

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018268304 B2

(54) Title
Anti-SIRP# antibodies

(51) International Patent Classification(s)
C07K 16/28 (2006.01)

(21) Application No: **2018268304** (22) Date of Filing: **2018.05.15**

(87) WIPO No: **WO18/210793**

(30) Priority Data

(31) Number **17171285.4** (32) Date **2017.05.16** (33) Country **EP**

(43) Publication Date: **2018.11.22**
(44) Accepted Journal Date: **2024.08.15**

(71) Applicant(s)
Byondis B.V.

(72) Inventor(s)
Verheijden, Gijsbertus Franciscus Maria;Rouwendal, Gerard;Arends, Roland Jan;Van Den Berg, Timo Kars;Matlung, Hanke Lottie;Franke, Katarina

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
WO 2013/056352 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/210793 A3

(43) International Publication Date
22 November 2018 (22.11.2018)

(51) International Patent Classification:

C07K 16/28 (2006.01)

(21) International Application Number:

PCT/EP2018/062473

(22) International Filing Date:

15 May 2018 (15.05.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

17171285.4 16 May 2017 (16.05.2017) EP

(71) Applicant: SYNTTHON BIOPHARMACEUTICALS B.V. [NL/NL]; Microweg 22, 6545CM Nijmegen (NL).

(72) Inventors: VERHEIJDEN, Gijsbertus Franciscus Maria; Synthon Biopharmaceuticals B.V., Microweg 22, 6545 CM Nijmegen (NL). ROUWENDAL, Gerard; Synthon Biopharmaceuticals B.V., Microweg 22, 6545 CM Nijmegen (NL). ARENDS, Roland Jan; Synthon Biopharmaceuticals B.V., Microweg 22, 6545 CM Nijmegen (NL). VAN DEN BERG, Timo Kars; C/o Stichting Sanquin Bloedvoorziening, Plesmanlaan 125, 1066 CX Amsterdam (NL). MATLUNG, Hanke Lottie; C/o Stichting Sanquin Bloedvoorziening, Plesmanlaan 125, 1066 CX Amsterdam (NL). FRANKE, Katarina; C/o Stichting Sanquin Bloedvoorziening, Plesmanlaan 125, 1066 CX Amsterdam (NL).

(74) Agent: VISSCHER, Inge; P.O. BOX 7071, 6503 GN Nijmegen (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(88) Date of publication of the international search report:

20 December 2018 (20.12.2018)

(54) Title: ANTI-SIRP α ANTIBODIES

(57) Abstract: The present invention relates to antibodies against SIRP α that are suitable for use in anti-cancer therapy. The invention further relates to the use of the anti-SIRP α antibodies in the treatment of human solid tumours and haematological malignancies, optionally in combination with other anti-cancer therapeutics. The anti-SIRP α antibodies described are more specific than known anti-SIRP α antibodies, whereas they show excellent affinity for both SIRP α and SIRP α BIT. In one embodiment the anti-SIRP α antibodies do not bind to SIRP γ . In a second embodiment, the anti-SIRP α antibodies do not bind to SIRP γ and do not bind to SIRP β 1. In a third embodiment, the anti-SIRP α antibodies do not bind to SIRP γ and do not bind to SIRP β 2. In a fourth embodiment, the anti-SIRP α antibodies do not bind to SIRP β 1.

ANTI-SIRP α ANTIBODIES

FIELD OF THE INVENTION

5 The present invention relates to antibodies against SIRP α and the use of these antibodies in the treatment of cancer, optionally in combination with other anti-cancer therapeutics.

BACKGROUND OF THE PRESENT INVENTION

10 Since the late 1990s, therapeutic antibodies have been available for the treatment of cancer. These therapeutic antibodies can act upon malignant cells via different pathways. The signalling pathways triggered by binding of the antibody to its target on malignant cells result in inhibition of cell proliferation or in apoptosis. The Fc region of the therapeutic antibody can trigger complement dependent cytotoxicity (CDC), antibody-dependent cellular 15 cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, therapeutic antibodies are often not effective enough as monotherapy. One option to improve the efficacy of therapeutic antibodies is through improving ADCC and/or ADCP. This has been done by improving the affinity of the Fc region for Fc γ receptors, e.g. by amino acid substitutions (Richards *et al.* *Mol. Cancer Ther.* 2008, 7(8), 2517-2527) or by influencing the 20 glycosylation of the Fc region (Hayes *et al.* *J. Inflamm. Res.* 2016, 9, 209–219).

Another way of improving the ADCC and/or ADCP of a therapeutic antibody is by combining the therapeutic antibody with an antagonistic antibody against signal regulatory protein α (anti-SIRP α) or an anti-CD47 antibody (WO2009/131453). When CD47 binds to the inhibitory immunoreceptor SIRP α expressed on monocytes, macrophages, dendritic cells 25 and neutrophils, SIRP α transmits an inhibitory signal that prevents destruction of cancer cells

by phagocytosis or other Fc-receptor-dependent cell destruction mechanisms of immune effector cells.

Tumour cells use up-regulation of CD47 as a mechanism to evade the anti-tumour immune response induced by a therapeutic antibody. Anti-CD47 or anti-SIRP α antibodies 5 block the inhibitory signalling generated via the CD47-SIRP α axis, resulting in an increase in ADCC and/or ADCP.

Most clinical research related to the CD47-SIRP α interaction has been focused on anti-CD47 antibodies, both as monotherapy and as therapy in combination with a therapeutic antibody (Weiskopf. *Eur. J. Cancer* 2017, 76, 100-109). Research regarding anti-CD47 10 antibodies as anti-cancer therapeutics is growing, despite the fact that CD47 is also expressed on the surface of cells in most normal tissues.

Little research has been conducted on anti-cancer monotherapy or combination therapy using anti-SIRP α antibodies. The majority of the work on anti-SIRP α antibodies is mechanistic research regarding the CD47-SIRP α interaction and has been performed using 15 murine anti-SIRP α antibodies; e.g. murine 12C4 and 1.23A increased neutrophil mediated ADCC of trastuzumab opsonised SKBR3 cells (Zhao *et al.* *PNAS* 2011, 108(45), 18342-18347). WO2015/138600 discloses murine anti-human SIRP α antibody KWAR23 and its chimeric Fab fragment, which increased the *in vitro* phagocytosis of i.a. cetuximab. Humanized KWAR23 with a human IgG₁ Fc part comprising a N297A mutation is disclosed 20 in WO2018/026600. WO2013/056352 discloses IgG₄ 29AM4-5 and other IgG₄ human anti-SIRP α antibodies. The IgG₄ 29AM4-5, dosed three times per week for four weeks at 8 mg/kg, reduced leukaemic engraftment of primary human AML cells injected into the right femur of NOD scid gamma (NSG) mice.

SIRP α is a member of the family of signal regulatory proteins (SIRP), transmembrane 25 glycoproteins with extracellular Ig-like domains present on immune effector cells. The NH₂-

terminal ligand binding domain of SIRP α is highly polymorphic (Takenaka *et al. Nature Immun.* 2007, 8(12), 1313-1323). However, this polymorphism does not influence binding to CD47 significantly. SIRP α _{BIT} (v1) and SIRP α ₁ (v2) are the two most common and most divergent (13 residues different) polymorphs (Hatherley *et al. J. Biol. Chem.* 2014, 289(14), 5 10024-10028). Other biochemically characterized human SIRP family members are SIRP β ₁, and SIRP γ .

SIRP β ₁ does not bind CD47 (van Beek *et al. J. Immunol.* 2005, 175 (12), 7781-7787, 7788-7789) and at least two SIRP β ₁ polymorphic variants are known, SIRP β _{1v1} (ENSP00000371018) and SIRP β _{1v2} (ENSP00000279477). Although the natural ligand of 10 SIRP β ₁ is yet unknown, *in vitro* studies using anti-SIRP β ₁ specific antibodies show that engagement of SIRP β ₁ promotes phagocytosis in macrophages by inducing the tyrosine phosphorylation of DAP12, Syk, and SLP-76, and the subsequent activation of a MEK-MAPK-myosin light chain kinase cascade (Matozaki *et al. J. Biol. Chem.* 2004, 279(28), 29450-29460).

15 SIRP γ is expressed on T-cells and activated NK-cells and binds CD47 with a 10-fold lower affinity as compared to SIRP α . The CD47-SIRP γ interaction is involved in the contact between antigen-presenting cells and T-cells, co-stimulating T-cell activation and promoting T-cell proliferation (Piccio *et al. Blood* 2005, 105, 2421-2427). Furthermore, CD47-SIRP γ interactions play a role in the transendothelial migration of T-cells (Stefanakis *et al. Blood* 20 2008, 112, 1280-1289).

The anti-SIRP α antibodies known in the art are less suitable for use in SIRP α -directed mono- or combination therapy, because they are either not specific for human SIRP α , or they are too specific. The prior art antibodies KW2R23, SE5A5, 29AM4-5 and 12C4 are not specific, as they also bind to human SIRP γ . Binding to SIRP γ , which is expressed on T-cells, 25 might negatively influence T-cell proliferation and recruitment. Other anti-SIRP α antibodies

have a too limited specificity, e.g. 1.23A mAb only recognizes the human SIRP α polymorphic variant SIRP α_1 and not the variant SIRP α_{BIT} , which is predominant in at least the Caucasian population (X.W. Zhao *et al. PNAS* 2011, 108(45), 18342-18347).

Besides using anti-SIRP α antibodies to increase ADCC of a therapeutic antibody, these antibodies may also be used to directly target SIRP α -expressing cancer types. Anti-SIRP α antibodies comprising wild-type human -Fc may be suitable to treat cancers expressing SIRP α , such as renal cell carcinoma and malignant melanoma, as murine anti-SIRP α antibodies having a functional Fc region slowed tumour formation in mice injected with Renca cells and B16BL6 melanoma cells, both expressing SIRP α (Yanagita *et al. JCI Insight* 0 2017, 2(1), e89140).

In conclusion, a need remains for anti-SIRP α antibodies which have low binding to SIRP γ , which bind specifically to both SIRP α_1 and SIRP α_{BIT} polymorphic variants and which are suitable for use in anti-cancer therapy either alone or in combination with therapeutic antibodies.

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.

BRIEF DESCRIPTION OF THE PRESENT INVENTION

The present invention relates to antibodies against SIRP α that are suitable for use in anti-cancer therapy. The invention further relates to the use of the antibodies in the treatment of human solid tumours and haematological malignancies.

5 In one aspect, the present disclosure provides an anti-SIRP α antibody or an antigen-binding fragment thereof, comprising heavy chain (HC) and light chain (LC) variable region (VR) complementarity determining regions (CDRs) CDR1, CDR2 and CDR3, wherein: a) HC VR CDR1 consists of the amino acid sequence HGIS, b) HC VR CDR2 consists of the amino acid sequence TIGTGVITYFASWAKG, c) HC VR CDR3 consists of the amino acid sequence GSAWNDFD, d) LC VR CDR1 consists of the amino acid sequence QASQSVYGNNDLA, e) LC VR CDR2 consists of the amino acid sequence LASTLAT, and f) LC VR CDR3 consists of the amino acid sequence LGGGDDEADNV, wherein the CDRs are determined according to Kabat numbering.

0

In another aspect, the present disclosure provides a pharmaceutical composition comprising an anti-SIRP α antibody or antigen-binding fragment thereof according to the invention and one or more pharmaceutically acceptable excipients.

5 In another aspect, the present disclosure provides use of an anti-SIRP α antibody or antigen-binding fragment thereof according to the invention or a pharmaceutical composition according to the invention in the manufacture of a medicament for treating a human solid 10 tumour or a haematological malignancy.

20 In another aspect, the present disclosure provides use of a combination of an anti-SIRP α antibody or antigen-binding fragment thereof according to the invention or a pharmaceutical composition according to the invention with one or more other anti-cancer therapeutics in the manufacture of a medicament for treating a human solid tumour or a haematological 25 malignancy.

In another aspect, the present disclosure provides a method for treating a human solid tumour or a haematological malignancy, which comprises administering an anti-SIRP α antibody or antigen-binding fragment thereof according to the invention, to a patient in need thereof.

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Comparison of the ADCC measured in % cytotoxicity of trastuzumab (Tmab) alone, trastuzumab in combination with the murine 12C4 anti-SIRP α antibody (mu12C4), trastuzumab in combination with an antibody wherein murine 12C4 variable regions are grafted onto the human IgG₁ constant region (12C4huIgG₁), and trastuzumab in combination

0

with an antibody wherein murine 12C4 variable regions are grafted onto the human IgG₁ constant region comprising the amino acid substitutions L234A and L235A (12C4huIgG₁LALA), measured on SKBR3 HER2-positive breast cancer cells using human neutrophils as effector cells.

5 Figure 2. Comparison of % ADCC relative to trastuzumab (set to 100%) of trastuzumab in combination with the anti-SIRP α antibodies 1-9 having a human IgG₁ constant region comprising the amino acid substitutions L234A and L235A, anti-SIRP α antibody 12C4huIgG₁LALA (12C4LALA) and anti-CD47 antibody B6H12huIgG₁LALA (B6H12LALA) on SKBR3 cells. Filled squares, (■), are the values measured with neutrophils 10 of donors having the SIRP α_{BIT} variant, open circles, (○), are the values measured with neutrophils of donors having the SIRP α_1 variant. Columns are the average of all donors; error bars represent the standard deviation.

15 Figure 3. Comparison of % ADCC relative to trastuzumab alone and trastuzumab in combination with the anti-SIRP α antibodies 4, 7, 10, 14 in various concentrations (dose response curves) having a human IgG₁ constant region comprising the amino acid substitutions L234A and L235A, and anti-SIRP α antibody 12C4huIgG₁LALA (12C4LALA) on SKBR3 cells. Neutrophils of two donors (Δ , ○) having the SIRP α_{BIT} variant. Columns are the average of the two donors.

20 Figure 4. Comparison of % ADCC relative to trastuzumab alone and trastuzumab in combination with the anti-SIRP α antibodies 4, 7, 10, 13, 14, 15 and 16 having a human IgG1 constant region comprising the amino acid substitutions L234A and L235A, and anti-SIRP α antibody 12C4huIgG1LALA (12C4LALA) on SKBR3 cells. Neutrophils of donors having the SIRP α_{BIT} variant (Δ , ○, ∇ , \diamond), having the SIRP α_1 variant (\bigcirc , \bullet) and neutrophils of a donor which variant was not determined (\square) were used. Columns are the average of the 25 donors.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

No approved therapeutics directed against SIRP α are available, although this target has been shown to play an important role in tumour immune evasion mechanisms. In addition, SIRP α is expressed on various malignant cells, rendering it a potential tumour associated 5 antigen.

The present invention relates to antagonistic anti-SIRP α antibodies which exhibit specific binding to the two predominant SIRP α polymorphic variants SIRP α _{B1T} and SIRP α ₁, that do not bind to SIRP γ and that increase the ADCC and/or ADCP of therapeutic antibodies.

The term “antibody” as used throughout the present specification refers to a monoclonal 10 antibody (mAb) comprising two heavy chains and two light chains. Antibodies may be of any isotype such as IgA, IgE, IgG, or IgM antibodies. Preferably, the antibody is an IgG antibody, more preferably an IgG₁ or IgG₂ antibody. The antibodies may be chimeric, humanized or human. Preferably, the antibodies of the invention are humanized. Even more preferably, the antibody is a humanized or human IgG antibody, most preferably a humanized or human IgG₁ 15 mAb. The antibody may have κ (kappa) or λ (lambda) light chains, preferably κ (kappa) light chains, i.e., a humanized or human IgG₁- κ antibody. The antibodies may comprise a constant region that is engineered, i.e. one or more mutations may be introduced to e.g. increase half-life, and/or increase or decrease effector function.

The terms “monoclonal antibody” and “mAb” as used herein refer to an antibody 20 obtained from a population of substantially homogenous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Antibodies may be generated by immunizing animals with a mixture of peptides representing the desired antigen. B-lymphocytes are isolated and fused with myeloma cells or single B-lymphocytes are 25 cultivated for several days in the presence of conditioned medium and feeder cells. The

myeloma or B-lymphocyte supernatants containing the produced antibodies are tested to select suitable B-lymphocytes or hybridomas. Monoclonal antibodies may be prepared from suitable hybridomas by the hybridoma methodology first described by Köhler *et al. Nature* 1975, 256, 495-497. Alternatively, the RNA of suitable B-cells or lymphoma may be lysed,

5 RNA may be isolated, reverse transcribed and sequenced. Antibodies may be made by recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in the art, e.g. in Clackson *et al. Nature* 1919, 352, 624-628 and Marks *et al. J. Mol. Biol.* 1991, 222, 581-597.

10 The term "antigen-binding fragment" as used throughout the present specification includes a Fab, Fab' or F(ab')₂ fragment, a single chain (sc) antibody, a scFv, a single domain (sd) antibody, a diabody, or a minibody.

In humanized antibodies, the antigen-binding complementarity determining regions (CDRs) in the variable regions (VRs) of the heavy chain (HC) and light chain (LC) are 15 derived from antibodies from a non-human species, commonly mouse, rat or rabbit. These non-human CDRs are combined with human framework regions (FR1, FR2, FR3 and FR4) of the variable regions of the HC and LC, in such a way that the functional properties of the antibodies, such as binding affinity and specificity, are retained. Selected amino acids in the human FRs may be exchanged for the corresponding original non-human species amino acids 20 to improve binding affinity, while retaining low immunogenicity. Alternatively, selected amino acids of the original non-human species FRs are exchanged for their corresponding human amino acids to reduce immunogenicity, while retaining the antibody's binding affinity. The thus humanized variable regions are combined with human constant regions.

The CDRs may be determined using the approach of Kabat (in Kabat, E.A. *et al.*, 25 *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National

Institutes of Health, Bethesda, MD., NIH publication no. 91-3242, pp. 662, 680, 689 (1991)), Chothia (Chothia *et al.*, *Nature* 1989, 342, 877-883) or IMGT (Lefranc, *The Immunologist* 1999, 7, 132-136). In the context of the present invention, Eu numbering is used for indicating the positions in the heavy chain and light chain constant regions of the antibody. The 5 expression “Eu numbering” refers to the Eu index as in Kabat, E.A. *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD., NIH publication no. 91-3242, pp. 662, 680, 689 (1991).

Antagonistic antibodies have affinity for a specific antigen, and binding of the antibody to its antigen inhibits the function of an agonist or inverse agonist at receptors. In the present 10 case, binding of an antagonistic anti-SIRP α antibody to SIRP α will either prevent binding of CD47 to SIRP α or disrupt the inhibitory signal that is triggered by the CD47-SIRP α binding.

Antagonistic anti-SIRP α antibodies may bind to the same site where CD47 binds, preventing ligation of SIRP α by CD47 and consequently inhibiting the signalling that negatively regulates the Fc-receptor-dependent action of immune effector cells. Antagonistic 15 anti-SIRP α antibodies may also bind to a site of SIRP α that is different from the binding site of CD47, i.e. an allosteric site, and inhibit the inhibitory signalling of SIRP α without direct interference with the physical CD47-SIRP α interaction, e.g. a change in the three-dimensional shape of SIRP α . This change in the three-dimensional shape prevents (downstream) signalling upon binding to CD47. When SIRP α is bound at an allosteric site, CD47 may still be bound 20 by SIRP α , which might cause CD47 to be less available for binding to thrombospondin-1 (TSP-1). Ligation of TSP-1 to CD47 plays a role in e.g. negative regulation of T-cell activation (Soto-Pantoja *et al.* *Crit. Rev. Biochem. Mol. Biol.* 2015, 50(3), 212-230).

The term “binding affinity” as used throughout the present specification, refers to the 25 dissociation constant (K_D) of a particular antigen-antibody interaction. The K_D is the ratio of the rate of dissociation (k_{off}) to the association rate (k_{on}). Consequently, K_D equals k_{off}/k_{on} and

is expressed as a molar concentration (M). It follows that the smaller the K_D , the stronger the affinity of binding. Typically, K_D values are determined by using surface plasmon resonance (SPR), typically using a biosensor system (e.g. Biacore®) using methods known in the art (e.g. E.S. Day *et al. Anal. Biochem.* 2013, 440, 96–107). The term “binding affinity” may also 5 refer to the concentration of antibody that gives half-maximal binding (EC_{50}) determined with e.g. an ELISA assay or as determined by flow cytometry.

The term “specific binding” as used throughout the present specification relates to binding between an antibody and its antigen with a K_D of typically less than 10^{-7} M, such as 10^{-8} M, 10^{-9} M, 10^{-10} M, 10^{-11} M or even lower as determined by SPR at 25°C.

10 The term “low affinity” as used throughout the present specification is interchangeable with the phrases “does/do not bind” or “is/are not binding to”, and refers to a binding affinity between an antibody and its antigen with an EC_{50} larger than 1500 ng/ml as determined using an ELISA assay, or where no specific binding is observed between the immobilized antigen and the antibody as determined by SPR.

15 The term “high affinity” as used throughout the present specification and refers to a binding affinity between an antibody and its antigen with a K_D of typically less than 10^{-10} M, 10^{-11} M or even lower as determined by SPR at 25°C.

In particular, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof comprising heavy chain (HC) and light chain (LC) variable region 20 (VR) complementarity determining regions (CDRs) selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:1 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:2;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:3 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:4;

- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;
- d. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8;
- 5 e. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:9 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:10;
- f. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:11 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:12;
- 10 g. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14;
- h. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:15 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:16; and
- i. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:17 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:18,

15 wherein the CDRs are determined according to Kabat numbering.

Preferably, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof comprising heavy chain (HC) and light chain (LC) variable region (VR) complementarity determining regions (CDRs) selected from the group consisting of:

- 20 a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:3 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:4;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8;

- d. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:9 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:10;
- e. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:11 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:12;
- 5 f. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14;
- g. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:15 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:16; and
- 10 h. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:17 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:18,

wherein the CDRs are determined according to Kabat numbering.

More preferably, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof comprising HCVR and LCVR CDRs selected from the group consisting of:

- 15 a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:3 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:4;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8;
- 20 d. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:9 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:10; and
- e. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14,

25 wherein the CDRs are determined according to Kabat numbering.

Even more preferably, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof comprising HCVR and LCVR CDRs selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1,
5 CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1,
CDR2 and CDR3 amino acid sequences of SEQ ID NO:8; and
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1,
CDR2 and CDR3 amino acid sequences of SEQ ID NO:14,

10 wherein the CDRs are determined according to Kabat numbering.

Most preferably, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof comprising HCVR and LCVR CDRs selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1,
15 CDR2 and CDR3 amino acid sequences of SEQ ID NO:8; and
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1,
CDR2 and CDR3 amino acid sequences of SEQ ID NO:14,

wherein the CDRs are determined according to Kabat numbering.

In a preferred embodiment, the present invention relates to an anti-SIRP α antibody or an antigen-binding fragment thereof as defined hereinabove, wherein the antibody shows
20 specific binding to both SIRP α_{BIT} and SIRP α_1 and does not bind to SIRP γ .

In a more preferred embodiment, the anti-SIRP α antibody or an antigen-binding fragment thereof specifically binds SIRP α_{BIT} with a K_D below 10^{-9} M and binds SIRP α_1 with a K_D below 10^{-7} M, wherein the K_D is measured with SPR at 25°C. Preferably, the anti-SIRP α
25 antibody or an antigen-binding fragment thereof binds SIRP α_1 with a K_D below 10^{-8} M.

In another more preferred embodiment, the anti-SIRP α antibody or an antigen-binding fragment thereof specifically binds SIRP α _{BIT} and SIRP α ₁ with a K_D below 10⁻⁹ M, wherein the K_D is measured with SPR at 25°C.

In an even more preferred embodiment, the anti-SIRP α antibody or an antigen-binding fragment thereof specifically binds SIRP α _{BIT} and SIRP α ₁ with a K_D below 10⁻¹⁰ M. Preferably, the anti-SIRP α or an antigen-binding fragment thereof antibody specifically binds SIRP α _{BIT} with a K_D below 10⁻¹⁰ M and SIRP α ₁ with a K_D below 10⁻¹¹ M. Typically, the anti-SIRP α antibody as defined hereinabove is a chimeric, humanized or human antibody. Preferably, the anti-SIRP α antibody is a humanized or human antibody. More preferably, the anti-SIRP α antibody is a humanized antibody. In a particular embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof according to the invention comprises a 10 HCVR and a LCVR selected from the group consisting of:

- a. HCVR amino acid sequence of SEQ ID NO:30 and LCVR amino acid sequence of SEQ ID NO:31;
- 15 b. HCVR amino acid sequence of SEQ ID NO:32 and LCVR amino acid sequence of SEQ ID NO:33;
- c. HCVR amino acid sequence of SEQ ID NO:34 and LCVR amino acid sequence of SEQ ID NO:8;
- d. HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:36;
- 20 e. HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:37;
- f. HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:38; and

g. HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:37.

In a preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:30 and LCVR amino acid sequence of SEQ ID NO:31.

In another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:32 and LCVR amino acid sequence of SEQ ID NO:33.

In yet another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:34 and LCVR amino acid sequence of SEQ ID NO:8.

In yet another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:36.

In yet another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:37.

In yet another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:38.

In yet another preferred embodiment, the humanized anti-SIRP α antibody or an antigen-binding fragment thereof comprises HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:37.

Besides binding to both human (hu)SIRP α_{BIT} and (hu)SIRP α_1 , the antibodies according to the invention may also bind to cynomolgus monkey (cy)SIRP α , enabling *in vivo* studies in a relevant animal model.

The antibodies according to the invention may bind to a site of SIRP α that is different from the binding site of CD47, i.e. an allosteric site and inhibit the inhibitory signalling of SIRP α without direct interference with the physical CD47-SIRP α interaction. Alternatively, the antibodies may bind to the same site where CD47 binds, preventing ligation of SIRP α by CD47 and consequently inhibiting the signalling that negatively regulates the Fc-receptor-dependent action of immune effector cells.

10 The anti-SIRP α antibodies or antigen-binding fragments thereof as described hereinabove are more specific than known anti-SIRP α antibodies, and show excellent affinity for both SIRP α_{BIT} and SIRP α_1 . As well, the anti-SIRP α antibodies according to the invention do not bind to SIRP γ .

In one particular embodiment, the anti-SIRP α antibody according to the invention 15 comprises an Fc region that binds to activating Fc receptors present on human immune effector cells. Such anti-SIRP α antibody is suitable for monotherapy of SIRP α -positive human solid tumours and haematological malignancies as it can induce ADCC and/or ADCP. Human immune effector cells possess a variety of activating Fc receptors, which upon 20 ligation trigger phagocytosis, cytokine release, ADCC and/or ADCP, etc. Examples of these receptors are Fc γ receptors, e.g. Fc γ RI (CD64), Fc γ RIIA (CD32), Fc γ RIIIA (CD16a), Fc γ RIIB (CD16b), Fc γ RIIC and the Fc α receptor Fc α RI (CD89). The various natural antibody isotypes bind to these receptors. E.g. IgG₁ binds to Fc γ RI, Fc γ RIIA, Fc γ RIIC, Fc γ RIIIA, Fc γ RIIB; IgG₂ binds to Fc γ RIIA, Fc γ RIIC, Fc γ RIIIA; IgG₃ binds to Fc γ RI, Fc γ RIIA, Fc γ RIIC, Fc γ RIIIA, Fc γ RIIB; IgG₄ binds to Fc γ RI, Fc γ RIIA, Fc γ RIIC, Fc γ RIIIA; 25 and IgA binds to Fc α RI.

In a preferred embodiment, the anti-SIRP α antibody according to the invention comprises an Fc region of the IgA or IgG isotype. More preferred is an anti-SIRP α antibody comprising an Fc region of the IgG₁, IgG₂, IgG₃ or IgG₄ isotype; the IgG₁, IgG₂ or IgG₄ isotype is even more preferred. Most preferred is an anti-SIRP α antibody comprising an Fc region of the IgG₁ isotype.

5 Although the anti-SIRP α antibodies comprising an Fc region that binds to activating Fc receptors present on human immune effector cells may be suitable to treat cancers expressing SIRP α , chimeric anti-SIRP α IgG₁ antibodies did not show the expected results when tested *in vitro* in combination with other antibodies that comprise a human Fc region that binds to 10 activating Fc receptors present on human immune effector cells (i.e. antibodies that are able to induce ADCC and/or ADCP). Results of *in vitro* ADCC assays showed that a chimeric IgG₁ anti-SIRP α antibody does not increase the ADCC of such other antibody as much as expected 15 on the basis of earlier results using murine antibodies.

Therefore, the invention relates to anti-SIRP α antibodies that exhibit reduced binding to 20 or low affinity for activating Fc receptors present on human immune effector cells. Such anti-SIRP α antibodies comprise a modified Fc region in which one or more amino acids have been substituted by (an)other amino acid(s) when compared to a similar unmodified Fc region. Reduced binding means that the affinity of the anti-SIRP α antibody comprising a modified Fc region for the activating Fc receptors is less than the affinity of an anti-SIRP α antibody with 25 the same variable regions comprising a similar unmodified Fc region. The binding affinity of antibodies for activating Fc receptors is typically measured using Surface Plasmon Resonance (SPR) or flow cytometry using methods known in the art, e.g. the method of Harrison *et al.* in *J. Pharm. Biomed. Anal.* 2012, 63, 23-28. Antibodies exhibiting reduced binding to or low affinity for the human Fc α or Fc γ receptor in combination with a therapeutic antibody are especially effective in cellular destruction of cancer cells by increasing ADCC and/or ADCP

of effector immune effector cells. Typically, the Fc region of the anti-SIRP α antibody according to the invention is modified to reduce binding to activating Fc receptors present on human immune effector cells.

Therefore, the anti-SIRP α antibody according to the invention comprises a modified Fc region that exhibits reduced binding to or low affinity for a human Fc α or Fc γ receptor. For instance, the IgG₁ binding to an Fc γ receptor can be reduced by substituting one or more IgG₁ amino acids selected from the group consisting of L234, L235, G237, D265, D270, N297, A327, P328, and P329 (Eu numbering); the IgG₂ binding can be reduced by introducing e.g. one or more of the following amino acid substitutions V234A, G237A, P238S, H268A, V309L, A330S, and P331S; or H268Q, V309L, A330S, and P331S (numbering analogue to IgG₁ Eu numbering) (Vafa *et al. Methods* 2014, 65, 114-126); the IgG₃ binding can be reduced by introducing e.g. the amino acid substitutions L234A and L235A, or the amino acid substitutions L234A, L235A and P331S (Leoh *et al. Mol. Immunol.* 2015, 67, 407-415); and the IgG₄ binding can be reduced by introducing e.g. the amino acid substitutions S228P, F234A and L235A ((numbering analogue to IgG₁ Eu numbering) (Parekh *et al. mAbs* 2012, 4(3), 310-318). IgA binding to the Fc α receptor can be reduced by introducing e.g. one or more of the amino acid substitutions L257R, P440A, A442R, F443R, and P440R (sequential numbering, Pleass *et al. J. Biol. Chem.* 1999, 271(33), 23508-23514).

Preferably, the anti-SIRP α antibody according to the invention comprises a modified Fc region that exhibits reduced binding to or low affinity for a human Fc γ receptor. More preferably, the modified Fc region is an Fc region of the IgG isotype. Even more preferably, the modified Fc region is an Fc region of the IgG₁, IgG₂ or IgG₄ isotype.

In a preferred embodiment, the anti-SIRP α antibody according to the invention comprises a modified human IgG₁ Fc region comprising one or more amino acid substitutions

at one or more positions selected from the group consisting of L234, L235, G237, D265, D270, N297, A327, P328, and P329 (Eu numbering).

Preferably, the anti-SIRP α antibody comprises a modified Fc IgG₁ region, which does not comprise either amino acid substitution N297A or N297G. More preferably, the anti-5 SIRP α antibody comprises a modified Fc IgG₁ region, which does not comprise an amino acid substitution at position N297.

In one embodiment, the modified human IgG₁ Fc region comprises one or more amino acid substitutions selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, D270A, D270E, D270N, N297A, N297G, A327Q, P328A, P329A 10 and P329G. Preferably, the one or more amino acid substitutions are selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, N297A, P328A, P329A, P329A and P329G.

In another embodiment, the modified human IgG₁ Fc region comprises one or more amino acid substitutions selected from the group consisting of L234A, L234E, L235A, 15 G237A, D265A, D265E, D265N, D270A, D270E, D270N, A327Q, P328A, P329A and P329G. Preferably, the one or more amino acid substitutions are selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, P328A, P329A and P329G. More preferably, the modified Fc IgG₁ region does not comprise either amino acid 20 substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

In a preferred embodiment, the modified human IgG₁ Fc region comprises the amino acid substitutions L234A and L235A, L234E and L235A, L234A, L235A and P329A or L234A, L235A and P329G. Preferably, the modified Fc IgG₁ region does not comprise either amino acid substitution N297A or N297G. More preferably, the modified Fc IgG₁ region does 25 not comprise an amino acid substitution at position N297.

In another preferred embodiment, the anti-SIRP α antibody according to the invention comprises a modified human IgG₁ Fc region comprising the amino acid substitutions L234A and L235A or L234E and L235A, preferably amino acid substitutions L234A and L235A.

More preferably, the modified Fc IgG₁ region does not comprise either amino acid 5 substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

The present invention further relates to a pharmaceutical composition comprising an anti-SIRP α antibody as described hereinabove and one or more pharmaceutically acceptable excipients. Typical pharmaceutical formulations of therapeutic proteins such as antibodies 10 take the form of lyophilized cakes (lyophilized powders), which require (aqueous) dissolution (i.e. reconstitution) before intravenous infusion, or frozen (aqueous) solutions, which require thawing before use.

Typically, the pharmaceutical composition is provided in the form of a lyophilized cake. Suitable pharmaceutically acceptable excipients for inclusion into the pharmaceutical 15 composition (before freeze-drying) in accordance with the present invention include buffer solutions (e.g. citrate, histidine or succinate containing salts in water), lyoprotectants (e.g. sucrose, trehalose), tonicity modifiers (e.g. sodium chloride), surfactants (e.g. polysorbate), and bulking agents (e.g. mannitol, glycine). Excipients used for freeze-dried protein 20 formulations are selected for their ability to prevent protein denaturation during the freeze-drying process as well as during storage.

The present invention further relates to an anti-SIRP α antibody or pharmaceutical composition as described hereinabove for use as a medicament.

In one embodiment, the present invention relates to an anti-SIRP α antibody or pharmaceutical composition as described hereinabove for use in the treatment of human solid 25 tumours and haematological malignancies. The anti-SIRP α antibodies of the invention may be

used in the treatment of solid tumours, such as breast cancer, renal cancer, or melanoma, or haematological malignancies, such as Acute Myeloid Leukaemia (AML).

In a second embodiment, the invention relates to an anti-SIRP α antibody comprising an Fc region that binds to activating Fc receptors present on human immune effector cells for use 5 in the treatment of SIRP α -positive human solid tumours and haematological malignancies.

Preferably, the Fc region that binds to activating Fc receptors present on human immune effector cells is of the IgA or IgG isotype. More preferred is an anti-SIRP α antibody comprising an Fc region of the IgG₁, IgG₂, IgG₃ or IgG₄ isotype; the IgG₁, IgG₂ or IgG₄ isotype is even more preferred. Most preferred is an anti-SIRP α antibody comprising an Fc 10 region of the IgG₁ isotype for use in the treatment of SIRP α -positive human solid tumours and haematological malignancies.

In a third embodiment, the present invention relates to an anti-SIRP α antibody or pharmaceutical composition as described hereinabove for use in the treatment of human solid tumours and haematological malignancies in combination with the use of one or more other 15

anti-cancer therapies. Suitable anti-cancer therapies are surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy and immunotherapy. The anti-SIRP α antibody or pharmaceutical composition as described hereinabove may be for concomitant or sequential use in the treatment of human solid tumours and haematological malignancies in combination with the use of one or more other anti-cancer therapies. In particular, the anti-SIRP α antibody 20 or pharmaceutical composition as described hereinabove may be for use in the treatment of human solid tumours and haematological malignancies after the use of one or more other anti-cancer therapies.

Preferably, the present invention relates to an anti-SIRP α antibody or pharmaceutical composition as described hereinabove for use in the treatment of human solid tumours and 25 haematological malignancies in combination with the use of one or more other anti-cancer

therapeutics. In particular, the anti-SIRP α antibody or pharmaceutical composition as described hereinabove may be for use in the treatment of human solid tumours and haematological malignancies after the use of one or more other anti-cancer therapeutics.

Suitable anti-cancer therapeutics include chemotherapeutics, radiation therapeutics, 5 hormonal therapeutics, targeted therapeutics and immunotherapeutic agents. Suitable chemotherapeutics include alkylating agents, such as nitrogen mustards, nitrosoureas, tetrazines and aziridines; anti metabolites, such as anti-folates, fluoropyrimidines, deoxynucleoside analogues and thiopurines; anti-microtubule agents, such as vinca alkaloids and taxanes; topoisomerase I and II inhibitors; and cytotoxic antibiotics, such as 10 anthracyclines and bleomycins.

Suitable radiation therapeutics include radio isotopes, such as ^{131}I -metaiodobenzylguanidine (MIBG), ^{32}P as sodium phosphate, ^{223}Ra chloride, ^{89}Sr chloride and ^{153}Sm diamine tetramethylene phosphonate (EDTMP).

Suitable agents to be used as hormonal therapeutics include inhibitors of hormone 15 synthesis, such as aromatase inhibitors and GnRH analogues; and hormone receptor antagonists, such as selective oestrogen receptor modulators and antiandrogens.

Targeted therapeutics are therapeutics that interfere with specific proteins involved in tumorigenesis and proliferation and may be small molecule drugs; proteins, such as therapeutic antibodies; peptides and peptide derivatives; or protein-small molecule hybrids, 20 such as antibody-drug conjugates. Examples of targeted small molecule drugs include mTor inhibitors, such as everolimus, temsirolimus and rapamycin; kinase inhibitors, such as imatinib, dasatinib and nilotinib; VEGF inhibitors, such as sorafenib and regorafenib; and EGFR/HER2 inhibitors such as gefitinib, lapatinib and erlotinib. Examples of peptide or 25 peptide derivative targeted therapeutics include proteasome inhibitors, such as bortezomib and carfilzomib.

Immunotherapeutic agents include agents that induce, enhance or suppress an immune response, such as cytokines (IL-2 and IFN- α); immuno modulatory imide drugs, such as thalidomide, lenalidomide and pomalidomide; therapeutic cancer vaccines, such as talimogene laherparepvec; cell based immunotherapeutic agents, such as dendritic cell vaccines, adoptive 5 T-cells and chimeric antigen receptor-modified T-cells); and therapeutic antibodies that can trigger ADCC/ADCP or CDC via their Fc region when binding to membrane bound ligands on a cancer cell.

Preferably, the invention relates to an anti-SIRP α antibody or pharmaceutical composition as described hereinabove for use in the treatment of human solid tumours and 10 haematological malignancies in combination with one or more other anti-cancer therapeutics, wherein the anti-cancer therapeutic is a targeted therapeutic or an immunotherapeutic agent. A preferred targeted therapeutic in accordance with the invention is a therapeutic antibody or an antibody-drug conjugate (ADC). The most preferred targeted therapeutic is a therapeutic antibody.

15 The term “therapeutic antibody” as used throughout the present specification refers to an antibody or an antigen-binding fragment thereof as defined hereinabove, which is suitable for human therapy. Antibodies suitable for human therapy are of sufficient quality, safe and efficacious for treatment of specific human diseases. Quality may be assessed using the established guidelines for Good Manufacturing Practice; safety and efficacy are typically 20 assessed using established guidelines of medicines regulatory authorities, e.g. the European Medicines Agency (EMA) or the United States Food and Drug Administration (FDA). These guidelines are well-known in the art.

25 Preferably, the therapeutic antibody is an antibody approved by a medicines regulatory authority, such as the EMA or FDA. Online databases of most Regulatory Authorities can be consulted to find whether an antibody is approved.

The term “ADC” as used throughout the present specification refers to a cytotoxic drug conjugated to an antibody or an antigen-binding fragment thereof as defined hereinabove via a linker. Typically, the cytotoxic drugs are highly potent, e.g. a duocarmycin, calicheamicin, pyrrolobenzodiazepine (PBD) dimer, maytansinoid or auristatin derivative. The linker may be 5 cleavable, e.g. comprising the cleavable dipeptide valine-citrulline (vc) or valine-alanine (va), or non-cleavable, e.g. succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC).

Typically, the therapeutic antibody for use in combination with an anti-SIRP α antibody according to the invention is a monospecific or bispecific antibody or antibody fragment 10 comprising at least one HCVR and LCVR binding to a target selected from the group consisting of annexin A1, B7H3, B7H4, CA6, CA9, CA15-3, CA19-9, CA27-29, CA125, CA242, CCR2, CCR5, CD2, CD19, CD20, CD22, CD30, CD33, CD37, CD38, CD40, CD44, CD47, CD56, CD70, CD74, CD79, CD115, CD123, CD138, CD203c, CD303, CD333, CEA, CEACAM, CLCA-1, CLL-1, c-MET, Cripto, CTLA-4, DLL3, EGFL, EGFR, EPCAM, EPh 15 (e.g. EphA2 or EPhB3), endothelin B receptor (ETBR), FAP, FcRL5 (CD307), FGF, FGFR (e.g. FGFR3), FOLR1, GCC, GPNMB, HER2, HMW-MAA, integrin α (e.g. α v β 3 and α v β 5), IGF1R, TM4SF1 (or L6 antigen), Lewis A like carbohydrate, Lewis X, Lewis Y, LIV1, mesothelin, MUC1, MUC16, NaPi2b, Nectin-4, PD-1, PD-L1, PSMA, PTK7, SLC44A4, STEAP-1, 5T4 antigen (or TPBG, trophoblast glycoprotein), TF (tissue factor), Thomsen- 20 Friedenreich antigen (TF-Ag), Tag72, TNF, TNFR, TROP2, VEGF, VEGFR, and VLA.

Preferred is a monospecific therapeutic antibody. More preferred is an antibody against a membrane-bound target on the surface of tumour cells.

Suitable therapeutic antibodies for use in combination with an anti-SIRP α antibody according to the invention include alemtuzumab, bevacizumab, cetuximab, panitumumab, 25 rituximab, and trastuzumab.

Suitable ADCs for use in combination with an anti-SIRP α antibody according to the invention include trastuzumab emtansine and brentuximab vedotin.

In a preferred embodiment, the present invention relates to an anti-SIRP α antibody as described hereinabove for the aforementioned use in combination with a therapeutic antibody 5 against a membrane-bound target on the surface of tumour cells which comprises a human Fc region that binds to activating Fc receptors present on human immune effector cells.

Via binding to these activating Fc receptors, described hereinabove, a therapeutic antibody comprising a human Fc region that binds to activating Fc receptors present on 10 human immune effector cells can induce ADCC and/or ADCP. Therapeutic antibodies of the human IgG, IgE, or IgA isotype comprise a human Fc region that binds to activating Fc 15 receptors present on human immune effector cells.

A preferred therapeutic antibody for use according to the invention is a therapeutic antibody of the IgG or IgA isotype. More preferred is a therapeutic antibody of the IgG isotype, such as IgG₁, IgG₂, IgG₃, and IgG₄ antibodies. Even more preferred is a therapeutic 15 antibody of the IgG₁ or IgG₂ isotype. Most preferred is a therapeutic antibody of the IgG₁ isotype.

Preferably, the present invention relates to a humanized anti-SIRP α antibody comprising HCVR and LCVR CDRs selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:1 and CDR1,
20 CDR2 and CDR3 amino acid sequences of SEQ ID NO:2;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:3 and CDR1,
CDR2 and CDR3 amino acid sequences of SEQ ID NO:4;
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1,
CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;

- d. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8;
- e. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:9 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:10;
- 5 f. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:11 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:12;
- g. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14;
- 10 h. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:15 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:16; and
- i. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:17 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:18,

for use in the treatment of human solid tumours and haematological malignancies in combination with the use of a therapeutic antibody against a membrane-bound target on the 15 surface of tumour cells, which comprises a human Fc region that binds to activating Fc receptors present on human immune effector cells, wherein the anti-SIRP α antibody comprises a modified Fc region that exhibits reduced binding to a human Fc α or Fc γ receptor, when compared to the same anti-SIRP α antibody comprising a wild-type Fc region.

In a preferred embodiment, the humanized anti-SIRP α antibody for use in the treatment 20 of human solid tumours and haematological malignancies in combination with the therapeutic antibody, comprises a modified human IgG₁ Fc region comprising one or more amino acid substitutions at one or more positions selected from the group consisting of L234, L235, G237, D265, D270, N297, A327, P328, and P329 (Eu numbering).

25 Preferably, the humanized anti-SIRP α antibody for use in the treatment of human solid tumours and haematological malignancies in combination with the therapeutic antibody

comprises a modified Fc IgG₁ region, which does not comprise either amino acid substitution N297A or N297G. More preferably, the anti-SIRP α antibody comprises a modified Fc IgG₁ region, which does not comprise an amino acid substitution at position N297.

In one embodiment, the modified human IgG₁ Fc region comprises one or more amino acid substitutions selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, D270A, D270E, D270N, N297A, N297G, A327Q, P328A, P329A, and P329G.

In another embodiment, the humanized anti-SIRP α antibody for use in the treatment of human solid tumours and haematological malignancies in combination with the therapeutic antibody comprises a modified Fc IgG₁ region comprising one or more amino acid substitutions selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, D270A, D270E, D270N, A327Q, P328A, P329A and P329G. Preferably, the one or more amino acid substitutions are selected from the group consisting of L234A, L234E, L235A, G237A, D265A, D265E, D265N, P328A, P329A and P329G. More preferably, the modified Fc IgG₁ region does not comprise either amino acid substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

In a preferred embodiment, the modified human IgG₁ Fc region comprises the amino acid substitutions L234A and L235A, L234E and L235A, L234A, L235A and P329A or L234A, L235A and P329G. Preferably, the modified Fc IgG₁ region does not comprise either amino acid substitution N297A or N297G. More preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

In another preferred embodiment, the humanized anti-SIRP α antibody for use in the treatment of human solid tumours and haematological malignancies in combination with the therapeutic antibody comprises a modified human IgG₁ Fc region comprising the amino acid

substitutions L234A and L235A or L234E and L235A, preferably amino acid substitutions L234A and L235A. More preferably, the modified Fc IgG₁ region does not comprise either amino acid substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

5 In a preferred embodiment, the humanized anti-SIRP α antibody for use in the treatment of human solid tumours and haematological malignancies in combination with the use of a therapeutic antibody against a membrane-bound target on the surface of tumour cells which comprises a human Fc region that binds to activating Fc receptors present on human immune effector cells, comprises an Fc region comprising the amino acid substitutions L234A and

10 L235A, and HCVR and LCVR CDRs selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:3 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:4;
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8;
- d. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:9 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:10; and
- e. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14.

15 In a second preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR and LCVR CDRs selected from the group consisting of:

20

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:5 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:6;

25

- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8; and
- c. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14.

5 In a third preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR and LCVR CDRs selected from the group consisting of:

- a. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:7 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:8; and
- b. CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:13 and CDR1, CDR2 and CDR3 amino acid sequences of SEQ ID NO:14.

10 In a fourth preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and

- 15 a. HCVR amino acid sequence of SEQ ID NO:30 and LCVR amino acid sequence of SEQ ID NO:31;
- b. HCVR amino acid sequence of SEQ ID NO:32 and LCVR amino acid sequence of SEQ ID NO:33;
- c. HCVR amino acid sequence of SEQ ID NO:34 and LCVR amino acid sequence of SEQ ID NO:8;
- 20 d. HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:36;
- e. HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:37;

- f. HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:38; or
- g. HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:37.

5 In one preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR amino acid sequence of SEQ ID NO:30 and LCVR amino acid sequence of SEQ ID NO:31. More preferably, the modified Fc IgG₁ region does not comprise either amino acid substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not comprise an amino acid substitution at position N297.

10 In another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR amino acid sequence of SEQ ID NO:32 and LCVR amino acid sequence of SEQ ID NO:33.

15 In yet another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR amino acid sequence of SEQ ID NO:34 and LCVR amino acid sequence of SEQ ID NO:8.

20 In yet another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:36.

In yet another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A

and L235A, and HCVR amino acid sequence of SEQ ID NO:35 and LCVR amino acid sequence of SEQ ID NO:37.

In yet another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A 5 and L235A, and HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid sequence of SEQ ID NO:38.

In yet another preferred embodiment, the humanized anti-SIRP α antibody for use as defined hereinabove comprises an Fc region comprising the amino acid substitutions L234A and L235A, and HCVR amino acid sequence of SEQ ID NO:13 and LCVR amino acid 10 sequence of SEQ ID NO:37.

More preferably, the humanized anti-SIRP α antibodies as defined hereinabove for use as defined hereinabove comprising an Fc region comprising the amino acid substitutions L234A and L235A, the modified Fc IgG₁ region do not comprise either amino acid substitution N297A or N297G. Even more preferably, the modified Fc IgG₁ region does not 15 comprise an amino acid substitution at position N297.

The anti-SIRP α antibodies comprising a modified Fc region that exhibits reduced binding to a human Fc α or Fc γ receptor, when compared to the same anti-SIRP α antibody comprising a wild-type Fc region as described hereinabove enhance the *in vitro* ADCC of a therapeutic antibody using neutrophils as effector cells from different donors homozygous for 20 either SIRP α _{B1T} or SIRP α ₁. All of these antibodies increase the *in vitro* ADCC using neutrophils of most donors, the preferred antibodies even increase *in vitro* ADCC using neutrophils of all donors.

EXAMPLES

Immunization protocol and selection

Rabbits were repeatedly immunized with a mixture of peptides representing the extra cellular domain region of human (hu)SIRP α _{BIT}, human (hu)SIRP α ₁ and cynomolgus

5 (cy)SIRP α . Blood was collected at different time points and enriched with lymphocytes.

Single B-cells were deposited into single wells of microtiter plates. These B-cells were cultivated for several days in the presence of conditioned medium and feeder cells. During this time they produced and released monoclonal antibodies into the cultivation medium (B-cell supernatants). The supernatants of these single B-cells were analyzed for IgG production; 10 subsequently the specific binding huSIRP α _{BIT} and huSIRP α ₁, to cySIRP α and to an anti-Fc antibody was determined. Suitable supernatants were those binding to both huSIRP α _{BIT} and huSIRP α ₁ and to cySIRP α . After a hit picking step binding to mouse (mu) SIRP α and to huSIRP β _{1v1}, huSIRP β _{1v2} and huSIRP γ (as anti-targets) was measured. In addition, the binding to SIRP α _{BIT} and SIRP α ₁-over expressing CHO cells was determined. Binding to parental 15 CHO cells was applied as a control assay.

Suitable B-cell lysates were selected for RNA isolation, reverse transcription and sequencing. The unique variable regions of antibody light and heavy chains were gene synthesized and cloned in front of the antibody constant region sequence (kappa LC SEQ ID NO:26 and human IgG₁ HC-LALA format SEQ ID NO:27), respectively.

20 HEK 293 cells were transiently transfected with the antibody sequence containing plasmids using an automated procedure on a Tecan Freedom Evo platform. Immunoglobulins were purified from the cell supernatant using affinity purification (Protein A) on a Dionex Ultimate 3000 HPLC system with a plate autosampler. The produced antibodies were tested in ELISA-type assays (ELISA: huSIRP α ₁, huSIRP α _{BIT}, cySIRP α , muSIRP α , huSIRP β _{1v1}/ β _{1v2}/ γ ; cell binding assays: huSIRP α ₁, huSIRP α _{BIT}).

Transient expression of antibodies**a) Preparation of cDNA constructs and expression vectors**

The HCVR amino acid sequences of the antibodies were each joined at the N-terminus to a leader sequence (SEQ ID NO:28 for antibodies 1-9, 15, 16; SEQ ID NO:39 for antibodies 5 10-14), and at the C-terminus to the constant domain of a human IgG₁ HC LALA according to SEQ ID NO:27. The HCVR amino acid sequences of antibodies 12C4huIgG₁LALA, 12C4huIgG₁ or 29AM4-5huIgG₁LALA were each joined at the N-terminus to a HAVT20 leader sequence (SEQ ID NO:29) and at the C-terminus to the constant domain of a human IgG₁ HC LALA according to SEQ ID NO:27 or a wild type human IgG₁ HC (SEQ ID 10 NO:25). The resulting chimeric amino acid sequences were back-translated into a cDNA sequence codon-optimized for expression in human cells (*Homo sapiens*). Similarly, the chimeric cDNA sequence for the LC of the construct was obtained by joining the sequences of a leader sequence (SEQ ID NO:28 for antibodies 1-9, 12; SEQ ID NO:40 for antibodies 10, 11, 13-16, SEQ ID NO:29 for 12C4huIgG₁LALA, 12C4huIgG₁ and 29AM4-5huIgG₁LALA) 15 to the LCVR of antibodies 1-16, 12C4huIgG₁LALA and 12C4huIgG₁ and 29AM4-5huIgG₁LALA at the N-terminus and at the C-terminus to a human IgG₁ κ light chain constant region (SEQ ID NO:26). The HCVR and LCVR sequences according to Table 1 were used.

Table 1 HCVR and LCVR sequences of the antibodies and reference antibodies

Antibody	HCVR	LCVR
1	SEQ ID NO:1	SEQ ID NO:2
2	SEQ ID NO:3	SEQ ID NO:4
3	SEQ ID NO:5	SEQ ID NO:6
4	SEQ ID NO:7	SEQ ID NO:8
5	SEQ ID NO:9	SEQ ID NO:10
6	SEQ ID NO:11	SEQ ID NO:12
7	SEQ ID NO:13	SEQ ID NO:14
8	SEQ ID NO:15	SEQ ID NO:16
9	SEQ ID NO:17	SEQ ID NO:18
29AM4-5huIgG ₁ LALA	SEQ ID NO:19	SEQ ID NO:20
12C4huIgG ₁ LALA	SEQ ID NO:21	SEQ ID NO:22
12C4huIgG ₁	SEQ ID NO:21	SEQ ID NO:22
KWAR23	SEQ ID NO:23	SEQ ID NO:24
10 humanized	SEQ ID NO:30	SEQ ID NO:31
11 humanized	SEQ ID NO:32	SEQ ID NO:33
12 humanized	SEQ ID NO:34	SEQ ID NO:8
13 humanized	SEQ ID NO:35	SEQ ID NO:36
14 humanized	SEQ ID NO:35	SEQ ID NO:37
15 humanized	SEQ ID NO:13	SEQ ID NO:38
16 humanized	SEQ ID NO:13	SEQ ID NO:37

b) Vector construction and cloning strategy

For expression of the antibody chains a mammalian expression vector was used, which contains a CMV:BGHpA expression cassette. The final vectors containing either the HC or the LC expression cassette (CMV:HC:BGHpA and CMV:LC-BGHpA, respectively) were 5 transferred to and expanded in *E. coli* NEB 5-alpha cells. Large-scale production of the final expression vectors for transfection was performed using Maxi- or Megaprep kits (Qiagen).

c) Transient expression in mammalian cells

Commercially available Expi293F cells (Thermo Fisher) were transfected with the expression vectors using the ExpiFectamine transfection agent according to the 10 manufacturer's instructions as follows: 75×10^7 cells were seeded in 300 mL FortiCHO medium, 300 μ g of the expression vector was combined with 800 μ l of ExpiFectamine transfection agent and added to the cells. One day after transfection, 1.5 ml Enhancer 1 and 15 ml Enhancer 2 were added to the culture. Six days post transfection, the cell culture supernatant was harvested by centrifugation at 4,000 g for 15 min and filtering the clarified 15 harvest over PES bottle filters/ MF 75 filters (Nalgene).

Antibody binding and specificity

Experimental

ELISA assay: Solutions of huSIRP α_1 , huSIRP α_{BIT} , huSIRP β_{1v1} , huSIRP β_{1v2} , huSIRP γ 20 and cySIRP α in phosphate buffered saline (PBS) were each added to a multiple well black polystyrene plate for ELISA and allowed to adhere for 1 h at RT. Unbound protein was removed with three washing steps using standard washing buffer. Subsequently, blocking buffer was added to the wells. After 1 h incubation at RT, the wells were washed three times with standard washing buffer. The antibodies in buffer at various concentrations were added 25 to the wells and incubated at RT for 1 h. Unbound antibodies were removed with three

washing steps using standard washing buffer. Goat anti human IgG (Fab')₂:horse radish peroxidase (HRP) in buffer was added to the wells and incubated at RT for 1 h. 3,3',5,5'-Tetramethylbenzidine (TMB) was added and after sufficient colour development HCl was added. Absorbance was read at 450 nm/620 nm.

5 Surface Plasmon Resonance (SPR) assay: Affinity analysis was performed by single cycle kinetics analysis on a Surface Plasmon Resonance apparatus (Biacore T200 system, GE Life Sciences) at 25°C. Biotinylated SIRP antigens were captured on the surface of a chip suitable for biotinylated molecules (Sensor Chip CAP, GE Life Sciences) by injecting 5 µg/ml of the SIRP antigen in running buffer (10 mM HEPES buffer at pH 7.4 with 150 mM NaCl, 3 mM EDTA and 0.005% v/v polyoxyethylene (20) sorbitan monolaurate (Surfactant P20) for 60 sec at 10 µL/min after injection of a streptavidin conjugate (20x diluted biotin CAPture reagent, GE Life Sciences) for 60 sec at 10 µl/min. Baseline stabilization was set at 1 min after which five increasing concentrations of an anti-SIRP antibody in running buffer (10 mM HEPES buffer at pH 7.4 with 150 mM NaCl, 3 mM EDTA and 0.005% v/v polyoxyethylene (20) sorbitan monolaurate) were injected. For each step an association time of 150 sec was used, followed by a dissociation time of 1200 sec at the highest concentration only, all at a flow rate of 30 µL/min. Regeneration was performed with 6 M guanidine-HCl, 0.25 M NaOH solution (60 sec with flow rate of 30 µL/min). Double blank subtraction was performed on the observed sensorgrams using a non anti-SIRP (blank) immobilized reference flow channel and running buffer injection. Sensorgrams were fitted with a 1:1 Langmuir model for all tested anti-SIRP antibodies. The kinetic parameters (k_a , k_d and K_D) were calculated using the Biacore T200 evaluation software (v3.1).

10 15 20 25

Flow Cytometry: U937 cells endogenously expressing human SIRP α_{BIT} antigen and cells derived from a non-engineered subclone that has been screened and isolated from CHO-S Chinese hamster ovary cells (ExpiCHO-S) cells expressing human SIRP α_1 , SIRP α_{BIT} or

cySIRP α antigen (100,000 cells/well in a 96-well plate) were washed three times with ice-cold FACS buffer (1x PBS (LONZA) containing 0.2% v/w BSA (Sigma-Aldrich, St. Louis, MO) and 0.02% v/w NaN₃ (Sigma-Aldrich), followed by the addition of a concentration range of each primary mAb (50 μ L/well) diluted in ice-cold FACS buffer. After an incubation 5 time of 30 min at 4°C, the cells were washed three times with ice-cold FACS buffer and 50 μ L/well secondary mAb (AffiniPure F(ab')₂ fragment Goat-anti-human IgG-APC, 1:6,000 dilution, Jackson Immuno Research) was added. After 30 min at 4°C, cells were washed twice 10 and resuspended in 150 μ L FACS buffer. Fluorescence intensities were determined by flow cytometry (BD FACSVerse, Franklin Lakes, NJ) and indicated as the median fluorescence intensity (MFI-Median) for U937 cells and ExpiCHO-S cells. Curves were fitted by nonlinear regression using the sigmoidal dose-response equation with variable slope (four parameters) in GraphPad Prism (version 7.02 for Windows, GraphPad, San Diego, CA). EC₅₀ values were calculated as the concentration in μ g/mL that gives a response half way between bottom and 15 top of the curve, when using a 4-parameter logistic fit.

15

Results

ELISA assay: The EC₅₀ values for binding to huSIRP α_1 , huSIRP α_{BIT} , huSIRP β_1 , huSIRP β_{1v2} , huSIRP γ , cySIRP α obtained with ELISA for antibodies 1-9 and reference 20 antibodies are summarized in Table 2. All antibodies bind to huSIRP α_1 and to huSIRP α_{BIT} , Antibodies 29AM4-5huIgG₁LALA and 12C4huIgG₁LALA, bind to huSIRP β_{1v1} , huSIRP β_{1v2} , and huSIRP γ . The antibodies 2-6, 8 and 9 show a low affinity for huSIRP β_{1v1} and for huSIRP γ . Antibody 7 binds to huSIRP β_{1v1} , but has low affinity for huSIRP β_{1v2} and huSIRP γ . Antibody 1 binds to huSIRP β_{1v2} and huSIRP γ .

Table 2 Specificity of the anti-SIRP α antibodies and reference antibodies

Antibody	huSIRP α_1 EC ₅₀ (ng/ml)	huSIRP α_{BIT} EC ₅₀ (ng/ml)	huSIRP β_{1v1} EC ₅₀ (ng/ml)	huSIRP β_{1v2} EC ₅₀ (ng/ml)	huSIRP γ EC ₅₀ (ng/ml)	cySIRP α EC ₅₀ (ng/ml)
1	39	21	100,000	58	43	305
2	33	27	100,000	28	100,000	38
3	15	24	100,000	89	5,216	36
4	53	25	100,000	92	100,000	99
5	31	21	3,518	110	100,000	123
6	21	20	100,000	24	100,000	33
7	23	20	14	100,000	100,000	335
8	19	20	100,000	19	100,000	26
9	23	26	100,000	47	100,000	30
29AM4-5*	9	9	13	17	34	11
12C4*	7	5	8	6	6	5

*huIgG₁LALAEC₅₀ values > 100,000 have been adjusted to 100,000.

5 SPR assay: The K_D values for binding to huSIRP α_1 , huSIRP α_{BIT} and huSIRP γ of antibodies 4, 7, 10-14 in comparison with reference antibodies KWAR23, huIgG₁12C4LALA and SE5A5 (purchased from a commercial supplier) are summarized in Table 3. Antibodies 4, 7, 10-14 bind to both huSIRP α_1 and huSIRP α_{BIT} , and do not bind to huSIRP γ . All reference antibodies do bind to huSIRP γ .

Table 3 SPR data (K_D in M)

Antibody	K_D (huSIRP α_{BIT})	K_D (huSIRP α_1)	K_D (huSIRP γ)
KWAR23 mouse IgG2a	<1.0E-11 ¹	<1.0E-11	<1.0E-11
KWAR23 huIgG ₁ LALA	<1.0E-11 ¹	1.1E-11	<1.0E-11
12C4huIgG ₁ LALA	1.5E-11	8.7E-11	1.6E-11
SE5A5	2.6E-9	2.2E-9	4.9E-8
4	<1.0E-11	2.6E-11	N ²
7	<1.0E-11	<1.0E-11	N
10 humanized	<1.0E-11	3.2E-9	N
11 humanized	1.4E-10	4.1E-8	N
12 humanized	<1.0E-11	5.9E-11	N
13 humanized	1.2E-11	<1.0E-11	N
14 humanized	8.9E-11	<1.0E-11	N

¹ <1.0E-11: K_D is outside the range which means high affinity

² N: No specific binding found

5 Flow Cytometry assay: The binding of various antibodies to huSIRP α_1 , huSIRP α_{BIT} , and/or cySIRP α expressed on cells was determined by flow cytometry. The binding is indicated in EC₅₀ values, which are shown in Table 4. Antibodies 2, 4, 5, 7, 8, 10-14 bind to huSIRP α_1 , huSIRP α_{BIT} and cySIRP α . Antibodies 2, 4, 5, 7, 8, 10-14 bind to cySIRP α in the low μ g/mL range.

Table 4 Flow Cytometry data

Antibody	U937 cells (SIRP α _{BIT}) EC ₅₀ (μg/mL)	ExpiCHO-S (huSIRP α ₁) EC ₅₀ (μg/mL)	ExpiCHO-S (huSIRP α _{BIT}) EC ₅₀ (μg/mL)	ExpiCHO-S (cySIRP α) EC ₅₀ (μg/mL)
1	-	-	-	-
2	0.14	0.19	0.27	0.16
3	0.22	-	-	-
4	0.12	0.41	0.23	0.18
5	0.16	0.27	0.22	0.26
6	-	-	-	-
7	0.17	0.23	0.21	0.07
8	0.12	0.22	0.18	0.15
9	0.11	-	-	-
29AM4-5 huIgG ₁ LALA	0.25	-	-	-
12C4huIgG ₁ LALA	0.19	-	-	-
KWAR23 huIgG ₁ LALA	0.09	-	-	-
10	0.17	0.38	0.2	0.27
11	0.13	1.05	0.3	0.32
12	0.2	0.1	0.46	0.17
13	0.14	0.36	0.23	0.44
14	0.22	0.37	0.29	0.38

Antibody	U937 cells (SIRP α _{BIT}) EC ₅₀ (μg/mL)	ExpiCHO-S (huSIRP α ₁) EC ₅₀ (μg/mL)	ExpiCHO-S (huSIRP α _{BIT}) EC ₅₀ (μg/mL)	ExpiCHO-S (cySIRP α) EC ₅₀ (μg/mL)
15	0.16	-	-	-
16	0.23	-	-	-

- value not determined

Antibody blocking of CD47-SIRP α binding

Experimental

5 CHO cells transfected with either SIRP α ₁ or SIRP α _{BIT} or parental CHO cells as control were seeded in 20 μl cell medium in a well plate with clear bottom and incubated overnight. Antibodies 1-9, 29AM4-5huIgG₁LALA or 12C4huIgG₁LALA reference antibodies together with a mixture of His tag® CD47 and anti-His tag® fluorescent detection antibody were added to the wells and incubated for 2 h. After incubation, the cells were washed with cell 10 wash buffer. Fluorescence was determined using a screening system (CellInsight®, Thermo Scientific®) and total fluorescence per cell was determined.

Results

Antibodies 29AM4-5huIgG₁LALA, 12C4huIgG₁LALA, 3 and 7 block binding of CD47 to both CHO cells expressing huSIRP α ₁ and CHO cells expressing huSIRP α _{BIT} completely, 15 antibodies 1, 2, 4-6, 8 and 9 do neither block binding of CD47 to CHO cells expressing huSIRP α ₁ nor to CHO cells expressing huSIRP α _{BIT}.

ADCC assay

Neutrophils of donors homozygous for either SIRP α ₁ or SIRP α _{BIT} were isolated and 20 cultured according to the method in Chao *et al.* PNAS 2011, 108(45), 18342-18347. ADCC

was determined using the ^{51}Cr release assay or the non-radioactive Europium TDA (EuTDA) cytotoxicity assay (DELFIA, PerkinElmer). SKBR3 cells were used as target cells and labelled with 100 μCi ^{51}Cr (Perkin-Elmer) for 90 min at 37°C, or with bis (acetoxyethyl) 2,2':6',2"- terpyridine-6,6"-dicarboxylate (BATDA reagent Delfia), for 5 min at 37°C. After 2 5 washes with PBS, 5×10^3 target cells per well were incubated in IMDM culture medium supplemented with 10% (v/v) foetal calf serum (FCS) for 4 hours at 37°C and 5% CO_2 in a 96-well U-bottom plate together with neutrophils in an effector to target cell ratio of 50:1 in the presence of the appropriate antibodies. After the incubation, supernatant was harvested and analyzed for radioactivity in a gamma counter (Wallac) or was added to europium 10 solution (DELFIA, PerkinElmer) and the europium 2,2':6',2"-terpyridine-6,6"-dicarboxylic acid (EuTDA) fluorescence was determined using a spectrofluorometer (Envision, PerkinElmer). The percentage of cytotoxicity was calculated as $[(\text{experimental release} - \text{spontaneous release}) / (\text{total release} - \text{spontaneous release})] \times 100\%$. All conditions were measured in duplicate and/or triplicate.

15

ADCC data 12C4huIgG₁LALA versus 12C4IgG₁

Figure 1 shows the results of the ADCC assay as cytotoxicity in %. The % cytotoxicity measured on SKBR3 cells using neutrophils as effector cells and trastuzumab alone is less than the % cytotoxicity of trastuzumab in combination with the murine 12C4 antibody 20 (mu12C4). Trastuzumab in combination with an antibody wherein 12C4 variable regions are grafted onto a human IgG₁ constant region (12C4huIgG₁) shows similar % cytotoxicity as compared to trastuzumab alone at low concentrations of 12C4huIgG₁. At higher concentrations 12C4huIgG₁, a decrease in % cytotoxicity is observed. Trastuzumab in combination with an antibody wherein 12C4 variable regions are grafted onto a human IgG₁ 25 constant region comprising amino acid substitutions L234A and L235A (12C4huIgG₁LALA)

shows increased % cytotoxicity compared to the % cytotoxicity of trastuzumab alone, and increased % cytotoxicity compared to the combination of 12C4huIgG₁ and trastuzumab.

ADCC data

5 Figure 2 compares the % ADCC by human neutrophils relative to trastuzumab (set to 100%) in the presence of antibody 1-9 having a human IgG₁ constant region comprising amino acid substitutions L234A and L235A (LALA) in combination with trastuzumab in comparison with 12C4huIgG₁LALA. B6H12IgG₁LALA, having the VR of a murine anti-CD47 antibody and a human IgG₁ constant region comprising amino acid substitutions 10 L234A and L235A, and vehicle (no trastuzumab) were used as positive and negative control, respectively. Filled squares, (■), are the values measured with neutrophils of donors having the SIRP α_{BIT} variant (homozygous for SIRP α_{BIT}), open circles (○) are the values measured with neutrophils of donors having the SIRP α_1 variant (homozygous for SIRP α_1). For all antibodies the average ADCC was increased in comparison to trastuzumab alone. For 15 antibodies 1, 2, 4, 5, 7 and 8 the average ADCC increase was enhanced even more than the 12C4huIgG₁LALA-induced ADCC increase. When the ADCC increase per donor per antibody is compared, antibodies 1, 3-6, 8 and 9 show less variation in % increase in ADCC than 12C4huIgG₁LALA.

Figure 3 compares the % ADCC by human neutrophils in the presence of various 20 concentrations of chimeric antibodies 4 and 7 and humanized antibodies 10 and 14 having a human IgG₁ constant region comprising amino acid substitutions L234A and L235A (LALA) in combination with trastuzumab in comparison with trastuzumab alone and trastuzumab in combination with various concentrations of 12C4huIgG₁LALA. Neutrophils of two donors homozygous for SIRP α_{BIT} were used. Even at low concentrations antibodies 4, 7, 10 and 14 25 increase ADCC. The ADCC increase is concentration dependent.

Figure 4 compares the % ADCC by human neutrophils in the presence of antibodies 4, 7, 10, 13, 14, 15 and 16 in combination with trastuzumab (Tmab) in comparison with the % ADCC trastuzumab alone and 12C4huIgG₁LALA. All antibodies increase the ADCC in comparison with trastuzumab alone. The ADCC increase by neutrophils of most donors in the presence of antibodies 4, 7, 10, 13, 14, 15 and 16 in combination with trastuzumab is similar or increased in comparison with 12C4huIgG₁LALA in combination with trastuzumab.

5

**Sequence listings with underlined CDR1, CDR2 and CDR3 amino acid sequences
in heavy chain (HC) and light chain (LC) variable region (VR) amino acid sequences
(determined using the method of Kabat)**

5 SEQ ID NO:1 (HC VR 1)

1 QSVEESGGRL VTPGTPLTLT CTVSGIDLSS YAMSWVRQAP GKGLEWIGII
51 SSGGITYYYAS WAKGRFTISK TSTTVDLKIP SPTTEDTATY FCARSLWAAS
101 NYYMALWGPG TLTVVSS

10 SEQ ID NO:2 (LC VR 1)

1 AIKMTQTPAS VSAAVGGTVS INCQASEDIE SYLAWYQQKP GQPPKLLIYR
51 ASTLASGVSS RFKGSGSGTQ FTLTISDLES ADAATYYCLG DYYSSSGDTG
101 AFGGGTEVVV K

15 SEQ ID NO:3 (HC VR 2)

1 QSVEESGGRL VTPGTPLTLT CTVSGFSLSN YAMHWVRQAP GKGLEWIGII
51 YTGGATSYAT WAKGQFTISK TSTTVDLKIT SPTTEDTATY FCARGDRDGY
101 AYFNIWGPGT LTVVSL

20 SEQ ID NO:4 (LC VR 2)

1 QIVMTQTPFS VSAVVGGTVT IKCQASHNIG SWLAWYQQKP GQRPKLLIYD
51 ASTLASGVSS RFKGSGSGTE FTLTISGVES ADAATYYCQQ GYGISYVHNV
101 FGGGTEVVVK

SEQ ID NO:5 (HC VR 3)

1 QSVEESGGRL VTPGTPLTLA CTVSGFSLIS YYISWVRQAP EKGLEYIGII
 51 NIGGGASYAS WAKGRFTISK TSTTVDLKIT SPTPEDTATY FCAMSYGMDT
 101 GAFNIWGP GT LTVSL

5

SEQ ID NO:6 (LC VR 3)

1 AQVLTQTPAS VSAAVGGTVT IS CQSSES VY KNNFLSWYQQ KPGKPPKLLI
 51 YGASTLASGV PSRFKGSGSG TQFTLTISDL ESDDAATYFC QGGYRTDIY P
 101 FGGGTEVVVK

10

SEQ ID NO:7 (HC VR 4)

1 QSVEESGGRL GTPGTPLTLT CTVSGFSLSS YVMGWFRQAP GKGLEYIGII
 51 SSSGSPYYAS WVN GRFTISK TSTTMDLKMN SPTTEDTATY FCARVGPLGV
 101 DYFNIWGP GT LTVSL

15

SEQ ID NO:8 (LC VR 4)

1 DIVMTQTPSS VEA AVGGTVT IKCQAGQSIN SYLAWYQQKP GQRPKLLIYY
 51 ASTLESGVPS RFKGSGSGTD YTTLTISDLES ADAATYYCQS WHYISRSYAF
 101 GGGTEVVVK

20

SEQ ID NO:9 (HC VR 5)

1 QSVEESGGRL VTPGTPLTLT CTVSGFSLSS YVMGWFRQAA GKGLEYIGYI
 51 NADGSPYYAT WVN GRFTISK TPTTMDLKIN SPTTEDTATY FCARVGPLGV
 101 DYFNIWGP GT LTVSL

SEQ ID NO:10 (LC VR 5)

1 DIVMTQTPAS VAAVGGTVT IKCQASQSIN RYLTWYQQKP GQRPKLLIYY
 51 ASTLESGVPS RFEGSGTD YTLTISDLES ADAATYYCQS YYYISRTYAF
 101 GGGTEV VVK

5

SEQ ID NO:11 (HC VR 6)

1 QSVEESGGRL VTPGTPLTLT CTVSGIDLSS YTMTWVRQAP GKGLEWIGI
 51 YAGGSTAYAS WAKGRFTISK TSTTVDLKIT SPTTEDTATY FCARSSSDGY
 101 DYFNIWGPGT LTVVS L

10

SEQ ID NO:12 (LC VR 6)

1 GVVMTQTPSS VSAAVGGTVT INCQASQSIG SWLAWYQQKP GQPPKLLIYQ
 51 ASKLASGVPS RFSGRGSGTH FTLTISDVQS DDAATYYCQQ TVTAASNVDNA
 101 FGGGTEVVVK

15

SEQ ID NO:13 (HC VR 7)

1 RSVEESGGRL VTPGTPLTLT CTVSGFSLSS HGISWVRQAP GKGLEYIGT
 51 GTGVITYFAS WAKGRFTGSK TSTTVDLKIT SPTTEDTATY FCARGSAWND
 101 PFDPWGPGTL VTVSS

20

SEQ ID NO:14 (LC VR 7)

1 ALVMTQTPAS VSAAVGGTVT TKCQASQSVY GNNDLAWYQH KPGQPPKLLI
 51 YLASTLATGV PSRFSGSGSG TQFTLTITGV QSDDAATYYC LGGGDDEADN
 101 VFGGGTEVVV K

SEQ ID NO:15 (HC VR 8)

1 QSLEESGGRL VTPGTPLTLT CTASGVDSL YAMGWVRQAP GKGLEWIGII
 51 YAGGSTSYAT WAKGRFTISK TSTTMDLKMT SPTTEDTATY FCARHRSDGY
 101 DYFHLWGP GT LTVSL

5

SEQ ID NO:16 (LC VR 8)

1 AIDMTQTPAS VSEPVGGTVT IKCQASQSIS SWLAWYQQKP GQRPKLLIYD
 51 ASKLASGVPS RFSGSGSGTE FTLTISGVQS DDAAAYYCQQ GYAVSYVENI
 101 FGGGTEVVVK

10

SEQ ID NO:17 (HC VR 9)

1 QSMEESGGRL VTPGTPLTLT CTASGFSLSN YGVSWVRQAP GKGLEWIGII
 51 YGGSDITAYA SWAKGRFTIS KTSTTVDLTI TSPTTEDTAT YFCAKSYTNG
 101 MDYYNIWGP G TLTVSL

15

SEQ ID NO:18 (LC VR 9)

1 AFDLTQTPSS VEAPVGGTVI IKCQASQSIS SYLAWYQQKP GQPPKLLIYD
 51 ASTLASGVSS RFKGSGSETQ FPLTISDLES ADAATYYCQS YYGSRSNVFG
 101 GGTEVVVK

20

SEQ ID NO:19 (HC VR 29AM4-5)

1 EVQLVESGGG LVQPGGSLRL SCAASGFNIS YYFIHWVRQA PGKGLEWVAS
 51 VYSSFGYTY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCARFT
 101 FPGLFDGFFG AYLGSLDYWG QGTLTVSS

SEQ ID NO:20 (LC VR 29AM4-5)

1 DIQMTQSPSS LSASVGDRV TTCRASQSVS SAVAWYQQKP GKAPKLLIYS
 51 ASSLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ AVNWVGALVT
 101 FGQGTKVEIK

5

SEQ ID NO:21 (HC VR 12C4)

1 EVKLEESGGG LMQP^GGS^MKL SCVASGFTFS NYWMNWVRQS PEKGLEWVAE
 51 IRLKSNNYAT HYAESVKGRF TISRDDSKSS VYLQMNNLRA EDTGIYYCIR
 101 DYDYDAYFDY WGQGTTLTVS S

10

SEQ ID NO:22 (LC VR 12C4)

1 DIVLTQSPAS LAVSLGQRAT ISCRASKSVS TSGYN^MYWY QQKPGQPPKL
 51 LIYLASNLES GVPARFSGSG SGTDFTLNIH PVEEEDAATY YCQHSGELPY
 101 TFGGGTKLEI K

15

SEQ ID NO:23 (HC VR KWAR23)

1 EVQLQQSGAE LVKPGASVKL SCTASGFNIK DYYIHWVQQR TEQGLEWIGR
 51 IDPEDGETKY APKFQDKATI TADTSSNTAY LHLSLTSED TAVYYCARWG
 101 AYWGQGTLVT VSS

20

SEQ ID NO:24 (LC VR KWAR23)

1 QIVLTQSPAI MSASPGEKVT LTCSASSSVS SSYLYWYQQK PGSSPKLWIY
 51 STSNLASGVP ARFSGSGSGT SYSLTISSME AEDAASYFCH QWSSYPRTFG
 101 AGTKLELK

25

SEQ ID NO:25 (human IgG₁ antibody HC constant region)

1 ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV
 51 HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP
 101 KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS
 5 151 HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK
 201 EYKCKVSNKA LPAPIEKTI S KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC
 251 LVKGFYPSDI AVEWESNGQP ENNYKTPPV LDSDGSFFLY SKLTVDKSRW
 301 QQGNVFSCSV MHEALHNHYT QKSLSLSPGK

10 SEQ ID NO:26 (human IgG₁ antibody LC κ constant region)

1 RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG
 51 NSQESVTEQD SKDSTYSLSS TLTLSKADYE KHKVYACEVT HQGLSSPVTK
 101 SFNRGEC

15 SEQ ID NO:27 (human IgG₁ antibody HC constant region LALA mutant (mutations underlined))

1 ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV
 51 HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP
 101 KSCDKTHTCP PCPAPEAAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS
 20 151 HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK
 201 EYKCKVSNKA LPAPIEKTI S KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC
 251 LVKGFYPSDI AVEWESNGQP ENNYKTPPV LDSDGSFFLY SKLTVDKSRW
 301 QQGNVFSCSV MHEALHNHYT QKSLSLSPGK

SEQ ID NO:28 (leader sequence HC 1-9, 15 + 16, LC 1-9 + 12)

1 MGWSCIILFL VATATGVHS

SEQ ID NO:29 (HAVT20 leader sequence)

5 1 MACPGFLWAL VISTCLEFSMA

SEQ ID NO:30 (HC VR 10)

1 KVEESGGGLV QPGGSLRLSC AASGFSLSSY VMGWVRQAPG KGLEWVSIIS
51 SSGSPYYASW VNGRFTISKD NSEGMVYLQM NSLRAEDTAV YYCARVGPLG
10 101 VDYFNIWGQG TTDTVSS

SEQ ID NO:31 (LC VR 10)

1 DIVMTQSPDS LAVSLGERAT INCQAGQSIN SYLAWYQQKP GQPPKLLIYY
51 ASTLESGVPD RFSGSGSGTD FTLTISSLQA EDVAVYYCQS WHYISRSYAF
15 101 GGGTKLEIK

SEQ ID NO:32 (HC VR 11)

1 EVKVEESGGG LVQPGGSLRL SCAASGFSL S YVMGWVRQA PGKGLEWVSI
51 ISSSGSPYYA SWVNGRFTIS KTSTTMDLQM NSLRAEDTAV YYCARVGPLG
20 101 VDYFNIWGQG TTDTVSS

SEQ ID NO:33 (LC VR 11)

1 DIQMTQSPSS LSASVGDRV T ITCQAGQSIN SYLAWYQQKP GKVPKLLIYY
51 ASTLESGVPS RFSGSGSGTD FTLTISSLQP EDVATYYCQS WHYISRSYAF
25 101 GQGTKVEIK

SEQ ID NO:34 (HC VR 12)

1 VQLVESGGRL VQPGTPLTLS CTVSGFSLSS YVMGWFRQAP GKGLYEYIGII
51 SSSGSPYYAS WVNGRFTISK TSTTMDLKMN SLRSEDTATY FCARVGPLGV
101 DYFNIWGP GT LTVSS

5

SEQ ID NO:35 (HC VR 13 + 14)

1 RQLVESGGGL VQPGGSLRLS CTASGFSLSS HGISWVRQAP GKGLYEYIGTI
51 GTGVITYFAS WAKGRFTGSK TSSTAYMELS SLRSEDTAVY FCARGSAWND
101 PFDPWGQGTL VTVSS

10

SEQ ID NO:36 (LC VR 13)

1 AIQMTQSPSS LSASVGDRVT ITCQASQSVY GNNDLAWYQQ KPGKAPKLLI
51 YLASTLATGV PSRFSGSGSG TDFTLTISL QPEDFATYYC LGGGDDEADN
101 VFGGGTTKVEI K

15

SEQ ID NO:37 (LC VR 14 + 16)

1 DIEMTQSPSS VSASVGDRVT LTCQASQSVY GNNDLAWYQQ KPGQAPKLLI
51 YLASTLATGV PSRFSGSGSG TDFTLTISL QPEDFATYYC LGGGDDEADN
101 VFGGGTTKVEI K

20

SEQ ID NO:38 (LC VR 15)

1 ELVMTQSPSS LSASVGDRVT ITCQASQSVY GNNDLAWYQQ KPGEAPKLLI
51 YLASTLATGV PSRFSGSGSG TDFTLTISGL QSEDFATYYC LGGGDDEADN
101 VFGQGTTKVEI K

SEQ ID NO:39 (leader sequence heavy chains 10-14)

1 MGWTLVFLFL LSVTAGVHS

SEQ ID NO:40 (leader sequence light chains 10, 11, 13-16)

5 1 MVSSAQFLGL LLLCFQGTRC

CLAIMS

1. An anti-SIRP α antibody or an antigen-binding fragment thereof, comprising heavy chain (HC) and light chain (LC) variable region (VR) complementarity determining regions (CDRs) CDR1, CDR2 and CDR3, wherein:
 - a. HC VR CDR1 consists of the amino acid sequence HGIS,
 - b. HC VR CDR2 consists of the amino acid sequence TIGTGVITYFASWAKG,
 - c. HC VR CDR3 consists of the amino acid sequence GSAWNNDPFDP,
 - d. LC VR CDR1 consists of the amino acid sequence QASQSVYGNNDLA,
 - e. LC VR CDR2 consists of the amino acid sequence LASTLAT, and
 - f. LC VR CDR3 consists of the amino acid sequence LGGGDDEADNV,wherein the CDRs are determined according to Kabat numbering.
2. The anti-SIRP α antibody or antigen-binding fragment thereof according to claim 1, which is chimeric, humanized or human.
3. The anti-SIRP α antibody or antigen-binding fragment thereof according to claim 2, which is humanized.
4. The humanized anti-SIRP α antibody or antigen-binding fragment thereof according to claim 3, comprising
 - a. HC VR amino acid sequence of SEQ ID NO:35 and LC VR amino acid sequence of SEQ ID NO:36;
 - b. HC VR amino acid sequence of SEQ ID NO:35 and LC VR amino acid sequence of SEQ ID NO:37;
 - c. HC VR amino acid sequence of SEQ ID NO:13 and LC VR amino acid sequence of SEQ ID NO:38; or
 - d. HC VR amino acid sequence of SEQ ID NO:13 and LC VR amino acid sequence of SEQ ID NO:37.
5. The anti-SIRP α antibody according to any one of claims 1 to 4, comprising a modified Fc region that exhibits reduced binding to a human Fc α or Fc γ receptor compared to the same anti-SIRP α antibody comprising a wild-type Fc region.
6. The anti-SIRP α antibody according to claim 5, comprising a modified human IgG₁ Fc region comprising amino acid substitutions at one or more positions selected from the

group consisting of L234, L235, G237, D265, D270, N297, A327, P328, and P329 according to Eu numbering.

7. The anti-SIRP α antibody according to claim 6, comprising the amino acid substitutions L234A and L235A; L234E and L235A; L234A, L235A and P329A; or L234A, L235A and P329G.
8. The anti-SIRP α antibody according to claim 7, comprising the amino acid substitutions L234A and L235A; or L234E and L235A.
9. A pharmaceutical composition comprising the anti-SIRP α antibody or antigen-binding fragment thereof according to any one of claims 1 to 8 and one or more pharmaceutically acceptable excipients.
10. Use of the anti-SIRP α antibody or antigen-binding fragment thereof according to any one of claims 1 to 8 or the pharmaceutical composition according to claim 9 in the manufacture of a medicament for treating a human solid tumour or a haematological malignancy.
11. Use of a combination of the anti-SIRP α antibody or antigen-binding fragment thereof according to any one of claims 1 to 8 or the pharmaceutical composition according to claim 9 with one or more other anti-cancer therapeutics in the manufacture of a medicament for treating a human solid tumour or a haematological malignancy.
12. The use according to claim 11, wherein the one or more other anti-cancer therapeutics are targeted therapeutics or immunotherapeutic agents.
13. The use according to claim 12, wherein the targeted therapeutic is a therapeutic antibody or an antibody-drug conjugate.
14. The use according to claim 13, wherein the therapeutic antibody is a therapeutic antibody against a membrane-bound target on the surface of tumour cells which comprises a human Fc region that binds to activating Fc receptors present on human immune effector cells.
15. The use according to claim 13, wherein the therapeutic antibody is a monospecific or bispecific antibody or antibody fragment comprising at least one HCVR and LCVR

binding to a target selected from the group consisting of annexin A1, B7H3, B7H4, CA6, CA9, CA15-3, CA19-9, CA27-29, CA125, CA242, CCR2, CCR5, CD2, CD19, CD20, CD22, CD30, CD33, CD37, CD38, CD40, CD44, CD47, CD56, CD70, CD74, CD79, CD115, CD123, CD138, CD203c, CD303, CD333, CEA, CEACAM, CLCA-1, CLL-1, c-MET, Cripto, CTLA-4, DLL3, EGFL, EGFR, EPCAM, EPh, endothelin B receptor (ETBR), FAP, FcRL5 (CD307), FGF, FGFR, FOLR1, GCC, GPNMB, HER2, HMW-MAA, integrin α , IGF1R, TM4SF1, Lewis A, Lewis X, Lewis Y, LIV1, mesothelin, MUC1, MUC16, NaPi2b, Nectin-4, PD-1, PD-L1, PSMA, PTK7, SLC44A4, STEAP-1, 5T4 antigen, TF (tissue factor), Thomsen-Friedenreich antigen (TF-Ag), Tag72, TNF, TNFR, TROP2, VEGF, VEGFR, and VLA.

16. The use according to claim 13, wherein the therapeutic antibody is selected from the group consisting of alemtuzumab, bevacizumab, cetuximab, panitumumab, rituximab, and trastuzumab.
17. The use according to claim 13, wherein the antibody-drug conjugate is trastuzumab emtansine or brentuximab vedotin.
18. A method for treating a human solid tumour or a haematological malignancy, which comprises administering the anti-SIRP α antibody or antigen-binding fragment thereof according to any one of claims 1 to 8, to a patient in need thereof.
19. The method according to claim 18, which further comprises administering to the patient one or more other anti-cancer therapeutics for use in the treatment of the human solid tumour or the haematological malignancy.
20. The method according to claim 19, wherein the one or more other anti-cancer therapeutics are targeted therapeutics or immunotherapeutic agents.

FIGURE 1

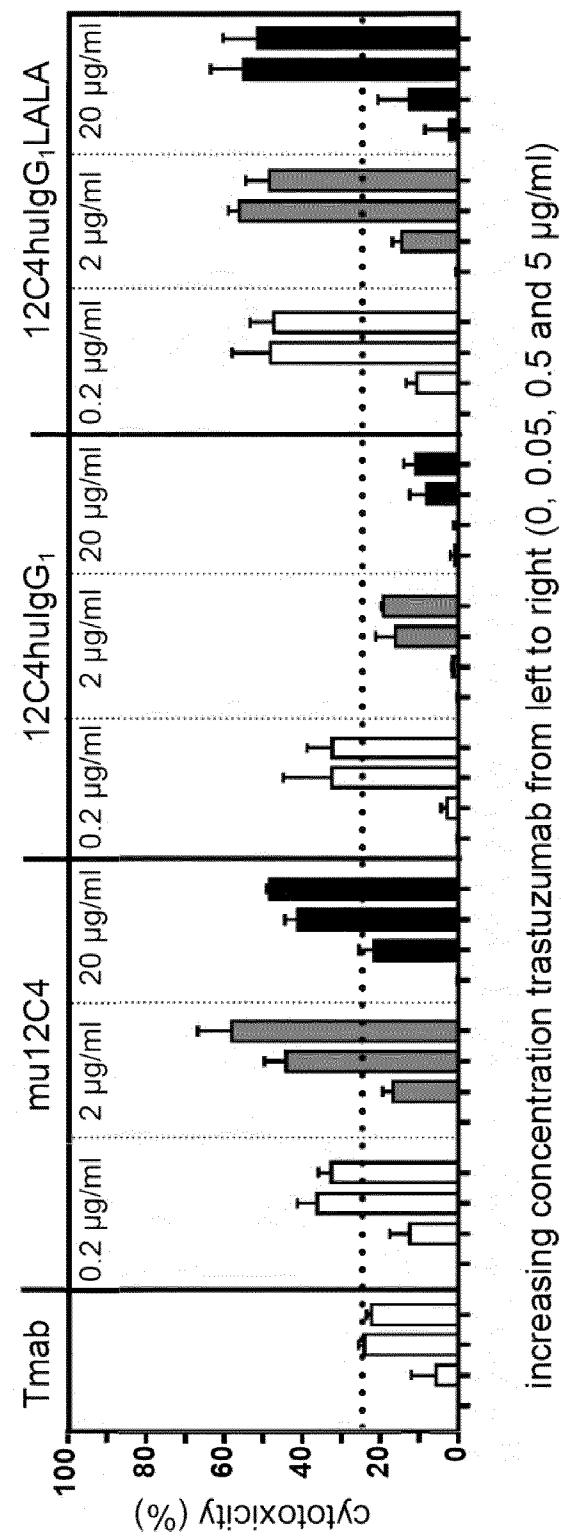


FIGURE 2

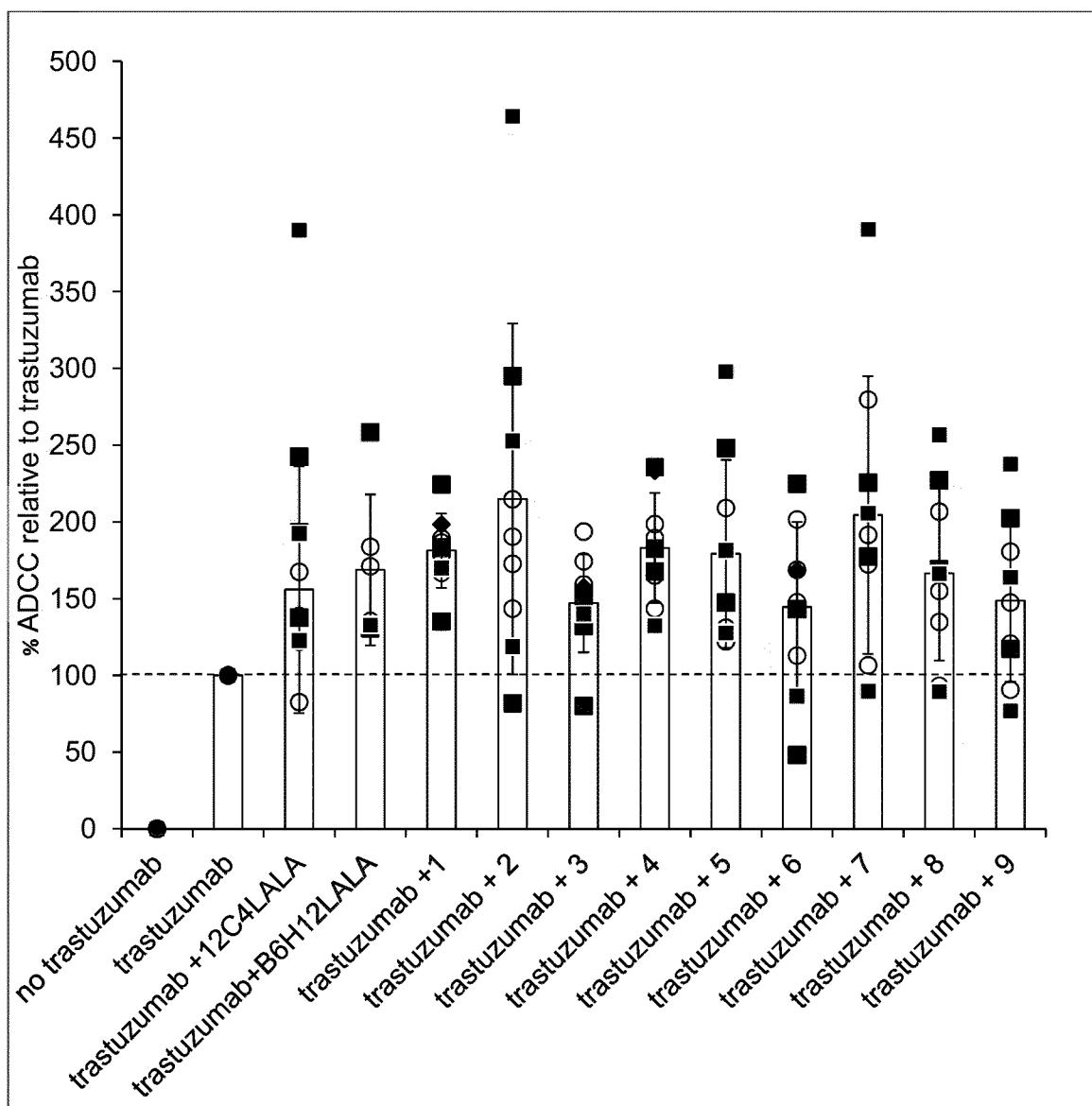


FIGURE 3

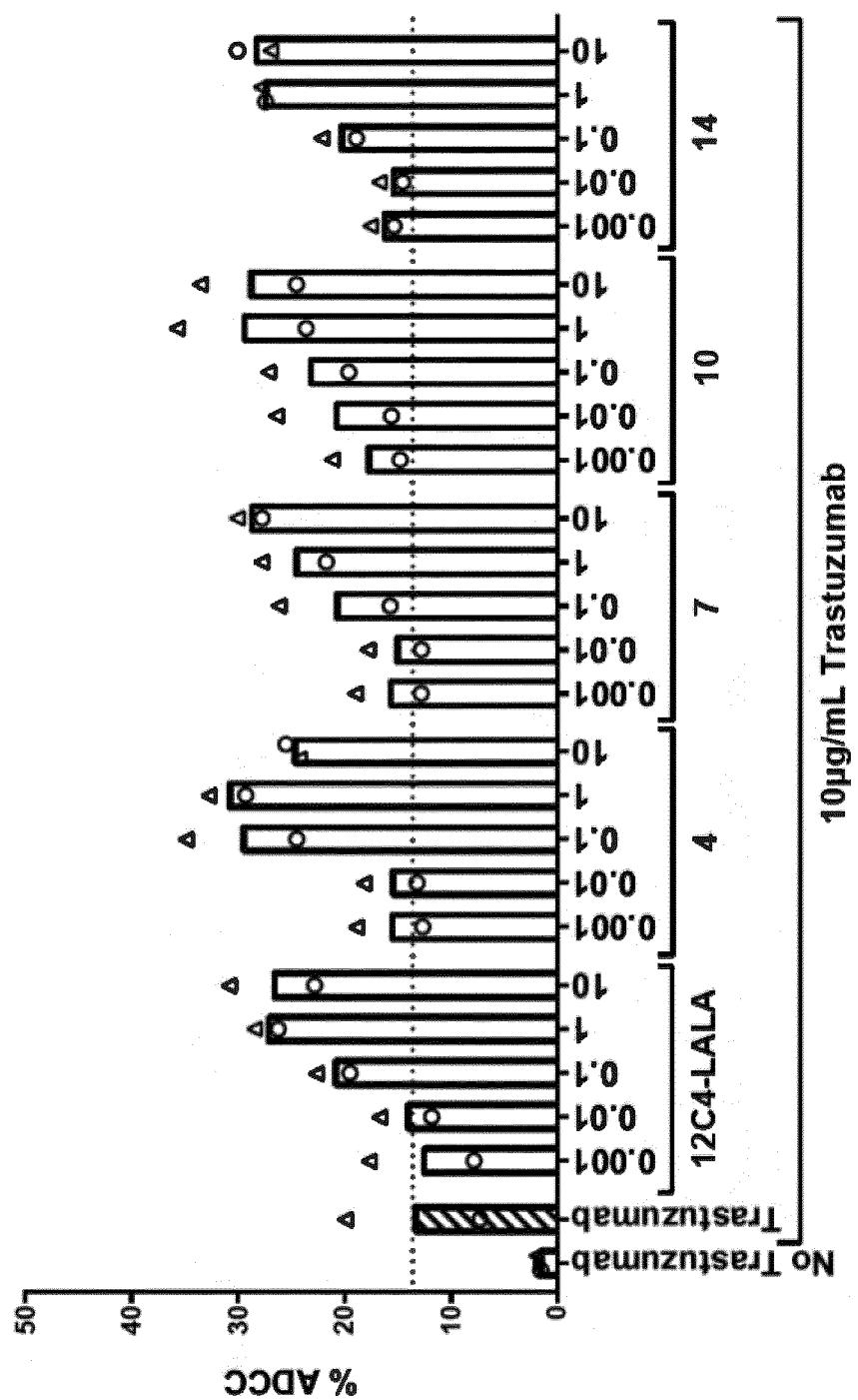
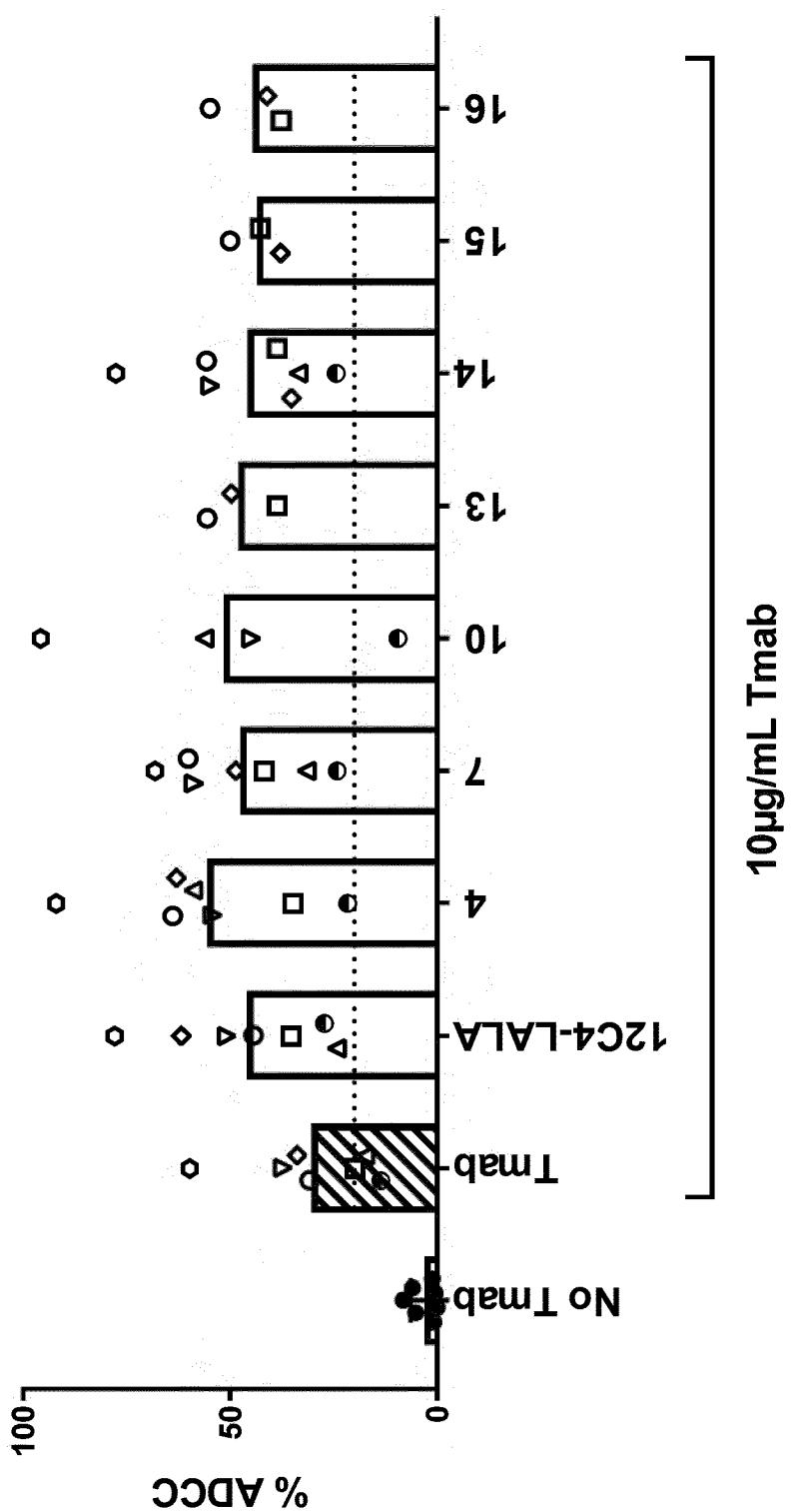



FIGURE 4

SEQUENCE LISTING

<110> Synthon Biopharmaceuticals B.V.
VERHEIJDEN Gijsbertus Franciscus Maria
ROUWENDAL Gerard Johan Adolph
ARENDS Roland Jan
BERG, VAN DEN Timo Kars
MATLUNG Hanke Lottie
SZILAGYI Katarina

<120> Anti SIRPalpha antibodies with a LALA mutation

<130> P1703PC00/PB-078

<160> 29

<170> BiSSAP 1.3

<210> 1
<211> 117
<212> PRT
<213> Artificial Sequence

<220>

<223> SEQ ID NO:1 (HC VR 1)

<400> 1
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser Ser Tyr Ala
20 25 30
Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35 40 45
Ile Ile Ser Ser Gly Gly Ile Thr Tyr Tyr Ala Ser Trp Ala Lys Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Pro
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Ser Leu
85 90 95
Trp Ala Ala Ser Asn Tyr Tyr Met Ala Leu Trp Gly Pro Gly Thr Leu
100 105 110
Val Thr Val Ser Ser
115

<210> 2
<211> 111
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:2 (LC VR 1)

20180816-164819-1.txt

<400> 2
Ala Ile Lys Met Thr Gln Thr Pro Ala Ser Val Ser Ala Ala Val Gly
1 5 10 15
Gly Thr Val Ser Ile Asn Cys Gln Ala Ser Glu Asp Ile Glu Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile
35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Ser Ser Arg Phe Lys Gly
50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu Glu Ser
65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Leu Gly Asp Tyr Tyr Ser Ser Ser
85 90 95
Gly Asp Thr Gly Ala Phe Gly Gly Thr Glu Val Val Val Lys
100 105 110

<210> 3
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:3 (HC VR 2)

<400> 3
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Tyr Ala
20 25 30
Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35 40 45
Ile Ile Tyr Thr Gly Gly Ala Thr Ser Tyr Ala Thr Trp Ala Lys Gly
50 55 60
Gln Phe Thr Ile Ser Lys Thr Ser Thr Val Asp Leu Lys Ile Thr
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Gly Asp
85 90 95
Arg Asp Gly Tyr Ala Tyr Phe Asn Ile Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 4
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:4 (LC VR 2)

<400> 4
Gln Ile Val Met Thr Gln Thr Pro Phe Ser Val Ser Ala Val Val Gly

20180816-164819-1.txt

1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser His Asn Ile Gly Ser Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Thr Leu Ala Ser Gly Val Ser Ser Arg Phe Lys Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Gly Val Glu Ser
65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Gly Ile Ser Tyr
85 90 95
Val His Asn Val Phe Gly Gly Thr Glu Val Val Val Lys
100 105 110

<210> 5
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:5 (HC VR 3)

<400> 5
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Ala Cys Thr Val Ser Gly Phe Ser Leu Ile Ser Tyr Tyr
20 25 30
Ile Ser Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu Tyr Ile Gly
35 40 45
Ile Ile Asn Ile Gly Gly Ala Ser Tyr Ala Ser Trp Ala Lys Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Thr
65 70 75 80
Ser Pro Thr Pro Glu Asp Thr Ala Thr Tyr Phe Cys Ala Met Ser Tyr
85 90 95
Gly Met Asp Thr Gly Ala Phe Asn Ile Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 6
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:6 (LC VR 3)

<400> 6
Ala Gln Val Leu Thr Gln Thr Pro Ala Ser Val Ser Ala Ala Val Gly
1 5 10 15
Gly Thr Val Thr Ile Ser Cys Gln Ser Ser Glu Ser Val Tyr Lys Asn

20180816-164819-1.txt

20 25 30
Asn Phe Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Pro Pro Lys Leu
35 40 45
Leu Ile Tyr Gly Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe
50 55 60
Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu
65 70 75 80
Glu Ser Asp Asp Ala Ala Thr Tyr Phe Cys Gln Gly Gly Tyr Arg Thr
85 90 95
Asp Ile Tyr Pro Phe Gly Gly Thr Glu Val Val Val Lys
100 105 110

<210> 7
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:7 (HC VR 4)

<400> 7
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Gly Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Ser Tyr Val
20 25 30
Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Ile Gly
35 40 45
Ile Ile Ser Ser Ser Gly Ser Pro Tyr Tyr Ala Ser Trp Val Asn Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Met Asp Leu Lys Met Asn
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Val Gly
85 90 95
Pro Leu Gly Val Asp Tyr Phe Asn Ile Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 8
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:8 (LC VR 4)

<400> 8
Asp Ile Val Met Thr Gln Thr Pro Ser Ser Val Glu Ala Ala Val Gly
1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Gly Gln Ser Ile Asn Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile

20180816-164819-1.txt

35 40 45
Tyr Tyr Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Lys Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Asp Leu Glu Ser
65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Trp His Tyr Ile Ser Arg
85 90 95
Ser Tyr Ala Phe Gly Gly Thr Glu Val Val Val Lys
100 105

<210> 9
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:9 (HC VR 5)

<400> 9
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Ser Tyr Val
20 25 30
Met Gly Trp Phe Arg Gln Ala Ala Gly Lys Gly Leu Glu Tyr Ile Gly
35 40 45
Tyr Ile Asn Ala Asp Gly Ser Pro Tyr Tyr Ala Thr Trp Val Asn Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Pro Thr Thr Met Asp Leu Lys Ile Asn
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Val Gly
85 90 95
Pro Leu Gly Val Asp Tyr Phe Asn Ile Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 10
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:10 (LC VR 5)

<400> 10
Asp Ile Val Met Thr Gln Thr Pro Ala Ser Val Glu Ala Ala Val Gly
1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Asn Arg Tyr
20 25 30
Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile
35 40 45
Tyr Tyr Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Glu Gly

20180816-164819-1.txt

50 55 60
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Asp Leu Glu Ser
65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Tyr Tyr Tyr Ile Ser Arg
85 90 95
Thr Tyr Ala Phe Gly Gly Thr Glu Val Val Val Lys
100 105

<210> 11
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:11 (HC VR 6)

<400> 11
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser Ser Tyr Thr
20 25 30
Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35 40 45
Ile Ile Tyr Ala Gly Gly Ser Thr Ala Tyr Ala Ser Trp Ala Lys Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Thr
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Ser Ser
85 90 95
Ser Asp Gly Tyr Asp Tyr Phe Asn Ile Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 12
<211> 111
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:12 (LC VR 6)

<400> 12
Gly Val Val Met Thr Gln Thr Pro Ser Ser Val Ser Ala Ala Val Gly
1 5 10 15
Gly Thr Val Thr Ile Asn Cys Gln Ala Ser Gln Ser Ile Gly Ser Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile
35 40 45
Tyr Gln Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Arg Gly Ser Gly Thr His Phe Thr Leu Thr Ile Ser Asp Val Gln Ser

20180816-164819-1.txt

65 70 75 80
Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Thr Val Thr Ala Ala Ser
85 90 95
Asn Val Asp Asn Ala Phe Gly Gly Thr Glu Val Val Val Lys
100 105 110

<210> 13
<211> 115
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:13 (HC VR 7)

<400> 13
Arg Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Ser His Gly
20 25 30
Ile Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Ile Gly
35 40 45
Thr Ile Gly Thr Gly Val Ile Thr Tyr Phe Ala Ser Trp Ala Lys Gly
50 55 60
Arg Phe Thr Gly Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Thr
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Gly Ser
85 90 95
Ala Trp Asn Asp Pro Phe Asp Pro Trp Gly Pro Gly Thr Leu Val Thr
100 105 110
Val Ser Ser
115

<210> 14
<211> 111
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:14 (LC VR 7)

<400> 14
Ala Leu Val Met Thr Gln Thr Pro Ala Ser Val Ser Ala Ala Val Gly
1 5 10 15
Gly Thr Val Thr Thr Lys Cys Gln Ala Ser Gln Ser Val Tyr Gly Asn
20 25 30
Asn Asp Leu Ala Trp Tyr Gln His Lys Pro Gly Gln Pro Pro Lys Leu
35 40 45
Leu Ile Tyr Leu Ala Ser Thr Leu Ala Thr Gly Val Pro Ser Arg Phe
50 55 60
Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Thr Gly Val
65 70 75 80
Gln Ser Asp Asp Ala Ala Thr Tyr Tyr Cys Leu Gly Gly Asp Asp

20180816-164819-1.txt

85 90 95
Glu Ala Asp Asn Val Phe Gly Gly Gly Thr Glu Val Val Val Lys
100 105 110

<210> 15
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:15 (HC VR 8)

<400> 15
Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Val Asp Leu Ser Asn Tyr Ala
20 25 30
Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35 40 45
Ile Ile Tyr Ala Gly Gly Ser Thr Ser Tyr Ala Thr Trp Ala Lys Gly
50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Met Asp Leu Lys Met Thr
65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg His Arg
85 90 95
Ser Asp Gly Tyr Asp Tyr Phe His Leu Trp Gly Pro Gly Thr Leu Val
100 105 110
Thr Val Ser Leu
115

<210> 16
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:16 (LC VR 8)

<400> 16
Ala Ile Asp Met Thr Gln Thr Pro Ala Ser Val Ser Glu Pro Val Gly
1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Ser Ser Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Gly Val Gln Ser
65 70 75 80
Asp Asp Ala Ala Ala Tyr Tyr Cys Gln Gln Gly Tyr Ala Val Ser Tyr
85 90 95
Val Glu Asn Ile Phe Gly Gly Thr Glu Val Val Val Lys

100

105

110

<210> 17
<211> 117
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:17 (HC VR 9)

<400> 17
Gln Ser Met Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro
1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Asn Tyr Gly
20 25 30
Val Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly
35 40 45
Ile Ile Tyr Gly Gly Ser Asp Ile Thr Ala Tyr Ala Ser Trp Ala Lys
50 55 60
Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Thr Ile
65 70 75 80
Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Lys Ser
85 90 95
Tyr Thr Asn Gly Met Asp Tyr Tyr Asn Ile Trp Gly Pro Gly Thr Leu
100 105 110
Val Thr Val Ser Leu
115

<210> 18
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:18 (LC VR 9)

<400> 18
Ala Phe Asp Leu Thr Gln Thr Pro Ser Ser Val Glu Ala Pro Val Gly
1 5 10 15
Gly Thr Val Ile Ile Lys Cys Gln Ala Ser Gln Ser Ile Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Ala Ser Thr Leu Ala Ser Gly Val Ser Ser Arg Phe Lys Gly
50 55 60
Ser Gly Ser Glu Thr Gln Phe Pro Leu Thr Ile Ser Asp Leu Glu Ser
65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Tyr Tyr Gly Ser Arg Ser
85 90 95
Asn Val Phe Gly Gly Thr Glu Val Val Val Lys
100 105

<210> 19
 <211> 129
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> SEQ ID NO:19 (HC VR 29AM4-5))

<400> 19
 Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Ser Tyr Tyr
 20 25 30
 Phe Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ala Ser Val Tyr Ser Ser Phe Gly Tyr Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Phe Thr Phe Pro Gly Leu Phe Asp Gly Phe Phe Gly Ala Tyr
 100 105 110
 Leu Gly Ser Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser
 115 120 125
 Ser

<210> 20
 <211> 110
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> SEQ ID NO:20 (LC VR 29AM4-5))

<400> 20
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15
 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Ser Ser Ala
 20 25 30
 Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45
 Tyr Ser Ala Ser Ser Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60
 Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80
 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Val Asn Trp Val Gly
 85 90 95
 Ala Leu Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 100 105 110

<210> 21
<211> 121
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:21 (HC VR 12C4)

<400> 21
Glu Val Lys Leu Glu Glu Ser Gly Gly Leu Met Gln Pro Gly Gly
1 5 10 15
Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
35 40 45
Ala Glu Ile Arg Leu Lys Ser Asn Asn Tyr Ala Thr His Tyr Ala Glu
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ser
65 70 75 80
Val Tyr Leu Gln Met Asn Asn Leu Arg Ala Glu Asp Thr Gly Ile Tyr
85 90 95
Tyr Cys Ile Arg Asp Tyr Asp Tyr Asp Ala Tyr Phe Asp Tyr Trp Gly
100 105 110
Gln Gly Thr Thr Leu Thr Val Ser Ser
115 120

<210> 22
<211> 111
<212> PRT
<213> Artificial Sequence

<220>
<223> SEQ ID NO:22 (LC VR 12C4)

<400> 22
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Lys Ser Val Ser Thr Ser
20 25 30
Gly Tyr Asn Tyr Met Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ser Gly
85 90 95
Glu Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> 23
<211> 113

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO:23 (HC KWAR23)

<400> 23

Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr
20 25 30
Tyr Ile His Trp Val Gln Gln Arg Thr Glu Gln Gly Leu Glu Trp Ile
35 40 45
Gly Arg Ile Asp Pro Glu Asp Gly Glu Thr Lys Tyr Ala Pro Lys Phe
50 55 60
Gln Asp Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr
65 70 75 80
Leu His Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Trp Gly Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser
100 105 110
Ser

<210> 24

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO:24 (LC VR KWAR23)

<400> 24

Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15
Glu Lys Val Thr Leu Thr Cys Ser Ala Ser Ser Ser Val Ser Ser Ser
20 25 30
Tyr Leu Tyr Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Leu Trp
35 40 45
Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60
Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu
65 70 75 80
Ala Glu Asp Ala Ala Ser Tyr Phe Cys His Gln Trp Ser Ser Tyr Pro
85 90 95
Arg Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

<210> 25

<211> 330

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO 25: (human IgG1 antibody HC constant region)

<400> 25

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
65 70 75 80
Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95
Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
100 105 110
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
115 120 125
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
130 135 140
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
145 150 155 160
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
165 170 175
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
180 185 190
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
195 200 205
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
210 215 220
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
225 230 235 240
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
245 250 255
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
260 265 270
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
275 280 285
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
290 295 300
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
305 310 315 320
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
325 330

<210> 26

<211> 107

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO 26: (human IgG antibody LC ¶ constant region)

<400> 26

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
1 5 10 15
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
20 25 30
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
35 40 45
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
50 55 60
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
65 70 75 80
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
85 90 95
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
100 105

<210> 27

<211> 330

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO 27: (human IgG1 antibody HC constant region LALA mutant
(mutations underlined))

<400> 27

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
65 70 75 80
Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95
Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
100 105 110
Pro Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
115 120 125
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
130 135 140
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
145 150 155 160
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
165 170 175

20180816-164819-1.txt

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
180 185 190
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
195 200 205
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
210 215 220
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
225 230 235 240
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
245 250 255
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
260 265 270
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
275 280 285
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
290 295 300
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
305 310 315 320
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
325 330

<210> 28

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO:28 (leader sequence antibodies 1-9)

<400> 28

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 5 10 15

Val His Ser

<210> 29

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO:29 (HAVT20 leader sequence)

<400> 29

Met Ala Cys Pro Gly Phe Leu Trp Ala Leu Val Ile Ser Thr Cys Leu
1 5 10 15

Glu Phe Ser Met Ala
20