发明名称
一种车辆碰撞缓冲吸能车架结构

摘要
本发明属于车辆制造技术领域，具体涉及一种车辆碰撞缓冲吸能车架结构。所述车架结构包括：防撞梁和与所述防撞梁连接的纵梁，通过在所述纵梁上安装加强构件有效的解决了现有技术中存在的当车辆发生碰撞时导致纵梁变形过大，使车体严重损坏，造成乘员人身伤害的问题，本发明结构简单，设计合理，具有很高的实用性。
权利要求书

1. 一种车辆碰撞缓冲吸能车架结构，所述车架结构包括：防撞梁和与所述防撞梁连接的纵梁(100)，其特征在于：在所述纵梁(100)上安装有加强构件。

2. 根据权利要求1所述车架结构，其特征在于：所述加强构件为加强板。

3. 根据权利要求2所述车架结构，其特征在于：所述加强板包括第一加强板(101)和第二加强板(102)；
 其中，所述第一加强板(101)安装在所述纵梁(100)U型截面的开口部；
 所述第二加强板(102)安装在所述纵梁(100)U型截面的下底部。

4. 根据权利要求3所述车架结构，其特征在于：所述第一加强板(101)安装在所述纵梁(100)U型截面的开口部，与所述纵梁(100)形成截面为封闭四边形的结构。

5. 根据权利要求1所述车架结构，其特征在于：所述加强构件与所述纵梁(100)的安装方式为焊接。

6. 根据权利要求5所述车架结构，其特征在于：经过所述焊接后，形成的焊点(103)间距为37mm。
一种车辆碰撞缓冲吸能车架结构

技术领域

本发明属于车辆制造技术领域，涉及一种车辆的车架结构，具体涉及一种具有车辆碰撞缓冲吸能功能的车架结构。

背景技术

车架是车辆上各个部件的安装基础，其承受整车的大部分重量，当车辆受到冲击时，车架会受到冲击载荷，因此要求车架具有足够的强度，合适的刚度。车架一般包括防撞梁和与防撞梁连接的纵梁，现有车辆的车架中纵梁的强度不够，当车辆发生碰撞时，因为纵梁强度不够，导致变形过大，造成车体严重损坏，这样必然波及乘员区内，碰撞过程中产生巨大的冲量会直接传递到乘员舱中，导致乘员受到极大的伤害。

发明内容

为了提高现有技术中存在的车架纵梁强度低，当车辆发生碰撞时导致纵梁变形过大，使车体严重损坏，造成乘员人身伤害的问题，本发明提供了一种车辆碰撞缓冲吸能车架结构。

本发明解决现有技术问题所采用的技术方案为提供一种车辆碰撞缓冲吸能车架结构，所述车架结构包括：防撞梁和与所述防撞梁连接的纵梁，在所述纵梁上安装有加强构件。

根据本发明的一优选实施例，所述加强构件为加强板。

根据本发明的一优选实施例，所述加强板包括第一加强板和第二加强板，其中，所述第一加强板安装在所述纵梁U型截面的开口部，所述第二加强板安装在所述纵梁U型截面的下底部。

根据本发明的一优选实施例，所述第一加强板安装在所述纵梁U型截面的开口部，与所述纵梁形成截面为封闭四边形的结构。

根据本发明的一优选实施例，所述加强构件与所述纵梁的安装方式为焊接。

根据本发明的一优选实施例，经过所述焊接后，形成的焊点间距为37mm。

本发明的有益效果在于通过在车架纵梁上添加加强构件有效的解决了现有技术中存在的当车辆发生碰撞时导致纵梁变形过大，使车体严重损坏，造成乘员人身伤害的问题，本发明结构简单，设计合理，具有很高的实用性。
附图说明

图1. 本发明一种车辆碰撞缓冲吸能车架结构中纵梁结构示意图；
图2. 本发明一种车辆碰撞缓冲吸能车架结构中车架结构示意图。

具体实施方式：

下面结合附图和实施例对本发明作进一步说明：

请参阅图1 本发明一种车辆碰撞缓冲吸能车架结构中纵梁100 结构示意图。如图1 所示，所述纵梁100 上安装有加强构件，该加强构件在本发明的实施例中采用的是加强板的设计，所述加强板包括第一加强板101 和第二加强板102；其中所述第一加强板101 安装在所述纵梁100U 型截面的开口部，与所述纵梁100 形成截面为封闭四边形的结构；所述第二加强板102 安装在所述纵梁100U 型截面的下部。所述第一加强板101 和所述第二加强板102 与所述纵梁100 的安装方式为焊接。经过所述焊接后，形成的焊点103 间距经过CAE 分析得出最优值为37mm。

请参阅图2 本发明一种车辆碰撞缓冲吸能车架结构中车架结构示意图。所述车辆碰撞缓冲吸能车架结构中包括防撞梁201、安装有加强构件的纵梁100、上弯梁202 和前隔板203 等构件，等车辆发生正面碰撞时，通过牺牲驾驶室前端的构件，主要包括前防撞梁201、上弯梁202、前隔板203 等，通过这些构件的破坏变形来吸收碰撞产生的冲击能量，但是这种变形又不宜过大，因为，如果所有构件的变形过大，将会造成车体严重损坏，这样必然波及乘员区内，碰撞过程中产生巨大的冲量会直接传递到乘员舱中，导致乘员受到极大的伤害，所以，本发明中安装有加强板的纵梁100 会起到有效的缓解变形区过大的作用，有效的减轻车辆因碰撞造成的乘员人身安全。

该技术在车辆前部碰撞中能发挥防护作用。利用该技术，当车辆的尾部发生碰撞时，安装有加强构件的纵梁100 同样会起到有效的防护作用。

本发明的有益效果在于通过在车架纵梁上添加加强构件有效的解决了现有技术中存在的当车辆发生碰撞时导致纵梁变形过大，使车体严重损坏，造成乘员人身伤害的问题。本发明结构简单，设计合理，具有很高的实用性。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明，不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干推演或替换，都应当视为属于本发明的保护范围。