(12) 发明专利申请

(10) 申请公布号 CN 101867322 A
(43) 申请公布日 2010.10.20

(21) 申请号 201010188297.0
(22) 申请日 2010.06.01

(71) 申请人 袁长胜
 地址 225008 江苏省扬州市维扬经济开发区
 荷叶西路 89 号

(72) 发明人 袁长胜
(74) 专利代理机构 南京苏高专利商标事务所
 (普通合伙) 32204

代理人 柏尚春

(51) Int. Cl.
 H02N 6/00 (2006.01)
 H02N 11/00 (2006.01)
 F24J 2/24 (2006.01)
 F24J 2/00 (2006.01)

(54) 发明名称
 一种全自动太阳能发电供水一体机

(57) 摘要
 本发明公开了一种全自动太阳能发电供水一体机。该一体机包括太阳能发电集热高能模组、
 储水装置和智能控制器;所述的太阳能发电集热高能模组与电网线路、家庭电源线路和储电
 池通过各自的线路相通;所述的太阳能发电集热高能模组与储水装置之间设有管路相通;所
 述的智能控制器包括自动控水模块和自动控电模块。太阳能利用效率高,光电和光热综合使
 用率高达 80%～90%以上;环境适应性强;可以和现有的太阳能产品和电热水器、燃气热水器结
 合,最大程度的利用资源;成本低占地少外形美观;减少重复投入,节约资源。即真正意义上的
 太阳能光电光热装置。
1. 一种全自动太阳能发电供水一体机，其特征在于：包括太阳能发电集热高能模组、储水装置和智能控制器；所述的太阳能发电集热高能模组与井型电源线路、离散型家用电源线路和蓄电池通过各自的线路相通；所述的太阳能发电集热高能模组与储水装置之间设有管路相通；所述的智能控制器包括自动控水模块和自动控电模块。

2. 根据权利要求1所述的全自动太阳能发电供水一体机，其特征在于：所述的太阳能发电集热高能模组至少包括一个单模组，所述的单模组包括设置在模组箱体上的聚光镜片和设置在模组箱体内的发电芯片、有水换热管路。所述的聚光镜片为线性聚焦的平形或弧形镜片，所述的发电芯片设置在聚光镜片的聚光点上；所述的有水换热管路紧贴设置在发电芯片下方，与储水装置相通。

3. 根据权利要求1或2所述的全自动太阳能发电供水一体机，其特征在于：在所述的太阳能发电集热高能模组上设有用于调节其方位的驱动装置。

4. 根据权利要求1所述的全自动太阳能发电供水一体机，其特征在于：所述的储水装置包括分层式保温水箱、设置在分层式保温水箱上的管路和高温储水箱，在所述的分层式保温水箱内设有低温储水区和中温储水区。

5. 根据权利要求4所述的全自动太阳能发电供水一体机，其特征在于：在所述的中温储水区内设有电加热器。

6. 根据权利要求1所述的全自动太阳能发电供水一体机，其特征在于：所述的智能控制器，控制太阳能发电集热高能模组的方位；控制储水装置的上水、加热、循环；显视发电量、水温、电能储存量和热水储存量；自动使用储存电能供水箱加热和家庭使用；当存储电能不足，自动切换外部电源。

7. 根据权利要求1所述的全自动太阳能发电供水一体机，其特征在于：所述的太阳能发电集热高能模组与储水装置采用整体式安装或分体独立安装。

8. 根据权利要求1所述的全自动太阳能发电供水一体机，其特征在于：在所述的太阳能发电集热高能模组和储水装置上均设有保温层。
一种全自动太阳能发电供水一体机

技术领域
[0001] 本发明涉及一种太阳能热水器，尤其涉及一种全自动太阳能发电供水一体机。

背景技术
[0002] 目前，随着传统能源的日益紧缺和全球环境的日益恶化，各国对于可再生能源的重视程度不断提高。而诸多的可再生能源中，只有太阳能取之不尽，用之不竭且没有污染，是最具有发展潜力的可再生能源。太阳能的利用形式包括光伏、光热等。我国开发太阳能已有几十年的历史，特别是太阳能热水器已成为世界上生产量和销售量的第一大国，因此对采用太阳能产生电能和热能新产品的、新技术的需求越来越迫切。

[0003] 近年来随着转化效率的不断提高及电池厚度的日益降低，晶硅太阳能电池逐渐占据市场的主流。但是晶硅电池的快速发展却导致了一度时间内硅原料的短缺，且硅电池在生产过程中产生大量的资源消耗，使得光伏发电的成本居高不下，而且光转化效率不到20%，光能利用效率和增加环保负担，也不能产生热能。非晶和薄膜转化效率极低但且浪费单位面积下日照资源。因此，如何寻找新材料、新结构来提高太阳能使用效率，降低成本，成为太阳能技术得到大规模普及应用所必须解决的问题。

发明内容
[0004] 发明目的：针对现有技术中存在的不足，本发明的目的是提供一种全自动太阳能发电供水一体机，以实现具有结构简单，光电转化效率高，光电和光热综合使用效率高达80％～90％以上，环境适用性强等优点。

[0005] 技术方案：为了实现上述发明目的，本发明采用的技术方案为：

[0006] 一种全自动太阳能发电供水一体机，包括太阳能发电集热高能模组、储水装置和智能控制器，所述的太阳能发电集热高能模组与分集式电源线路、离散型家用电源线路和蓄电池通过各自的线路相通；所述的太阳能发电集热高能模组与储水装置之间设有管路相通；所述的智能控制器包括自动控水模块和自动控电模块。

[0007] 所述的太阳能发电集热高能模组至少包括一个单模组，所述的单模组包括设置在模组箱体上的聚光镜片和设置在模组箱体内的发电芯片，有水换热管路；所述的聚光镜片为线性聚焦的平形或弧形镜片，所述的发电芯片设置在聚光镜片的聚光点上；所述的有水换热管路紧贴设置在发电芯片下方，与储水装置相通。

[0008] 在所述的太阳能发电集热高能模组上设有自动追日装置，用来跟踪阳光。

[0009] 所述的储水装置包括分层式保温水箱，设置在分层式保温水箱上的管路和高温储水箱，在所述的分层式保温水箱内设有低温储水区和中温储水区。分层式保温水箱内低温储水区用于对太阳能电池片的降温，中温储水区用于镀膜管二次加热，高温储水区供用户使用。

[0010] 在所述的中温储水区内设有电加热器。

[0011] 所述的智能控制器至少包括以下功能：控制太阳能发电集热高能模组的方位；控
制电能的存储和逆变并网；控制储水装置的上水、加热、循环；显示发电量、水温、电能储存量和热水储存量；自动使用存储电能供水箱加热和家庭使用；当存储电能不足，自动切换外部电源。

所述的太阳能发电集热高能模组与储水装置采用整体式安装或分体独立安装。

在所述的太阳能发电集热高能模组和储水装置上均设有保温层。

太阳能发电集热高能模组是本一体机的核心部件之一，它通过线性高聚光透镜将太阳光聚焦发电，提高了太阳能光热发电的效率，减少光伏电池的用量，降低成本的同时，也积累了热能。在发电芯片下布置水管，用水将发电芯片上产生的热能带到保温水箱，这样既获得了热能，又降低了发电芯片的温度，温差的加大，提高了发电芯片的发电效率。为了更大量的吸收太阳光的热量，在太阳能发电集热高能模组里设置了二次镀膜管，从发电芯片下面水管流出的水温达到设定值时，便会流入中温储水区，然后直接通入二次镀膜管，继续吸收太阳光的热量。

本发明的分层式保温水箱分为低温储水区和中温储水区。低温储水区的水直接通入发电芯片下方的水管，用于吸收发电芯片产生的热量，降低发电芯片的温度，提高其发电效率。当低温储水区的温度高于设定值时，水流向中温储水区，中温储水区用于热水二次加热，通过太阳能发电集热高能模组内的镀膜管吸收太阳光加热。

有益效果：本发明与现有产品相比，具有以下优势：

太阳能利用效率高，光电和光热综合利用率达80%～90%以上；环境适用性强，可以和现有的太阳能产品和电热水器、燃气热水器结合，最大程度的利用资源；成本低，占地少，外形美观；减少重复投入，节约资源。

附图说明

图1是本发明的全自动太阳能发电供水一体机的结构示意图。

图2是本发明的太阳能发电集热高能模组的结构示意图。

图3是本发明的太阳能发电集热高能模组的单模组剖视图。

图4是本发明的分层式保温水箱的结构示意图。

具体实施方式

下面结合附图对本发明做进一步的解释。

如图1所示，为本发明的全自动太阳能发电供水一体机。该全自动太阳能发电供水一体机包括太阳能发电集热高能模组1、储水装置和智能控制器2；储水装置包括分层式保温水3和高温储水箱4；太阳能发电集热高能模组1与电源并网线路7、家用电源线路8和蓄电池5通过各自的线路相通；太阳能发电集热高能模组1与分层式保温水3之间设有管路相通；智能控制器包括自动控水模块和自动控电模块。

如图2所示，为本发明的太阳能发电集热高能模组。该太阳能发电集热高能模组1至少包括一个单模组，一般情况下，每个一体机可以设置3～4个模组。单模组之间并排平行设置在支架14上，在单模组的一端设置有驱动装置13。所述的驱动装置可以为机械驱动或手动驱动，当为机械驱动时，可以通过智能控制2控制驱动杆进行驱动，即可。

如图3所示，为本发明的单模组。该单模组包括设置在模组箱体12上的聚光镜片
11 和设置在模组箱体 12 内的发电芯片 15, 有水换热管路 16; 该聚光镜片 11 为线性聚焦的平形或弧形镜片, 发电芯片 15 设置在聚光镜片 11 的聚光点上; 有水换热管路 16 紧贴设置在发电芯片 15 下方, 在发电芯片 15 的两侧还设有二次镀膜管 17。在模组箱体 12 内侧表面上设有保温层。在有水换热管路 16 与模组箱体 12 的接触面上设有保温层 18。在聚光镜片 11 上可以设置除尘器 19, 用来及时清理镜面上的灰尘。

[0026] 如图 4 所示, 本发明的分层式保温水箱。储水装置包括分层式保温水箱 3、设置在分层式保温水箱 3 上的管路和高温储水箱 4。在分层式保温水箱 3 内侧、设置在分层式保温水箱 3 上的管路上和高温储水箱 4 内侧均设有保温层。在高温储水箱 4 内设有电加热器。在该分层式保温水箱 3 内设有低温储水区 31 和中温储水区 36, 中温储水区 36 分为 2 个箱体。在低温储水区 31 内设有自来水进水口 6, 在该进水口 6 上设有进水电磁阀 32 用于控制自来水的开关; 在低温储水区 31 设有设有水循环管路 37 与有水换热管路 16 相同, 将低温储水区的冷水通过水泵通人单模组, 对发电芯片进行循环冷却, 同时收集热量; 在低温储水区 31 设有温度传感器 34、水位传感器 35 和温水出口, 在温水出口上设有出口电磁阀 33。进口电磁阀 32、温度传感器 34、水位传感器 35 和出口电磁阀 33 均由智能控制器 2 控制, 当温度传感器检测到水温已经达到设定值时, 智能控制器 2 就会打开出口电磁阀 33 向中温储水区放水, 当水位传感器 35 感应到水温已经抵达预定的下线时, 智能控制器 2 自动打开进口电磁阀 32, 向低温储水区 31 内注人冷水, 直至达到预置的上限水位停止。在中温储水区 36 的第一个箱体内, 通过出口电磁阀 33 进入的温水, 由出水管路 38 流向二次镀膜管 17, 在二次镀膜管 17 内循环吸收太阳能的热量, 加热达到设定温度后可以通过用户管路 40 接入家庭使用或通入高温水箱储存。在中温储水区 36 内设有第二温度传感器 41 和电加热器 42, 均由智能控制器 2 控制。太阳能发电集热髙能模组 1 与储水装置可采用整体式安装或分体独立安装。当日照不好的时候, 智能控制器 2 可自动使用蓄电池 5 电能控制电加热器 42 工作, 保证用户能使用热水。

[0027] 智能控制器 2 与驱动装置 13 相连, 可以根据太阳光的方位, 来自动控制太阳能发电集热髙能模组的方位; 智能控制器 2 设置在太阳能发电集热髙能模组 1 与电源并网线路 7、家用户电线路 8 和蓄电池 5 各自相连的线路在, 实行电能的储存, 逆变并网和供应家庭使用; 自动使用储存电能供水箱加热和家庭使用; 当存储电能不足, 自动切换外部电源; 智能控制器 2 与储水装置的出水口 35、电磁阀相通, 控制储水装置的上水、加热、循环; 在智能控制器 2 的显示板上显示发电、温度, 高温及电能储存量。

[0028] 太阳能发电集热髙能模组是本体机的核心部件之一, 它是通过线性高聚光透镜将太阳光聚焦发电, 提高了太阳能光伏光热发电的效率, 减少了光伏电池的用量, 降低了成本的同时, 也积累了热能。在发电芯片下布水管, 用水将发电芯片上产生的热能带到保温水箱, 这样既获得了热能, 又降低了发电芯片的温度, 提高了发电芯片的发电效率。为了更大程度的吸收太阳能的热量, 在太阳能发电集热髙能模组里设置了二次镀膜管, 从发电芯片下而水管流出的温水达到设定值时, 便会流入中温储水区, 然后直接通入二次镀膜管, 继续吸收太阳能的热量。