I T O OO

1/61568 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
23 August 2001 (23.08.2001)

O 0 0 O I

(10) International Publication Number

WO 01/61568 A2

(31)
@n
22)
25
(26)

(30

(n

(72)

(74)

International Patent Classification’: GO6F 17/30
International Application Number: PCT/US01/05268
International Filing Date: 16 February 2001 (16.02.2001)
Filing Language: English
Publication Language: English

Priority Data:
60/183,152 17 February 2000 (17.02.2000) US

Applicant: E-NUMERATE SOLUTIONS, INC.
[US/US]; 8201 Greensboro Drive, McLean, VA 22102
(US).

Inventor: DAVIS, Russell, T.; Bethesda, MD (US).
Agents: GARRETT, Arthur, S. et al.; Finnegan, Hen-

derson, Farabow, Garrett & Dunner, L.L.P,, 1300 I Street,
N.W., Washington, DC 20005-3315 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, T™M,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG,KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

9

Title: RDL. SEARCH ENGINE

(57) Abstract: Methods and systems consistent with the present invention provide a means for searching numerical data across
networks such as the Internet, and removing the middle layer of query engines or servers used by conventional systems in retrieving
data from relational databases over the Internet. The methods and systems in accordance with the present invention also provide a
means for tying millions of computers together into a single database, thereby a query introduced to the system returns a table of data
as a single database is capable of providing. Furthermore, the methods and systems consistent with the present invention provide the
means for performing navigational, line item (or record-level), semantic, numerical, transformational, arithmetic, time-dependent,
and cost based queries on numerical data. In addition, a user may also conduct select queries between unrelated databases.

WO 01/61568 RDL SEARCH ENGINE PCT/US01/05268

FIELD OF THE INVENTION

The present invention relates to a search management system capable of accessing and
retrieving tagged numerical data from data services (e.g., file systems), databases (e.g., relational

or object-oriented), and servers on networks (e.g., LANs and WANSs (e.g., the Internet)).

Related Applications

This application claims priority to U.S. Provisional Patent Application Serial No. 60/183,
152, filed on February 17, 2000, which is herein incorporated by reference.

The following identified U.S. patent applications are also relied upon and are
incorporated by reference in this application.

U.S. Patent Application Serial No. 09/573,778 entitled “Reusable Data Markup
Language,” and filed on May 18, 2000.

U.S. Patent Application Serial No. 09/573,780, entitled “Reusable Macro Markup
Language,” and filed on May 18, 2000.

U.S. Patent Application Serial No. 09/573,419, entitled “Tree View for Reusable Data
Markup Language,” and filed on May 18, 2000.

U.S. Patent Application Serial No. 09/573,413 entitled “Chart View for Reusable Data

Markup Language,” and filed on May 18, 2000.

Background

A known approach to searching and managing numerical data on the web is to hide the
data behind vertical pipes of proprietary servers, expensive programmers, DBMS administrators,

and non-standard formats. Users cannot search directly for numerical data. They must do a

WO 01/61568 PCT/US01/05268
search for likely publishers of a certain type of data, then visit each site, go through a proprietary
search routine, interpret the data to determine whether it fits the overall search criteria, then
collect all of the individual results into a single result table - usually by manually retyping each
site’s results.

Furthermore, web search engines ("WSE") only perform "lookup" functions based on
keywords. They cannot do select queries such as database management systems are capable of
performing (where a precise definition of the desired result is given and the matching data is
structured into a result dataset or table). The database management systems in turn, however,
can only query datasets that are structured on the relational model and that have been specifically
programmed to work together; they cannot perform queries directly over the web, and they are
limited to special types of queries. Therefore, current web search engines ("WSEs") cannot
search for numerical data, and database management systems ("DBMS’s") cannot work across
the web.

Figure 15 illustrates a conventional approach to searches on the web which are
éharacterized by two layers of query engines. The one closest to the end user 1500 (i.e., the web
search engine 1502) provides indexing to particular sites or collections of tables. These servers
1504 are typically operated by companies such as Yahoo! and Lycos. The next layer back is a |
layer of query engines or servers 1504, which submit queries and retrieve data from either a
relational database management system 1506, or an object-oriented database repository. For the
most part, the query engines or servers are maintained by database administrators and developers
for the individual web sites.

Four general sub-architectures of a conventional approach described above are used to

conduct searches. They are summarized as follows. First, WSEs conduct searches using direct

2

WO 01/61568 PCT/US01/05268
keyword indexing to HTML documents (e.g., Yahoo, Alta-Vista, Lycos, etc.). These search
engines maintain very large indexes that map keywords to URLs. If a user types, for example,
"57" as an input keyword, the user will receive instances where “57” is used in an HTML
document ("NASDAQ falls 57", "#57 — Doug Henry, Major League Baseball", etc.). As an
example, for this particular query on AltaVista, a user will receive a list of over 11 million pages.
The shortcomings of this approach are obvious: no context to the numbers, too many returns, no
way to narrow the query to useful numerical data.

Second, WSEs conduct searches for database publishers (e.g., Yahoo, Alta-Vista, Lycos,
etc.). If the user is searching for a number and it is not on ah HTML page itself, it may be in a
relational database that is accessible through an HTML form. The web search engine therefore
can be queried for words or phrases fhat might be on that HTML page or related pages. In this
approach, the burden is on the user to guess what words or phrases might be associated with such
numbers, and who might publish such data.

Third, users may conduct searches of a repository of XML documents. For XML data,
véndors such as XYZFind take the approach of essentially modeling the XML documents in a
relational or object-oriented database structure, and building indexes to documents based on this
internal "repository" structure. Among the shortcomings are the facts that only documents in tha;[
particular relational database can be accessed (not data distributed in documents across the web)
and that data from different taxonomies are not directly comparable and, therefore, a search
would not produce all possible results.

Finally, users may conduct searches of direct relational databases (e.g., proprietary
database access objects based on SOAP, network objects, etc.). The approach for these databases

is to directly connect a relational database management system to the user’s client browser. The

WO 01/61568 PCT/US01/05268
advantages are speed of access and ability for the programmers to control exactly what is
accessed, by whom, and in what form. The disadvantages are that multiple, unrelated document
sites cannot be searched, a common data model is assumed, and there is a high cost for
middleware programmers and database administrators.

Based on the above conventional systems and the general sub-architectures of the
conventional approaches, WSEs and relational database systems have serious drawbacks uniting
a network of remote computers. They are incapable of efficiently tying millions of different data
tables together into a single database, so that a query put to the system will return a table of data
just as a single database system is capable of providing.

Also, conventional systems and general sub-architectures of conventional approaches are
incapable of performing non-select queries. A "keyword select query" is a request for all items
in a dataset that contain a particular word(s). For example, "Give me a list of all web pages with
the word 'baseball' on them." Conventional WSEs are designed to do keyword select queries, but
they cannot perform many different types of queries such as the following.

First, conventional WSEs do not perform navigational queries. A common occurrence
for users is "I don’t know what I’'m looking for, but I want to know what’s available". A user
undertaking a navigational query wants to see a lot of context, suggestions for related
information, and leads to other items. A "select query", by contrast, returns only an answer that
meets the strict requirements of the query put to the system.

Second, conventional WSEs do not perform database record-level queries. The current
model for accessing data on the web is the "client-server-database" model. The client PC sends a
request to the database server, which sends the request on to a relational database, which returns

an answer. The problem with this approach is that current web search engines can only index

WO 01/61568 PCT/US01/05268

HTML pages, not relational data tables - the database server acts as a wall preventing the search
engine from seeing the data. Users must guess which sites might internally have the data they
want, do a search for those sites, then go query those databases individually.

| Third, conventional WSEs do not perform semantic queries. Current search engines
operate by indexing keywords according to the URL’s of pages that contain them. A search for
"car" will bring up pages with "car" in them, but not "truck" or "bus" or other related items that
the user may wish to know about such as variants in spelling, variants in usage, and variants in
language. For example, a user searching for "dog" may want German pages with "Hund," the
German translation for dog.

Fourth, conventional WSEs do not perform numerical queries. Numbers on HTML pages
are merely text characters; they possess no value, units, measure, meaning, or structure. A search
cannot, therefore, be performed for numbers which possess such qualifiers. A user cannot, for
example, search for pages, which reference companies with "sales > $100 million" (value =>
100, meaning = sales, units = US Dollar). Companies with "$101 million", or "$100,000,000"
even "revenues > $100 million" cannot be found.

Fifth, conventional WSEs do not perform transformational queries. Transformational
queries are those that require numbers to be transformed in some way to test whether they meet 7
the requirements of a query statement. Suppose, a company’s financial statements are presented
in quarterly data, and a query is made for companies with "annual sales > $100 million". This
request may be equivalently stated as companies with "annual sales > 75 million (British
Pounds)", or sales listed quarterly with sales greater than $25 million per quarter. Keyword
searches (and general database select queries) cannot make these types of transformations in the

course of their searches.

WO 01/61568 PCT/US01/05268

Sixth, conventional WSEs do not perform arithmetic queries, such as those that may
require a mathematical calculation to be performed on the data searched during the searching
process. For example, a user may not perform a search such as the automatic calculation of a
batting average'over time.

Arithmetic queries involve complex calculations, often requiring a specialized language
(such as the Reusable Macro Language, U.S. Patent Application Serial No. 09/573,780). For
example, a query might draw financial data from 10 web sites, calculate a set of financial rations,
then conduct a search for companies that meet that profile. By their use of multiple sources,
derived values, and complex operations, arithmetic queries are distinguished from numerical
queries, which use basic comparison operators and transformational queries, which change the
underlying units, measures and magnitudes.

Seventh, conventional WSEs are incapable of performing time-dependent queries.
Queries that are time-dependent may take the form of "Let me know when” These types of
queries may have a refresh capability, with related controls on scheduling, expiration of request
and so forth. An example of this type of query would be if the user wants a notification (for
example, by email) any time the search engine becomes aware of a bank company stock trading
at less than 1.0 times book value.

Finally, conventional WSEs are incapable of performing select queries between unrelated
databases. They are incapable of performing select queries when there is no common key.
"Keys" are words or strings of text that are common to two datasets and allow joins to be
performed on the two tables (linking columns from each to create a new dataset) in a relational
database. A "join" is a method by which data from two different data tables can be combined

into one table by matching records based on a common set of information (i.e., a social security

WO 01/61568 PCT/US01/05268
number). This is not an efficient solution where the whole database is not under the control of
one authority which can enforce consistent vocabulary, spelling and usage.

The current reliance of relational databases on matching exact spellings of key fields 1s a
major hindrance to the development of a web-like linking of documents. Differences in wording,
spelling and usage mean that documents created by different people, in different countries,
potentially in different languages, will never have a common "key" that allows them to be linked.

Therefore, based on the deficiencies of conventional systems and the general sub-
architectures of conventional approaches to searching data on networks such as the Internet and
in relational databases, it is desirable to overcome the aforémentioned problems and other related

problems.

SUMMARY

Methods and systems in accordance with the present invention provide a system for
querying and formatting tagged numerical and text data comprising: an index comprised of the
tagged numerical and text data contained within a plurality of documents; and a server for
maintaining and querying the index, and receiving a query. In response to the query, the server
collects the tagged numerical and text data within the plurality of documents that satisfy th;e
query, formats a resultant data set from the collected tagged numerical and text data, and
transmits the resultant data set.

Also, methods and systems consistent with the present invention provide the capability to
search numerical data across networks such as the Internet, and remove the middle layer of query

engines or servers in retrieving data from relational databases over the Internet.

WO 01/61568 PCT/US01/05268
Further, methods and systems consistent with the present invention provide the means for
performing navigational, line item (or record-level), semantic, numerical, transformational,
arithmetic, time-dependent, and cost based queries on numerical data.
Further yet, methods and systems consistent with the present invention permit a user to
monitor the progress of the search, refine the search, and manipulate the result into various

views.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a data management system suitéble for use in accordance with the
methods and systems of the present invention;

Figure 2 depicts a block diagram of software components of the client computer depicted
in figure 1 in accordance with the present invention;

Figure 3 depicts a screen shot of a data query screen depicted within software
components of the client computer in figure 2 in accordance with the present invention;

Figure 4 depicts a screen shot of a macro query screen depicted within software
components of a client computer in figure 2 in accordance with the present invention;

Figure 5 depicts a screen shot of a query progress screen depicted within software
components of a client computer in figure 2 in accordance with the present invention;

Figure 6 depicts a screen shot of a query result screen depicted within software
components of a client computer in figure 2 in accordance with the present invention;

Figure 7 depicts a screen shot of a chart of two data series plotted on the same chart in

accordance with the present invention.

WO 01/61568 PCT/US01/05268

Figure 8 depicts a block diagram of software components of a server computer depicted
in figure 1 in accordance with the present invention;

Figure 9 depicts a block diagram of index data created by a web server depicted in figure
1 in accordance with the present invention;

Figure 10 depicts the resulting records produced by a query and stored in a
LineltemIndex table depicted in figure 9 in accordance with the present invention;

Figure 11 depicts a flowchart of an indexing process conducted by a web server depicted
in figure 1 in accordance with the present invention;

Figure 12 depicts a flowchart of a searching process conducted by a web server depicted
in figure 1 in accordance with the present invention;

Figure 13 depicts a table of unit types used in transformation based searches in
accordance with the present invention;

Figure 14 depicts a flowchart of transformation value searches conducted by a web server
depicted in figure 1 in accordance with the present invention; and

Figure 15 depicts a web search engine using a multi-layer approach for searching data

over the Internet.

DETAILED DESCRIPTION OF THE INVENTION

Overview

Methods and systems consistent with the present invention provide a means for searching
numerical data across networks such as the Internet, and removing the middle layer of query
engines or servers used by conventional systems in retrieving data from relational databases over

the Internet. The methods and systems in accordance with the present invention also provide a

WO 01/61568 PCT/US01/05268
means for tying millions of computers together into a single database, thereby a query introduced
to the system returns a table of data as a single database is capable of providing.

Furthermore, the methods and systems consistent with the present invention provide the
means for performing navigational, line item (or record-level), semantic, numerical,
transformational, arithmetic, time-dependent, and cost based queries on numerical data. In
addition, a user may also conduct select queries between unrelated databases. During the various
queries, methods and systems consistent with the present invention allow a user to monitor the
query results and refine the query request during searching.

Methods and systems in accordance with the present invention also provide means for a
user to conduct queries for programming code by function and has the capabilities to distinguish

between requests for data and requests for programming functionality.

System Hardware Components

Figure 1 depicts a data management system 100 that is suitable for use with methods and
systems consistent with the present invention. Data management system 100 comprises a client
computer 102 and a server computer 104 interconnected via a network 106 (e.g., a Lan or Wan
(e.g., the Internet)). The network 106 alternately can be replaced by an interprocess mechanism
such that the software components of computers 102 and 104 are, in fact, run on the same
computer. The server computer 104 provides Reusable Data Language ("RDL") documents to
client computer 102. The transmitted RDL documents may be ASCII text documents which
contain text and numerical data. RDL documents were referred to as Reusable data Markup
Language (“RDML”) documents in U.S. Patent Application serial number 09/573,778 which

provides a detailed explanation of RDML documents and was previously incorporated herein.

10

WO 01/61568 PCT/US01/05268

Client computer 102 includes a central processing unit (CPU) 110, a secondary storage
device 112 (e.g., a hard disk), a display device 114, an input device 116 (e.g., a mouse and
keyboard), and a main memory 118, containing client computer software components 120.

Figure 1 also depicts a web server 124 on server computer 104 that sends RDL
documents to client computer 102 via network 114. In one system consistent with the present
invention, the web server 124 sends RDL documents over the network 106 and may be
connected to a database server 130, which holds RDL documents. Database server 130 may
receive RDL documents from the disk array 128, which may receive data from database storage
132.

In another embodiment of the consistent with the present invention, the RDL doéuments
sent by web server 124 are retrieved from file server 136 through database server 130. Protocols
used in the transmission of RDL documents between the server 124 and the client computer 102
include, but are not limited to, HyperText Transfer Protocol (HTTP) and File Transfer Protocol
(FTP).

The RDL documents are served from web server 124, not from database management
system 134. RDL documents can be created on the fly in disk array 128 and served from
actively managed databases. However, if the data documents are created on the fly from an
actively managed database system, the data management system 100 searches the RDL
documents as quickly as the data in the RDL documents can be updated.

The web server 124 may be implemented as a "servelet": a software application that
resides on an internet or intranet server; it can reside on client computer 102. Client computer
102 maintains an index of information available on various RDL web pages. The web server 124

receives query statements from the client computer 102, collects the information available on the

11

WO 01/61568 PCT/US01/05268
various target data files, formats a resultset file, and returns the resultset to the client computer
102. This web server 124 also is responsible for finding new RDL documents (by following
hyperlinks or other pointers) and maintaining a list of RDL web pages, and other servers with
which it can communicate. The above functions are referred to as "web indexing" or "web
crawling."

Web server 124 may be designed as a group of cooperative and/or redundant servers that
may themselves form a web of servers for a number of reasons. First, there is simply so much
data in the world that it is unreasonable to expect that a single machine - even a massively
parallel supercomputer - can handle all of the traffic and all of the information. To be truly
scalable and to handle all possible data, a network of web servers helps meet the requirements for
size, speed, and reliability.

In one implementation of the data management system 100, the components include but
are not limited to an index (which may be a database table); the processors, which convert user
queries to SQL queries and converts results into progress and result screens); and the
transformation routines. These components may be on the client, or on the server; or spread
across several servers, or in any permutation of clients and servers.

One skilled in the art will also appreciate that aspects of methods and systems consistent
with the present invention may be stored on or read from other computer readable media besides
memory like secondary devices, such as hard disks, floppy disks, and CD ROM, or a carrier
wave from a network (such as the Internet). Additionally, one skilled in the art will also

appreciate that the data management system 100 may contain additional or different components.

12

WO 01/61568 PCT/US01/05268

Client and Server Computer Components

Client Computer Software Components

Figures 2 and 8 illustrate software components (120 and 122) of client computer 102 and
server computer 104 in accordance with the present invention. These components illustrated in
Figures 2 and 8 do not necessarily reside on separate computers for functioning as "client" and
"server." These aggregations may be for logical construction. In actual practice, it may be
preferable to either create two separate applications or to put both applications on a web server -
host, with the query and result pages sent to a user's web browser.

As illustrated in Figure 2, client computer software components may include data query
screen 202, data query processor 204, data query screen 206, macro query processor 208, search
progress screen 210, progress processor 212, search results screen 214, results processor 216,
export processor 218, overall application manager 220 and RDL data viewer 222.

Figure 3 illustrates an exemplary data query screen 202 of client computer 102. The data
query screen 202 allows a user to enter the query parameters and narrow the query while it is in
progress. The user types information into the various input boxes in data query screen 202 to
describe the data that the user desires the query to retrieve. The contents of the input boxes are
used to build a select query on a database of tag elements in RDL documents.

The exemplary data query screen 202 includes message panel 302, data type panel 304,
status panel 306, chart title 308, chart area 310, Y-axis line item elements entry block 312,
document elements entry block 314, X-axis line item elements entry block 316, and action
buttons 318.

The function of the various components of an exemplary data query screen 202 are as

follows.

13

WO 01/61568 PCT/US01/05268

Message panel 302 instructs the user to enter the search parameters and instructs the user
on how to refine the search while it is in progress. The data type panel 304 instructs the user that
there may be three types of data series found in an RDL document. In one implementation, the
data series types are: time series, crosstabulation, and XY plot. The time series data type
displays the x values on a chart as time periods (such as “1959” or “Week ending 3/21/87”). The
crosstabulation (or category) data type displays the x values as categories that are string
identifiers, such as “Alabama” or “West Virginia,” and the XY plot data type displays the X and
Y axes both as independent variables (e.g., both axes have floating point values for their labels,
such as X =43.7, Y = 12.5). The purpose for specifying the data type is for the RDL data
viewer 222 to determine the type of data it is processing, and to match the correct X and Y
values. In short, the RDL data viewer 222 needs to determine the number of independent axes to
set up. Data viewer 222 may be an RDL data viewer 222 as described in co-pending U.S. Patent
Application Serial No. 09/573,778. The data series types are also described in that application.

Status panel 306 presents ongoing messages regarding the status of the query, until
progress screen 210 is provided to the user. The search process screen 210 will be discussed in
detail below.

Chart title 308 allows a user to enter one or more keywords with boolean operators, if
desired, that would be found in the title of a data series chart. For example, if the user wants to
find all data series which, when charted, would possess a title containing the words “U.S.
Employment” and “Total GDP”, a search could be executed on the search string “[US
Employment]+[GDP]”.

Chart Area 310 allows a user to sketch, with a mouse for example, the desired shape of a

chart of a data series. In one implementation, this shape may be converted to a numerical

14

WO 01/61568 PCT/US01/05268

sequence which is stored in a "dsform" element in index database 1000 (discussed below). The
“dsform” element contains a numerical representation of the shape of the data series. For
example, the numerical sequence may be a series of 20 codes (e.g., 20 digits), each representing
one 20" of the underlying data series. If the data series is convex within that period (i.e., reaches
a local maximum which has an absolute value higher than the local minimum), the digit assigned
for that period is 6 through 9, depending on the height of the maximum. If the curve in that
section is concave (i.e., reaching a local minimum that has an absolute value greater than the
local maximum, it is assigned a digit 1 through 4 depending on the depth of the minimum). If
there is no change (within 5% of the mean for the section), the digit assigned is 5. When all the
numerical values are accumulated (e.g., 45999329452209922345 represents 20 segments that
start with a local minimum and end with a flat line), the result describes a particular shape of a
curve.

Line item elements 312 may be input items provided by the user, and may be combined
with a logical AND operator. For example, to view all data series regarding Gross Domestic
Product (GDP) that are greater than 3 trillion dollars, the user types “GDP” in the box marked
“Legend”, 3 in the box marked “Minimum,” “trillion” in the box marked “Measure type,” and “$
US” in the box marked “y axis title”. Line item elements 312 and their attributes are discussed iﬁ
greater detail in co-pending U.S. Patent Application serial No. 09/573/778.

Document elements 314 are similar to line items elements 312, but apply to metadata
regarding the document itself. For example, to find a document that shows depreciation in the
financial statement of an airline industry company, type “<SEC:Depreciation>" in and
“<SIC:Air>" in the classes box. If a box is left blank, it is simply ignored as a criteria; all

documents are returned subject to the imposed criteria. The “timestamp” box sets bounds on

15

WO 01/61568 PCT/US01/05268

when the document was created, e.g., “<Dec. 2001” would indicate the document was created
before December 2001. The “Source” and “Formatting Source” box each receive string
arguments and modifiers.

X axis elements 316 are similar to the line item elements 312 and document elements
314, but relating to the X axis values. “X Axis Description” is analogous to “Legend” on the Y
axis, and “Measure Type” is the same for both the X and Y axis. The X axis represents the
independent variable in a data set. X axis elements 316 are also discussed in greater detail in co-
pending U.S. Patent Application serial No. 09/573/778.

Action buttons 318 initiate the function identified on the button. For example, the
“search” button initiates a search.

Returning to Figure 2, data query processor 204 reads each of the components of the data
query screen 202 and produces a query string. For example, the SQL query string may be of the

following form:

SELECT url FROM tbl data WHERE (attl="Type" AND val="Time
Series") AND ("attl="Xaxis" AND att2="Year" OR "Quarter" OR
"MONTH") AND (att1="li_legend" AND "GDP" OR "Gross Domestic
Product")

The macro query screen 206 allows the user to specify the types of behavior that is
desired of a "macro." Just as data can be searched on the web, RXL macros can also be searched
on the web or locally. RXL is an XML-based format that describes programming operations to
be carried out on an RDL document. By searching for specific capabilities, users can find and

download macro documents that provide specific functions for specific data documents.

16

WO 01/61568 PCT/US01/05268

Because RXL documents may be ASCII documents that follow the eXtensible Markup
Language (XML) specification and the Document Object Model (DOM), they lend themselves to
being searched and manipulated by automated means. There are several types of elements in an
RXL document that are indexed (an index may be a database table that maps an element name
and element value to a URL).

Figure 4 illustrates a macro query screen 206 consistent with the present invention. One
element of a macro is the “macro_class,” which is a general description of the type of work that
the macro performs. For example, a macro that performs a linear regression on a data series may
be classified under the “statistical operations.” In one implémentation, there are about 20 of
these categories, and they are shown in block 402 of Figure 4. In Figure 4, the user simply
checks off the type of work the macros are expected to perform, and those macro documents are
returned by the server or locally.

Block 404 shows some criteria boxes: document title, timestamp, etc. Again, the user
enters information into these input form items, and they are used to create a SQL query on a
database. The action buttons 406 perform as one would expect: “Start search” initiates a query
on the RXL index, “Pause” stops the search so that the user can change the selection criteria, and
“Cancel” halts the operation entirely and clears the input criteria. For more details on RXL
macros refer to U.S. Patent Application serial No. 09/573,780. (In that application, they are
referred to as RMML macros.)

The macro query processor 208, like the data query processor 204, reads all of the
graphical input items in macro query screen 206 and creates a SQL query string which may be
passed to the server computer’s query processor 802. An exemplary SQL query string is of the

form:

17

WO 01/61568 PCT/US01/05268

"Select from Index Where Timestamp = 2000.1201000"."

Furthermore, macro query processor 208 performs conversions from common-language
formats to machine-readable formats (e.g., from "December 1, 2000" to "2000.1201000"), if
they are required.

Figure 5 shows a search progress screen 210 that provides the user with a map of the
overall results in accordance with the present invention. As illustrated in Figure 5, the results are
broken down by various metrics, such as the return results by statistical series type, the sources
of the results 504 (e.g., .com, .edu, and, .gov), and the number of links 506 appearing in a
document. Notice that this typically depicts more than just a list of documents. The user may
view the progress of the search as the charts change to reflect the search progress. As the query
is progressing, the user can select certain narrowing criteria by indicating such criteria on the
search progress screen 210. The narrowing instructions are relayed to the server computer 104,
which continues its search with the new criteria.

During the search progress stage, the user may not only delete columns from the chart
(and thus the search), but also “combine columns” by dragging one on to the top of another. Thfs
leaves both criteria in the search, but merges them for display purposes, allowing the user to see
the relative returns of different (customizable) categories.

The search progress processor 212 receives progress update information from web server
124, receives the narrowing criteria from the user through search process screen 210, and passes

narrowing criteria to web server 124.

18

WO 01/61568 PCT/US01/05268

Once a query is complete, search results screen 214 provides the user with the query
results, which the results screen received from the results processor 216, which it received from
web server 124. In one implementation, the results are provided as one of two kinds of
information, either a list of RDL documents that meet the criteria or have line items that meet the
criteria, or a table of line items culled from one or more RDL documents and have been collected
into a new RDL document. Figure 6 is an example of a search result screen 214 displaying a list
of RDL documents that met the query criteria. For each document, Figure 6 displays a legend
602, title 604, URL 606, and data type 608.

As the RDL documents are culled, line items that meet the criteria are identified and are
collected into a resultset as shown in figures 6 and 7. A resultset may be the equivalent of a flat
file table in a database: a set of rows and columns. Each row represents a line item. The analogy
is a loose one: most dramatically, in one implementation, each line item has not just one set of
data, but two sets of data. Each line item has a set of "x values" that can be plotted on the x axis
of a chart, and a set of y values that can be plotted on the y axis.

With the resultset created, the user can view each line item one by one as XY plots with a
browser 222 in client computer 102 (as described in U.S. Application Serial No. 09/573,778).
The user can view each line item by clicking on the lines in Figures 6 and 7. In fact, multiple
lines can be plotted on the same chart if they are of the same data set type. For example, Figure
7 shows that two time series data items may be placed on the same chart. In Figure 7, the
“General sales taxes” 702 and the “Selective sales taxes” 704 are plotted on the same chart.

The query results are also useful in other applications, and therefore, an export processor
216 exports the different result types. A document list provided as a resultset may be exported

into a HTML or Rich Text Format (RTF) formatted text document. The resultset can also be

19

WO 01/61568 PCT/US01/05268

exported to a new RDL document, or saved as an Excel or comma delimited text file. The export
processor 216 simply takes the data from the respective models for the result views, applies the
necessary reformatting, and provides the capability to save the results to either a file or the
clipboard.

The methods and systems in accordance with the present invention also provide an
overall application manager which is responsible for building the screens, tying the various
software components together, providing menus, toolbars and status bars, and maintaining the
help system. Typically, this is the user's normal web browser. It also provides the

communications links with the server computer 104 over "http:" protocols.

Server Computer Software Components

In one implementation, the server computer 104 in accordance with principals of the
present invention is comprised of a query processor 802, an index database 804, an index
maintenance assembly 806, an index updating agent assembly 808, a document reader 810 and a
server management assembly 812.

The query processor 802 is responsible for receiving query instructions from the client
computer 102 and querying the index database 804 which will be describe in greater detail
below. The query processor 802 distinguishes between data and macro queries, receives
narrowing criteria from search progress screen 210, and provides efficiency-enhancing
suggestions to the query process in the index database 804. As noted below, the index database
804 may not contain all of the line items in a document or all of the information available. The
query processor 802 is responsible for noting the deficiencies in this area and passing a request

onto the document reader 810 (described below) to fuiﬁll the request for missing data.

20

WO 01/61568 PCT/US01/05268

The index database 804 may be relational database with the table structure illustrated in
Figure 9. The index database 804 may be comprised of LineltemIndex table 902,
LineltemIndex_Temp table 904, HitInfo table 906, and HeaderIndex table 908. LineltemIndex
table 902 is a long table containing a cross-reference of URL’s and attribute values associated
with the line items in RDL documents. Each line item corresponds to a record in a traditional
database, with the addition of some documentation. This table is not intended to provide a full
listing per document; duplicates and unimportant words (e.g., "the", "a", etc.) are eliminated.

The exemplary line item, from an RDL document, illustrated below and Figure 10
provide an exemplary comparison of the data found in a line item of an RDL document, and the
resulting listings in the LineltemIndex table 902, respectively. In comparing exemplary line item
and Figure 10, it can be seen that for each item listed in the exemplary line item there is an
associated listing in the LineltemIndex table 902 of Figure 10. For example, the first element of
the line item illustrated below is “li_ID = ‘2°.” The associated entry is the first entry 1004
illustrated in Figure 10. The first entry 1004 in LineIfemIndex table 902 is comprised of URL

1006, Anchor 1008, Attribute 1010, and Value 1012.

Example of Line Item from RDL Document

<line_item
L ID="2"
li_legend = "Gross domestic product"
li_title = "GDP by industry"

li_cat=""
y_axis_title ="$ in Billions"
level ="2"

format = "#,##0;(#,##0)"
relation = "Parent"

li notes =""

li_desc=""

21

WO 01/61568 PCT/US01/05268

li_prec="0"
li_unit="8"
li_mag="9"
li_mod ="in"
li_measure =""
li_scale=""
li_adjustment ="">
<data_y>

544.80, 585.20, 617.40, 663.00, 719.10, 787.80, 833.60, 910.60, 982.20,
1,035.60, 1,125.40, 1,237.30, 1,382.60, 1,496.90, 1,630.60, 1,819.00,
2,026.90, 2,291.40, 2,557.50, 2,784.20, 3,115.90, 3,242.10, 3,514.50,
3,902.40, 4,180.70, 4,422.20, 4,692.30, 5049.6, 5438.7, 5,743.80,
5,916.70, 6,244.40, 6,550.20, 6,931.40, , ,

</data_y>

In LineltemIndex table 902, URL 1006 identifies the source of the RDL document;
Attribute 1010 provides the element attribute name; and Value 1012 provides the value for the
element.

The URL may include several pieces of information. The first part of the URL
(http/ftp/etc.) describes the protocol to be used by a browser in accessing the web server, the next
part (e.g., /www.somedata.com/) describes the web server, the third part (e.g.,
/somedatapage.rdl/) points to the actual document, and the final part (e.g., /statab/) provides what
is known as an “anchor” 1008 or an “xlink”, which is a pointer directly to a specific line item.
For example, if the data sought is in line item #42, then the “anchor” field will contain a “42”.
The anchor field is optional, however, because the whole document may be returned and the
desired line item found at that time.

LineltemIndex_Temp table 904 follows the same structure as the LineltemIndex table,

but is generally created once a query begins and contains successful matches to the query. Line

items that are included in the resultset are checked for hyperlinks in real time to see if they point

22

WO 01/61568 PCT/US01/05268
to any useful RDL documents and line items. If so, those line items are added to
LineltemIndex Temp table 904 and included in the search.

HitInfo table 906 contains data related to the popularity and content information of the
various documents. It is linked to the other tables by the document URL. The “NumHits” field
contains a running count of the number of times this document has been accessed in a successful
search. The "ClassRequest" field is a comma-delimited list of the top 5 classes that were
requested in connection with a successful search for this document. The "Top5Related" field
contains a comma-delimited list of the top 5 related web sites to the one sought. To each of the
top 5 classes and top five documents is pre-pended the number of access hits. This allows the
rankings to be updated under real-time conditions.

Returning to Figure 8, index maintenance assembly 806 is responsible for: locating new
RDL-formatted documents (either by following hyperlinks of known documents or by accepting
manual input from an operator); checking for changes in documents by looking at the
"timestamp" and "expiration" attributes of the known documents; identifying duplicates; and
other housekeeping tasks.

Index updating agent assembly 808 updates documents that have changed so all
documents do not have to be updated unnecessarily. Index updating agent assembly 808 is
comprised of a collection of routines that can parse and read XML, RDL, and RXL documents to
look for specific items of information required to add a document or line item to the index
database 804. There are numerous freeware and shareware software components that read,
write, and process XML. One of the easiest to use in a research operation is entitled “Aelfred,”

which may be obtained online.

23

WO 01/61568 PCT/US01/05268

Document reader 810 is used by both the query processor 802 and the index maintenance
assembly 806 to read and parse attributes and tag values from remote or local RDL documents,
which may be in a text file format such as ASCIL.

In one implementation, server management assembly 812 is responsible for building the
screens, tying the various software components together, providing menus, toolbars and status
bars, and maintaining the help system. It also provides the communications links with the server

computer 104 over "http:" protocols.

Server Computer Processes

Indexing Process

The server computer 104 in accordance with the present invention maintains the indexing
and searching processes. The indexing process 1100 involves searching the target universe of
RDL documents, and building an index of key words and URLs which are used as links to the
RDL documents.

Figure 11 describes the flow for creating an index of information of RDL documents over
the Internet. This process is also amendable for the indexing of limited collections of RDL
documents, such as those confined to a corporation's internal network.

In one implementation, the goal of the indexing process is to create a set of data tables
which comprise the following four fields: URL, Anchor, Attribute, and Value, as illustrated in
Figure 10.

In one implementation, the indexing process starts with a user determined list of RDL
documents and a list of domains, such as websites, file directories, or databases, that limit the

search (step 1102). The constraint on the number of domains is implemented because the search

24

WO 01/61568 PCT/US01/05268

process may be used in the context of a single corporation or working group. A standard XML
Parser/Processor may be used to read the RDL documents, and as elements and attributes are
encountered, they are evaluated for inclusion in the index (step 1104).

In evaluating the elements and attributes, in one implementation, the following rules are
applied: (1) duplicates are ignored (the process need only identify that the keyword exists in an
element in the document); (2) strings are parsed (e.g., "Net Equipment Depreciation” would be
divided into three entries, one for each word); and (3) numbers are ignored. The indexing
process applies the last rule because there are an infinite number of numbers and their indexing
would be voluminous. Instead, numbers are tested in real time during the search process. This is
explained in greater detail in step 1204 in the search process of Figure 12. Although in other
implementations, other rules may be applied. Besides elements excluded by these rules, in
general, all elements of the entered list of documents are included.

Next, an initial list of cached RDL documents may be entered (step 1106). These are a
set of RDL documents that are known at the outset to be more likely to be requested than others.
These documents may be "cached"; that is, the documents will be copied to a local source and
the restriction on cataloging numbers is relaxed.

At this step, the index of documents is created. A standard XML processor is used to
proceed through each document, element by element, and then attribute by attribute to create an
index of the major elements and attributes (step 1108).

In XML, "element" text values are the values appearing between opening and closing tags
(e.g., "< data-source > US Census Bureau < data-source>" would have an element text value of

"US Census Bureau").

25

WO 01/61568 PCT/US01/05268

"Attributes," by contrast, are found within an element tag itself. For example, "< line-
item> li_legend = Total 'Revenues' > < line-item >" would have an attribute named "li_legend"
which has a value of "Total Revenues."

The XML processor collects both elements and attributes into name/value pairs and calls
a software routine (or method) as each is completed. The "handler" method takes the URL,
element/attribute name, and value and creates a new record in the index data table with those
three values. The "cache" RDL documents are also handed off to an additional handler which
collects all the attributes and elements into a relational table (step 1111). During the search
process, the data query processor 204 will use this relational cache to create the RDL elements in
real time, rather than searching the Internet to find the RDL document, to parse and process the
elements.

In addition to the indexing of cached RDL documents, the server computer 104 also
crawls hyperlinks in RDL documents (step 1112). There may be RDL documents that are not in
the original list of RDL documents to be indexed. To try to find additional RDL documents, the
iﬁdexing application records all RDL URL's it finds in the various "href" attributes of the
documents it evaluates during the indexing process.

After the documents are indexed and the index is created, an optional step is executed to -
eliminate outdated information. In one implementation, in this step, index update agent 808
executes and visits every unique URL listed and performs the following: (1) checks whether the
RDL document still exists, and if not, index update agent 808 removes all references to the
document in the index; (2) checks whether each of the Attribute/Value pairs still exist, and if not,
they are removed from the index; (3) checks whether there are any new Attribute/Value pairs,

and if so, they are added to the indexes (step 1114).

26

WO 01/61568 PCT/US01/05268

In practice, checks (1) and (2) are performed together, by removing all records for that
URL and rebuilding the index if the timestamp tag has been changed. However, if the timestamp
is the same as the last time the URL was visited, it is assumed that there is nothing to update, and
the index is not modified.

The difference between the “initial indexing” and “index updating” of RDL documents
can be demonstrated by considering an example. For example, if 1 million data documents have
never been indexed, the first time index database 804 is built for this document set, it will take a
considerable amount of time: each document must be opened, parsed, and its elements, attributes
and attribute values noted and recorded in database tables, Such as the database tables that will be
described in Figure 9 below. This is an “initial indexing.”

Suppose a month later, for example, the index database 804 is updated. Rather than
processing the elements in all RDL documents, however, only the “timestamp” and “expiration”
attributes of each RDL document is checked. It may be found that only 1,000 documents have
changed. Accordingly, there is no need to update the index database 804 for all 1 million
documents, but rather the index database 804 need only be updated for the documents that have

changed.

Searching Process

Figure 12 illustrates an overview of searching process that computer server 104 performs
in accordance with the present invention. In this process, the user selects certain criteria and the
computer server 104 collects the qualified results and formats them for display in various forms.

The search process is the process that the user experiences when searching for information in a

27

WO 01/61568 PCT/US01/05268
collection of RDL documents. In one implementation, this process is performed by the software
components shown in Figure 8.

Search process 1200 starts when the user enters a search criteria to an HTML form in a
browser running on client computer 102 (step 1202). An exemplary version of this form is
illustrated in the data query screen 202 of Figure 3. This exemplary screen is one possible
configuration in which all elements are not necessary. For example, an HTML form field of only
text input can feed the subsequent search process. The data query screen 202 may be produced
by a web server, or by an internal "client" program running on client computer 102.

Next, the search criteria from data query screen 202 is submitted typically to server
computer 104 through a web-server 124, for example, via the GET or POST methods of HTTP
(step 1204). GET and POST are two different methods in which information may be passed from
a client browser to a web server using the HTTP protocol.

Once the web server 124 receives the search criteria, web server 124 queries both the
cached RDL documents then reformats the request into an SQL string and submits the query to
fhe index data tables 804 (step 1206).

When the submitted SQL string is located in the index data tables 804, the individual
RDL documents that match the query are evaluated (step 1208). Evaluation consists of opening
a file and transforming the document's data into a form that is directly comparable to the
requested data. At this stage, the cached documents are also searched and evaluated.

As the individual documents are evaluated, search progress screen 214 is updated at
predetermined intervals (step 1210). A search progress screen 214 is updated to show the
number of documents that have been found and their characteristics. The user can then focus the

search by making updates to this screen 214. As the user adjusts the query criteria, the query

28

WO 01/61568 PCT/US01/05268

processor 802 adjusts its respective workload by adjusting the SQL string, and refining the query
criteria (step 1212).

The result of a completed search may be an RDL document, constructed from the
processed data returned by the SQL query and the user applied refinements (step 1214). The
RDL document is returned to the user on search result screen 600, through a browser running on

client computer 102 (step 1216).

Handling of Specific Topics

Data management system 100 in accordance with the present invention provides unique
methods for the handling of specific topics in conducting and managing the queries of RDL
documents, and formatting the results provided to the user. The following are examples of the

various handling methods employed in accordance with the present invention.

Semantic Tags and Content Classification

Data management system 100 uses a number of semantic descriptors in the RDL
documents and in the client computer 102 to identify documents by the meaning of their content.
There are, first, "class" tags, where users can place identifying classification tags that help
identify the subject matter of the document or line item. Each class identifier has two parts: a
"namespace" and a "class". The two parts are separated by a semicolon (":"). The namespace is
a unique identifier representing the source of that classification system. The "class" is the actual

classification value, drawn from the specific vocabulary of the organization that sponsored the

namespace.

29

WO 01/61568 PCT/US01/05268

For example, "dewey:8144" may mean that the subject of this document falls under
section 8144 (French Literature) in the Dewey Decimal system. By another example, "sec:Total-
Debt" may mean that this line item refers to total debt in a financial statement as defined by the
SEC (Securities and Exchange Commission). The "Total-Debt" tag is specified as one of the
tags of the U.S. Securities Exchange Commission’s Standard Generalized Markup Language
(SGML) standard. Aside from using specific class tags, data management system 100 may use
other tags as an indirect way of identifying content.- For example, the "li_units" tag might
specify "US Dollars" as the unit measure of the line item. This could be interpreted by server
computer 104 as an indicator that the data is of a "financial" nature. The user may specify maps
from one element type to another in client computer 102. These elements and tags are described
in U.S. Patnet Application Serial No. 09/573,778.

As described above, index database 804 is composed of “tags.” Index database 804 may
be larger or smaller, depending on the size of the potential index, and the importance of real-time
seek performance. There are a number of items that may be indexed, for example, element
ﬁames (what is found within the “< >"’s), element values (what is found between the “< >"’s),

__

attribute names (what is found within the “< >"’s and before an “="), attribute values (what is
found between the “< >’s and after “=”), and various types of metadata outside of thé
documents (e.g., number of hits, response time of server, downtime of server, etc.)

Although Figure 10 shows an index with four (4) columns, other implementations may
have different numbers of columns. Discussed below are three different implementations of an
index table, each with a different set of tag type information. Note that attribute names and

legend names are mixed together in the same column: there is no overlap between attribute and

element names in RDL. One skilled in the art with XML experience will recognize that this

30

WO 01/61568 PCT/US01/05268
efficiency can be relaxed to accommodate languages without this feature by adding an additional
column called “tag type.”

In one implementation, attribute names and values are recorded. This leads to the
smallest index: easiest to create and fastest to search. To really test a query, however, requires
going to the document in real time to test a complex query or to do a transformational test.

In a second implementation, a new column is populated: the line item ID number (also
called the “anchor”) and this allows a complete line item to be reconstructed from the index.
This allows complex queries to be performed (eg., Units = “$” AND Legend = “Sales”) because
the query may match up attributes and values from the samé line item.

In a third implementation, a new column is added: the parent line item of the current line
item. This allows queries that move up and down the hierarchies of values in a document. An
example of where hierarchical structure is important is in a financial statement: “Bus Sales” and
“Auto Sales” may both be components of “Total Sales”. To return a value for “SUM(Children of
Total Sales > $ 350 million)”, the query processor 802 finds the children of “Total Sales.” This
is performed by following the pointers in the “parent” column.

The method for determining the optimal index database 804 to use starts by considering
the tradeoff between index keyword seek time and storage space, and real-time phase documeﬁt
seek time and query complexity. Because index database 804 may be created from a relational
database (which is very fast), the largest architecture that can fit in the available storage space
should be selected. However, it is important to remember that frequently-changing data (ie.,
documents which have expired according to their timestamps) are going to trigger a real-time
document check. On the other hand, frequently changing data might suggest using one of the

smaller index architectures.

31

WO 01/61568 PCT/US01/05268

On a small intranet or single-disk file system, for example, it may be possible to use a 5-
column index. If millions of documents are being indexed around the web, many with
infrequently changing data and complex arithmetic queries are not contemplated. In one
implementation, a three-column index may be suitable dropping the “anchor” column and
looking them up at runtime.

As mentioned above, in addition to elements and attributes, which are found within the
documents themselves, there is information about the documents that is collected by the query
processor 802 and the search servers themselves. This includes information about how quickly
the document was returned, how many hits have previously been made, average number of times
the source server was down, and how frequently users selected that document from a list of hits.
Illustrated below is a sample of such information, which may be contained in index database 804.
This information can be directly accessed for future searches by including them in index database
804.

Exemplary Document Information in the Index Database

http://www.somedata.com/moredata.rdl response_time 35
http://www.somedata.com/moredata.rdl down_time 14.3
http://www.somedata.com/moredata.rdl hits 3893
http://www.somedata.com/moredata.rdl selections 3.5

One skilled in the art of database development will recognize that elements, attributes and
meta-document-data need not physically be in the same index table. Performance considerations

may dictate splitting them into separate tables in different configurations.

32

WO 01/61568 PCT/US01/05268

Multiple Content Tags

Traditional SGML documents (and by extension, XML documents) place tag key-words
in angle brackets ("<", ">") and use opening and closing tags to enclose a set of text. Thus, a

fragment of a document may look like this:

<dewey:624>Some text here.<sec:Debt>43,000</sec:Debt><dewey:624>

Notice that, first of all, everything is repeated twice. Not only is this inefficient, but it
limits the structure that the data and the tags are allowed to create because the relative locations
and nesting of different items implies a sort of containership relationship that may or may not

exist. Elements within RDL document would indicate the same information as follows:

<classes>dewey:624,sec:Debt</classes™>

In the above language structure, the class information provides the necessary data,
without causing the widespread nesting and restructuring of the data. The user of this RDL
document simply has to specify the “classes” element, then use the commas that separate the
different classes to parse the class element into the different member elements. In the example

above, the two member elements are “dewey:624” and “sec:debt”.

Compound Tags

Compound Tags are formed during the indexing phase to allow users to get the fully-

33

WO 01/61568 PCT/US01/05268

qualified description of the line item they requested. This is necessary because much tabular data

is necessarily hierarchical. Consider for example, the following table:

Sales
Trucks 456 489
Autos 231 219
Buses

Single Deck 112 98

Double Deck 159 167

If the query returned “Double Deck,” the user would not know what that meant. A fully
qualified version would be “Sales:Buses:Double Deck,” which captures all of the textual
components. It is the compound tag that is placed in the index; the select query doesn’t look at
the whole field, but can match the whole. Duplicates in such a select query are rejected so that
the super-headings (or genuses) are not confused with the line item that contains the desired data.
Accordingly, for reference purposes, “Single Deck” and “Double Deck” are considered species
of the genus of “Buses”. The “Buses” genus is also a species of the “Sales” genus. (“Trucks”
énd “Autos” are also species of the “Sales” genus.) (Alternately, the genus/species relationship
can also be referred to herein as an object/sub-object relationship.)

In light of the aggregation of species of a genus, the system can implicitly generate aﬂy
number of tags. The “Sales” genus implicitly includes tags such as “Sales:Implicit Total”,
“Sales:Implicit_Average”, “Sales:Implicit Min”, “Sales:Implicit Max”, and
“Sales:Implicit Count”. As would be appreciated by one of ordinary skill other such aggregation
tags can be similarly referenced, even for other compound tags. Thus,
“Sales:Buses:Implicit_Total” is also a valid compound tag. Moreover, since line items can

include multiple entries per line, an alternate implefnentation includes the ability to reference

34

WO 01/61568 PCT/US01/05268

individual ~columns of data from within the line item. For example,
“Sales:Buses:Implicit_Total[1999]” “Sales:Buses:Implicit Total[2000]” may be separately

referenced. Relative indexing of rows and columns is also possible.

Real Time Searching

To perform real time searching in an efficient manner, data management system 100
keeps a database of content in its index databases 804, but then visits individual pages once a
potential match has been found. Data management system 100 is thus able to ascertain (1)
whether the page still exists, (2) whether the most up-to-date version of the data is contained in
the index database 804, (3) whether new line items have been added that might meet the search
criteria, and (4) whether complex internal criteria are met, such as "Revenues > 100 million US

Dollars AND Debt < 20 million French Francs."

Two-Step Searching Process

In one implementation of the present invention, balancing the indexing requirements of
RDL documents, and the time it takes to check a specific document for purposes of value
transformations during the search process involves managing a two-step process. The two searcﬁ
strategies (searching an index versus real time searching of the RDL documents) are two ends of
a continuum.

As discussed above, conventional search engines on the web use an index-only search
because there are too many documents to search in real time. In contrast, files on local disk
drives are searched in real time because of the costs of building and maintaining index tables.

The searching approach of data management system 100, in accordance with the present

35

WO 01/61568 PCT/US01/05268

invention, modulates the apportionment of the two approaches to provide the most efficient
overall search combination. On the web, this means that the keywords, attribute names and
attribute values (along with certain other aspects such as response time and downtime of servers)
are placed in the index, but the transformed values and the actual documents are read and
checked in real time. In contrast, in another implementation of the present invention, fewer
attribute values may be placed in the index and more reliance may be place on real-time analysis

of the documents.

Transformed Value Searches

Traditional search engines, and in fact traditional databases also, search for matches
based on a character-by-character comparison of the search criteria with the target data. With
semantic, numerical searches, however, this is not enough. It is necessary to determine whether
an underlying quantity is the same. For example, "100 US Dollars" may be the same as "87.5
Deutschmarks" and "91 ECUs" or "69 British Pounds." The data management system 100 can
do quantitative searches based on transformed values by using a map of unit types and the
"li_unit" attribute of the line item to test for equivalence. Transformed values can be used with
all the major operators: "<",">""<="">=""1"_and "=". Value transformations are performed
using the classification system that RDL documents use for unit types in one implementation.

Figure 13 illustrates the unit types 1302 into which many units fall, the base units used
for the unit types 1302, and other examples 1306 of possible base units that may be employed.

Figure 14 illustrates the flow of a transformation value search in accordance with the
present invention. Database management system 100 maintains a database of conversion rates

for use in transformational searches. The client compufer 102 transforms the requested units to

36

WO 01/61568 PCT/US01/05268

the base units 1304 (step 14(_)2) before it is sent to the server computer (step 1404). The server
computer, in turn, transforms the indexed data to the base units (step 1406). A search is then
conducted in the base unit on the LineltemIndex database 902 (step 1408). The results are then
transformed to the requested units and returned to the client computer 102 (step 1410).

The unit transformations used are kept in an XML document, a sample fragment of which
appears below. Both the client computer 102 and the server computer 104 can modify this
database of conversion factors to handle updates, such as updates to currency conversion rates, or

the creation of new units by the user.

37

WO 01/61568

Fragment of Unit Conversion Database

<?xml version="1.0" encoding="utf-8" 7>

<unitlist>

<unit name="inch">

</unit>

<conversion
conv_target = "centimeter"
conv_factor = "2.5400050"
conv_constant =""
conv_log =""
conv_source = "FGM"
conv_href ="">
</conversion>
<type>Length</type>
<subtype>Linear</subtype>
<plural>inches</plural>
<alias>in</alias>

PCT/US01/05268

<desc>Approximately the width of a man's thumb.</desc>

<icon href="inch.gif"></icon>

<unit name="foot">

<conversion
conv_target = "meter"
conv_factor ="0.30480060"

nn

conv_constant =

conv_log=""
conv_source = "ISO"
conv_href="">

</conversion>

<type>length</type>

<subtype>Linear</subtype>

38

WO 01/61568 PCT/US01/05268
. <plural>feet</plural>
<alias>fi</alias>
<desc>Originally, the average length of a human foot</desc>
<icon href="foot.gif"></icon>

</unit>

Note in particular the "type" element and the "subtype" elements. These allow the user to receive
alternative measures in which to view data and results.

In addition to looking for the term that the user set as a query, data management system
100 may use a related-terms index (not shown) to find synonyms and similar concepts. The
index for this step may be a many-to-many table that may contain two columns, each containing
keywords. When a user specifies a keyword, this index (or “map”) of related concepts is queried
to find a list of related words. These terms are then fed into the SQL query to index database 804
as alternates. For example, one application for related-terms index is to map related foreign

language words to each other.

Arithmetic Queries

The server computer 104 has access to an RXL Interpreter module, which converts a high
level programming language to a low level Structured Query Language (SQL) code, so that it can
perform arithmetic queries. These types of queries require using one or more line item(s) in an
arithmetic formula to determine whether the subject line item meets a particular inclusion

criteria.

39

WO 01/61568 PCT/US01/05268
A simple example would be a time series line item where the user is only interested in

line items which contain a minimum % change (period to period) of 15%. The server computer
104 would retrieve a collection of line items that meet the non-arithmetic criteria (in this case, it
is a time series), then passes each line item in a formula to the RX Interpreter for evaluation. In
this case, the formula for evaluation would be "MAX(PERC_CHANGE(A))", where A is the line
item being tested. The two capitalized words, MAX and PERC_CHANGE are functions in the
RXL macro language. If this formula evaluates, for example, to 22%, the line item is added to
the resultset. Arithmetic queries can use any RXL function, or RXL macro, that returns a value
that can be evaluated to a scalar or a vector. For further details on macros, refer to U.S. Patent

Application serial No. 09/573,780.

Watch Queries

Watch Queries may be queries that are set up to run on a scheduler, returning a result set
when matches are found. This is a “pull” version of traditional “push” notification. For
ekarnple, assume that a user wants to be notified when a certain stock hits a certain price from a
given set of documents. A scheduler may be set to check those documents periodically. If the
required tests are met, a specified result format may be sent (e.g., email message, or result tablé
to browser, or notice to network software object).

This query method contrasts with the usual method of setting a trigger on a relational
database that watches updates and sends a message (“push”) at the instant the change occurs.
The downside of this approach is the necessity of placing a trigger in the software on the server

and the burden placed on the server.

40

WO 01/61568 PCT/US01/05268

Cost-Based Searches

The RDL and RXL document type definitions include elements that describe the
licensing terms of the document. The server computer 104 can read these elements (they may
appear in the LineltemIndex table 902) to determine whether they meet any licensing criteria that
the user has set as part of the search. A sample fragment of a licensing element from an RDL

document follows.

Fragment of Licensing Element of an RDL / RMML Document

<license_terms
copyright_cite = "Copyright 1998, RDL, Inc. All Rights
Reserved"
holder = "RDL, Inc."
license_type = "Payment Per Download"
warranty = "No warranty is expressed or implied. Use this data
at your own risk."
disclaimer = "This data is provided 'as-is'. The provider
assumes no responsibility for its use or misuse."
terms = "1.00 US Dollar"
date = "1999.0123000000.00"
email = "license@RDL.com"
href = "http://www.RDL.com"
state = "MD"
country = "USA" >
<contact_info
role = "RDLDoc Source"
name = "Russell T. Davis"
company = "RDL, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip ="20815"
country = "USA"
email ="rt_davis@sprynet.com"
xlink:form = "simple"
href = "http://www.RDL.com"
comments ="" >
</contact_info>
</license_terms>

41

WO 01/61568 PCT/US01/05268

The server computer 104 can search for documents using any of these criteria. For
example, if the user has set a maximum amount that can be paid of "$2.5 US Dollars Per
Download." This particular document defined by the above fragment would be included in the
results because it has a "license_type" of payment per download, and a "terms" of less than
$2.50.

Note that RDL is a particular implementation of XML which provides elements and
attributes that describe the “metadata” of numbers as well as the numbers themselves. Those
who are familiar with XML will recognize that the methods of the search engine described herein
may be applied to any XML-based implementation that provides elements and attributes that
supply equivalent information.

The foregoing description of an implementation of the invention has been presented for
purposes of illustration and description. It is not exhaustive and does not limit the invention to
the precise form disclosed. Modifications and variations are possible in light of the above
feachings or may be acquired from practicing the invention.

For example, the described implementation includes software but methods and systems
consistent with the present invention may be implemented as a combination of hardware and
software or in hardware alone. Methods and systems in accordance with the present invention
may be implemented with both object-oriented and non-object-oriented programming systems.
Additionally, components in accordance with the present invention may be stored in memory;
one skilled in the art will appreciate that these components can be stored on other types of

computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or

42

WO 01/61568 PCT/US01/05268
CD-ROM; a carrier wave from the Internet or other propagation medium; or other forms of RAM

or ROM. The scope of the invention is defined by the claims and their equivalents.

43

WO 01/61568 PCT/US01/05268
What is claimed is:
1. A system for querying and formatting tagged numerical data comprising:
an index comprised of the tagged numerical data contained within a plurality of
documents; and
a server for maintaining and querying the index and receiving a query, and in response to
the query, the server:
collects the tagged numerical data within the plurality of documents that satisfy
the query,
formats a resultant data set from the collected tagged numerical data, and

transmits the resultant data set.

2. The system of claim 1, wherein the index is queried based on a plurality of tags

and attributes associated with the tagged numerical data.

3. The system of claim 2, wherein the plurality of tags include tags that define the

characteristics of a document.

4. The system of claim 2, wherein the tags that define the characteristics of the
document are identified as specific element attribute values, which allow characteristics of the

document to be interpreted as they appear in the plurality of documents.

5. The system of claim 1, wherein the index is queried based on semantic numerical

searches.

44

WO 01/61568 PCT/US01/05268

6. The system of claim 5, wherein the semantic numerical searches include using a

map of unit types and an attribute of a line item to test for equivalence.

7. The system of claim 1, wherein the server performs an arithmetic query on the

tagged numerical data.

8. The system of claim 7, wherein the arithmetic query is performed by:
identifying line items that meet a specified criteria;
evaluating a percent change for each of the identified line items; and

setting a reference for each of the identified line items that meets the specified criteria.

9. The system of claim 1, wherein the query is based on cost.

10. The system of claim 9, wherein, if the cost of the tagged numerical data exceeds a

predetermined amount, the tagged numerical data is ignored.

11. The system of claim 9, wherein, if the cost of the tagged numerical data exceeds a
predetermined amount, a minimal amount of the tagged numerical data is included in the

resultant data set and a notation of the cost for additional tagged numerical data is included.

12. The system of claim 1, wherein the query for the tagged numerical data is based

on the author of a document, the formatter of the docufnent, or the collector of the document.

45

WO 01/61568 PCT/US01/05268

13. The system of claim 12, wherein the author, the formatter, or collector of the

document is used to watch the resultant data set as it is build.

14. The system of claim 1, wherein the resultant data set is built from tagged

numerical data retrieved from line items found within the plurality of documents.

15. The system of claim 1, wherein a plurality of servers are employed to collect the
tagged numerical data, and are capable of passing queries between each other to combine tagged

numerical data in remote documents.

16. The system of claim 1, wherein the query performed monitors the tagged

numerical data to determine when at least one of the tagged numerical data have reached a

predetermined value.

17. The system of claim 16, wherein the tagged numerical data is monitored by:
caching a search criteria, a frequency parameter, and an expiration parameter; and
using the frequency parameter to poll the document with the search criteria for a

time determined by the expiration parameter.

18. The system of claim 1, wherein the server transforms the resultant data set from a

first unit standard to a second unit standard.

46

WO 01/61568 PCT/US01/05268

19. A method in a data processing system for processing transformational queries on

numerical data, the method comprising:

receiving a request for numerical data having units of a unit type;

searching a database for at least one sét of numerical data having tags indicating
unit types associated with the requested set of numerical data;

locating at least one set of numerical data having tags indicating the unit types
associated with the requested numerical data;

transforming units of the at least one located sets of numerical data so that they
may be compared with the requested numerical data; and

comparing the transformed set of numerical data to the requested numerical data

to determine if it matches the received request.

20. The method of claim 19, further including the step of:
returning the one or more located sets of numerical data based on a result of the

comparison.

21. The method of claim 20, further including the step of:
receiving an indication of a requested format for the returned sets of numerical data; and
transforming the returned sets of numerical data in accordance with the indicated

requested format.

47

WO 01/61568 PCT/US01/05268

22. A method in a data processing system for processing semantic queries for
searching numerical data:

receiving a request for a set of numerical data, the request including a semantic descriptor
describing a characteristic of the requested set of numerical data;

searching an index of numerical data for a set of numerical data having a tag indicating
equivalence to the semantic descriptor of the requested set of numerical data;

locating the set of numerical data having a tag indicating equivalence to the semantic
descriptor of the request numerical data; and

returning the located set of numerical data.

23. The method of claim 22, wherein the request includes plural semantic descriptors,
and wherein the step of searching further comprises:
searching an index of numerical data for a set of numerical data having plural tags

indicating equivalence to the plural semantic descriptors of the requested set of numerical data.

24. The method of claim 22, wherein the step of returning comprises eliminating all

but one of the located tags is eliminated.

25. A method in a data processing system for searching numerical data:
receiving a request for a set of numerical data, the request including at least one attribute

describing a characteristic of the requested set of numerical data;

searching an index of numerical data for a set of numerical data having an equivalent

attribute describing an equivalent characteristic of the requested set of numerical data;

48

WO 01/61568 PCT/US01/05268
locating a set of numerical data having an equivalent characteristic; and

returning the set of numerical data having an equivalent characteristic.

26. The method of claim 24, wherein the searching step includes:

searching the sets of numerical data for an attribute representing cost.

27. The method of claim 24, wherein the searching step includes:

searching the sets of numerical data for an attribute representing a source.

28. A method in a data processing system for processing arithmetical queries for
searching numerical data, the method comprising:

receiving a request for a set of numerical data, the request including an arithmetical
query;

locating sets of numerical data having tags indicating attributes upon which the
arithmetical query may operate;

performing one or more arithmetical operations on the located sets of numerical data
based upon the arithmetical query;

determining whether sets of data resulting from the arithmetical operations satisfy the
arithmetical query; and

returning resultant sets of data based on the determination.

29. A method in a data processing system having a search engine for accessing line

item information, comprising:

49

WO 01/61568 PCT/US01/05268

creating an index of data of records of a database to facilitate browsing;

receiving a request from an internet browser for a set of numerical data having an
indication of a desired characteristic of the numerical data;

searching the index of records for one or more records having the indicated characteristic;

locating a record of data based on the received indication; and

returning the located record.

30. The method of claim 29, wherein the method further comprises monitoring the
index of records to determine at least one record has reached a predetermined value and then

returning the one or more records.

31. A computer-readable medium containing instructions for controlling a data
processing system for performing a method for processing transformational queries comprising:

receiving a request for numerical data having units of a unit type;

searching a database for one or more sets of numerical data having tags indicating unit
types associated with the requested set of numerical data;

locating one or more sets of numerical data having tags indicating the unit types
associated with the requested numerical data;

transforming units of the one or more located sets of numerical data so that they may be
compared with the requested numerical data; and

comparing the transformed set of numerical data to the requested numerical data to

determine if it matches the received request.

50

WO 01/61568 PCT/US01/05268

32. The computer-readable media of claim 31, further including an instruction for:
returning the one or more located sets of numerical data based on a result of the

comparison.

33. The computer readable media of claim 32, further comprising an instructions for:
receiving an indication of a requested format for the returned sets of numerical data; and
transforming the returned sets of numerical data in accordance with the indicated

requested format.

34. A computer-readable media containing instructions for a data processing to a
method comprising:

receiving a request for a set of numerical data, the request including a semantic descriptor
describing a characteristic of the requested set of numerical data;

searching an index of numerical data for a set of numerical data having a tag indicating
equivalence to the semantic descriptor of the requested set of numerical data;

locating the set of numerical data having a tag indicating equivalence to the semantic
descriptor of the request numerical data; and

returning the located set of numerical data.

35. The computer-readable media of claim 34, wherein the request includes more than

one semantic descriptor, and wherein the instruction to search further comprises:

51

WO 01/61568 PCT/US01/05268
searching an index of numerical data for a set of numerical data having more than one tag
indicating equivalence to the more than one semantic descriptors of the requested set of

numerical data.

36. The computer-readable medium of claim 35, wherein the returning instruction

comprises eliminating all but one of the located tags.

37. A computer-readable media containing instructions for a data processing system
to search numerical data using a method comprising:

receiving a request for a set of numerical data, the request including at least one attribute
describing a characteristic of the requested set of numerical data;

searching an index of numerical data for a set of numerical data having an equivalent
attribute describing an equivalent characteristic of the requested set of numerical data;

locating a set of numerical data having an equivalent characteristic; and

returning the set of numerical data having an equivalent characteristic.

38. The computer-readable media of claim 37, wherein the searching instruction
includes:

searching the sets of numerical data for an attribute representing cost.

39. The computer-readable media of claim 37, wherein the searching instruction

includes:

52

WO 01/61568 PCT/US01/05268

searching the sets of numerical data for an attribute representing a source.

40. A computer-readable media containing instructions for controlling a data processing
system that performs a method comprising:

receiving a request for a set of numerical data, the request including an arithmetical
query;

locating sets of numerical data having tags indicating attributes upon which the
arithmetical query may operate;

performing one or more arithmetical operations on the located sets of numerical data
based upon the arithmetic query;

determining whether sets of data resulting from the arithmetical operations satisfy the
arithmetical query; and

returning the resultant sets of data based on the determination.

41. A computer-readable media containing instructions for a data processing system,
having a search engine for accessing line item Ievel information, to perform a method
comprising:

creating an index of data of records of a database to facilitate browsing;

receiving a request from an user interface for a set of numerical data having an indication
of a desired characteristic of the numerical data;

searching the index of records for at least one record having the indicated characteristic;

locating a record of data based on the received indication; and

returning the located record.

53

WO 01/61568 PCT/US01/05268

42. The computer-readable media of claim 41, wherein the method further comprises
monitoring the index of records to determine whether at least one record has reached a

predetermined value and then returning the at least one record.

43. A data management system that indexes and searches for tagged numerical and
data comprising:
an index that is searched for one or more documents of tagged numerical data that
meet a criterion;
a processor that, in response to locating one or more documents that meet the
search criterion, locates the associated documents and collects the tagged numerical data within

the plurality of documents and provides a resultset to a user.

44, The system of claim 43, wherein the index is created by searching a list of a

plurality of documents of tagged numerical data with a criterion and indexing the elements of the

plurality of documents that meet the criterion.

45. The system of claim 43, wherein the index is maintained on a client and the

processor that collects the tagged numerical data is maintained in a server.

46. The system of claim 43, wherein the index is maintained on a server and the

processor that collects the tagged numerical data is maintained in a client.

54

WO 01/61568 PCT/US01/05268

47. The system of claim 43, wherein the index and the processor are maintained on a

SErver.

48. The system of claim 43, wherein searching the list is performed in real time.

49. The system of claim 43, wherein the processor divides the collection of the
tagged numerical data between a plurality of sub-processors and aggregates results into the

resultset provided to the user.

50. A data management system for conducting searches for tagged numerical and data
comprising:
a query request in a first unit set for searching an index;
a processor that receives the request in the first units and transforms the query
request and one or more elements in the index to second units for comparison, and if a match is
éonﬁrmed, a document associated with the match to the query request is located and the tagged

numerical data is retrieved and converted to the first unit set.

51. The system of claim 50, wherein the document associated with the match to the

query request is located in real time.

52. The system of claim 50, wherein the query request is transmitted from a client to
the processor located within a server, which conducts the comparison, locates the document, and

retrieves the tagged numerical data.

55

WO 01/61568 PCT/US01/05268

53. The system of claim 50, wherein the query request is received and processed in a
client and the client contains the processor that conducts the comparison, locates the document,

and retrieves the tagged numerical data.

54. A system for caching references to tagged numerical data, comprising:
a file collector configured to collect (1) plural files containing tagged numerical data and
(2) unique location identifiers corresponding to locations from which the plural files were

collected;

a parser for selecting characteristics of the tagged numerical data from the plural collected

files;

a first cache including plural entries, wherein each entry includes one of the unique
location identifiers and n (where n > 0) characteristics selected from the group consisting of

element names, element values, attribute names, and attribute values .

55. The system as claimed in claim 54, wherein the unique location identifiers comprise

Uniform Resource Locators.

56. The system as claimed in claim 54, wherein the unique location identifiers comprise

fully qualified file system path names.

57. The system as claimed in claim 54, wherein n is at least two.

56

WO 01/61568 PCT/US01/05268

58. The system as claimed in claim 54, wherein n is at least three.

59. The system as claimed in claim 54, wherein n is four.

60. The system as claimed in claim 54, wherein elements of the cache further comprise
metadata about at least one of (1) the corresponding collected file independent of a contents of
the corresponding collected file and (2) the location from which the corresponding collected file

was obtained independent of a contents of the corresponding collected file.

61. The system as claimed in claim 60, wherein the metadata about the location from
which the corresponding collected file was obtained comprises at least one of number of hits on
the corresponding collected file, a response time of the location of the corresponding collected

file, downtime of the location of the corresponding collected file.

62. The system as claimed in claim 54, wherein the file processor comprises a real-time

processor.

63. The system as claimed in claim 54, wherein the file processor comprises a local

processor.

64. The system as claimed in claim 54, further comprising:
a second cache including plural entries, wherein each entry includes one of the unique
location identifiers and m (where m > n > 0) characteristics selected from the group consisting of

element names, element values, attribute names, and attribute values, wherein the first cache is

57

WO 01/61568 PCT/US01/05268

used for only files of the plural files in which metadata meets a criterion and the second cache is
used for only files of the plural files in which the metadata does not meet the criterion, wherein
the metadata includes characteristics about at least one of (1) the corresponding collected file
independent of a contents of the corresponding collected file and (2) the location from which the
corresponding collected file was obtained independent of a contents of the corresponding

collected file.

65. The system as claimed in claim 64, wherein the criterion is one of server downtime,
server response time, and server bandwidth for the location from which the corresponding

collected file was obtained.

66. A system for displaying a result of an expanded query from a simple query,
comprising:

a first interface configured to identify at least one search term for tagged numerical data;

a second interface configured to receive (1) a first set of values produced by filtering
tagged numerical data using the at least one search term and (2) a second set of values produced
by filtering the tagged numerical data using topics related to the at least one search term; and

an interface controller configured to remove at least one of the first and second sets of

values from the second interface in response to user input.

67. The system as claimed in claim 66, wherein the interface controller comprises a

selector configured to select the second set of values as being not related to a desired result.

58

WO 01/61568 PCT/US01/05268

68. The system as claimed in claim 66, wherein the interface controller comprises a
selector configured to substitute an aggregate of the first and second sets of values for individual

displays of the first and second sets of values.

69. The system as claimed in claim 68, wherein the interface controller comprises an
aggregation generator configured to transform at least one unit when aggregating the first and

second sets of values.

70. The system as claimed in claim 66, wherein the related topics comprise foreign

language equivalents of the at least one search term.

71. The system as claimed in claim 66 wherein the interface controller comprises a
transmitter configured to send a message to a search engine to stop parsing files for the search

term or the related topic whose result has been removed from the second interface.

72. A S};sfem for generating a compound tag from a genus identifier and at least one
species identifier of a block of aggregated data, comprising:

a first parser configured to select the genus identifier from the block of aggregated data,
the genus identifier not having a corresponding value;

a second parser configured to select, from the block of aggregated data, (1) a first species
identifier corresponding to a first sub-element of a compound element corresponding to the
genus identifier and (2) a first value corresponding to the first species identifier; and

a compound tag generator configured to (1) generate a first compound tag by combining

59

WO 01/61568 PCT/US01/05268

the genus identifier and the first species identifier and (2) associate the first value with the first

compound tag.

73. The system as claimed in claim 71, wherein the second parser further comprises an |
iterator configured to select, from the block of aggregated data, (1) a second species identifier
corresponding to a second sub-element of the compound element corresponding to the genus
identifier and (2) a second value corresponding to the second species identifier,

the system further comprising an aggregation generator configured to generate (1) an
implicit genus compound tag and (2) a corresponding genus aggregate value equal to an

aggregate of the first and second values.

74. The system as claimed in claim 73, wherein the aggregating generator comprises an

adder.

75. The system as claimed in claim 71, wherein the compound tag generator comprises a
generator configured to generate a compound tag including a delimiter interposed between the

genus identifier and the first species identifier.

76. The system as claimed in claim 71, wherein the second parser further comprises an
iterator configured to select, from the block of aggregated data, a second value corresponding to
the first species identifier, wherein the first and second values correspond to first and second

attribute values that are different.

60

WO 01/61568 PCT/US01/05268

77. The system as claimed in claim 76, wherein the first and second attribute values

correspond to different time periods for the first species identifier.

78. A system for querying and formatting tagged numerical data comprising:
means for indexing the tagged numerical data contained within a plurality of documents;
and
means for maintaining and querying the index and receiving a query, and in response to
the query:
mean for collecting the tagged numerical data within the plurality of documents
that satisfy the query,
means for formatting a resultant data set from the collected tagged numerical data,
and

means for transmits the resultant data set.

79. A data processing system for processing transformational queries on numerical data,
the method comprising:

means for receiving a request for numerical data having units of a unit type;

means for searching a database for at least one set of numerical data having tags
indicating unit types associated with the requested set of numerical data;

means for locating at least one set of numerical data having tags indicating the unit types
associated with the requested numerical data;

means for transforming units of the at least one located sets of numerical data so that they

may be compared with the requested numerical data; and

61

WO 01/61568 PCT/US01/05268

means for comparing the transformed set of numerical data to the requested numerical

data to determine if it matches the received request.

80. A data processing system for processing semantic queries for searching numerical
data comprising:

means for receiving a request for a set of numerical data, the request including a semantic
descriptor describing a characteristic of the requested set of numerical data;

means for searching an index of numerical data for a set of numerical data having a tag
indicating equivalence to the semantic descriptor of the requested set of numerical data;

means for locating the set of numerical data having a tag indicating equivalence to the

semantic descriptor of the request numerical data; and

returning the located set of numerical data.

81. A dataprocessing system having a search engine for accessing line item
information, comprising:

means for creating an index of data of records of a database to facilitate browsing;

means for receiving a request from an internet browser for a set of numerical data having-
an indication of a desired characteristic of the numerical data;

means for searching the index of records for one or more records having the indicated
characteristic;

means for locating a record of data based on the received indication; and

means for returning the located record.

62

WO 01/61568
1/15
102
2
Main Memory
118
Client Computer
Software
Components
120
Display | '—
114 \,T
Input

116

Network
106

PCT/US01/05268

104

\/\

File
Server

.
b U

CPU
Secondary Storage 110
Device
_5—-1 12
100
FIG a

136

Web
Server

Server
Software
Components

122

/

Database
Server

7

130

Disk Array

@L)
128

Database

Storage
9

7~
<

Database
Management
System

L)

134

WO 01/61568 PCT/US01/05268
2/15
220

Daéacr((?:r?ry)/ Query Progress Results

Screen Screen Screen

A A A Y
Data Query |§ Que 5% Progress Results |§
Processor Procegor Processor "1 Processor
218 ¥
Export 222
Processor Data Viewer

Overall Application Manager

102
S

WO 01/61568 PCT/US01/05268
3/15

304

Y,

e ure £

iEnter parameters for data search.
iYou may return to this page to make
-ichange while the search is in
:iprogress. This will narrow your
query and provide a higher quality
return set.

302

RO —————

308

310

316

vk
Done: M

202

WO 01/61568 PCT/US01/05268
4/15

WO 01/61568 PCT/US01/05268
5/15

210

R NUMBER OF LINKS
100 # of Documents
. Type of Data Table oo Number of Links

W Time Series 80 Wo-100ut

&

:::tz’t:rv 60 B10+out

- M1-10in

Other Wio+n

502

.COM .ORG .GOV .COM .ORG .GOV .EDU Other

Statistical Series Type

of Documents
100
80 Type of Data Table
B Time Series
60¢ Ecategory
Wy Plot
40 Motner

20

Finance Social c

602

214

WO 01/61568

604

6/15

PCT/US01/05268

Gross Domestic Product

gdp.ram

Tims Series

hitpwww.rdmi.comie:

gdp.rgm

Time Series

Gross D Product

Gross Domestic Product

http:fwww.rdml.com/econ/gdp.rdm

Time Serles

600

WO 01/61568

7/15

General revenue
Intergovernmental revenue

Population (thousands)
Total Budget Amount:
Total Revenue

& Orignal Data

€ Reindex (New Base=100)
€ Incremertal X Change
€ Cumulative X Change

PCT/US01/05268

¢//,,1o4

WO 01/61568 PCT/US01/05268
8/15
802 804 . 812
Query 53 Index Server
Processor Database Management
Assembly
A
A A
810 806 Index 808
Document |S M Index S Updating |S
aintenance
Reader Assembl Agent
y Assembly

Fig. 8

WO 01/61568

LineltemIndex

9/15

Lineltemindex_Temp

PCT/US01/05268

Hitinfo

URL Anchor

NumHits
ClassRequest
Top5Related

URL Anchor URL Anchor
TaglList TagList
Att Att
Value Value
2
902 904
Headerindex
R
URL Anchor
TagList
Att
Value 1
908

Fig. 9

S
906

804

1004

www.name1.com/test1.rdl

www.name1.com/test1.rdl

www.namet.com/test1.rdl

/

data_source
hits_to_date
server_response

Fig. 10

WO 01/61568 PCT/US01/05268
10/15
Element
or
URL Anchor Attribute Value
)1/006 /1(008 1)910)1/012
www.name1.com/test1.rdm 42 li_ID 2
www.name1.com/test1.rdm 10 li_legend Gross domestic product
www.name1.com/testt.rdm 12 li_title GDP by industry
www.name1.com/test1.rdm 16 li_cat
www.name1.com/test1.rdl 18 y_axis_title $ in billions
www.name1.com/testt.rdl 40 level 2
www.name1.com/test1.rdl 41 format #1440, (#,#440)
www.name1.com/test1.rdl 61 relation Parent
www.name1.com/test1.rdl 80 fi_notes
www.name1.com/test1.rdm 25 li_desc
www.name1.com/test1.rdm 26 li_prec 0
www.name1.com/test1.rdl 27 li_unit $
www.name1.com/test1.rdl 28 li_mag 9
www.name1.com/testi.rdl 29 li_mod in
www.name1.com/test1.rdl 30 li_measure
www.name1.com/testi.rdl 31 li_scale
www.name1.com/test1.rdl 64 li_adjustment
www.name1.com/testt.rdl 20 data_y 544.80, 585.20, 617.40,
www.name1.com/test1.rdl 20 dsform 45999329452209922345
CLASS Truck
www.name1.com/test1.rdl - .
_ timeStamp 20010101.12300000
www.name.comtest1.rd| - expiration 20020101.12300000

General Motors, Inc.

148621
13.2

WO 01/61568

11/15

Enter Initial List of

RS

PCT/US01/05268

106

RDL Documents | 1102
and Domains
Read and
Evaluate RDL 1104
Documents Enter Initial List
of RDL
< Documents to be
Cached
Create Indexes of 1108
Major Elements |-
and Attributes
(Titles, Legends,
Units, Measures)
A
Create Cache L5 ' 110
of RDL
"Crawl" :slljpfr”nks Documents
in 1112
Documents to =3
Find Others
A 4
[Run Index Create Relational
SC*I‘:‘?;‘{"Iirdg(ﬁer Table From Cache
CI:reated)] | 1114 | RDL Documents

Fig. 11

<

1100

WO 01/61568 PCT/US01/05268
12/15

User Enters _5'1202

Criteria to
HTML Form in
Browser

y

Criteria e 1204

Submitted to
Server
Computer

A

Server 51206
Computer
Queries Both
Cache and
Index
3 1208
\ndividual ROL |° RDL Document |5~ 1214
Documents | of Matching
That Match are "| Line ltems is
Evaluated Created
A\ 4 A
1210 1216
Result Page is o Results =8
Updated Every » Displayed in
"n" Documents Browser \
\ 1200
J—1212
User Adjusts

Search Criteria

Fig. 12

1302

WO 01/61568

[Unit Type

Length
Area
Volume

Mass

Energy
Acceleration
Time
Direction
Frequency
Currency

Collection

\Magnitude

1304

13/15

ﬁase Unit

Meter
Square Meter
Cubic Meter

Gram

Grams per Second
Meters per Second
Second
Degree
[Times] per Second

US Dollar

N

Fig. 13

PCT/US01/05268

Other Examples

British Thermal Units

Foot-pounds

Year, Month, Week, Fortnight

Radian

Cycles per Second

Itatian Lira, Spanish Peso
People, cars, trees

Any that doesn't fit above

\

>> 1306

J

WO 01/61568 PCT/US01/05268
14/15

Transformation 51402
of Requested
Units to Base
Units in Client

Computer

A 4

Transformed [1404

Units Sent to
Server
Computer

A
CServer _5’1 406
omputer
Transforms
Indexed Data to
the Base Units

Server | o 1408

Computer
Searches
Lineltemindex
in Base Units

A
Server

Computer
Transforms
Results to
Requested
Units and
Sends to Client
Computer

Fig. 14

WO 01/61568 PCT/US01/05268

15/15

Relational Relational i
Management Management Management
System. oran System, or an System, or an

1506 Object-Oriented Object-Oriented OhectOriented
Datab;se Database Database
Rep0f|tow Repoftory Repository
i

DB Admin; DB Admin; DB Admin;

DB Developers DB Developers DB Developers
Query Query
_—"] Server Server
1504
] Oracle, MS SQL
Server, etc.
Web)
Search (Yahoo, Excite,
1502 Engine etc.)
A Client Web
Browser
1500~ |

FIG. 15

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

