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(57) ABSTRACT 

In a data processing system, a first instruction is received at an 
input of a processor. A specifier indicates both a first portion 
of a value and a second portion of the value. The first portion 
of the value is identified to be modified by the processor and 
the second portion of the value is identified to remain 
unchanged. The first instruction is decoded, and in response 
the processor modifies the first portion of the value by per 
forming a bit-reversed increment to form a modified first 
portion. The modified first portion is combined with the sec 
ond portion of the value which remained unchanged to form 
a first address. The first address is stored in first storage 
circuitry. A second instruction is decoded and in response the 
processor accesses data located at the first address which is 
assigned to a second storage circuit. 

24 Claims, 5 Drawing Sheets 

MASK (FROM FIG, 4) = 0000000E 
--MASK = FFFFFFF1 
ADDRESS OF FIRST ELEMENT OF BIT REVERSED ORDER, 

ELEMENT O: r A = DCAABCFO 

a = r A 16:51 = BCFO 
b = (a ~ MASK) = FFFFFFF1 
c = bitrev (b) = 8FFFFFFF 

1+C = 9FFFFFFF 

d = bitrev (1+c) = FFFFFFF9 
e = d & MASK = OOOOOOO8 

f = r A & --MASK = DCAABCFO 

rD = e f = DCAABCF8 
- 

REMAINED RESULTING 
UNCHANGED BIT-REVERSED 

INCREMENT 
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LINEAR ORDER 
OF ELEMENTS 

BIT-REVERSED ORDER 
BIT REVERSAL OF ELEMENTS 

O OOO -> 000 O 
1 BINARY OO1 1 OO DECIMAL 4. 
2 REPRESENTATION 010 010 REPRESENTATION 2 
5 -> 0 1 1 110 -> 6 
4. 100 OO1 1 
5 101 101 5 
6 110 O 11 3 
7 111 -> 111 7 

brminc rD, rA, rB 

O 5 6 10 11 15 16 20 21 51 

NUMBER OF DATA SIZE 
DATA SAMPLES BYTE HALFWORD WORD | DOUBLE WORD 

8 000.00000111000.00001110 000.000011100.000.0000111000 
16 000.00001111000.00011110 000.000111100000.0001111000 

OOO.OOO 11111 OOOOO 111110 OOOOO 11111OOOOOOO 11111000 

OOOOO 111111 OOOO 1111110 OOO, O11111100 0000111111OOO 

AVG.. 4 
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O 31 

INITIAL ADDRESS VALUE DCAABCFO rA 

O 31 
MASK 

(8 HALFWORDS STRUCTURE) OOOOOOOE rB 

ADDRESSING SEQUENCE: 

DCAABCFO 
brminc -> DCAABCF8 
brminc -> DCAABCF4 
brminc -> DCAABCFC 
brminc -> DCAABCF2 
brminc -> DCAABCFA 
brminc -> DCAABCF6 
brminc -> DCAABCFE 

A/VG. A 

16 BITS PORTION OF K- -- EMORY a 
DCAABCFO ELEMENT O 

DCAABCF2 ELEMENT 1 

DCAABCF4 ELEMENT 2 

DCAABCF6 ELEMENT 5 

DCAABCF8 ELEMENT 4 

DCAABCFA ELEMENT 5 

DCAABCFC | ELEMENT 6 

DCAABCFE ELEMENT 7 
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MASK (FROM FIG. 4) = 0000000E 
a MASK = FFFFFFF1 
ADDRESS OF FIRST ELEMENT OF BIT REVERSED ORDER, 

ELEMENT O: r A = DCAABCFO 

Q = r A 16:31 = BCFO 
b = (a ~ MASK) = FFFFFFF1 
C = bitrey (b) = 8FFFFFFF 

1+C = 9FFFFFFF 

d = bitrey (1+c) = FFFFFFF9 
e = d 8 MASK = OOOOOOO8 

f = r A & --MASK = DCAABCFO 

rD = e f = DCAABCF8 
- 

REMAINED RESULTING 
UNCHANGED BIT-REVERSED 

INCREMENT 

A/VG. Z. 

ADDRESS OF SECOND ELEMENT OF BIT REVERSED ORDER, 
ELEMENT 4: A = DCAABCF8 

q = r A 16:31) = BCF8 
b = (a ~ MASK) = FFFFFFF9 
c = bitrev (b) = 9FFFFFFF 

1+C = AFFFFFFF 

d = bitrev (1+c) = FFFFFFF5 
e = d & MASK = OOOOOOO4 

f = r A & N MASK = DCAABCFO 

rD = e f = DCAABCF4 
- 

REMAINED RESULTING 
UNCHANGED BIT-REVERSED 

INCREMENT 

A/VG. S. 
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MASK (FROM FIG. 4) = OOOE 
~ MASK = FFF1 

DCAABCFO 
O -e- BCFO 

b = (a ~ MASK) = FFF1 
C = bitrev (b) = 8FFF 

1+C = 9FFF 

d = bitrev (1+c) = FFF9 
e = d & MASK = 0008 

rD = r A 0:15 || e 
= DCAAO008 

AVG. 9 
-PRIOR ART 
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METHOD FOR IMPLEMENTINGA 
BIT REVERSED INCREMENT IN ADATA 

PROCESSING SYSTEM 

BACKGROUND 

1. Field 
This disclosure relates generally to addressing in a data 

processing system, and more specifically, to a method for 
implementing bit-reversed addressing in a data processing 
system. 

2. Related Art 
Many types offiltering algorithms, such as in digital signal 

processing (DSP) applications, utilize buffers to hold sets of 
input samples and computed output samples from a set of 
filtering operations, such as Fast Fourier Transform (FFT) 
filters. These filters are typically accessed in a bit-reversed 
fashion to obtain the data and store outputs in a predetermined 
order which corresponds to the natural order of computations. 
For example, for an 8 element FFT buffer having elements 0. 
1, 2, 3, 4, 5, 6, and 7 stored in a linear order, the bit-reversed 
order in which they need to be accessed is elements 0, 4, 2, 6, 
1, 5, 3, and 7. 
Abit reversed increment (brinc) instruction available today 

to support accessing FFT data in a bit-reversed manner pro 
vides, as its result, an index that is updated with bit-reversed 
addressing. The brinc instruction may have a format of “brinc 
rD, ra, rB' where rA contains the index into a buffer that 
contains data on which FFT is to be performed, rB contains a 
mask that allows the index to be updated with bit-reversed 
incrementing, and rD stores the resulting updated index with 
bit-reversed increment. This brinc instruction typically pre 
cedes a load with index instruction (e.g. Ihax) which uses the 
resulting index to perform a load of the FFT data. However, a 
load with index instruction requires the use of three general 
purpose registers (GPRs). For example, this load instruction 
typically takes the form of “Ihax r), ra, rB' where racon 
tains a base address, rB contains an index value, and r) 
receives the data loaded from the address location addressed 
by “the base address+the index value'. Therefore, the result 
of the brinc instruction can then be used as the index value of 
a Subsequent load with index instruction to obtain the next 
FFT data element in the proper bit-reversed order. However, 
in many cases, the use of FFT filters appears in sections of 
code which rely heavily on the use of numerous GPRS, where 
the use of Such load with index instructions necessary to load 
the FFT data may reduce efficiency of accessing FFT data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example and 
is not limited by the accompanying figures, in which like 
references indicate similar elements. Elements in the figures 
are illustrated for simplicity and clarity and have not neces 
sarily been drawn to scale. 

FIG. 1 illustrates a data processing system in accordance 
with one embodiment of the present invention. 

FIG. 2 illustrates an example of bit-reversed addressing. 
FIG.3 illustrates a bit-reversed modulo increment instruc 

tion in accordance with one embodiment of the present inven 
tion. 

FIG. 4 illustrates a table of example values for masks for 
different data sizes and number of data which may be used for 
the bit-reversed modulo increment instruction of FIG. 3. 

FIG. 5 illustrates, in diagram form, an example initial 
address pointer value, an example mask value, and an 
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2 
example bit-reversed addressing sequence in accordance with 
one embodiment of the present invention. 

FIG. 6 illustrates, in diagram form, a portion of the memory 
of the data processing system of FIG. 1 storing data elements 
of an FFT buffer. 

FIGS. 7 and 8 illustrate example operations performed 
during execution of a brminc instruction using the example 
FFT buffer of FIG. 6 in accordance with one embodiment of 
the present invention. 

FIG.9 illustrates operations performed during execution of 
a brinc instruction using the example FFT buffer in accor 
dance with the prior art. 

DETAILED DESCRIPTION 

In one embodiment, a bit-reversed modulo increment 
instruction (e.g. a brminc instruction) supports efficient bit 
reversed incrementing. In one embodiment, the brminc 
instruction allows for a higher order portion of an initial 
address value to remain unchanged while allowing a lower 
order portion of the initial address to be updated or modified 
with a bit-reversed increment. In this manner, the resulting 
address value of the brminc instruction provides the actual 
address value of a next buffer element in memory to be 
accessed according to a bit-reversed sequencing. This result 
ing address value allows for a Subsequent load without index 
type load instruction to be used to access the buffer element 
stored at the resulting address. This type of load instruction, 
as compared to a load with index type load instruction, 
requires the use of less GPRS which may allow for more 
efficient operation. 
As used herein, the term “bus” is used to refer to a plurality 

of signals or conductors which may be used to transfer one or 
more various types of information, Such as data, addresses, 
control, or status. The conductors as discussed herein may be 
illustrated or described in reference to being a single conduc 
tor, a plurality of conductors, unidirectional conductors, or 
bidirectional conductors. However, different embodiments 
may vary the implementation of the conductors. For example, 
separate unidirectional conductors may be used rather than 
bidirectional conductors and vice versa. Also, plurality of 
conductors may be replaced with a single conductor that 
transfers multiple signals serially or in a time multiplexed 
manner. Likewise, single conductors carrying multiple sig 
nals may be separated out into various different conductors 
carrying Subsets of these signals. Therefore, many options 
exist for transferring signals. 
The terms “assert” or “set and “negate' (or “deassert” or 

“clear) are used herein when referring to the rendering of a 
signal, status bit, or similar apparatus into its logically true or 
logically false state, respectively. If the logically true state is 
a logic level one, the logically false state is a logic level Zero. 
And if the logically true state is a logic level Zero, the logically 
false state is a logic level one. 

Each signal described herein may be designed as positive 
or negative logic, where negative logic can be indicated by a 
bar over the signal name oran asterix (*) following the name. 
In the case of a negative logic signal, the signal is active low 
where the logically true state corresponds to a logic level Zero. 
In the case of a positive logic signal, the signal is active high 
where the logically true state corresponds to a logic level one. 
Note that any of the signals described herein can be designed 
as either negative or positive logic signals. Therefore, in alter 
nate embodiments, those signals described as positive logic 
signals may be implemented as negative logic signals, and 
those signals described as negative logic signals may be 
implemented as positive logic signals. 
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Brackets are used hereinto indicate the conductors of abus 
or the bit locations of a value. For example, “bus 600:7 or 
“conductors 0:7 of bus 60' indicates the eight higher order 
conductors of bus 60, and “address bits 0:7 or “ADDRESS 
0:7 indicates the eight higher order bits of an address value. 
The symbol “S” or “Ox’ preceding a number indicates that the 
number is represented in its hexadecimal or base sixteen 
form. The symbol “/6' preceding a number indicates that the 
number is represented in its binary or base two form. 

FIG. 1 illustrates, in block diagram form, a data processing 
system 10 in accordance with one embodiment of the present 
invention. Data processing system 10 includes a processor 14, 
memory 12, input/output (I/O) 16, other peripherals 18, and a 
system bus 20. Memory 12 is bidirectionally coupled to sys 
tem bus 20 via conductors 22, I/O 16 is bidirectionally 
coupled to system bus 20 via conductors 24, other peripherals 
18 is bidirectionally coupled to system bus 20 via conductors 
26, and processor 14 is bidirectionally coupled to system bus 
20 via conductors 58. In one embodiment, other peripherals 
18 may include one or more peripherals, where each can be 
any type of peripheral, such as a universal asynchronous 
receiver transmitter (UART), a real time clock (RTC), a key 
board controller, other memories, etc. Some or all of other 
peripherals 18 may be capable of communicating information 
external to data processing system 10 via conductors 62. I/O 
circuitry 16 may include any type of I/O circuitry which 
receives or provides information external to data processing 
system 10, via, for example, conductors 60. Memory 12 can 
be any type of memory, Such as, for example, a read only 
memory (ROM), a random access memory (RAM), non 
Volatile memory (e.g. Flash), etc. Data processing system 10 
may include other elements than those illustrated, or may 
include more or fewer elements than those illustrated. For 
example, data processing system 10 may include any number 
of memories or processors. 

Processor 14 may be any type of processor, Such as, for 
example, a microprocessor, microcontroller, digital signal 
processor, etc. In one embodiment, processor 14 may be 
referred to as a processor core. In another embodiment, pro 
cessor 14 may be one of many processors in a multi-processor 
data processing system. Furthermore, although not illustrated 
as such, processor 14 may be a pipelined processor. In the 
embodiment illustrated in FIG. 1, processor 14 includes a 
control unit 28, an instruction unit 30, execution units 32, a 
scalar register file 34, a bus interface unit (BIU) 36, and a 
load/store unit 38. Control unit 28 is bidirectionally coupled 
to instruction unit 30 via conductors 40, to execution units 32 
via conductors 42, to Scalar register file 34 via conductors 46. 
and to load/store unit 38 via conductors 48. Execution units 
32 are bidirectionally coupled to scalar register file 34 via 
conductors 44, and scalar register file 34 is bidirectionally 
couple to load/store unit 38 via conductors 50. BIU 36 is 
bidirectionally coupled to instruction unit 30 via conductors 
54 and to load/storeunit 38 via conductors 52. Processor 14 is 
capable of bidirectionally communicating with system bus 20 
via conductors 56 which are coupled to conductors 58. Note 
that processor 14 may include more circuitry than that illus 
trated, where the additional circuitry may also be coupled to 
conductors 58. That is, conductors 56 may communicate with 
system bus 20 via all or a portion of conductors 58. Note also 
that all or a portion of processor 14 may be referred to as 
processing circuitry. 

In operation, instruction unit 30 fetches instructions from a 
memory, such as memory 12, via BIU 36 and system bus 20, 
and receives and provides control information to and from 
control unit 28. Instruction unit 30 also includes an instruc 
tion storage circuit 31. This may include an instruction reg 
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4 
ister which stores the next instruction to be decoded and 
executed. This may also include an instruction buffer which 
provides fetched instructions to the instruction register. 
Instruction unit 30 can be any type of instruction unit as 
known in the art with any type of instruction storage circuitry, 
and operates as known in the art, and therefore will not be 
described in more detail herein. Instruction unit 30 therefore 
provides instructions to control unit 28 which controls execu 
tion of these received instructions via, for example, execu 
tions units 32 and load/store unit 38, which are both capable 
of communicating with scalar register file 34, as needed, 
directly or via control unit 28. For example, control unit 28, 
via load/store unit 38 and BIU 36, is capable of loading data 
from memory (such as memory 12) to registers within scalar 
register file 34 as needed for executing instructions and is 
capable of storing data from registers within Scalar register 
file 34 to memory (such as memory 12) as needed for execut 
ing instructions. For example, in one embodiment, load/store 
unit 38 can communicate directly with scalar register file 34 
(to read and write data) via conductors 50 based on control 
information provided from control unit 28 via conductors 48. 
Execution units 32 can perform arithmetic, logical, shifting, 
or other operations using data stored within Scalar register file 
34 and store results to registers within scalar register file 34, 
as required for executing the instructions received from 
instruction unit 30 by way of control unit 28. Execution units 
32 may include, for example, arithmetic logic units (ALUs), 
floating-point units, etc. 

Scalar register file 34 includes N general purpose registers 
(GPRs), where N can be any integer greater than or equal to 
one. In one embodiment, scalar register file 34 includes 32 
32-bit registers. As used here in, a scalar register indicates a 
register which has a one dimensional map and thus holds only 
one row of data (e.g. a 1 by M-bit register), where M can be 
any integer greater or equal to one. In one embodiment, M is 
32, and each register is thus capable of storing a 32-bit quan 
tity. Scalar register file 34 can provide or receive control 
information or data to or from control unit 28 via conductors 
46. 

Operation of processor 14 will not be described in more 
detail herein other than for those portions that are needed in 
understanding the various embodiments described herein. 

FIG. 2 illustrates an example of bit-reversed addressing 
which may be used when accessing data elements in a bit 
reversed manner, such as, for example, when accessing FFT 
data elements from a buffer stored in memory 12. In the 
example of FIG. 2, it is assumed that 8 data elements (ele 
ments 0-7) are stored in linear order. Each of these elements 
can be addressed by a 3-bit binary address representing the 
values 0 to 7. These binary values, %000, %001, 96010, 
%011, %100,96101, 96110, and %111, correspond to each of 
elements 0-7, respectively. These binary values are then “bit 
reversed, resulting in the mirror image of each 3-bit binary 
value. Upon bit-reversing each of these binary values, the 
bit-reversed elements result in the elements 0-7 being 
addressed in the bit-reversed order of element 0, element 4, 
element 2, element 6, element 1, element 5, element 3, and 
element 7, respectively. Note that, for ease of explanation, the 
examples which will be described herein assume a buffer of 8 
data elements to be accessed in a bit-reversed manner; how 
ever, alternate embodiments a buffer of any number of data 
elements can be addressed in a bit-reversed order. 

FIG. 3, in accordance with one embodiment, illustrates a 
bit reversed modulo increment (brminc) instruction labeled 
“brminc r), ra, rB'. In the illustrated form the brminc 
instruction is a thirty-two bit instruction having predeter 
mined fields. Other bit length instructions may be imple 
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mented and the bit size of each instruction field is implemen 
tation specific. An opcode and subopcode field identifies the 
function or type of instruction. Therefore the opcode and 
subopcode field of this instruction identifies the instruction as 
a brminc instruction. A brminc instruction provides away for 
software to access FFT data (or any other type of data) in a 
bit-reversed manner modulo the data buffer size. A second 
field within the instruction is a destination register identifier 
labeled “r” that identifies a register D. A third field within 
the instruction is a register identifier labeled “rA' that iden 
tifies a register A. A fourth field within the instruction is a 
register identifier labeled "rB” that identifies a register B. (As 
will be described in more detail below, the third field is a 
register selector field for selecting a register, ra, to providing 
an initial address value or initial pointer value, and the fourth 
field is a register selector field for selecting a register, rB, to 
provide a mask value or specifier.) It should be understood 
that in other embodiments additional fields or other fields 
may be implemented. Further, the ordering of the fields rD, ra 
and rB may be changed to other sequences than the one as 
illustrated in FIG. 3. 

Still referring to the brminc instruction, the source register 
rA contains a pointer value (i.e. address value) into a buffer 
that contains data which is to be accessed in a bit-reversed 
order (e.g. a buffer that contains data on which FFT is to be 
performed). The destination register, upon execution of a 
brminc instruction, Stores the next or Subsequent bit-reversed 
pointer value (i.e. bit-reversed address value) identifying the 
next buffer element to be accessed such that the next element 
to be addressed provides a bit-reversed access order. The 
Source register rB contains a bit-mask that allows a selected 
portion of the index to be updated with a bit-reversed incre 
ment of varying granularity. This bit-mask is based on a 
number of data elements or samples in a buffer (number of 
points in an FFT) as well as the data size of a sample. For 
example, FIG. 4 illustrates an example of a table which pro 
vides various bit-mask values based on both number of data 
samples and data sample size. To access a buffer containing in 
byte-sized data elements that is to be accessed with bit-re 
versed addressing, the mask has log n ones (1s) in the least 
significant bit positions and Zeroes (0s) in the remaining most 
significant bit positions. If, however, the data size is a multiple 
of a halfword or a word, the mask is constructed so that the 1s 
are shifted left by log (size of the data in bytes) and 0s are 
placed in the least significant bit positions. As used herein, a 
word is defined as 4 bytes and a halfword is defined as 2 bytes. 
However, in alternate embodiments, a word can be defined 
differently, such as, for example, as 2 bytes or 8 bytes. Note 
that, for each row of the table, the bit-mask values, as they 
progress from the byte column to the doubleword column, are 
shifted to the left by one bit each time. Also, note that for each 
column of the table, the bit-mask values, as they progress 
from the size of 8 elements down to the size of 64 elements, 
have an additional lower order bit set to “1”. The table of FIG. 
4 can be expanded to include larger buffer sizes, which are 
typically powers of 2, and may include larger data sizes as 
well. The table of FIG. 4 may be stored within control unit 28 
of FIG. 1, or may be stored elsewhere within system 10. The 
table of FIG. 4 may be stored as a table of values or may be 
implemented with logic gates. Alternate embodiments may 
store or receive the information of the table of FIG. 4 in a 
variety of different manners. 

FIG. 5 illustrates a bit-reversed addressing sequence which 
may beachieved using the brminc instruction when accessing 
the example buffer of FIG. 6. In the example of FIG. 6, the 
buffer stores 8 data elements where each data element is a 
halfword in size. (Note that the buffer of FIG. 6 may be used 
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6 
in an FFT application, and may also be referred to as an FFT 
sample buffer. Note also that the buffer of FIG. 6 may be 
referred to as a data structure and can be formed within 
memory 12 prior to being accessed.) For example, FIG. 6 
illustrates a portion of memory 12 which stores 8 halfword 
sized data elements starting at address location 
OxDCAABCFO. Since each element is a halfword in size (e.g. 
16 bits), the next 7 elements, element 1-element 7, are 
sequentially addressed in linear order by address values 
OxDCAABCF2, OxDCAABCF4, OxDCAABCF6, 
OxDCAABCF8, OxDCAABCFA, OxDCAABCFC, and 
0xDCAABCFE, respectively. (Note that each of these 
address values may also be referred to as pointer values.) If 
these were to be accessed in a bit-reversed order (as described 
in FIG. 2), then these addresses would be accessed in the 
following order: OxDCAABCFO (corresponding to element 
O), OxDCAABCF8 (corresponding to element 4), 
OxDCAABCF4 (corresponding to element 2), OxDCAAB 
CFC (corresponding to element 6), OxDCAABCF2 (corre 
sponding to element 1), OxDCAABCFA (corresponding to 
element 5), OxDCAABCF6 (corresponding to element 3). 
and OxDCAABCFE (corresponding to element 7). 

Therefore, in the example of bit-reversed addressing in 
FIG. 5, an initial address value (i.e. initial pointer value) of 
OxDCAABCFO is placed into registerra, prior to execution 
of the brminc instruction, where this points to the first ele 
ment, element 0, of the buffer in memory 12 to be accessed. 
Also, for this example, the mask value (taken from the table of 
FIG. 4) is “000 . . . 00001110, since the buffer contains 8 
halfword-sized data elements. Therefore, referring to FIG. 5, 
this mask value is stored in rB prior to execution of the brminc 
instruction. (Note that, in one embodiment, the storage cir 
cuitry which includes ra and rB, such as register file 34, may 
be referred to as a first storage circuit within system 10 and the 
storage circuitry which stores the buffer, Such as memory 12, 
may be referred to as a second storage circuit within system 
10.) Referring to the addressing sequence of FIG. 5, upon 
executing a first brminc instruction using the initial address 
pointer stored in ra and the mask value in rB, the next address 
(i.e. next pointer value) in the bit-reversed addressing 
sequence, i.e. OxDCAABCF8, is stored in rD. Prior to the 
next load or store instruction for accessing an element of the 
buffer in memory, the value of ra can be updated to this next 
address in the bit-reversed addressing sequence, i.e. 
OxDDCAABCF8, which is now considered the initial address 
pointer or address value for generating the next address in the 
bit-reversed addressing sequence. Therefore, upon execution 
of the next (i.e. second) brminc instruction using the new 
initial address pointer stored in ra and the same mask value in 
rB, the next address in the bit-reversed addressing sequence, 
i.e. 0xDCAABCF4, is stored in rD. Note thatra and rD may 
refer to the same general purpose register (GPR) in Scalar 
register file 34. Such that each execution of a brminc instruc 
tion uses the previous value in ra and updates it to the next 
desired pointer value in sequence. Thus, by executing the 
second brminc instruction, the value of ra can be updated to 
this next address in the bit-reversed addressing sequence, i.e. 
OxDCAABCF4. A load or store instruction without indexing 
can then be used to access the next sample of data in the 
buffer. Thereafter, upon executing the next (i.e. third) brminc 
instruction using the new initial address pointer stored in ra 
and the same mask value in rB, the next address in the bit 
reversed addressing sequence, i.e. 0xDCAABCFC, is stored 
in rD. Thus, the value of ra can again be updated to this next 
address in the bit-reversed addressing sequence, i.e. 
OxDCAABCFC by, for example, specifying the same GPR 
for ra and rD in the brminc instruction. Upon executing the 
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next (i.e. fourth) brminc instruction using the new initial 
address pointer stored in ra and the same mask value in rB, 
the next address in the bit-reversed addressing sequence, i.e. 
OxDCAABCF2, is stored in rD. Thus, the value of ra can 
again be updated to this next address in the bit-reversed 5 
addressing sequence, i.e. 0xDCAABCF2, by, for example, 
specifying the same GPR for ra and rD in the brminc instruc 
tion. Upon executing the next (i.e. fifth) brminc instruction 
using the new initial address pointer stored in ra and the same 
mask value in rB, the next address in the bit-reversed address- 10 
ing sequence, i.e. 0xDCAABCFA, is stored in rD. Thus, the 
value of ra can again be updated to this next address in the 
bit-reversed addressing sequence, i.e. 0xDCAABCFA, by, 
for example, specifying the same GPR for ra and rD in the 
brminc instruction. Upon executing the next (i.e. sixth) 15 
brminc instruction using the new initial address pointer stored 
in ra and the same mask value in rB, the next address in the 
bit-reversed addressing sequence, i.e. 0xDCAABCF6, is 
stored in rD. Thus, the value ofra can again be updated to this 
next address in the bit-reversed addressing sequence, i.e. 20 
OxDCAABCF6, by, for example, specifying the same GPR 
for ra and r) in the brminc instruction. Upon executing the 
next (i.e. seventh) brminc instruction using the new initial 
address pointer stored in ra and the same mask value in rB, 
the next address in the bit-reversed addressing sequence, i.e. 25 
OxDCAABCFE, is stored in rD. 

Therefore, through execution of the seven brminc instruc 
tions of FIG. 5, a bit-reversed addressing sequence for access 
ing the buffer (i.e. data structure) of FIG. 6 can be provided. 
In between each of these brminc instructions, additional 30 
instructions may be present which use the results in rD (i.e. 
the next address in the bit-reversed addressing sequence) in a 
Subsequent data processing operation. For example, follow 
ing each brminc instruction, a load or store instruction may be 
used to access the actual data stored at the location pointed to 35 
by the pointer value in rD. For example, after each brminc 
instruction, a halfword load without indexing instruction (e.g. 
an “Iha' instruction) may be executed to obtain the data 
element. In one embodiment, this instruction may have the 
format “IharlD, 0(ra). In this case, the “0(rA)' refers to the 40 
contents of the memory location addressed by the value 
stored in ra. (The “0” preceding the “(rA) indicates that a 0 
offset is to be added to the contents of ra prior to accessing the 
contents of memory location.) Therefore, the data element of 
the memory location (in, e.g., memory 12) addressed by the 45 
value stored in ra is stored in rD. For example, the first 
brminc instruction in FIG.5 may be “brmincr2, r2, ra', where 
r2 holds the previous pointer value into the data structure and 
r4 holds the proper mask value determined by the number of 
elements stored in the buffer and the size of each data ele- 50 
ment. This first brminc instruction may be followed by “Ihars 
0(r2) as shown below to load the next data sample from the 
buffer (i.e. data structure) into GPR rs in a bit-reversed fash 
ion: 

brminc r2, r2, r4 55 
Iha r8,0(r2) 
Store operations may use similar addressing modes, such 

that after each brminc instruction, a halfword store without 
indexing instruction (e.g. an “sth' instruction) may be 
executed to update the data element. In one embodiment, this 60 
instruction may have the format “sth rS, 0(ra). In this case, 
the “0(ra)' refers to the contents of the memory location 
addressed by the value stored in ra. (The “0” preceding the 
“(rA) indicates that a 0 offset is to be added to the contents of 
rA prior to accessing the contents of memory location.) 65 
Therefore, the data element of the memory location (in, e.g., 
memory 12) addressed by the value stored in ra is updated 

8 
with the store data value stored in rS. For example, the first 
brminc instruction in FIG.5 may be “brmincr2, r2, ra', where 
r2 holds the previous pointer value into the data structure and 
r4 holds the proper mask value determined by the number of 
elements stored in the buffer and the size of each data ele 
ment. This first brminc instruction may be followed by “sthr3 
0(r2) as shown below to store the next data sample into the 
buffer (i.e. data structure) from GPR ris in a bit-reversed 
fashion: 

brminc r2, r2, ra 
sth r8,00r2) 
Therefore, since the above brminc (“brminc r2, r2, ra') is 

assumed to be the first brminc instruction in FIG. 5, prior to 
execution of the brminc instruction, the initial pointer value of 
OxDCAABCFO would be placed in r2, and, upon execution of 
this brminc instruction, r2 would be updated with the next 
pointer or address value of the next address in the bit-reversed 
sequence, i.e. 0xDCAABCF8. Note that in this example, the 
GPR used for ra is the same as the one used for r). In this 
manner, less register locations are used. However, in alternate 
embodiments, different GPRS can be used for each of ra and 
rD. Note that the resulting value in r2 after execution of the 
brminc instruction is the address value itself of the next 
address in the bit-reversed sequence. Therefore, it may be 
used directly by the next load or store instruction without 
having to add any base value or offset to it, to access element 
4 from OxDCAABCF8. That is, it is not simply an index value 
which must then be added back to the buffer starting address, 
OxDCAABCFO, to obtain the next data element addressed by 
the next bit-reversed address, as was the case with the brinc 
instruction. Therefore, note that the Iha instruction does not 
require in index and base value as did the Ihax instruction, 
thus requiring the use of one less GPR in executing the 
instruction. Operation of the brminc instruction will be fur 
ther understood in reference to the examples of FIGS. 7 and 8. 
Note that in FIGS. 7-9, '-' indicates a bit-wise inverse opera 
tion, “& indicates a bit-wise AND operation, “I” indicates a 
bit-wise OR operation, “bitrev' indicates a bit reverse opera 
tion, and “I” indicates a concatenate operation. 

FIG. 7 illustrates the operations which occur upon execu 
tion of a brminc instruction, assuming an initial address value 
of OxDCAABCFO (the address of element 0) inra and a mask 
of%000... 00001110 (from FIG. 4) in rB. Note that the mask 
value (MASK) can be represented as the 32-bit value of 
0x0000000E, which can correspond to a 16 bit mask value 
padded with 16 bits of Zero so as to become a 32 bit value. 
Therefore, the bit-wise inverse value of the mask (-MASK) is 
0xFFFFFFF1. Intermediate value 'a' is set to bits 16-31 of ra 
(i.e. the least significant 16 bits of ra), which, in the current 
example, is 0xBCF0. Intermediate value “b' is “al-MASK” 
which is 0xFFFFFFF1. Intermediate value “c” is “bitrev(b) 
which indicates the bit-reversed value of “b’. Since, as rep 
resented in binary, b=%.1111 1111 1111 1111 1111 1111 
111 1 0001, the bit-reversed value of “b', represented in 
binary, is %1000 1111111111111111111111111111. This 
bit-reversed value of"b’ represented in hexadecimal is there 
fore OX8FFFFFFF. The Value “1+c’ is then OX9FFFFFFF. 
Intermediate value “d” is “bitrev(1+c)”. Therefore, “d' (i.e. 
the bit-reversed value of “1+c') is 0xFFFFFFF9. The inter 
mediate value “e” is “d & MASK” (i.e. “0xFFFFFFF9 & 
0x0000000E') which is 0x00000008. The intermediate value 
“f” is “ra & --MASK” (i.e. “OxDCAABCFO & 
0xFFFFFFF1') which is 0xDCAABCFO. Therefore, note 
that the intermediate value 'e' provides a resulting bit-re 
versed increment portion or value and the intermediate value 
“f represents a portion of ra which remains unchanged. 
Therefore, the final operation provides the value of rD which 
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is “elf which is 0xDCAABCF8 (which is the address of 
element 4). Therefore, only the least significant 4-bits of the 
initial pointer value in ra (OxDCAABCFO) was updated with 
a bit-reversed increment while the remaining higher order 28 
bits of the initial pointer value in ra remained unchanged. 
Due to the mask value of 0x0000000E, only the lower order 

4-bits of the initial pointer value in ra is allowed to change 
and be updated with a bit-reversed increment. That is, the first 
transition in bit values (e.g. from 0 to 1) of the mask value 
starting from the highest order bit down towards the lower 
order bit defines the starting point of the lower order portion 
of the initial pointer value that is allowed to change, i.e. that is 
allowed to be updated with a bit-reversed increment. There 
fore, since the binary representation of the mask value in this 
example is “%0000 0000 0000 0000 0000 0000 0000 1110.” 
then the first time a bit transition occurs when starting at the 
most significant bit going and moving towards the least sig 
nificant bit, is at the 4" least significant bit location. Thus, the 
mask value can be described as Supporting a modulo based 
increment with variable granularity by indicating which por 
tion of the initial address value is allowed to be modified to 
implement a bit-reversed increment. The intermediate value 
'd' is therefore masked with MASK so as to isolate the 
resulting bit-reversed increment portion, where the interme 
diate value 'e' represents the bit-reversed increment value. 
The --MASK is then used with ra to isolate the portion of ra 
which remains unchanged. 

In one embodiment, the mask value used to execute a 
brminc instruction may be referred to as a specifier that indi 
cates both a first portion of a value and a second portion of the 
value, where the first portion of the value is identified to be 
modified by the processor and the second portion of the value 
is identified to remain unchanged. For example, still referring 
to the example of FIG. 7, the first portion may refer to the 
lower 4 significant bits of the initial address value (e.g. bits 
28-31 as labeled in FIG. 5) which is modified by performing 
a bit-reversed increment and forming a modified first portion 
(e.g. represented by the intermediate value “e'), and the sec 
ond portion may refer to the remaining 28 higher order bits of 
the initial address value (e.g. bits 0-27 as labeled in FIG. 5) 
which remains unchanged (e.g. represented by the interme 
diate value “f”). The modified first portion and the second 
portion can then be combined (e.g. by the “elf in the example 
of FIG. 7) to forman address which can the bestored (e.g. in 
rD). As described above, another instruction (e.g. a load with 
out index instruction) may then be received and decoded by 
processor 14 which accesses data located at this address value 
stored in rD which corresponds to an address location in 
memory 12. Therefore, the mask value (i.e. specifier) serves 
to vary the boundary between an unchanged portion and a 
modified portion of a bit reversed increment operation on a 
GPR. 

Note that the mask value (i.e. specifier), as described above 
with respect to FIG. 4, is also a function of (or defines) a size 
of the one or more data elements of the buffer (which, in the 
current example of FIG. 7, is a halfword). Also, note that the 
boundary between the first portion that is allowed to change 
and the second portion that remains unchanged may be selec 
tively varied by using different mask values (i.e. different 
specifiers), and that this boundary is a function of both a 
number of data samples as well as a data sample size. This 
boundary may be determined by detecting a logic value 
change between Successive bit values of the logic value (e.g., 
the boundary may correspond to the first time a logic change 
occurs when starting at the most significant bit and progress 
ing down towards the least significant bit, as described above 
with respect to the example of FIG. 7). In one embodiment, 
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10 
this boundary is selected by control unit 28, which may, for 
example, store or receive information representative of the 
table of FIG. 4. In one example, the boundary between the 
first and second portion may be a location that is not byte 
aligned for data in the first portion or the second portion. For 
example, the boundary in the example of FIG. 7 occurs 
between the 4" least significant bit and the 5" least significant 
bit, which is not byte aligned. In another example, the bound 
ary may be selected such that the first portion of the value has 
an odd number of bits. For example, using a mask value of 
%000 . . . 00011110 from the table in FIG. 4, which corre 
sponds to a buffer of 16 halfword elements, the boundary in 
the example of FIG. 7 would result in the first portion having 
5 bits. In another example, the first portion may be either 7 or 
9 bits. 

FIG. 8 illustrates the operations which occur upon execu 
tion of a brminc instruction, assuming an initial address value 
of OxDCAABCF8 (the address of element 4) inra and a mask 
of%000... 00001110 (from FIG. 4) in rB. Note that the mask 
value (MASK) can be represented as the 32-bit value of 
0x0000000E, which can correspond to a 16 bit mask value 
padded with 16 bits of Zero so as to become a 32 bit value. 
Therefore, the bit-wise inverse value of the mask (-MASK) is 
0xFFFFFFF1. Intermediate value 'a' is set to bits 16-31 of ra 
(i.e. the least significant 16 bits of ra), which, in the current 
example, is 0xBCF8. Intermediate value “b' is “al-MASK” 
which is 0xFFFFFFF1. Intermediate value “c” is “bitrev(b) 
which indicates the bit-reversed value of “b’. Since, as rep 
resented in binary, b=%.1111 1111 1111 1111 1111 1111 
1111 1001, the bit-reversed value of “b', represented in 
binary, is %10011111111111111111111111111111. This 
bit-reversed value of"b’ represented in hexadecimal is there 
fore 0x9FFFFFFF. The Value “1+c’ is then OXAFFFFFFF. 
Intermediate value “d” is “bitrev(1+c)”. Therefore, “d' (i.e. 
the bit-reversed value of “1+c') is 0xFFFFFFF5. The inter 
mediate value “e” is “d & MASK” (i.e. “0xFFFFFFF5 & 
0x0000000E') which is 0x00000004. The intermediate value 
“f” is “ra & --MASK” (i.e. “OxDCAABCF8 & 
0xFFFFFFF1') which is 0xDCAABCFO. Therefore, note 
that the intermediate value 'e' provides a resulting bit-re 
versed increment portion or value and the intermediate value 
“f represents a portion of ra which remains unchanged. 
Therefore, the final operation provides the value of rD which 
is “elf which is 0xDCAABCF4 (the address of element 2). 
Therefore, again, only the least significant 4-bits of the initial 
pointer value in ra (OxDCAABCFO) was updated with a 
bit-reversed increment while the remaining higher order 28 
bits of the initial pointer value in ra remained unchanged. As 
was described above in reference to FIG. 7, the mask value 
Supports a modulo based increment of bit-variable granular 
ity by indicating which portion of initial address value is 
allowed to be modified to implement a bit-reversed increment 
and which portion of the initial address value remains 
unchanged (i.e. indicates a first portion of a value to be modi 
fied and a second portion of the value which is to remain 
unchanged), where the intermediate value 'e' represents the 
bit-reversed increment value (i.e. represents the modified first 
portion) and the intermediate value “f represents the higher 
order portion which remains unchanged (i.e. the second por 
tion). 

Note that the operations illustrated in FIGS. 7 and 8 can be 
performed by a variety of different types of circuitry located, 
for example, in execution units 32 of processor 14. Also, 
different operations may be performed that those illustrated 
in FIGS. 7 and 8 to achieve the results shown in FIGS. 7 and 
8. 
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FIG. 9 illustrates the operations which occur upon execu 
tion of a prior art brinc instruction, also assuming an initial 
address value of OxDCAABCFO (the address of element 4) in 
rA and a mask of 9/6000 . . . 00001110 in rB. Note that the 
mask value (MASK), in this example, is only represented as 
a 16-bit value, 0x000E. Therefore, the bit-wise inverse value 
of the mask (-MASK) is 0xFFF1. Intermediate value “a” is 
set to bits 16-31 of ra (i.e. the least significant 16 bits of ra), 
which, in the current example, is 0xECFO. Intermediate value 
“b' is “al-MASK which is 0xFFF1. Intermediate value “c” 
is “bitrev(b)” which is 0x8FFF. The value “1+c' is then 
0x9FFF. Intermediate value “d” is “bitrev(1+c)” which is 
0xFFF9. The intermediate value 'e' is “d & MASK which is 
0x0008. The final value in rD is then obtained by concatenat 
ing bits 16-31 of ra with intermediate value 'e' (i.e. 
“OxDCAA|0x0008”) which is 0xDCAAO008. Note that this 
value is not the correct address value of the next address in the 
bit-reversed addressing order. That is, after an initial address 
value of OxDCAABCFO, the next address in the bit-reversed 
sequence should be OxDCAABCF8 which addresses element 
4, as was the result with the brminc operations described in 
FIG. 7. That is, the result of the brinc operations in FIG. 9 
provides 0xDCAA0008 as the final result which does not 
address element 4 in memory 12. In order for the final con 
catenation (“ra O:15e) to provide a useful value, the values 
ofra O:15, prior to execution of the brinc instruction, need to 
be “0”. In this case, ra, prior to execution of the brinc instruc 
tion, needs to refer to an index value into the buffer (a value 
between 0x0 and 0x7) rather than an actual pointer or address 
value, as described above in reference to the brminc instruc 
tion. In this manner, the result in rD of the brminc instruction 
is the index value of the next element to be accessed in a 
bit-reversed order. Therefore, in the example of FIG. 9, if the 
initial value in ra is set to the initial index value of 
0x00000000, then the result in rD would be 0x00000008, 
which would correctly index the next element, element 4. 
However, this index value in rD could not then be used to 
directly address element 4. That is, as described above, either 
an additional instruction would be needed to add this index 
value to the base address value of the buffer (OxDCAABCFO) 
prior to being able to load element 4, or a load with index 
instruction (e.g. an Ihax instruction) has to be used which 
requires the use of an extra GPR as compared to the load 
without index (i.e. the Iha) instruction described above which 
can be used after a brminc instruction. 

Therefore, the brinc instruction, unlike the brminc instruc 
tion, does not Supporta bit-variable granularity modulo based 
increment. Furthermore, the result of the brinc instruction, 
unlike the brminc instruction, does not provide the actual 
address value of the next element to be accessed. In this 
manner, the brminc instruction may allow for the use of less 
GPRS when access the elements of a buffer in a bit-reversed 
sequence. Therefore, by now it should be appreciated that the 
brminc instruction may allow for improved efficiency when 
accessing buffer elements in a bit-reversed sequence. 

Because the apparatus implementing the present invention 
is, for the most part, composed of electronic components and 
circuits known to those skilled in the art, circuit details will 
not be explained in any greater extent than that considered 
necessary as illustrated above, for the understanding and 
appreciation of the underlying concepts of the present inven 
tion and in order not to obfuscate or distract from the teach 
ings of the present invention. 
Some of the above embodiments, as applicable, may be 

implemented using a variety of different information process 
ing systems. For example, although FIG. 1 and the discussion 
thereof describe an exemplary information processing archi 
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12 
tecture, this exemplary architecture is presented merely to 
provide a useful reference in discussing various aspects of the 
invention. Of course, the description of the architecture has 
been simplified for purposes of discussion, and it is just one of 
many different types of appropriate architectures that may be 
used inaccordance with the invention. Those skilled in the art 
will recognize that the boundaries between logic blocks are 
merely illustrative and that alternative embodiments may 
merge logic blocks or circuit elements or impose an alternate 
decomposition of functionality upon various logic blocks or 
circuit elements. 

Thus, it is to be understood that the architectures depicted 
herein are merely exemplary, and that in fact many other 
architectures can be implemented which achieve the same 
functionality. In an abstract, but still definite sense, any 
arrangement of components to achieve the same functionality 
is effectively “associated such that the desired functionality 
is achieved. Hence, any two components herein combined to 
achieve a particular functionality can be seen as “associated 
with each other such that the desired functionality is 
achieved, irrespective of architectures or intermedial compo 
nents. Likewise, any two components so associated can also 
be viewed as being “operably connected,” or “operably 
coupled to each other to achieve the desired functionality. 

Also for example, in one embodiment, the illustrated ele 
ments of system 10 are circuitry located on a single integrated 
circuit or within a same device. Alternatively, system 10 may 
include any number of separate integrated circuits or separate 
devices interconnected with each other. For example, 
memory 12 may be located on a same integrated circuit as 
processor 14 or on a separate integrated circuit or located 
within another peripheral or slave discretely separate from 
other elements of system 10. Also for example, system 10 or 
portions thereofmay be soft or code representations of physi 
cal circuitry or of logical representations convertible into 
physical circuitry. As such, System 10 orportions thereofmay 
be embodied in a hardware description language of any 
appropriate type. 

Furthermore, those skilled in the art will recognize that 
boundaries between the functionality of the above described 
operations merely illustrative. The functionality of multiple 
operations may be combined into a single operation, and/or 
the functionality of a single operation may be distributed in 
additional operations. Moreover, alternative embodiments 
may include multiple instances of a particular operation, and 
the order of operations may be altered in various other 
embodiments. 

All or some of the software described herein may be 
received elements of system 10, for example, from computer 
readable media such as memory 12 or other media on other 
computer systems. Such computer readable media may be 
permanently, removably or remotely coupled to an informa 
tion processing system Such as system 10. The computer 
readable media may include, for example and without limi 
tation, any number of the following: magnetic storage media 
including disk and tape storage media; optical storage media 
such as compact disk media (e.g., CD-ROM, CD-R, etc.) and 
digital video disk storage media; nonvolatile memory storage 
media including semiconductor-based memory units such as 
FLASH memory, EEPROM, EPROM, ROM: ferromagnetic 
digital memories; MRAM; Volatile storage media including 
registers, buffers or caches, main memory, RAM, etc.; and 
data transmission media including computer networks, point 
to-point telecommunication equipment, and carrier wave 
transmission media, just to name a few. 

In one embodiment, system 10 is a computer system such 
as a personal computer system. Other embodiments may 
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include different types of computer systems. Computer sys 
tems are information handling systems which can be 
designed to give independent computing power to one or 
more users. Computer systems may be found in many forms 
including but not limited to mainframes, minicomputers, 
servers, workstations, personal computers, notepads, per 
Sonal digital assistants, electronic games, automotive and 
other embedded systems, cellphones and various other wire 
less devices. A typical computer system includes at least one 
processing unit, associated memory and a number of input/ 
output (I/O) devices. 
A computer system processes information according to a 

program and produces resultant output information via I/O 
devices. A program is a list of instructions such as a particular 
application program and/or an operating system. A computer 
program is typically stored internally on computer readable 
storage medium or transmitted to the computer system via a 
computer readable transmission medium. A computer pro 
cess typically includes an executing (running) program or 
portion of a program, current program values and State infor 
mation, and the resources used by the operating system to 
manage the execution of the process. A parent process may 
spawn other, child processes to help perform the overall func 
tionality of the parent process. Because the parent process 
specifically spawns the child processes to perform a portion 
of the overall functionality of the parent process, the func 
tions performed by child processes (and grandchild pro 
cesses, etc.) may sometimes be described as being performed 
by the parent process. 

Although the invention is described herein with reference 
to specific embodiments, various modifications and changes 
can be made without departing from the scope of the present 
invention as set forth in the claims below. Accordingly, the 
specification and figures are to be regarded in an illustrative 
rather than a restrictive sense, and all such modifications are 
intended to be included within the scope of the present inven 
tion. Any benefits, advantages, or Solutions to problems that 
are described herein with regard to specific embodiments are 
not intended to be construed as a critical, required, or essential 
feature or element of any or all the claims. 
The term “coupled as used herein, is not intended to be 

limited to a direct coupling or a mechanical coupling. 
Furthermore, the terms 'a' or “an as used herein, are 

defined as one or more than one. Also, the use of introductory 
phrases such as “at least one' and “one or more' in the claims 
should not be construed to imply that the introduction of 
another claim element by the indefinite articles “a” or “an 
limits any particular claim containing Such introduced claim 
element to inventions containing only one such element, even 
when the same claim includes the introductory phrases "one 
or more' or 'at least one' and indefinite articles such as “a” or 
“an.” The same holds true for the use of definite articles. 

Unless stated otherwise, terms such as “first and “second 
are used to arbitrarily distinguish between the elements such 
terms describe. Thus, these terms are not necessarily intended 
to indicate temporal or other prioritization of such elements. 
Additional Text: 

1. A method comprising: 
receiving a first instruction at an input of a processor and 

storing the first instruction in an instruction storage cir 
cuit; 

providing a specifier that indicates both a first portion of a 
value and a second portion of the value, the first portion 
of the value is identified to be modified by the processor 
and the second portion of the value is identified to 
remain unchanged; 
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decoding the first instruction and in response to the decod 

ing the processor modifying the first portion of the value 
by performing a bit-reversed increment to form a modi 
fied first portion; 

combining the modified first portion with the second por 
tion of the value which remained unchanged to form a 
first address; 

storing the first address in a first storage circuit; 
receiving a second instruction at the input of the processor, 

and 
decoding the second instruction and in response to the 

decoding, the processor accessing data located at the 
first address which is assigned to a second storage cir 
cuit. 

2. The method of statement 1 further comprising: 
forming a data structure in the second storage circuit; and 
determining a value of the specifier as a function of a 

number of data elements stored in the data structure in 
the second storage circuit. 

3. The method of statement 2 further comprising: 
using the specifier to define a size of one or more of the data 

elements of the data structure. 
4. The method of statement 1 further comprising: 
using a first portion of the second storage circuit as a Fast 

Fourier Transform (FFT) buffer for storing samples of 
FFT data. 

5. The method of statement 1 further comprising: 
implementing the first storage circuit as a portion of a 

general purpose register file coupled to an execution unit 
in the processor. 

6. The method of statement 1 further comprising: 
selectively varying a boundary between the first portion of 

the value and the second portion of the value. 
7. The method of statement 6 further comprising: 
selecting the boundary to be a location that is not byte 

aligned for data in the first portion and the second por 
tion. 

8. The method of statement 6 further comprising: 
selecting the boundary to a position in which the first 

portion of the value has an odd number of bits. 
9. The method of statement 8 further comprising: 
selecting the odd number of bits to be either seven bits or 

nine bits. 
10. The method of statement 6 further comprising: 
using a binary value and detecting a logic value change 

between successive bit values of the binary value to 
determine the boundary between the first portion and the 
second portion of the value. 

11. A data processing system having a processor for 
executing instructions and a memory for storing data, the 
processor executing a predetermined one of the instructions 
to form a new address by: 

receiving the predetermined one of the instructions at an 
input of the processor, 

storing a first address in an instruction storage circuit; 
providing a specifier that indicates both a first portion of a 

value and a second portion of the value, the first portion 
of the value is identified to be modified by the processor 
and the second portion of the value is identified to 
remain unchanged; 

decoding the predetermined one of the instructions and in 
response to the decoding, the processor modifying the 
first portion of the value by performing a bit-reversed 
increment to form a modified first portion: 

combining the modified first portion with the second por 
tion of the value which remained unchanged to form a 
second address as the new address; and 
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storing the second address in a first storage circuit, the 
processor using the second address when executing a 
Subsequent instruction to access the memory. 

12. The data processing system of Statement 11 further 

forming a data structure in the memory; and 
determining a value of the specifier as a function of a 

number of data elements for the data structure stored in 
the memory. 

13. The data processing system of statement 12 further 10 
comprising: 

using the specifier to define a size of one or more of the data 
elements of the data structure. 

14. The data processing system of statement 11 further is 
comprising: 

implementing a Fast Fourier Transform (FFT) buffer in the 
memory for storing samples of FFT data. 

15. The data processing system of statement 11 further 
comprising: 2O 

implementing the first storage circuit as a portion of a 
general purpose register file coupled to an execution unit 
in the processor. 

16. The data processing system of statement 11 further 
comprising: 25 

selectively varying a boundary between the first portion 
and the second portion of the value. 

17. The data processing system of statement 16 further 
comprising: 

using a binary value and detecting a logic value change 30 
between successive bit values of the logic value to deter 
mine the boundary between the first portion and the 
second portion of the value. 

18. A data processing system comprising: 
a communication bus; 
a processor coupled to the communication bus, the proces 

Sor executing a plurality of data processing instructions; 
and 

a memory coupled to the communication bus, the memory 40 
storing the plurality of data processing instructions 
wherein one of the plurality of data processing instruc 
tions functions to update a first pointer value, the one of 
the plurality of data processing instructions comprising: 
a register selector field for selecting a register to provide 45 

a specifier that indicates both a first portion of a value 
and a second portion of the value, the first portion of 
the value is identified to be modified by the processor 
and the second portion of the value is identified to 
remain unchanged; 50 

the processor further comprising: 
an execution unit for decoding the one of the plurality of 

data processing instructions and in response to the 
decoding, the processor modifying the first portion of 
the value by performing a bit-reversed increment to 55 
form a modified first portion, the execution unit com 
bining the modified first portion with the second por 
tion of the value which remained unchanged to form a 
second pointer value; and 

a register file coupled to the execution unit, the register 60 
file storing the second pointer value, the processor 
using the second pointer value when executing a Sub 
sequent instruction to access the memory. 

19. The data processing system of statement 18 wherein the 

35 

processor further comprises: 65 
a control unit coupled to the execution unit and the register 

file, the control unit selecting a boundary between the 

16 
first portion of the value and the second portion of the 
value so that the first portion of the value has either seven 
or nine bits. 

20. The data processing system of statement 18 wherein the 
5 memory further comprises: 

a data structure wherein a value of the specifier is a function 
of a number of data elements of the data structure in the 
memory. 

What is claimed is: 
1. A method comprising: 
receiving a first instruction at an input of a processor and 

storing the first instruction in an instruction storage cir 
cuit; 

providing a specifier that indicates both a first portion of a 
value and a second portion of the value, the first portion 
of the value is identified to be modified by the processor 
and the second portion of the value is identified to 
remain unchanged, wherein a first change in bit value 
from a first bit value to a second bit value in the specifier 
when the specifier is traversed from a highest order bit 
down towards a lowest order bit defines a boundary 
between the second portion and the first portion, wherein 
the specifier includes a same number of bits as the value 
and includes at least one higher order bit that has the first 
bit value; 

decoding the first instruction and in response to the decod 
ing the processor modifying the first portion of the value 
by performing a bit-reversed increment to form a modi 
fied first portion, using all bits of the specifier to form a 
first intermediate value representative of the modified 
first portion, and using all bits of the specifier to form a 
second intermediate value representative of the second 
portion; 

combining the modified first portion with the second por 
tion of the value which remained unchanged to form a 
first address, wherein the step of combining is performed 
such that a final operation used to form the first address 
is a bit-wise OR operation of the first intermediate value 
and the second intermediate value; 

storing the first address in a first storage circuit; 
receiving a second instruction at the input of the processor, 

and 
decoding the second instruction and in response to the 

decoding, the processor accessing data located at the 
first address which is assigned to a second storage cir 
cuit. 

2. The method of claim 1 further comprising: 
forming a data structure in the second storage circuit; and 
determining a value of the specifier as a function of a 

number of data elements stored in the data structure in 
the second storage circuit. 

3. The method of claim 2 further comprising: 
using the specifier to define a size of one or more of the data 

elements of the data structure. 
4. The method of claim 1 further comprising: 
using a first portion of the second storage circuit as a Fast 

Fourier Transform (FFT) buffer for storing samples of 
FFT data. 

5. The method of claim 1 further comprising: 
implementing the first storage circuit as a portion of a 

general purpose register file coupled to an execution unit 
in the processor. 

6. The method of claim 1 further comprising: 
selectively varying the boundary between the first portion 

of the value and the second portion of the value. 
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7. The method of claim 6 further comprising: 
selecting the boundary to be a location that is not byte 

aligned for data in the first portion and the second por 
tion. 

8. The method of claim 6 further comprising: 
selecting the boundary to a position in which the first 

portion of the value has an odd number of bits. 
9. The method of claim 8 further comprising: 
selecting the odd number of bits to be either seven bits or 

nine bits. 
10. The method of claim 6 further comprising: 
using a binary value and detecting a logic value change 

between successive bit values of the binary value to 
determine the boundary between the first portion and the 
second portion of the value. 

11. The method of claim 1, wherein the value is an address 
of a bit-reversed addressing sequence which directly 
addresses a location in the second storage circuit, and the first 
address formed by the step of combining is an immediately 
subsequent address to the address in the bit-reversed address 
ing sequence which directly addresses an immediately Sub 
sequent location in the second storage circuit in accordance 
with a bit-reversed order. 

12. A data processing system having a processor for 
executing instructions and a memory for storing a plurality of 
elements to be accessed in a bit-reversed order, the processor 
executing a predetermined one of the instructions to form a 
new address by: 

receiving the predetermined one of the instructions at an 
input of the processor, 

storing a first address in an instruction storage circuit, 
wherein the first address is an address of a bit-reversed 
addressing sequence and directly addresses a first ele 
ment of the plurality of elements; 

providing a specifier that indicates both a first portion of the 
first address and a second portion of the first address, the 
first portion of the first address is identified to be modi 
fied by the processor and the second portion of the first 
address is identified to remain unchanged, wherein the 
specifier includes a same number of bits as the first 
address; 

decoding the predetermined one of the instructions and in 
response to the decoding, the processor modifying the 
first portion of the first address by performing a bit 
reversed increment to form a modified first portion, the 
processor using all bits of the specifier to form a first 
intermediate value representative of the modified first 
portion, and the processor using all bits of the specifierto 
form a second intermediate value representative of the 
second portion using all bits of the specifier; 

combining the modified first portion with the second por 
tion of the first address which remained unchanged to 
form a second address as the new address, wherein the 
step of combining is performed Such that a final opera 
tion used to form the new address is a bit-wise OR 
operation of the first intermediate value and the second 
intermediate value, and wherein the second address is an 
immediately Subsequent address to the first address in 
the bit-reversed addressing sequence and directly 
addresses an immediately Subsequent element of the 
plurality of elements inaccordance with the bit-reversed 
order; and 

storing the second address in a first storage circuit, the 
processor using the second address when executing a 
Subsequent instruction to access the memory. 
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13. The data processing system of claim 12 further com 

prising: 
forming a data structure in the memory; and 
determining a value of the specifier as a function of a 

number of data elements for the data structure stored in 
the memory. 

14. The data processing system of claim 13 further com 
prising: 

using the specifier to define a size of one or more of the data 
elements of the data structure. 

15. The data processing system of claim 12 further com 
prising: 

implementing a Fast Fourier Transform (FFT) buffer in the 
memory for storing samples of FFT data. 

16. The data processing system of claim 12 further com 
prising: 

implementing the first storage circuit as a portion of a 
general purpose register file coupled to an execution unit 
in the processor. 

17. The data processing system of claim 12 further com 
prising: 

selectively varying a boundary between the first portion 
and the second portion of the value. 

18. The data processing system of claim 17 further com 
prising: 

using a binary value and detecting a logic value change 
between successive bit values of the logic value to deter 
mine the boundary between the first portion and the 
second portion of the value. 

19. The data processing system of claim 12, wherein a first 
change in bit value from a first bit value to a second bit value 
in the specifier when the specifier is traversed from a highest 
order bit down towards a lowest order bit defines a boundary 
between the second portion and the first portion. 

20. The data processing system of claim 19, wherein the 
specifier includes a plurality of higher order bits that have the 
first bit value. 

21. A data processing system comprising: 
a communication bus; 
a processor coupled to the communication bus, the proces 

Sor executing a plurality of data processing instructions; 
and 

a memory coupled to the communication bus, the memory 
storing the plurality of data processing instructions 
wherein one of the plurality of data processing instruc 
tions functions to update a first pointer value, the one of 
the plurality of data processing instructions comprising: 
a register selector field for selecting a register to provide 

a specifier that indicates both a first portion of the first 
pointer value and a second portion of the first pointer 
value, the first portion of the first pointer value is 
identified to be modified by the processor and the 
second portion of the first pointer value is identified to 
remain unchanged, wherein a first change in bit value 
from a first bit value to a second bit value in the 
specifier when the specifier is traversed from a highest 
order bit down towards a lowest order bit defines a 
boundary between the second portion and the first 
portion, wherein the specifier includes a same number 
of bits as the first pointer value and includes at least 
one higher order bit that has the first bit value: 

the processor further comprising: 
an execution unit for decoding the one of the plurality of 

data processing instructions and in response to the 
decoding, the processor modifying the first portion of 
the value by performing a bit-reversed increment to 
form a modified first portion, using all bits of the 
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specifier to form a first intermediate value represen 
tative of the modified first portion, and using all bits of 
the specifier to form a second intermediate value rep 
resentative of the second portion using all bits of the 
specifier, and the execution unit combining the modi 
fied first portion with the second portion of the value 
which remained unchanged to form a second pointer 
value, wherein the combining is performed Such that 
a final operation used to form the second pointer value 
is a bit-wise OR operation of the first intermediate 
value and the second intermediate value; and 

a register file coupled to the execution unit, the register 
file storing the second pointer value, the processor 
using the second pointer value when executing a Sub 
sequent instruction to access the memory. 

22. The data processing system of claim 21 wherein the 
processor further comprises: 

a control unit coupled to the execution unit and the register 
file, the control unit selecting a boundary between the 

10 
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first portion of the value and the second portion of the 
value so that the first portion of the value has either seven 
or nine bits. 

23. The data processing system of claim 21 wherein the 
memory further comprises: 

a data structure wherein a value of the specifier is a function 
of a number of data elements of the data structure in the 
memory. 

24. The data processing system of claim 21, wherein the 
first pointer value is an address of a bit-reversed addressing 
sequence, and the second pointer value is an immediately 
subsequent address to the first pointer value of the bit-re 
versed addressing sequence, and wherein each of the first 
pointer value and second pointer value directly addresses an 
element stored in the memory being accessed in a bit-reversed 
order. 


