said network management node:

(b) said first node receiving said first command:

(c) said first node communicating configuration information
regarding said first variable responsive to receiving said first

- command; and

SUBSTITUTE SHEET

WO 92/16895

21.

22.

23.

PCT/US92/02147

-118-

(d) said network management node providing for configuration of
said network to aliow communication of said first variable

between said first node and said second node.

The method as recited by claim 20 wherein said configuration

information on said first variable comprises variable type information.

The method as recited by claim 21 wherein said variable type

information is one of a set of standard variable types defined for said

network.

A method for configuring a network, said network comprising a first
node having first storage for storing a first variable of a first type, said
first node further having a first processor for manipulating said first
variable, said first node further having a first interface for interfacing
with a medium to allow a data item stored as said first variable to be
communicated onto said medium subsequent to manipulation, said
network further comprising a second node having second storage for
storing a second variable of said first type, said second node further
having a second interface for interfacing with said medium to aliow
receiving of said data item, said second node further having a
processor for storing said data item in said second storage, said
method comprising the steps of:

(@) a network management node communicating a first

command to said first node on said medium, said first

SUBSTITUTE SHEET

WO 92/16895

(b)

(©

(e)

A

PCT/US92/02147

-119-

command requesting said first node communicate
configuration information to said network management node;
said first node recsiving said first command and
communicating configuration information regarding said first
variable to said network management node;

said network management node communicating a second
command to said second node on said medium, said second
command requesting said second node communicate
configuration information to said network management node;
said second node receiving said second command and
communicating configuration data regarding said second
variable to said network management node;

defining a relationship between said first variable and said
second variable;

communicating network address information of said second
node to said first node responsive to defining said
relationship, said first node storing said address information

associated with said first variable.

24. In a networked communication system comprising at least a first

node, a second node and a network management node, said
network management node comprising data storage for storing data
information including a list of data types, a method of configuring said

networked communication system comprising the steps of:

(@)

said network management node communicating a

command to said first node requesting said first node to

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

-120-

respond by transmitting a list of data items used by said first

node;

(b) said first node receiving said command;

(c) said first node transmitting said list of data items used by said
first node responsive to receiving said command, said list
comprising information identifying a data type of each of said

data items in said list.

SUBSTITUTE SHEET

WO 92/16895 7 PCT/US92/02147

1/ 14

ton | temp_out
Connection_ lgl

141\‘

TEMP
SENSOR_1
115

Cell_1 T-2

101 103 Connection_2

TEMP
SENSOR_2
116

Connection_3 [} :
143 :

Y'}::\ Connection_4

_ A [144

ST A [TEMP
109 SR ol SENSOR_3
i A m

FAN_2
132

FIG. |

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

2/ 14

¢ Old

_TEl
TNvd

1¢l

1"NVA
102
WNIGEW NOLLVDINNIWINOD
AL 911 _SII
€ JOSNES T UOSNES I"4OSNES 1z 101
dWAL dWEL dWiL T I7TTED

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

3/14

el 1
TNVA _nm«m
. SO€E Y0€E
(D) 9|4 9TT0 @ T
{174
WNIAIW NOLLVDINNIWINOD
£0€ 20t (]
2 TIdD g TIHD V TI9D
AL _ 911 _ SIHI
£ JOSNAS T YOSNHS 1JOSNHS
dNAL dWHL JWAL

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

(@)e old

_SII
1T4OSNHS
dNEL

<)

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

5/ 14

102
VIGdW NOLLYOINNWINOD
NOO) 9OIARG~ 13SIY~

A 111

v IEWE 20 2
INUNOD/IduUL Y, sy b
- [BU3S-U0d [d[[ered-O/] [13U0) xwoa_w [onuoy

om¢\ &‘

¥ Old

SUBSTITUTE SHEET

>

WO 92/16895 PCT/US92/02147

6/14 **
Overview
, 501
Repeat for Define hard
L t 502
Repeat for Define network and logical
each node parameters
A 503
f l:;g;?gg: / Program the nodes
7 504
Repeat for Compile, link and load executable
each node programs onto the nodes
505
Repeat for
other Connect network variables
connections :
506

FIG. 5

Bind network variables

=)

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

7/ 4

Define hardware
requirements

601
Define a name for a node
602
Specify the node type
603

Specify the node location

604
Specify the channel
605

Specify the channel priority

605

Specify the hardware property
database record

Install application node hardware
definitions

' End '
FIG. 6

SUBSTITUTE SHEET

&

WO 92/16895

FIG. 7

PCT/US92/02147

8714

Define network and logical
parameters

701

Select a node for definition of
network parameters

702

Select a program file for definition
of network parameters

Select logical network location of
the node (domain, subnet)

703

Select hardware for definition of
network parameters

704

Save the definition of the node

=)

SUBSTITUTE SHEET

WO 92/16895

9 /14

Connect network
variables

801

Define a connection name

, 802
Select a first defined node
, 803

Select a network variable
name for the first node

, 804
Select a second defined
node
805

Select a network variable
name for the second node

806
Set parameters ,
807

Add to connection list

l End '
FIG. 8(a)

SUBSTITUTE SHEET

PCT/US92/02147

WO 92/16895

PCT/US92/02147

10714

Bind network
variables

Repeat for
other
connections

Repeat for
other
connections

Repeat for
other
connections

Repeat for
other
connections

821
Read list of connections
— 822
Perform type checking and
message rate constraint
checking
825
Assign group addresses
824
Determine address mode
823
Assign network variable
identifications (netvar_IDs)
to connection

(=)

FIG. 8(b)

SUBSTITUTE SHEET

WO 92/16895

000:
001:
002:

- 003:
004:
005:

015:

PCT/US92/02147

11714

ADDRESS TABLE NETWORK VARIABLE TABLE

Vo e

001 00000000000000

Address of FAN_1 004 00000000000001

N

Groupl 003 00000000000010

Address of FAN_2 002 00000000000xxx

005 00000000000xxx

.
g

00000000000xxx
008 00000000000xxx
NETWORK
VARIABLE ID 911
NETWO;!llg ADDRESS ADDR%?g TABLE INDEX

FIG. 9

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

Configuration using Standard
Network Variable Types

1001

Couple a new node to the network

1002

Communicate a command to the
new node requesting its standard
network variable types

The new node exposes the network 1003
variables employed by the node
including their standard network
variable types and other interface

documentation

1004

The network management node
receives the exposed network
variable information

End

FIG. 10

SUBSTITUTE SHEET

WO 92/16895 PCT/US92/02147

13/14

Declaring and configuring
network variables

1101

Declare a network variable
including parameters

1102

Declare the parameters as
configurable

1103

Compile the program and produce
a compiled output and a binder
interface file

1104

Optimize the network by
configuring the network variable

=)
FIG. 11

SUBSTITUTE SHEET

WO 92/16895

PCT/US92/02147

14714

Declaring and accessing I/O
devices

1201

Declare an I/O device including pin
designation, device type and device
name

1202

Pins configured responsive to the
declaration

1203

Link device name with the

specified pin

1204

Perform an operation on the device
name

1205

Perform I/O with the designated
pin responsive to performing the
the operation

(w) e

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/U592/02147

I 1. CLASSIFICATION OF SUBJECT MATTER (if several clasuification symuals aoply, indicate ail) &
Accfﬁjéxq (Q'JJsflrﬂahnnzl Darans Claggification (IPC) or to botn National Classification and IPC

* GO6F 13/00
U.S.Cl.: 395/200

il FIELDS SEARCHED

Mimimum Qocumentation Searched 7

Classificaton System

U'S.

Classification Symbols

395/200, 325,800

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fieids Searched ¢

1l DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * Citation of Document, '! with indication, where appropriate, of the relevant passages '2 Relevant to Claim No. '3
X,T | US, A, 5,101,348 (ARROWOOD ET AL.) 31 March 1992 1-24
See col. 2, lines 8-48, col. 6, lines 15-68, col. 7,
lines 1-31, the abstract, and the claims.
Y | Us, A, 4,654,654 (BUTLER ET AL.) 31 March 1987 1,11,17,20,23,
A _See col. 2, lines 42-68, col. 5, lines 14-25, and 24
claims 1-8. 2-10,12-16,18,
19,21,22
Y | Us, A, 4,568,930 (LIVINGSTON ET AL.) 04 February 1986| 1, 6-10, 17
A See col. 7, lines 38-50. 2-5, 11-16,
18-24
A Us, A, 4,926,375 (MERCER ET AL.) 15 May 1990 1-24

See the entire document.

* Special categornes of cited documents:
“A" document defining the general state of the art which 1s not
considered to be of particular relevance

“g" gqarlier document but published on or after the internationat
filing date

“L* document which may throw doubts on priority claim(s) or
which 18 cited to establish-the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
othesr means

“p" document published prior to the internatianal filing date but
Iater than the prionty date claimed

“T% later document published after the international filing date
o prionty date and not in cenflict with the application dut
cited to understand the pnnciple or theory underiying the
nvention

“X* document of particular relevance; the claimed tnvention
cannot be considered novel of cannot be considersd (o
involve an inventive step

“¥" document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with ons or more other such docu-
ments, such combination being cbvious 10 8 person shilled
in the art.

“&" document membaer of the same patent family

V. CERTIFICATION

Date of the Actual Campietion of the international Search

11 May 1992

. Date of Mailing of this Internationai Search Report

1
H
1
1

international Searching Autherity

ISA/US

Ayni Mohamed

jﬂ g —

Fomn PCTABARTO (eantnd shosy (Row.11-87)

/

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

