
(12) United States Patent
Moyer

US008572147B2

(10) Patent No.: US 8,572,147 B2
(45) Date of Patent: Oct. 29, 2013

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

METHOD FOR IMPLEMENTINGA
BIT REVERSED INCREMENT IN ADATA
PROCESSING SYSTEM

Inventor: William C. Moyer, Dripping Springs,
TX (US)

Assignee: Freescale Semiconductor, Inc., Austin,
TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1274 days.

Appl. No.: 12/164,444

Filed: Jun. 30, 2008

Prior Publication Data

US 2009/0327332A1 Dec. 31, 2009

Int. C.
G06F 7/4 (2006.01)
U.S. C.
USPC .. 708/404
Field of Classification Search
USPC .. 708/404, 406, 409
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,181,976 A * 1/1980 Collins et al. 708.404
5,012,441 A 4, 1991 Retter
5,430,667 A * 7/1995 Takano 708.404
5,752,275 A * 5/1998 Hammond ... 711/2O7
6,247,034 B1* 6/2001 Nakai et al. 708/409
6.351,758 B1* 2/2002 Courtney et al. 708.404

6,549,998 B1 4/2003 Pekarich et al.
7,275,148 B2 9/2007 Moyer et al.

2005.0068959 A1 3/2005 Taunton et al.

OTHER PUBLICATIONS

EREF: A Reference for Motorola Book E and the e500 Core,
Motorola, Jan. 2004; pp. front, 8-34 and 8-298.*
PowerPC e500 Core Family Refenrence Manual, Freescale, Apr.
2005. pages: front and 1-2.*
EREF: A Reference for Freescale Book E and the e500 Core; Jan.
2004; Cover Page, Information Page and p. 382 (brinc); Freescale
Semiconductor, Inc.
M68000PM/AD Programmer's Reference Manual Rev. 1; 1992:
Cover Pages, Table of Contents, and pp. 4-4 through 4-6, 1-14
through 1-15, and 1-25 through 1-29; Motorola, Inc.

* cited by examiner

Primary Examiner — Chuong DNgo
(74) Attorney, Agent, or Firm — Joanna G. Chiu

(57) ABSTRACT

In a data processing system, a first instruction is received at an
input of a processor. A specifier indicates both a first portion
of a value and a second portion of the value. The first portion
of the value is identified to be modified by the processor and
the second portion of the value is identified to remain
unchanged. The first instruction is decoded, and in response
the processor modifies the first portion of the value by per
forming a bit-reversed increment to form a modified first
portion. The modified first portion is combined with the sec
ond portion of the value which remained unchanged to form
a first address. The first address is stored in first storage
circuitry. A second instruction is decoded and in response the
processor accesses data located at the first address which is
assigned to a second storage circuit.

24 Claims, 5 Drawing Sheets

MASK (FROM FIG, 4) = 0000000E
--MASK = FFFFFFF1
ADDRESS OF FIRST ELEMENT OF BIT REVERSED ORDER,

ELEMENT O: r A = DCAABCFO

a = r A 16:51 = BCFO
b = (a ~ MASK) = FFFFFFF1
c = bitrev (b) = 8FFFFFFF

1+C = 9FFFFFFF

d = bitrev (1+c) = FFFFFFF9
e = d & MASK = OOOOOOO8

f = r A & --MASK = DCAABCFO

rD = e f = DCAABCF8
-

REMAINED RESULTING
UNCHANGED BIT-REVERSED

INCREMENT

US 8,572,147 B2 U.S. Patent

U.S. Patent Oct. 29, 2013 Sheet 2 of 5 US 8,572,147 B2

LINEAR ORDER
OF ELEMENTS

BIT-REVERSED ORDER
BIT REVERSAL OF ELEMENTS

O OOO -> 000 O
1 BINARY OO1 1 OO DECIMAL 4.
2 REPRESENTATION 010 010 REPRESENTATION 2
5 -> 0 1 1 110 -> 6
4. 100 OO1 1
5 101 101 5
6 110 O 11 3
7 111 -> 111 7

brminc rD, rA, rB

O 5 6 10 11 15 16 20 21 51

NUMBER OF DATA SIZE
DATA SAMPLES BYTE HALFWORD WORD | DOUBLE WORD

8 000.00000111000.00001110 000.000011100.000.0000111000
16 000.00001111000.00011110 000.000111100000.0001111000

OOO.OOO 11111 OOOOO 111110 OOOOO 11111OOOOOOO 11111000

OOOOO 111111 OOOO 1111110 OOO, O11111100 0000111111OOO

AVG.. 4

U.S. Patent Oct. 29, 2013 Sheet 3 of 5 US 8,572,147 B2

O 31

INITIAL ADDRESS VALUE DCAABCFO rA

O 31
MASK

(8 HALFWORDS STRUCTURE) OOOOOOOE rB

ADDRESSING SEQUENCE:

DCAABCFO
brminc -> DCAABCF8
brminc -> DCAABCF4
brminc -> DCAABCFC
brminc -> DCAABCF2
brminc -> DCAABCFA
brminc -> DCAABCF6
brminc -> DCAABCFE

A/VG. A

16 BITS PORTION OF K- -- EMORY a
DCAABCFO ELEMENT O

DCAABCF2 ELEMENT 1

DCAABCF4 ELEMENT 2

DCAABCF6 ELEMENT 5

DCAABCF8 ELEMENT 4

DCAABCFA ELEMENT 5

DCAABCFC | ELEMENT 6

DCAABCFE ELEMENT 7

U.S. Patent Oct. 29, 2013 Sheet 4 of 5 US 8,572,147 B2

MASK (FROM FIG. 4) = 0000000E
a MASK = FFFFFFF1
ADDRESS OF FIRST ELEMENT OF BIT REVERSED ORDER,

ELEMENT O: r A = DCAABCFO

Q = r A 16:31 = BCFO
b = (a ~ MASK) = FFFFFFF1
C = bitrey (b) = 8FFFFFFF

1+C = 9FFFFFFF

d = bitrey (1+c) = FFFFFFF9
e = d 8 MASK = OOOOOOO8

f = r A & --MASK = DCAABCFO

rD = e f = DCAABCF8
-

REMAINED RESULTING
UNCHANGED BIT-REVERSED

INCREMENT

A/VG. Z.

ADDRESS OF SECOND ELEMENT OF BIT REVERSED ORDER,
ELEMENT 4: A = DCAABCF8

q = r A 16:31) = BCF8
b = (a ~ MASK) = FFFFFFF9
c = bitrev (b) = 9FFFFFFF

1+C = AFFFFFFF

d = bitrev (1+c) = FFFFFFF5
e = d & MASK = OOOOOOO4

f = r A & N MASK = DCAABCFO

rD = e f = DCAABCF4
-

REMAINED RESULTING
UNCHANGED BIT-REVERSED

INCREMENT

A/VG. S.

U.S. Patent Oct. 29, 2013 Sheet 5 of 5 US 8,572,147 B2

MASK (FROM FIG. 4) = OOOE
~ MASK = FFF1

DCAABCFO
O -e- BCFO

b = (a ~ MASK) = FFF1
C = bitrev (b) = 8FFF

1+C = 9FFF

d = bitrev (1+c) = FFF9
e = d & MASK = 0008

rD = r A 0:15 || e
= DCAAO008

AVG. 9
-PRIOR ART

US 8,572,147 B2
1.

METHOD FOR IMPLEMENTINGA
BIT REVERSED INCREMENT IN ADATA

PROCESSING SYSTEM

BACKGROUND

1. Field
This disclosure relates generally to addressing in a data

processing system, and more specifically, to a method for
implementing bit-reversed addressing in a data processing
system.

2. Related Art
Many types offiltering algorithms, such as in digital signal

processing (DSP) applications, utilize buffers to hold sets of
input samples and computed output samples from a set of
filtering operations, such as Fast Fourier Transform (FFT)
filters. These filters are typically accessed in a bit-reversed
fashion to obtain the data and store outputs in a predetermined
order which corresponds to the natural order of computations.
For example, for an 8 element FFT buffer having elements 0.
1, 2, 3, 4, 5, 6, and 7 stored in a linear order, the bit-reversed
order in which they need to be accessed is elements 0, 4, 2, 6,
1, 5, 3, and 7.
Abit reversed increment (brinc) instruction available today

to support accessing FFT data in a bit-reversed manner pro
vides, as its result, an index that is updated with bit-reversed
addressing. The brinc instruction may have a format of “brinc
rD, ra, rB' where rA contains the index into a buffer that
contains data on which FFT is to be performed, rB contains a
mask that allows the index to be updated with bit-reversed
incrementing, and rD stores the resulting updated index with
bit-reversed increment. This brinc instruction typically pre
cedes a load with index instruction (e.g. Ihax) which uses the
resulting index to perform a load of the FFT data. However, a
load with index instruction requires the use of three general
purpose registers (GPRs). For example, this load instruction
typically takes the form of “Ihax r), ra, rB' where racon
tains a base address, rB contains an index value, and r)
receives the data loaded from the address location addressed
by “the base address+the index value'. Therefore, the result
of the brinc instruction can then be used as the index value of
a Subsequent load with index instruction to obtain the next
FFT data element in the proper bit-reversed order. However,
in many cases, the use of FFT filters appears in sections of
code which rely heavily on the use of numerous GPRS, where
the use of Such load with index instructions necessary to load
the FFT data may reduce efficiency of accessing FFT data.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
is not limited by the accompanying figures, in which like
references indicate similar elements. Elements in the figures
are illustrated for simplicity and clarity and have not neces
sarily been drawn to scale.

FIG. 1 illustrates a data processing system in accordance
with one embodiment of the present invention.

FIG. 2 illustrates an example of bit-reversed addressing.
FIG.3 illustrates a bit-reversed modulo increment instruc

tion in accordance with one embodiment of the present inven
tion.

FIG. 4 illustrates a table of example values for masks for
different data sizes and number of data which may be used for
the bit-reversed modulo increment instruction of FIG. 3.

FIG. 5 illustrates, in diagram form, an example initial
address pointer value, an example mask value, and an

10

15

25

30

35

40

45

50

55

60

65

2
example bit-reversed addressing sequence in accordance with
one embodiment of the present invention.

FIG. 6 illustrates, in diagram form, a portion of the memory
of the data processing system of FIG. 1 storing data elements
of an FFT buffer.

FIGS. 7 and 8 illustrate example operations performed
during execution of a brminc instruction using the example
FFT buffer of FIG. 6 in accordance with one embodiment of
the present invention.

FIG.9 illustrates operations performed during execution of
a brinc instruction using the example FFT buffer in accor
dance with the prior art.

DETAILED DESCRIPTION

In one embodiment, a bit-reversed modulo increment
instruction (e.g. a brminc instruction) supports efficient bit
reversed incrementing. In one embodiment, the brminc
instruction allows for a higher order portion of an initial
address value to remain unchanged while allowing a lower
order portion of the initial address to be updated or modified
with a bit-reversed increment. In this manner, the resulting
address value of the brminc instruction provides the actual
address value of a next buffer element in memory to be
accessed according to a bit-reversed sequencing. This result
ing address value allows for a Subsequent load without index
type load instruction to be used to access the buffer element
stored at the resulting address. This type of load instruction,
as compared to a load with index type load instruction,
requires the use of less GPRS which may allow for more
efficient operation.
As used herein, the term “bus” is used to refer to a plurality

of signals or conductors which may be used to transfer one or
more various types of information, Such as data, addresses,
control, or status. The conductors as discussed herein may be
illustrated or described in reference to being a single conduc
tor, a plurality of conductors, unidirectional conductors, or
bidirectional conductors. However, different embodiments
may vary the implementation of the conductors. For example,
separate unidirectional conductors may be used rather than
bidirectional conductors and vice versa. Also, plurality of
conductors may be replaced with a single conductor that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single conductors carrying multiple sig
nals may be separated out into various different conductors
carrying Subsets of these signals. Therefore, many options
exist for transferring signals.
The terms “assert” or “set and “negate' (or “deassert” or

“clear) are used herein when referring to the rendering of a
signal, status bit, or similar apparatus into its logically true or
logically false state, respectively. If the logically true state is
a logic level one, the logically false state is a logic level Zero.
And if the logically true state is a logic level Zero, the logically
false state is a logic level one.

Each signal described herein may be designed as positive
or negative logic, where negative logic can be indicated by a
bar over the signal name oran asterix (*) following the name.
In the case of a negative logic signal, the signal is active low
where the logically true state corresponds to a logic level Zero.
In the case of a positive logic signal, the signal is active high
where the logically true state corresponds to a logic level one.
Note that any of the signals described herein can be designed
as either negative or positive logic signals. Therefore, in alter
nate embodiments, those signals described as positive logic
signals may be implemented as negative logic signals, and
those signals described as negative logic signals may be
implemented as positive logic signals.

US 8,572,147 B2
3

Brackets are used hereinto indicate the conductors of abus
or the bit locations of a value. For example, “bus 600:7 or
“conductors 0:7 of bus 60' indicates the eight higher order
conductors of bus 60, and “address bits 0:7 or “ADDRESS
0:7 indicates the eight higher order bits of an address value.
The symbol “S” or “Ox’ preceding a number indicates that the
number is represented in its hexadecimal or base sixteen
form. The symbol “/6' preceding a number indicates that the
number is represented in its binary or base two form.

FIG. 1 illustrates, in block diagram form, a data processing
system 10 in accordance with one embodiment of the present
invention. Data processing system 10 includes a processor 14,
memory 12, input/output (I/O) 16, other peripherals 18, and a
system bus 20. Memory 12 is bidirectionally coupled to sys
tem bus 20 via conductors 22, I/O 16 is bidirectionally
coupled to system bus 20 via conductors 24, other peripherals
18 is bidirectionally coupled to system bus 20 via conductors
26, and processor 14 is bidirectionally coupled to system bus
20 via conductors 58. In one embodiment, other peripherals
18 may include one or more peripherals, where each can be
any type of peripheral, such as a universal asynchronous
receiver transmitter (UART), a real time clock (RTC), a key
board controller, other memories, etc. Some or all of other
peripherals 18 may be capable of communicating information
external to data processing system 10 via conductors 62. I/O
circuitry 16 may include any type of I/O circuitry which
receives or provides information external to data processing
system 10, via, for example, conductors 60. Memory 12 can
be any type of memory, Such as, for example, a read only
memory (ROM), a random access memory (RAM), non
Volatile memory (e.g. Flash), etc. Data processing system 10
may include other elements than those illustrated, or may
include more or fewer elements than those illustrated. For
example, data processing system 10 may include any number
of memories or processors.

Processor 14 may be any type of processor, Such as, for
example, a microprocessor, microcontroller, digital signal
processor, etc. In one embodiment, processor 14 may be
referred to as a processor core. In another embodiment, pro
cessor 14 may be one of many processors in a multi-processor
data processing system. Furthermore, although not illustrated
as such, processor 14 may be a pipelined processor. In the
embodiment illustrated in FIG. 1, processor 14 includes a
control unit 28, an instruction unit 30, execution units 32, a
scalar register file 34, a bus interface unit (BIU) 36, and a
load/store unit 38. Control unit 28 is bidirectionally coupled
to instruction unit 30 via conductors 40, to execution units 32
via conductors 42, to Scalar register file 34 via conductors 46.
and to load/store unit 38 via conductors 48. Execution units
32 are bidirectionally coupled to scalar register file 34 via
conductors 44, and scalar register file 34 is bidirectionally
couple to load/store unit 38 via conductors 50. BIU 36 is
bidirectionally coupled to instruction unit 30 via conductors
54 and to load/storeunit 38 via conductors 52. Processor 14 is
capable of bidirectionally communicating with system bus 20
via conductors 56 which are coupled to conductors 58. Note
that processor 14 may include more circuitry than that illus
trated, where the additional circuitry may also be coupled to
conductors 58. That is, conductors 56 may communicate with
system bus 20 via all or a portion of conductors 58. Note also
that all or a portion of processor 14 may be referred to as
processing circuitry.

In operation, instruction unit 30 fetches instructions from a
memory, such as memory 12, via BIU 36 and system bus 20,
and receives and provides control information to and from
control unit 28. Instruction unit 30 also includes an instruc
tion storage circuit 31. This may include an instruction reg

10

15

25

30

35

40

45

50

55

60

65

4
ister which stores the next instruction to be decoded and
executed. This may also include an instruction buffer which
provides fetched instructions to the instruction register.
Instruction unit 30 can be any type of instruction unit as
known in the art with any type of instruction storage circuitry,
and operates as known in the art, and therefore will not be
described in more detail herein. Instruction unit 30 therefore
provides instructions to control unit 28 which controls execu
tion of these received instructions via, for example, execu
tions units 32 and load/store unit 38, which are both capable
of communicating with scalar register file 34, as needed,
directly or via control unit 28. For example, control unit 28,
via load/store unit 38 and BIU 36, is capable of loading data
from memory (such as memory 12) to registers within scalar
register file 34 as needed for executing instructions and is
capable of storing data from registers within Scalar register
file 34 to memory (such as memory 12) as needed for execut
ing instructions. For example, in one embodiment, load/store
unit 38 can communicate directly with scalar register file 34
(to read and write data) via conductors 50 based on control
information provided from control unit 28 via conductors 48.
Execution units 32 can perform arithmetic, logical, shifting,
or other operations using data stored within Scalar register file
34 and store results to registers within scalar register file 34,
as required for executing the instructions received from
instruction unit 30 by way of control unit 28. Execution units
32 may include, for example, arithmetic logic units (ALUs),
floating-point units, etc.

Scalar register file 34 includes N general purpose registers
(GPRs), where N can be any integer greater than or equal to
one. In one embodiment, scalar register file 34 includes 32
32-bit registers. As used here in, a scalar register indicates a
register which has a one dimensional map and thus holds only
one row of data (e.g. a 1 by M-bit register), where M can be
any integer greater or equal to one. In one embodiment, M is
32, and each register is thus capable of storing a 32-bit quan
tity. Scalar register file 34 can provide or receive control
information or data to or from control unit 28 via conductors
46.

Operation of processor 14 will not be described in more
detail herein other than for those portions that are needed in
understanding the various embodiments described herein.

FIG. 2 illustrates an example of bit-reversed addressing
which may be used when accessing data elements in a bit
reversed manner, such as, for example, when accessing FFT
data elements from a buffer stored in memory 12. In the
example of FIG. 2, it is assumed that 8 data elements (ele
ments 0-7) are stored in linear order. Each of these elements
can be addressed by a 3-bit binary address representing the
values 0 to 7. These binary values, %000, %001, 96010,
%011, %100,96101, 96110, and %111, correspond to each of
elements 0-7, respectively. These binary values are then “bit
reversed, resulting in the mirror image of each 3-bit binary
value. Upon bit-reversing each of these binary values, the
bit-reversed elements result in the elements 0-7 being
addressed in the bit-reversed order of element 0, element 4,
element 2, element 6, element 1, element 5, element 3, and
element 7, respectively. Note that, for ease of explanation, the
examples which will be described herein assume a buffer of 8
data elements to be accessed in a bit-reversed manner; how
ever, alternate embodiments a buffer of any number of data
elements can be addressed in a bit-reversed order.

FIG. 3, in accordance with one embodiment, illustrates a
bit reversed modulo increment (brminc) instruction labeled
“brminc r), ra, rB'. In the illustrated form the brminc
instruction is a thirty-two bit instruction having predeter
mined fields. Other bit length instructions may be imple

US 8,572,147 B2
5

mented and the bit size of each instruction field is implemen
tation specific. An opcode and subopcode field identifies the
function or type of instruction. Therefore the opcode and
subopcode field of this instruction identifies the instruction as
a brminc instruction. A brminc instruction provides away for
software to access FFT data (or any other type of data) in a
bit-reversed manner modulo the data buffer size. A second
field within the instruction is a destination register identifier
labeled “r” that identifies a register D. A third field within
the instruction is a register identifier labeled “rA' that iden
tifies a register A. A fourth field within the instruction is a
register identifier labeled "rB” that identifies a register B. (As
will be described in more detail below, the third field is a
register selector field for selecting a register, ra, to providing
an initial address value or initial pointer value, and the fourth
field is a register selector field for selecting a register, rB, to
provide a mask value or specifier.) It should be understood
that in other embodiments additional fields or other fields
may be implemented. Further, the ordering of the fields rD, ra
and rB may be changed to other sequences than the one as
illustrated in FIG. 3.

Still referring to the brminc instruction, the source register
rA contains a pointer value (i.e. address value) into a buffer
that contains data which is to be accessed in a bit-reversed
order (e.g. a buffer that contains data on which FFT is to be
performed). The destination register, upon execution of a
brminc instruction, Stores the next or Subsequent bit-reversed
pointer value (i.e. bit-reversed address value) identifying the
next buffer element to be accessed such that the next element
to be addressed provides a bit-reversed access order. The
Source register rB contains a bit-mask that allows a selected
portion of the index to be updated with a bit-reversed incre
ment of varying granularity. This bit-mask is based on a
number of data elements or samples in a buffer (number of
points in an FFT) as well as the data size of a sample. For
example, FIG. 4 illustrates an example of a table which pro
vides various bit-mask values based on both number of data
samples and data sample size. To access a buffer containing in
byte-sized data elements that is to be accessed with bit-re
versed addressing, the mask has log n ones (1s) in the least
significant bit positions and Zeroes (0s) in the remaining most
significant bit positions. If, however, the data size is a multiple
of a halfword or a word, the mask is constructed so that the 1s
are shifted left by log (size of the data in bytes) and 0s are
placed in the least significant bit positions. As used herein, a
word is defined as 4 bytes and a halfword is defined as 2 bytes.
However, in alternate embodiments, a word can be defined
differently, such as, for example, as 2 bytes or 8 bytes. Note
that, for each row of the table, the bit-mask values, as they
progress from the byte column to the doubleword column, are
shifted to the left by one bit each time. Also, note that for each
column of the table, the bit-mask values, as they progress
from the size of 8 elements down to the size of 64 elements,
have an additional lower order bit set to “1”. The table of FIG.
4 can be expanded to include larger buffer sizes, which are
typically powers of 2, and may include larger data sizes as
well. The table of FIG. 4 may be stored within control unit 28
of FIG. 1, or may be stored elsewhere within system 10. The
table of FIG. 4 may be stored as a table of values or may be
implemented with logic gates. Alternate embodiments may
store or receive the information of the table of FIG. 4 in a
variety of different manners.

FIG. 5 illustrates a bit-reversed addressing sequence which
may beachieved using the brminc instruction when accessing
the example buffer of FIG. 6. In the example of FIG. 6, the
buffer stores 8 data elements where each data element is a
halfword in size. (Note that the buffer of FIG. 6 may be used

10

15

25

30

35

40

45

50

55

60

65

6
in an FFT application, and may also be referred to as an FFT
sample buffer. Note also that the buffer of FIG. 6 may be
referred to as a data structure and can be formed within
memory 12 prior to being accessed.) For example, FIG. 6
illustrates a portion of memory 12 which stores 8 halfword
sized data elements starting at address location
OxDCAABCFO. Since each element is a halfword in size (e.g.
16 bits), the next 7 elements, element 1-element 7, are
sequentially addressed in linear order by address values
OxDCAABCF2, OxDCAABCF4, OxDCAABCF6,
OxDCAABCF8, OxDCAABCFA, OxDCAABCFC, and
0xDCAABCFE, respectively. (Note that each of these
address values may also be referred to as pointer values.) If
these were to be accessed in a bit-reversed order (as described
in FIG. 2), then these addresses would be accessed in the
following order: OxDCAABCFO (corresponding to element
O), OxDCAABCF8 (corresponding to element 4),
OxDCAABCF4 (corresponding to element 2), OxDCAAB
CFC (corresponding to element 6), OxDCAABCF2 (corre
sponding to element 1), OxDCAABCFA (corresponding to
element 5), OxDCAABCF6 (corresponding to element 3).
and OxDCAABCFE (corresponding to element 7).

Therefore, in the example of bit-reversed addressing in
FIG. 5, an initial address value (i.e. initial pointer value) of
OxDCAABCFO is placed into registerra, prior to execution
of the brminc instruction, where this points to the first ele
ment, element 0, of the buffer in memory 12 to be accessed.
Also, for this example, the mask value (taken from the table of
FIG. 4) is “000 . . . 00001110, since the buffer contains 8
halfword-sized data elements. Therefore, referring to FIG. 5,
this mask value is stored in rB prior to execution of the brminc
instruction. (Note that, in one embodiment, the storage cir
cuitry which includes ra and rB, such as register file 34, may
be referred to as a first storage circuit within system 10 and the
storage circuitry which stores the buffer, Such as memory 12,
may be referred to as a second storage circuit within system
10.) Referring to the addressing sequence of FIG. 5, upon
executing a first brminc instruction using the initial address
pointer stored in ra and the mask value in rB, the next address
(i.e. next pointer value) in the bit-reversed addressing
sequence, i.e. OxDCAABCF8, is stored in rD. Prior to the
next load or store instruction for accessing an element of the
buffer in memory, the value of ra can be updated to this next
address in the bit-reversed addressing sequence, i.e.
OxDDCAABCF8, which is now considered the initial address
pointer or address value for generating the next address in the
bit-reversed addressing sequence. Therefore, upon execution
of the next (i.e. second) brminc instruction using the new
initial address pointer stored in ra and the same mask value in
rB, the next address in the bit-reversed addressing sequence,
i.e. 0xDCAABCF4, is stored in rD. Note thatra and rD may
refer to the same general purpose register (GPR) in Scalar
register file 34. Such that each execution of a brminc instruc
tion uses the previous value in ra and updates it to the next
desired pointer value in sequence. Thus, by executing the
second brminc instruction, the value of ra can be updated to
this next address in the bit-reversed addressing sequence, i.e.
OxDCAABCF4. A load or store instruction without indexing
can then be used to access the next sample of data in the
buffer. Thereafter, upon executing the next (i.e. third) brminc
instruction using the new initial address pointer stored in ra
and the same mask value in rB, the next address in the bit
reversed addressing sequence, i.e. 0xDCAABCFC, is stored
in rD. Thus, the value of ra can again be updated to this next
address in the bit-reversed addressing sequence, i.e.
OxDCAABCFC by, for example, specifying the same GPR
for ra and rD in the brminc instruction. Upon executing the

US 8,572,147 B2
7

next (i.e. fourth) brminc instruction using the new initial
address pointer stored in ra and the same mask value in rB,
the next address in the bit-reversed addressing sequence, i.e.
OxDCAABCF2, is stored in rD. Thus, the value of ra can
again be updated to this next address in the bit-reversed 5
addressing sequence, i.e. 0xDCAABCF2, by, for example,
specifying the same GPR for ra and rD in the brminc instruc
tion. Upon executing the next (i.e. fifth) brminc instruction
using the new initial address pointer stored in ra and the same
mask value in rB, the next address in the bit-reversed address- 10
ing sequence, i.e. 0xDCAABCFA, is stored in rD. Thus, the
value of ra can again be updated to this next address in the
bit-reversed addressing sequence, i.e. 0xDCAABCFA, by,
for example, specifying the same GPR for ra and rD in the
brminc instruction. Upon executing the next (i.e. sixth) 15
brminc instruction using the new initial address pointer stored
in ra and the same mask value in rB, the next address in the
bit-reversed addressing sequence, i.e. 0xDCAABCF6, is
stored in rD. Thus, the value ofra can again be updated to this
next address in the bit-reversed addressing sequence, i.e. 20
OxDCAABCF6, by, for example, specifying the same GPR
for ra and r) in the brminc instruction. Upon executing the
next (i.e. seventh) brminc instruction using the new initial
address pointer stored in ra and the same mask value in rB,
the next address in the bit-reversed addressing sequence, i.e. 25
OxDCAABCFE, is stored in rD.

Therefore, through execution of the seven brminc instruc
tions of FIG. 5, a bit-reversed addressing sequence for access
ing the buffer (i.e. data structure) of FIG. 6 can be provided.
In between each of these brminc instructions, additional 30
instructions may be present which use the results in rD (i.e.
the next address in the bit-reversed addressing sequence) in a
Subsequent data processing operation. For example, follow
ing each brminc instruction, a load or store instruction may be
used to access the actual data stored at the location pointed to 35
by the pointer value in rD. For example, after each brminc
instruction, a halfword load without indexing instruction (e.g.
an “Iha' instruction) may be executed to obtain the data
element. In one embodiment, this instruction may have the
format “IharlD, 0(ra). In this case, the “0(rA)' refers to the 40
contents of the memory location addressed by the value
stored in ra. (The “0” preceding the “(rA) indicates that a 0
offset is to be added to the contents of ra prior to accessing the
contents of memory location.) Therefore, the data element of
the memory location (in, e.g., memory 12) addressed by the 45
value stored in ra is stored in rD. For example, the first
brminc instruction in FIG.5 may be “brmincr2, r2, ra', where
r2 holds the previous pointer value into the data structure and
r4 holds the proper mask value determined by the number of
elements stored in the buffer and the size of each data ele- 50
ment. This first brminc instruction may be followed by “Ihars
0(r2) as shown below to load the next data sample from the
buffer (i.e. data structure) into GPR rs in a bit-reversed fash
ion:

brminc r2, r2, r4 55
Iha r8,0(r2)
Store operations may use similar addressing modes, such

that after each brminc instruction, a halfword store without
indexing instruction (e.g. an “sth' instruction) may be
executed to update the data element. In one embodiment, this 60
instruction may have the format “sth rS, 0(ra). In this case,
the “0(ra)' refers to the contents of the memory location
addressed by the value stored in ra. (The “0” preceding the
“(rA) indicates that a 0 offset is to be added to the contents of
rA prior to accessing the contents of memory location.) 65
Therefore, the data element of the memory location (in, e.g.,
memory 12) addressed by the value stored in ra is updated

8
with the store data value stored in rS. For example, the first
brminc instruction in FIG.5 may be “brmincr2, r2, ra', where
r2 holds the previous pointer value into the data structure and
r4 holds the proper mask value determined by the number of
elements stored in the buffer and the size of each data ele
ment. This first brminc instruction may be followed by “sthr3
0(r2) as shown below to store the next data sample into the
buffer (i.e. data structure) from GPR ris in a bit-reversed
fashion:

brminc r2, r2, ra
sth r8,00r2)
Therefore, since the above brminc (“brminc r2, r2, ra') is

assumed to be the first brminc instruction in FIG. 5, prior to
execution of the brminc instruction, the initial pointer value of
OxDCAABCFO would be placed in r2, and, upon execution of
this brminc instruction, r2 would be updated with the next
pointer or address value of the next address in the bit-reversed
sequence, i.e. 0xDCAABCF8. Note that in this example, the
GPR used for ra is the same as the one used for r). In this
manner, less register locations are used. However, in alternate
embodiments, different GPRS can be used for each of ra and
rD. Note that the resulting value in r2 after execution of the
brminc instruction is the address value itself of the next
address in the bit-reversed sequence. Therefore, it may be
used directly by the next load or store instruction without
having to add any base value or offset to it, to access element
4 from OxDCAABCF8. That is, it is not simply an index value
which must then be added back to the buffer starting address,
OxDCAABCFO, to obtain the next data element addressed by
the next bit-reversed address, as was the case with the brinc
instruction. Therefore, note that the Iha instruction does not
require in index and base value as did the Ihax instruction,
thus requiring the use of one less GPR in executing the
instruction. Operation of the brminc instruction will be fur
ther understood in reference to the examples of FIGS. 7 and 8.
Note that in FIGS. 7-9, '-' indicates a bit-wise inverse opera
tion, “& indicates a bit-wise AND operation, “I” indicates a
bit-wise OR operation, “bitrev' indicates a bit reverse opera
tion, and “I” indicates a concatenate operation.

FIG. 7 illustrates the operations which occur upon execu
tion of a brminc instruction, assuming an initial address value
of OxDCAABCFO (the address of element 0) inra and a mask
of%000... 00001110 (from FIG. 4) in rB. Note that the mask
value (MASK) can be represented as the 32-bit value of
0x0000000E, which can correspond to a 16 bit mask value
padded with 16 bits of Zero so as to become a 32 bit value.
Therefore, the bit-wise inverse value of the mask (-MASK) is
0xFFFFFFF1. Intermediate value 'a' is set to bits 16-31 of ra
(i.e. the least significant 16 bits of ra), which, in the current
example, is 0xBCF0. Intermediate value “b' is “al-MASK”
which is 0xFFFFFFF1. Intermediate value “c” is “bitrev(b)
which indicates the bit-reversed value of “b’. Since, as rep
resented in binary, b=%.1111 1111 1111 1111 1111 1111
111 1 0001, the bit-reversed value of “b', represented in
binary, is %1000 1111111111111111111111111111. This
bit-reversed value of"b’ represented in hexadecimal is there
fore OX8FFFFFFF. The Value “1+c’ is then OX9FFFFFFF.
Intermediate value “d” is “bitrev(1+c)”. Therefore, “d' (i.e.
the bit-reversed value of “1+c') is 0xFFFFFFF9. The inter
mediate value “e” is “d & MASK” (i.e. “0xFFFFFFF9 &
0x0000000E') which is 0x00000008. The intermediate value
“f” is “ra & --MASK” (i.e. “OxDCAABCFO &
0xFFFFFFF1') which is 0xDCAABCFO. Therefore, note
that the intermediate value 'e' provides a resulting bit-re
versed increment portion or value and the intermediate value
“f represents a portion of ra which remains unchanged.
Therefore, the final operation provides the value of rD which

US 8,572,147 B2
9

is “elf which is 0xDCAABCF8 (which is the address of
element 4). Therefore, only the least significant 4-bits of the
initial pointer value in ra (OxDCAABCFO) was updated with
a bit-reversed increment while the remaining higher order 28
bits of the initial pointer value in ra remained unchanged.
Due to the mask value of 0x0000000E, only the lower order

4-bits of the initial pointer value in ra is allowed to change
and be updated with a bit-reversed increment. That is, the first
transition in bit values (e.g. from 0 to 1) of the mask value
starting from the highest order bit down towards the lower
order bit defines the starting point of the lower order portion
of the initial pointer value that is allowed to change, i.e. that is
allowed to be updated with a bit-reversed increment. There
fore, since the binary representation of the mask value in this
example is “%0000 0000 0000 0000 0000 0000 0000 1110.”
then the first time a bit transition occurs when starting at the
most significant bit going and moving towards the least sig
nificant bit, is at the 4" least significant bit location. Thus, the
mask value can be described as Supporting a modulo based
increment with variable granularity by indicating which por
tion of the initial address value is allowed to be modified to
implement a bit-reversed increment. The intermediate value
'd' is therefore masked with MASK so as to isolate the
resulting bit-reversed increment portion, where the interme
diate value 'e' represents the bit-reversed increment value.
The --MASK is then used with ra to isolate the portion of ra
which remains unchanged.

In one embodiment, the mask value used to execute a
brminc instruction may be referred to as a specifier that indi
cates both a first portion of a value and a second portion of the
value, where the first portion of the value is identified to be
modified by the processor and the second portion of the value
is identified to remain unchanged. For example, still referring
to the example of FIG. 7, the first portion may refer to the
lower 4 significant bits of the initial address value (e.g. bits
28-31 as labeled in FIG. 5) which is modified by performing
a bit-reversed increment and forming a modified first portion
(e.g. represented by the intermediate value “e'), and the sec
ond portion may refer to the remaining 28 higher order bits of
the initial address value (e.g. bits 0-27 as labeled in FIG. 5)
which remains unchanged (e.g. represented by the interme
diate value “f”). The modified first portion and the second
portion can then be combined (e.g. by the “elf in the example
of FIG. 7) to forman address which can the bestored (e.g. in
rD). As described above, another instruction (e.g. a load with
out index instruction) may then be received and decoded by
processor 14 which accesses data located at this address value
stored in rD which corresponds to an address location in
memory 12. Therefore, the mask value (i.e. specifier) serves
to vary the boundary between an unchanged portion and a
modified portion of a bit reversed increment operation on a
GPR.

Note that the mask value (i.e. specifier), as described above
with respect to FIG. 4, is also a function of (or defines) a size
of the one or more data elements of the buffer (which, in the
current example of FIG. 7, is a halfword). Also, note that the
boundary between the first portion that is allowed to change
and the second portion that remains unchanged may be selec
tively varied by using different mask values (i.e. different
specifiers), and that this boundary is a function of both a
number of data samples as well as a data sample size. This
boundary may be determined by detecting a logic value
change between Successive bit values of the logic value (e.g.,
the boundary may correspond to the first time a logic change
occurs when starting at the most significant bit and progress
ing down towards the least significant bit, as described above
with respect to the example of FIG. 7). In one embodiment,

5

10

15

25

30

35

40

45

50

55

60

65

10
this boundary is selected by control unit 28, which may, for
example, store or receive information representative of the
table of FIG. 4. In one example, the boundary between the
first and second portion may be a location that is not byte
aligned for data in the first portion or the second portion. For
example, the boundary in the example of FIG. 7 occurs
between the 4" least significant bit and the 5" least significant
bit, which is not byte aligned. In another example, the bound
ary may be selected such that the first portion of the value has
an odd number of bits. For example, using a mask value of
%000 . . . 00011110 from the table in FIG. 4, which corre
sponds to a buffer of 16 halfword elements, the boundary in
the example of FIG. 7 would result in the first portion having
5 bits. In another example, the first portion may be either 7 or
9 bits.

FIG. 8 illustrates the operations which occur upon execu
tion of a brminc instruction, assuming an initial address value
of OxDCAABCF8 (the address of element 4) inra and a mask
of%000... 00001110 (from FIG. 4) in rB. Note that the mask
value (MASK) can be represented as the 32-bit value of
0x0000000E, which can correspond to a 16 bit mask value
padded with 16 bits of Zero so as to become a 32 bit value.
Therefore, the bit-wise inverse value of the mask (-MASK) is
0xFFFFFFF1. Intermediate value 'a' is set to bits 16-31 of ra
(i.e. the least significant 16 bits of ra), which, in the current
example, is 0xBCF8. Intermediate value “b' is “al-MASK”
which is 0xFFFFFFF1. Intermediate value “c” is “bitrev(b)
which indicates the bit-reversed value of “b’. Since, as rep
resented in binary, b=%.1111 1111 1111 1111 1111 1111
1111 1001, the bit-reversed value of “b', represented in
binary, is %10011111111111111111111111111111. This
bit-reversed value of"b’ represented in hexadecimal is there
fore 0x9FFFFFFF. The Value “1+c’ is then OXAFFFFFFF.
Intermediate value “d” is “bitrev(1+c)”. Therefore, “d' (i.e.
the bit-reversed value of “1+c') is 0xFFFFFFF5. The inter
mediate value “e” is “d & MASK” (i.e. “0xFFFFFFF5 &
0x0000000E') which is 0x00000004. The intermediate value
“f” is “ra & --MASK” (i.e. “OxDCAABCF8 &
0xFFFFFFF1') which is 0xDCAABCFO. Therefore, note
that the intermediate value 'e' provides a resulting bit-re
versed increment portion or value and the intermediate value
“f represents a portion of ra which remains unchanged.
Therefore, the final operation provides the value of rD which
is “elf which is 0xDCAABCF4 (the address of element 2).
Therefore, again, only the least significant 4-bits of the initial
pointer value in ra (OxDCAABCFO) was updated with a
bit-reversed increment while the remaining higher order 28
bits of the initial pointer value in ra remained unchanged. As
was described above in reference to FIG. 7, the mask value
Supports a modulo based increment of bit-variable granular
ity by indicating which portion of initial address value is
allowed to be modified to implement a bit-reversed increment
and which portion of the initial address value remains
unchanged (i.e. indicates a first portion of a value to be modi
fied and a second portion of the value which is to remain
unchanged), where the intermediate value 'e' represents the
bit-reversed increment value (i.e. represents the modified first
portion) and the intermediate value “f represents the higher
order portion which remains unchanged (i.e. the second por
tion).

Note that the operations illustrated in FIGS. 7 and 8 can be
performed by a variety of different types of circuitry located,
for example, in execution units 32 of processor 14. Also,
different operations may be performed that those illustrated
in FIGS. 7 and 8 to achieve the results shown in FIGS. 7 and
8.

US 8,572,147 B2
11

FIG. 9 illustrates the operations which occur upon execu
tion of a prior art brinc instruction, also assuming an initial
address value of OxDCAABCFO (the address of element 4) in
rA and a mask of 9/6000 . . . 00001110 in rB. Note that the
mask value (MASK), in this example, is only represented as
a 16-bit value, 0x000E. Therefore, the bit-wise inverse value
of the mask (-MASK) is 0xFFF1. Intermediate value “a” is
set to bits 16-31 of ra (i.e. the least significant 16 bits of ra),
which, in the current example, is 0xECFO. Intermediate value
“b' is “al-MASK which is 0xFFF1. Intermediate value “c”
is “bitrev(b)” which is 0x8FFF. The value “1+c' is then
0x9FFF. Intermediate value “d” is “bitrev(1+c)” which is
0xFFF9. The intermediate value 'e' is “d & MASK which is
0x0008. The final value in rD is then obtained by concatenat
ing bits 16-31 of ra with intermediate value 'e' (i.e.
“OxDCAA|0x0008”) which is 0xDCAAO008. Note that this
value is not the correct address value of the next address in the
bit-reversed addressing order. That is, after an initial address
value of OxDCAABCFO, the next address in the bit-reversed
sequence should be OxDCAABCF8 which addresses element
4, as was the result with the brminc operations described in
FIG. 7. That is, the result of the brinc operations in FIG. 9
provides 0xDCAA0008 as the final result which does not
address element 4 in memory 12. In order for the final con
catenation (“ra O:15e) to provide a useful value, the values
ofra O:15, prior to execution of the brinc instruction, need to
be “0”. In this case, ra, prior to execution of the brinc instruc
tion, needs to refer to an index value into the buffer (a value
between 0x0 and 0x7) rather than an actual pointer or address
value, as described above in reference to the brminc instruc
tion. In this manner, the result in rD of the brminc instruction
is the index value of the next element to be accessed in a
bit-reversed order. Therefore, in the example of FIG. 9, if the
initial value in ra is set to the initial index value of
0x00000000, then the result in rD would be 0x00000008,
which would correctly index the next element, element 4.
However, this index value in rD could not then be used to
directly address element 4. That is, as described above, either
an additional instruction would be needed to add this index
value to the base address value of the buffer (OxDCAABCFO)
prior to being able to load element 4, or a load with index
instruction (e.g. an Ihax instruction) has to be used which
requires the use of an extra GPR as compared to the load
without index (i.e. the Iha) instruction described above which
can be used after a brminc instruction.

Therefore, the brinc instruction, unlike the brminc instruc
tion, does not Supporta bit-variable granularity modulo based
increment. Furthermore, the result of the brinc instruction,
unlike the brminc instruction, does not provide the actual
address value of the next element to be accessed. In this
manner, the brminc instruction may allow for the use of less
GPRS when access the elements of a buffer in a bit-reversed
sequence. Therefore, by now it should be appreciated that the
brminc instruction may allow for improved efficiency when
accessing buffer elements in a bit-reversed sequence.

Because the apparatus implementing the present invention
is, for the most part, composed of electronic components and
circuits known to those skilled in the art, circuit details will
not be explained in any greater extent than that considered
necessary as illustrated above, for the understanding and
appreciation of the underlying concepts of the present inven
tion and in order not to obfuscate or distract from the teach
ings of the present invention.
Some of the above embodiments, as applicable, may be

implemented using a variety of different information process
ing systems. For example, although FIG. 1 and the discussion
thereof describe an exemplary information processing archi

10

15

25

30

35

40

45

50

55

60

65

12
tecture, this exemplary architecture is presented merely to
provide a useful reference in discussing various aspects of the
invention. Of course, the description of the architecture has
been simplified for purposes of discussion, and it is just one of
many different types of appropriate architectures that may be
used inaccordance with the invention. Those skilled in the art
will recognize that the boundaries between logic blocks are
merely illustrative and that alternative embodiments may
merge logic blocks or circuit elements or impose an alternate
decomposition of functionality upon various logic blocks or
circuit elements.

Thus, it is to be understood that the architectures depicted
herein are merely exemplary, and that in fact many other
architectures can be implemented which achieve the same
functionality. In an abstract, but still definite sense, any
arrangement of components to achieve the same functionality
is effectively “associated such that the desired functionality
is achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with each other such that the desired functionality is
achieved, irrespective of architectures or intermedial compo
nents. Likewise, any two components so associated can also
be viewed as being “operably connected,” or “operably
coupled to each other to achieve the desired functionality.

Also for example, in one embodiment, the illustrated ele
ments of system 10 are circuitry located on a single integrated
circuit or within a same device. Alternatively, system 10 may
include any number of separate integrated circuits or separate
devices interconnected with each other. For example,
memory 12 may be located on a same integrated circuit as
processor 14 or on a separate integrated circuit or located
within another peripheral or slave discretely separate from
other elements of system 10. Also for example, system 10 or
portions thereofmay be soft or code representations of physi
cal circuitry or of logical representations convertible into
physical circuitry. As such, System 10 orportions thereofmay
be embodied in a hardware description language of any
appropriate type.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations merely illustrative. The functionality of multiple
operations may be combined into a single operation, and/or
the functionality of a single operation may be distributed in
additional operations. Moreover, alternative embodiments
may include multiple instances of a particular operation, and
the order of operations may be altered in various other
embodiments.

All or some of the software described herein may be
received elements of system 10, for example, from computer
readable media such as memory 12 or other media on other
computer systems. Such computer readable media may be
permanently, removably or remotely coupled to an informa
tion processing system Such as system 10. The computer
readable media may include, for example and without limi
tation, any number of the following: magnetic storage media
including disk and tape storage media; optical storage media
such as compact disk media (e.g., CD-ROM, CD-R, etc.) and
digital video disk storage media; nonvolatile memory storage
media including semiconductor-based memory units such as
FLASH memory, EEPROM, EPROM, ROM: ferromagnetic
digital memories; MRAM; Volatile storage media including
registers, buffers or caches, main memory, RAM, etc.; and
data transmission media including computer networks, point
to-point telecommunication equipment, and carrier wave
transmission media, just to name a few.

In one embodiment, system 10 is a computer system such
as a personal computer system. Other embodiments may

US 8,572,147 B2
13

include different types of computer systems. Computer sys
tems are information handling systems which can be
designed to give independent computing power to one or
more users. Computer systems may be found in many forms
including but not limited to mainframes, minicomputers,
servers, workstations, personal computers, notepads, per
Sonal digital assistants, electronic games, automotive and
other embedded systems, cellphones and various other wire
less devices. A typical computer system includes at least one
processing unit, associated memory and a number of input/
output (I/O) devices.
A computer system processes information according to a

program and produces resultant output information via I/O
devices. A program is a list of instructions such as a particular
application program and/or an operating system. A computer
program is typically stored internally on computer readable
storage medium or transmitted to the computer system via a
computer readable transmission medium. A computer pro
cess typically includes an executing (running) program or
portion of a program, current program values and State infor
mation, and the resources used by the operating system to
manage the execution of the process. A parent process may
spawn other, child processes to help perform the overall func
tionality of the parent process. Because the parent process
specifically spawns the child processes to perform a portion
of the overall functionality of the parent process, the func
tions performed by child processes (and grandchild pro
cesses, etc.) may sometimes be described as being performed
by the parent process.

Although the invention is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present inven
tion. Any benefits, advantages, or Solutions to problems that
are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential
feature or element of any or all the claims.
The term “coupled as used herein, is not intended to be

limited to a direct coupling or a mechanical coupling.
Furthermore, the terms 'a' or “an as used herein, are

defined as one or more than one. Also, the use of introductory
phrases such as “at least one' and “one or more' in the claims
should not be construed to imply that the introduction of
another claim element by the indefinite articles “a” or “an
limits any particular claim containing Such introduced claim
element to inventions containing only one such element, even
when the same claim includes the introductory phrases "one
or more' or 'at least one' and indefinite articles such as “a” or
“an.” The same holds true for the use of definite articles.

Unless stated otherwise, terms such as “first and “second
are used to arbitrarily distinguish between the elements such
terms describe. Thus, these terms are not necessarily intended
to indicate temporal or other prioritization of such elements.
Additional Text:

1. A method comprising:
receiving a first instruction at an input of a processor and

storing the first instruction in an instruction storage cir
cuit;

providing a specifier that indicates both a first portion of a
value and a second portion of the value, the first portion
of the value is identified to be modified by the processor
and the second portion of the value is identified to
remain unchanged;

10

15

25

30

35

40

45

50

55

60

65

14
decoding the first instruction and in response to the decod

ing the processor modifying the first portion of the value
by performing a bit-reversed increment to form a modi
fied first portion;

combining the modified first portion with the second por
tion of the value which remained unchanged to form a
first address;

storing the first address in a first storage circuit;
receiving a second instruction at the input of the processor,

and
decoding the second instruction and in response to the

decoding, the processor accessing data located at the
first address which is assigned to a second storage cir
cuit.

2. The method of statement 1 further comprising:
forming a data structure in the second storage circuit; and
determining a value of the specifier as a function of a

number of data elements stored in the data structure in
the second storage circuit.

3. The method of statement 2 further comprising:
using the specifier to define a size of one or more of the data

elements of the data structure.
4. The method of statement 1 further comprising:
using a first portion of the second storage circuit as a Fast

Fourier Transform (FFT) buffer for storing samples of
FFT data.

5. The method of statement 1 further comprising:
implementing the first storage circuit as a portion of a

general purpose register file coupled to an execution unit
in the processor.

6. The method of statement 1 further comprising:
selectively varying a boundary between the first portion of

the value and the second portion of the value.
7. The method of statement 6 further comprising:
selecting the boundary to be a location that is not byte

aligned for data in the first portion and the second por
tion.

8. The method of statement 6 further comprising:
selecting the boundary to a position in which the first

portion of the value has an odd number of bits.
9. The method of statement 8 further comprising:
selecting the odd number of bits to be either seven bits or

nine bits.
10. The method of statement 6 further comprising:
using a binary value and detecting a logic value change

between successive bit values of the binary value to
determine the boundary between the first portion and the
second portion of the value.

11. A data processing system having a processor for
executing instructions and a memory for storing data, the
processor executing a predetermined one of the instructions
to form a new address by:

receiving the predetermined one of the instructions at an
input of the processor,

storing a first address in an instruction storage circuit;
providing a specifier that indicates both a first portion of a

value and a second portion of the value, the first portion
of the value is identified to be modified by the processor
and the second portion of the value is identified to
remain unchanged;

decoding the predetermined one of the instructions and in
response to the decoding, the processor modifying the
first portion of the value by performing a bit-reversed
increment to form a modified first portion:

combining the modified first portion with the second por
tion of the value which remained unchanged to form a
second address as the new address; and

comprising:

US 8,572,147 B2
15

storing the second address in a first storage circuit, the
processor using the second address when executing a
Subsequent instruction to access the memory.

12. The data processing system of Statement 11 further

forming a data structure in the memory; and
determining a value of the specifier as a function of a

number of data elements for the data structure stored in
the memory.

13. The data processing system of statement 12 further 10
comprising:

using the specifier to define a size of one or more of the data
elements of the data structure.

14. The data processing system of statement 11 further is
comprising:

implementing a Fast Fourier Transform (FFT) buffer in the
memory for storing samples of FFT data.

15. The data processing system of statement 11 further
comprising: 2O

implementing the first storage circuit as a portion of a
general purpose register file coupled to an execution unit
in the processor.

16. The data processing system of statement 11 further
comprising: 25

selectively varying a boundary between the first portion
and the second portion of the value.

17. The data processing system of statement 16 further
comprising:

using a binary value and detecting a logic value change 30
between successive bit values of the logic value to deter
mine the boundary between the first portion and the
second portion of the value.

18. A data processing system comprising:
a communication bus;
a processor coupled to the communication bus, the proces

Sor executing a plurality of data processing instructions;
and

a memory coupled to the communication bus, the memory 40
storing the plurality of data processing instructions
wherein one of the plurality of data processing instruc
tions functions to update a first pointer value, the one of
the plurality of data processing instructions comprising:
a register selector field for selecting a register to provide 45

a specifier that indicates both a first portion of a value
and a second portion of the value, the first portion of
the value is identified to be modified by the processor
and the second portion of the value is identified to
remain unchanged; 50

the processor further comprising:
an execution unit for decoding the one of the plurality of

data processing instructions and in response to the
decoding, the processor modifying the first portion of
the value by performing a bit-reversed increment to 55
form a modified first portion, the execution unit com
bining the modified first portion with the second por
tion of the value which remained unchanged to form a
second pointer value; and

a register file coupled to the execution unit, the register 60
file storing the second pointer value, the processor
using the second pointer value when executing a Sub
sequent instruction to access the memory.

19. The data processing system of statement 18 wherein the

35

processor further comprises: 65
a control unit coupled to the execution unit and the register

file, the control unit selecting a boundary between the

16
first portion of the value and the second portion of the
value so that the first portion of the value has either seven
or nine bits.

20. The data processing system of statement 18 wherein the
5 memory further comprises:

a data structure wherein a value of the specifier is a function
of a number of data elements of the data structure in the
memory.

What is claimed is:
1. A method comprising:
receiving a first instruction at an input of a processor and

storing the first instruction in an instruction storage cir
cuit;

providing a specifier that indicates both a first portion of a
value and a second portion of the value, the first portion
of the value is identified to be modified by the processor
and the second portion of the value is identified to
remain unchanged, wherein a first change in bit value
from a first bit value to a second bit value in the specifier
when the specifier is traversed from a highest order bit
down towards a lowest order bit defines a boundary
between the second portion and the first portion, wherein
the specifier includes a same number of bits as the value
and includes at least one higher order bit that has the first
bit value;

decoding the first instruction and in response to the decod
ing the processor modifying the first portion of the value
by performing a bit-reversed increment to form a modi
fied first portion, using all bits of the specifier to form a
first intermediate value representative of the modified
first portion, and using all bits of the specifier to form a
second intermediate value representative of the second
portion;

combining the modified first portion with the second por
tion of the value which remained unchanged to form a
first address, wherein the step of combining is performed
such that a final operation used to form the first address
is a bit-wise OR operation of the first intermediate value
and the second intermediate value;

storing the first address in a first storage circuit;
receiving a second instruction at the input of the processor,

and
decoding the second instruction and in response to the

decoding, the processor accessing data located at the
first address which is assigned to a second storage cir
cuit.

2. The method of claim 1 further comprising:
forming a data structure in the second storage circuit; and
determining a value of the specifier as a function of a

number of data elements stored in the data structure in
the second storage circuit.

3. The method of claim 2 further comprising:
using the specifier to define a size of one or more of the data

elements of the data structure.
4. The method of claim 1 further comprising:
using a first portion of the second storage circuit as a Fast

Fourier Transform (FFT) buffer for storing samples of
FFT data.

5. The method of claim 1 further comprising:
implementing the first storage circuit as a portion of a

general purpose register file coupled to an execution unit
in the processor.

6. The method of claim 1 further comprising:
selectively varying the boundary between the first portion

of the value and the second portion of the value.

US 8,572,147 B2
17

7. The method of claim 6 further comprising:
selecting the boundary to be a location that is not byte

aligned for data in the first portion and the second por
tion.

8. The method of claim 6 further comprising:
selecting the boundary to a position in which the first

portion of the value has an odd number of bits.
9. The method of claim 8 further comprising:
selecting the odd number of bits to be either seven bits or

nine bits.
10. The method of claim 6 further comprising:
using a binary value and detecting a logic value change

between successive bit values of the binary value to
determine the boundary between the first portion and the
second portion of the value.

11. The method of claim 1, wherein the value is an address
of a bit-reversed addressing sequence which directly
addresses a location in the second storage circuit, and the first
address formed by the step of combining is an immediately
subsequent address to the address in the bit-reversed address
ing sequence which directly addresses an immediately Sub
sequent location in the second storage circuit in accordance
with a bit-reversed order.

12. A data processing system having a processor for
executing instructions and a memory for storing a plurality of
elements to be accessed in a bit-reversed order, the processor
executing a predetermined one of the instructions to form a
new address by:

receiving the predetermined one of the instructions at an
input of the processor,

storing a first address in an instruction storage circuit,
wherein the first address is an address of a bit-reversed
addressing sequence and directly addresses a first ele
ment of the plurality of elements;

providing a specifier that indicates both a first portion of the
first address and a second portion of the first address, the
first portion of the first address is identified to be modi
fied by the processor and the second portion of the first
address is identified to remain unchanged, wherein the
specifier includes a same number of bits as the first
address;

decoding the predetermined one of the instructions and in
response to the decoding, the processor modifying the
first portion of the first address by performing a bit
reversed increment to form a modified first portion, the
processor using all bits of the specifier to form a first
intermediate value representative of the modified first
portion, and the processor using all bits of the specifierto
form a second intermediate value representative of the
second portion using all bits of the specifier;

combining the modified first portion with the second por
tion of the first address which remained unchanged to
form a second address as the new address, wherein the
step of combining is performed Such that a final opera
tion used to form the new address is a bit-wise OR
operation of the first intermediate value and the second
intermediate value, and wherein the second address is an
immediately Subsequent address to the first address in
the bit-reversed addressing sequence and directly
addresses an immediately Subsequent element of the
plurality of elements inaccordance with the bit-reversed
order; and

storing the second address in a first storage circuit, the
processor using the second address when executing a
Subsequent instruction to access the memory.

5

10

15

25

30

35

40

45

50

55

60

65

18
13. The data processing system of claim 12 further com

prising:
forming a data structure in the memory; and
determining a value of the specifier as a function of a

number of data elements for the data structure stored in
the memory.

14. The data processing system of claim 13 further com
prising:

using the specifier to define a size of one or more of the data
elements of the data structure.

15. The data processing system of claim 12 further com
prising:

implementing a Fast Fourier Transform (FFT) buffer in the
memory for storing samples of FFT data.

16. The data processing system of claim 12 further com
prising:

implementing the first storage circuit as a portion of a
general purpose register file coupled to an execution unit
in the processor.

17. The data processing system of claim 12 further com
prising:

selectively varying a boundary between the first portion
and the second portion of the value.

18. The data processing system of claim 17 further com
prising:

using a binary value and detecting a logic value change
between successive bit values of the logic value to deter
mine the boundary between the first portion and the
second portion of the value.

19. The data processing system of claim 12, wherein a first
change in bit value from a first bit value to a second bit value
in the specifier when the specifier is traversed from a highest
order bit down towards a lowest order bit defines a boundary
between the second portion and the first portion.

20. The data processing system of claim 19, wherein the
specifier includes a plurality of higher order bits that have the
first bit value.

21. A data processing system comprising:
a communication bus;
a processor coupled to the communication bus, the proces

Sor executing a plurality of data processing instructions;
and

a memory coupled to the communication bus, the memory
storing the plurality of data processing instructions
wherein one of the plurality of data processing instruc
tions functions to update a first pointer value, the one of
the plurality of data processing instructions comprising:
a register selector field for selecting a register to provide

a specifier that indicates both a first portion of the first
pointer value and a second portion of the first pointer
value, the first portion of the first pointer value is
identified to be modified by the processor and the
second portion of the first pointer value is identified to
remain unchanged, wherein a first change in bit value
from a first bit value to a second bit value in the
specifier when the specifier is traversed from a highest
order bit down towards a lowest order bit defines a
boundary between the second portion and the first
portion, wherein the specifier includes a same number
of bits as the first pointer value and includes at least
one higher order bit that has the first bit value:

the processor further comprising:
an execution unit for decoding the one of the plurality of

data processing instructions and in response to the
decoding, the processor modifying the first portion of
the value by performing a bit-reversed increment to
form a modified first portion, using all bits of the

US 8,572,147 B2
19

specifier to form a first intermediate value represen
tative of the modified first portion, and using all bits of
the specifier to form a second intermediate value rep
resentative of the second portion using all bits of the
specifier, and the execution unit combining the modi
fied first portion with the second portion of the value
which remained unchanged to form a second pointer
value, wherein the combining is performed Such that
a final operation used to form the second pointer value
is a bit-wise OR operation of the first intermediate
value and the second intermediate value; and

a register file coupled to the execution unit, the register
file storing the second pointer value, the processor
using the second pointer value when executing a Sub
sequent instruction to access the memory.

22. The data processing system of claim 21 wherein the
processor further comprises:

a control unit coupled to the execution unit and the register
file, the control unit selecting a boundary between the

10

15

20
first portion of the value and the second portion of the
value so that the first portion of the value has either seven
or nine bits.

23. The data processing system of claim 21 wherein the
memory further comprises:

a data structure wherein a value of the specifier is a function
of a number of data elements of the data structure in the
memory.

24. The data processing system of claim 21, wherein the
first pointer value is an address of a bit-reversed addressing
sequence, and the second pointer value is an immediately
subsequent address to the first pointer value of the bit-re
versed addressing sequence, and wherein each of the first
pointer value and second pointer value directly addresses an
element stored in the memory being accessed in a bit-reversed
order.

