WO 2006/065668 A2 || 0000000 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 June 2006 (22.06.2006)

7 3
PO |0 00000 0 A

(10) International Publication Number

WO 2006/065668 A2

(51) International Patent Classification:
GOGF 3/06 (2006.01)

(21) International Application Number:
PCT/US2005/044720

(22) International Filing Date:
8 December 2005 (08.12.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/016,285 16 December 2004 (16.12.2004) US
11/191,686 27 July 2005 (27.07.2005) US

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 140 Caspian Court,
Sunnyvale, California 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): SMITH, Peter,
John [GB/GB]; 21 Bonnyrigg Road, Eskbank, Midlothian
Scotland EH22 3HA (GB). GOROBETS, Sergey, Ana-
tolievich [RU/GB]; 1F1, 92 Blackford Avenue, Edinburgh,

(74)

(81)

(84)

Midlothian EH9 3ES (GB). BENNETT, Alan, David
[GB/GB]; 2 Thorburn Road, Edinburgh EH13 0BQ (GB).

Agents: PARSONS, Gerald, P. et al.; Parsons, Hsue & de
Runtz LLP, 595 Market Street, Suite 1900, San Francisco,
California 94105 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY AND METHOD WITH MULTI-STREAM UPDATING

l Providing first and second storage for recording host data units Iy 500

|

Receiving Host Write Command indicating the range of data units to
be written

Does the range of data units predicts satisfying a predetermined
condition for recording the data units to the first storage

Yes No

v 520
Setting up addresses in
preparation for recording to
the first storage

A 4

Setting up addresses in
preparation for recording to
the second storage

—>

! 522

Loading received data to data
latches for programming

A4
Loading the received data to
data latches for programming

Is the prediction confirmed by Yes
the received data units?
No
524
A
Aborting the setup for .
recording to the first storage
I~ 526
A A 4

Program data in the data
latches. to the addressed
storage

End Current Host Write

-

I~ 510

~— 512

I~— 530

I~ 532

540

550

(57) Abstract: In a memory that is programmable page
by page and each page having multiple sectors that
are once-programmable, even if successive writes are
sequential, the data recorded to an update block may
be fragmented and non-sequential. Instead of recording
update data to an update block, the data is being recorded
in at least two interleaving streams. When a full page
of data is available, it is recorded to the update block.
Otherwise, it is temporarily recorded to the scratch pad
block until a full page of data becomes available to be
transferred to the update block. Preferably, a pipeline
operation allows the recording to the update block to
be set up as soon as the host write command indicates
a full page could be written. If the actual write data is
incomplete due to interruptions, the setup will be canceled
and recording is made to the scratch pad block instead.

WO 2006/065668 A2 I} N1VYH) AT VKO 00 N0 0000 AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 2006/065668 PCT/US2005/044720

NON-VOLATILE MEMORY AND METHOD WITH MULTI-STREAM
UPDATING

BACKGROUND OF THE INVENTION

[0001] This invention relates generally to the operation of non-volatile flash memory
systems, and, more specifically, to more efficient methods of programming data

within a non-volatile flash memory.

[0002] There are many commercially successful non-volatile memory products being
used today, particularly in the form of small form factor cards, which employ an array
of flash EEPROM (Electrically Erasable and Programmable Read Only Memory)
cells formed on one or more integrated circuit chips. A memory controller, usually
but not necessarily on a separate integrated circuit chip, interfaces with a host to
which the card is removably connected and controls operation of the memory array
within the card. Such a controller typically includes a microprocessor, some non-
volatile read-only-memory (ROM), a volatile random-access-memory (RAM) and one
or more special circuits such as one that calculates an error-correction-code (ECC)
from data as they pass through the controller during the programming and reading of
data. Some of the commercially available cards are CompactFlash™ (CF) cards,
MultiMedia cards (MMC), Secure Digital (SD) cards, personnel tags (P-Tag) and
Memory Stick cards. Hosts include personal computers, notebook computers,
personal digital assistants (PDAs), various data communication devices, digital
cameras, cellular telephones, portable audio players, automobile sound systems, and
similar types of equipment. In some systems, a removable card does not include a
controller and the host controls operation of the memory array in the card. Examples
of this type of memory system include Smart Media cards and xD cards. Thus, control
of the memory array may be achieved by software on a controller in the card or by
control software in the host. Besides the memory card implementation, this type of
memory can alternatively be embedded into various types of host systems. In both
removable and embedded applications, host data may be stored in the memory array

according to a storage scheme implemented by memory control software.

WO 2006/065668 PCT/US2005/044720

[0003] Two general memory cell array architectures have found commercial
application, NOR and NAND. In a typical NOR array, memory cells are connected
between adjacent bit line source and drain diffusions that extend in a column direction
with control gates connected to word lines extending along rows of cells. A memory
cell includes at least one storage element positioned over at least a portion of the cell
channel region between the source and drain. A programmed level of charge on the
storage elements thus controls an operating characteristic of the cells, which can then
be read by applying appropriate voltages to the addressed memory cells. Examples of
such cells, their uses in memory systems and methods of manufacturing them are
given in United States patents mos. 5,070,032, 5,095,344, 5,313,421, 5,315,541,
5,343,063, 5,661,053 and 6,222,762. These patents, along with all other patents and
patent applications referenced in this application are hereby incorporated by reference

in their entirety.

[0004] The NAND array utilizes series strings of more than two memory cells, such
as 16 or 32, connected along with one or more select transistors between individual
bit lines and a reference potential to form columns of cells. Word lines extend across
cells within a large number of these columns. An individual cell within a column is
read and verified during programming by causing the remaining cells in the string to
be turned on hard so that the current flowing through a string is dependent upon the
level of charge stored in the addressed cell. Examples of NAND architecture arrays
and their operation as part of a memory system are found in United States patents nos.
5,570,315, 5,774,397, 6,046,935, and 6,522,580.

[0005] The charge storage elements of current flash EEPROM arrays, as discussed in
the foregoing referenced patents, are most commonly electrically conductive floating
gates, typically formed from conductively doped polysilicon material. An alternate
type of memory cell useful in flash EEPROM systems utilizes a non-conductive
dielectric material in place of the conductive floating gate to store charge in a non-
volatile manner. A triple layer dielectric formed of silicon oxide, silicon nitride and
silicon oxide (ONO) is sandwiched between a conductive control gate and a surface
of a semi-conductive substrate above the memory cell channel. The cell is
programmed by injecting electrons from the cell channel into the nitride, where they

are trapped and stored in a limited region, and erased by injecting hot holes into the

-2

WO 2006/065668 PCT/US2005/044720

nitride. Several specific cell structures and arrays employing dielectric storage
clements and are described in United States patent application publication no.
2003/0109093 of Harari et al.

[0006] As in most all integrated circuit applications, the pressure to shrink the silicon
substrate area required to implement some integrated circuit function also exists with
flash EEPROM memory cell arrays. It is continually desired to increase the amount
of digital data that can be stored in a given area of a silicon substrate, in order to
increase the storage capacity of a given size memory card and other types of
packages, or to both increase capacity and decrease size. One way to increase the
storage density of data is to store more than one bit of data per memory cell and/or per
storage unit or element. This is accomplished by dividing a window of a storage
element charge level voltage range into more than two states. The use of four such
states allows each cell to store two bits of data, eight states stores three bits of data per
storage element, and so on. Multiple state flash EEPROM structures using floating
gates and their operation are described in United States patents nos. 5,043,940 and
5,172,338, and for structures using dielectric floating gates in aforementioned United
States patent application publication no. 2003/0109093. Selected portions of a multi-
state memory cell array may also be operated in two states (binary) for various
reasons, in a manner described in United States patents nos. 5,930,167 and 6,456,528,
which patents, along with all patents and patent applications cited in this application,

are hereby incorporated by reference in their entirety.

[0007] Memory cells of a typical flash EEPROM array are divided into discrete
blocks of cells that are erased together (an erase block). That is, the erase block is the
erase unit, a minimum number of cells that are simultaneously erasable. Each erase
block typically stores one or more pages of data, the page being the minimum unit of
programming and reading, although more than one page may be programmed or read
in parallel in different sub-arrays or planes. Each page typically stores one or more
sectors of data, the size of the sector being defined by the host system. An example
sector includes 512 bytes of user data, following a standard established with magnetic
disk drives, plus some number of bytes of overhead information about the user data

and/or the erase block in which they are stored. Such memories are typically

WO 2006/065668 PCT/US2005/044720

configured with 16, 32 or more pages within each erase block, and each page stores

one or just a few host sectors of data.

[0008] In order to increase the degree of parallelism during programming user data
into the memory array and read user data from it, the array is typically divided into
sub-arrays, commonly referred to as planes, which contain their own data registers
and other circuits to allow parallel operation such that sectors of data may be
programmed to or read from each of several or all the planes simultaneously. An
array on a single integrated circuit may be physically divided into planes, or each
plane may be formed from a separate one or more integrated circuit chips. Examples
of such a memory implementation are described in United States patents nos.

5,798,968 and 5,890,192.

[0009] To further efficiently manage the memory, erase blocks may be linked
together to form virtual blocks or metablocks. That is, each metablock is defined to
include one erase block from each plane. Use of the metablock is described in U.S.
Patent No. 6,763,424. The metablock is identified by a host logical block address as a
destination for programming and reading data. Similarly, all erase blocks of a
metablock are erased together. A metablock may be programmed in a unit of a
metapage that comprises one page from each erase block in a metablock. The
controller in a memory system operated with such large blocks and/or metablocks
performs a number of functions including the translation between logical block
addresses (LBAs) received from a host, and physical block numbers (PBNs) within
the memory cell array. Individual pages within erase blocks are typically identified
by offsets within the block address. Address translation often involves use of
intermediate terms of a logical block number (LBN) and logical page. In a memory
system using metablocks, the metablock may be the effective minimum unit of erase
of the memory array. Thus, the minimum unit of erase (a block) may be either an
erase block or a metablock depending on the memory architecture. The term “block”
may refer to either an erase block or a metablock depending on the architecture.
Similarly, the term “page” may refer to the minimum unit of programming of the
memory system. This may be a page within a single erase block or may be a metapage
that extends across several erase blocks depending on the architecture of the memory

system.

WO 2006/065668 PCT/US2005/044720

[0010] Data stored in a metablock are often updated, the likelihood of updates
increases as the data capacity of the metablock increases. Updated sectors of one
metablock are normally written to another metablock. The unchanged sectors are
usually also copied from the original to the new metablock, as part of the same
programming operation, to consolidate the data. Alternatively, the unchanged data
may remain in the original metablock until later consolidation with the updated data
into a single metablock again. Operations to consolidate current data to a new block
and erase a block containing only obsolete data are generally referred to as “garbage

collection” operations.

[0011] It is common to operate large block or metablock systems with some extra
blocks maintained in an erased block pool. When one or more pages of data less than
the capacity of a block are being updated, it is typical to write the updated pages to an
erased block from the pool and then copy data of the unchanged pages from the
original block to erase pool block. Variations of this technique are described in
aforementioned U.S. Patent No. 6,763,424. Over time, as a result of host data files
being re-written and updated, many blocks can end up with a relatively few number of
its pages containing valid data and remaining pages containing data that is no longer
current. In order to be able to efficiently use the data storage capacity of the array,
logically related data pages of valid data are from time-to-time gathered together from
fragments among multiple blocks and consolidated together into a fewer number of

blocks. This process is commonly termed “garbage collection.”

[0012] In some memory systems, the physical memory cells are also grouped into two
or more zones. A zone may be any partitioned subset of the physical memory or
memory system into which a specified range of logical block addresses is mapped.
For example, a memory system capable of storing 64 Megabytes of data may be
partitioned into four zones that store 16 Megabytes of data f)er zone. The range of
logical block addresses is then also divided into four groups, one group being
assigned to the physical blocks of each of the four zones. Logical block addresses are
constrained, in a typical implementation, such that the data of each are never written
outside of a single physical zone into which the logical block addresses are mapped.
In a memory cell array divided into planes (sub-arrays), which each have their own

addressing, programming and reading circuits, each zone preferably includes blocks

-5-

WO 2006/065668 PCT/US2005/044720

from multiple planes, typically the same number of blocks from each of the planes.
Zones are primarily used to simplify address management such as logical to physical
translation, resulting in smaller translation tables, less RAM memory needed to hold
these tables, and faster access times to address the currently active region of memory,

but because of their restrictive nature can result in less than optimum wear leveling.

[0013] Individual flash EEPROM cells store an amount of charge in a charge storage
element or unit that is representative of one or more bits of data. The charge level of
a storage element controls the threshold voltage (commonly referenced as V) of its
memory cell, which is used as a basis of reading the storage state of the cell. A
threshold voltage window is commonly divided into a number of ranges, one for each
of the two or more storage states of the memory cell. These ranges are separated by
guardbands that include a nominal sensing level that allows determining the storage
states of the individual cells. These storage levels do shift as a result of charge
disturbing programming, reading or erasing operations performed in neighboring or
other related memory cells, pages or blocks. Error correcting codes (ECCs) are
therefore typically calculated by the controller and stored along with the host data
being programmed and used during reading to verify the data and perform some level
of data correction if necessary. Also, shifting charge levels can be restored back to
the centers of their state ranges from time-to-time, before disturbing operations cause
them to shift completely out of their defined ranges and thus cause erroneous data to
be read. This process, termed data refresh or scrub, is described in United States
patents nos. 5,532,962 and 5,909,449.

[0014] In some memory arrays, a page may consist of a portion of an erase block that
can hold multiple sectors of data. Once the page has been written, no further writing
may be possible without corrupting the data that is already written. For memory
arrays using such a system, a page may be defined by a set of memory cells that are
connected to the same word line. Such memory arrays may be inefficiently
programmed where data is received in amounts that are less than the size of a page.
For example, where data is received one sector at a time, just one sector may be
programmed to a page. No additional data may be programmed to the page without
risk of corrupting the sector of data that is already saved there. Sometimes a series of

single sectors may be received with some delay between them. In this case, each

-6-

WO 2006/065668 PCT/US2005/044720

sector is written to a separate page of the memory array. Thus, the sectors are stored
in a way that is inefficient in how it uses space in the memory array. Where multi-
level logic is used, memory cells are particularly sensitive to the effects of later
programming of nearby cells. In addition, programming of multi-level cells is
generally done by programming a group of cells with a first page of data and later
programming the cells with a second page of data. The programming of the second
page of data may cause corruption of the first page of data in some cases. Hence, there
is a need for a more efficient way to store data in a memory array that has a multi-
sector page when the memory array receives data in amounts that are less than a page.
There is also a need for a way to prevent corruption of data of a first page during

programming of a subsequent page when programming a group of multi-level cells.
SUMMARY

[0015] In a memory array having a block as the unit of erase, one or more blocks may
be designated as scratch pad blocks and may be used to improve performance of the
memory system. A scratch pad block may operate as a buffer so that data is written to
the scratch pad block with a low degree of parallelism and then copied to another
location within the memory array with a high degree of parallelism. Data may be
accumulated in the scratch pad block until it may be more efficiently written to
another location. In memories having multi-sector pages, sectors may be accumulated
until a full page may be written using the maximum parallelism of the system. In
multi-level cell memories, a lower page may be stored in a scratch pad block until the

upper page is available so that the upper and lower pages are stored together.

[0016] The degree of parallelism of a particular program operation is proportional to
the number of bits of data that are programmed together. Thus, programming a large
amount of data together is considered a write with high parallelism, while
programming a small amount of data together is considered low parallelism. Where
parallelism of less than a page is used, space in the memory array may be wasted and
this wasted space means that garbage collection must be performed more often thus
adversely affecting the efficiency of the memory system. Sometimes, small amounts

of data must be stored in the memory system. By writing these small writes in one

WO 2006/065668 PCT/US2005/044720

location, a scratch pad block, and later writing them together with higher parallelism

to another location, the efficiency of the memory system may be improved.

[0017] In a memory system having a minimum unit of program of a page that consists
of multiple sectors of data, a method of storing data that are received in amounts that
are less than one page is disclosed. A block designated as a scratch pad block is used
to store received sectors until a complete page may be written to the flash memory
array. A first sector is stored in a first page of the scratch pad block. Subsequently
received sectors may be stored in additional pages of the scratch pad block.
Individually received sectors or groups of sectors are saved in a new page of the
scratch pad block when they are received. Previously stored sectors from other pages
in the scratch pad block may be copied to the latest page along with the new data.
Thus, sectors of data are accumulated in the scratch pad block as long as there is less
than a full page of new data in a page of the scratch pad block. Sectors are written to
the scratch pad block with a lower degree of parallelism than the maximum available
parallelism for the block. Sectors may be updated while stored in the scratch pad
block. When a new sector of data is received that results in a full page of data being
available for programming, the new sector and the sectors previously stored in the
scratch pad block may be programmed together to the same page in another block of
the memory array. This page is fully populated with data and is written with the
maximum available parallelism. The data stored in the scratch pad block may then be
marked as obsolete and may be erased at a convenient time. Thus, space in the flash
memory is more efficiently used and the frequency of garbage collection operations is

reduced.

[0018] In memories having multi-level cells, a scratch pad block may store a page of
data that is also written to an active block. The stored page may be kept in the scratch
pad block until another page of data is received so that the two pages of data may be
written together to their destination in an active block. They may be written as an
upper and lower page together using a high degree of parallelism and with a lower
risk of corrupting data than if they were written separately. The scratch pad block may
also be used to retain a copy of a previously programmed lower page during
programming of the associated upper page so that if there is a loss of power, the data

in the lower page may be recovered from the scratch pad block.

-8-

WO 2006/065668 PCT/US2005/044720

[0019] A scratch pad block may allow temporary storage of data that is to be written
to another location. Data may be stored in a scratch pad block during updating of
sectors of data of a block. Where a page within a block contains sectors of data from
different files, the page is updated when either block is updated. It may require more
than one block to store the updated data from the two files using conventional
methods because two copies of the multi-file page may be needed. Using a scratch
pad block allows part of the page from one file to be stored until the remainder of the
page (from the other file) is available. Then, the complete updated page is

programmed to its destination using maximum parallelism.

[0020] A scratch pad block may contain sectors of unrelated data. Both host data
sectors and control data sectors may be stored in a scraich pad block. Both host data
sectors and control data sectors may be stored in the same page within a scratch pad
block. Sectors from two different files or from logically remote portions of the same
file may be stored in the same page of a scratch pad block. This may allow
programming of the scratch pad block with maximum parallelism so that high speed
is maintained as data is received. Where data is received at a low speed, the additional
space in a page may be occupied by sectors containing control data. This may allow
control data structures to be updated less frequently thus reducing the frequency of

garbage collection.

[0021] Generally, the sectors stored in the same page of a scratch pad block need not
belong to different files. As independent data objects, they just need to be, for
example, two logical sectors of the same page, but written by different write

commands.

[0022] A scratch pad may be identified by a marking sector so that a controller may
easily identify it. An index of data stored in a scratch pad block may be maintained in
an index sector which itself is stored in the scratch pad block. As new sectors are
stored in the scratch pad block the index sector is updated by replacing the old index
sector with a new index sector. Similarly, as sectors in the scratch pad block are
copied to other locations, the index sector may be updated to indicate that these

sectors in the scratch pad block are obsolete.

WO 2006/065668 PCT/US2005/044720

Improved Indexing for Scratch Pad and Update Blocks - SPBI/CBI Indices
Maintained in Scratch Pad Blocks

[0023] According to another aspect of the invention, when a scratch pad block is
employed in addition to an update block, an associated scratch pad block index
(“SPBI”) is used to keep track of the update sectors recorded in the scratch pad block.
This is in addition to an index (e.g., “CBI”) used to keep track of the logical sectors
recorded in the update block. Whenever user data is stored in a partial page of the
scratch pad block, it means that at least the last slot of the page is unfilled. In one
embodiment, the SPBI can be stored in the last slot of the partial page in the scratch
pad block. In a preferred embodiment, the SPBI and the CBI can be packaged within
a SPBI/CBI sector and stored at the last slot of a partial page in the scratch pad block
which is unused anyway. Every time a new partial page is written, an updated

SPBI/CBI sector is written at the end slot, rendering all previous versions obsolete.

[0024] At the same time, the indexing scheme takes advantage of the unused storage

in the scratch pad block to store an index in nonvolatile memory.

[0025] According to yet another aspect of the invention, data stored in a memory
block has its index stored in a portion of a partial page unoccupied by data. Thus,ina
memory organized into memory units where a page of memory units is programmable
together and a block of memory pages is erasable together, partially filled pages will
exist when data units stored in the memory units are aligned in the page acéording toa
predetermined order, and especially if the page is once-programmable after each
erase. The index for the block is then stored in a partial page not filled with update

data. The partial page may be in the current block or in another block.
Multi-Stream Update Tracking - Synchronization between Two or More Streams

[0026] According to another aspect of the invention, a method is provided to write
update data to a non-volatile memory with synchronization information that allows
identifying the most recently written version of data that may exist on multiple
memory blocks. Update data from a host may be directed to multiple blocks via

multiple streams. The maintenance of the synchronization information is

-10 -

WO 2006/065668 PCT/US2005/044720

accomplished by storing information about how full the stream/blocks are at the time

of every update of at least one of the streams.

[0027] In a preferred embodiment, a write pointer that points to the first empty
location in a block will indicate how full the block is. For example, between two
streams, the value of a write pointer for a second block indicates how full the second
block at the time the write pointer is written to a first block. Furthermore, the position
where the write pointer is saved in the first block also indicates how full the first

block is at the time.

[0028] The invention is particular applicable to a nonvolatile memory that is
organized into erasable blocks of memory units, each memory unit for storing a
logical unit of data, and each block also organized into one or more pages.
Furthermore, each page is once programmable after an erase with multiple logical
units, each logical unit in a predetermined order with a given page offset. The method
essentially provides two blocks (e.g., an update block and a scratch pad block) for
storing or buffering update data of a group of logical units, and maintains
synchronization information for helping to identify whether the most recently written

version of a logical unit is located in the first or second block.

[0029] Accordingly to a preferred embodiment, the synchronization information in
the form of a write pointer is saved together with host data every time it is being
buffered in a scratch pad block. The write pointer is an update-block write pointer
that gives the address of the location for the next write in the update block at the time
the write pointer is saved in the scratch pad block. In particular, it is saved in a
portion of the scratch pad block not utilized for storing host data anyway. Preferably,
the update-block write pointer is included in the index SPBI/CBI stored in a partial
page of the scratch pad block. The update-block write pointer would allow
determination of whether a given logical sector buffered in the scratch pad block has

been rendered obsolete by subsequent writes to the update block.

[0030] According to another embodiment of the invention, synchronization
information is maintained that would allow determination of whether a given logical
sector buffered in the scratch pad block has been rendered obsolete by subsequent

writes to the update block. This is accomplished by including a scratch-pad write

-11 -

WO 2006/065668 PCT/US2005/044720

pointer that gives the address of the location for the next write in the scratch pad block

at the time the synchronization information is stored in a page of the update block.

[0031] In yet another embodiment, the synchronization information can be encoded
as time stamps for data sectors written to muitiple streams so that the latest version

can be correctly found.

[0032] In the preferred embodiment, the time stamp information is stored in an

overhead portion of at least one of the sectors in the page being written.

Multi-stream Updating with Pipelined Operation

[0033] According to another aspect of the invention, a method of updating a
nonvolatile memory includes using a first block (update block) for recording update
data and a second block (scratch pad block) for temporary saving some of the update
data before recording to the update block. The nonvolatile memory is organized into
erasable blocks of memory units, each memory units for storing a logical unit of data,
and each block also organized into one or more pages, with each page capable of
storing multiple logical units having definite page offsets, and being once
programmable together after an erase. The method further includes receiving the
logical units from a host and aligning the received logical units page by page, so that
when a predetermined condition is satisfied where a received logical unit has a page
end offset, storing the received logical unit and any preceding logical units to a page
in the update block with appropriate page alignment, otherwise, temporarily storing
any remaining received logical units to a partial page in the scratch pad block. The
logical units in the scratch pad block are eventually transferred to the update block

when the predetermined condition is satisfied.

[0034] In a preferred embodiment, the update data is received and parsed page by
page for transferring to the first block (e.g., update block). Any remaining partial
page of received data is transferred to the second block (e.g., scratch pad block) and
will remain there until a full page of data becomes available for recording to the first
block. When the received data is transferred to the second block, it is recorded page

by page, albeit the recorded page is only partially filled with the received data. The

-12 -

WO 2006/065668 PCT/US2005/044720

spare, normally unused, space in the partial page is used to store an index for locating

the data in the second and first blocks.

[0035] According to another preferred embodiment, a predictive pipelined operation
is implemented in which, rather than waiting until the predetermined condition for
recording to the update block is confirmed, the update block is set up to be written to
as soon as the host write command indicates the predetermined condition is
potentially satisfied by the data units intended to be written. In this way, the set up
could have a jump start while waiting for the data units to come from the host. When
the actual data units received eventually do satisfy the predetermined condition,
programming of the page in the update block can take place immediately without
have to wait for setup, thereby improving write performance. In the event that the
host write was interrupted and the actual data units received no longer satisfy the
predetermined condition, the setup for recording to the update block will be

abandoned, and instead the data units will be recorded to the scratch pad block.

[0036] In another preferred embodiment, as data is being received and when there is
initially uncertainty in recording the received data whether to the first or second
storage, the received data is loaded to the data latches of the programming circuits for
both first and second storage. In this way, the data will always be immediately
available for programming either the first or second storage. In a special case, the
first and second storages share the same set of data latches. For example, when first
and second storages are in the same memory plane, they could be served by the same
set of programming circuits with the same set of sense amplifiers and data latches. In
that case, data will be loaded to a set of default data latches irrespective of whether

first or second storage is to be programmed.

[0037] Additional features and advantages of the present invention will be understood
from the following description of its preferred embodiments, which description

should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] Figures 1A and 1B are block diagrams of a non-volatile memory and a host

system, respectively, that operate together.

-13-

WO 2006/065668 PCT/US2005/044720

[0039] Figure 2 illustrates a first example organization of the memory array of Figure
1A.

[0040] Figure 3 shows an example host data sector with overhead data as stored in the

memory array of Figure 1A.

[0041] Figure 4 illustrates a second example organization of the memory array of

Figure 1A.

[0042] Figure 5 illustrates a third example organization of the memory array of Figure
1A.

[0043] Figure 6 shows an extension of the third example organization of the memory

array of Figure 1A.

[0044] Figure 7 is a circuit diagram of a group of memory cells of the array of Figure

1A in one particular configuration.

[0045] Figure 8 shows storage of sectors of data in a block of a memory array such as

the memory array of Figure 1A.

[0046] Figure 9 shows an alternative storage of sectors of data in a block of a memory

array such as the memory array of Figure 1A.

[0047] Figure 10A shows sectors of data of Figures § or 9 after copying to another

block during a garbage collection operation.

[0048] Figure 10B shows sectors of data of Figure 10A after copying to another block

during a second garbage collection operation.

[0049] Figure 10C shows the block of Figure 10B after more sectors of data are

received.

[0050] Figure 11A shows an alternative storage arrangement using two erase blocks,
an active block and a scratch pad block, to store the sectors of data of Figures 10A
and 10B.

-14 -

WO 2006/065668 PCT/US2005/044720

[0051] Figure 11B shows an alternative storage arrangement using two metablocks,
an active block and a scratch pad block, to store sectors of data of Figures 10A and
10B.

[0052] Figure 12A shows two blocks, an active block and a scratch pad block, used to
store sectors of data so that the sectors of data may be updated while stored without

triggering a garbage collection operation.

[0053] Figure 12B shows an alternative storage system to that of Figure 12A allowing
all sectors of a page to be updated while stored without triggering a garbage

collection.

[0054] Figure 12C shows another example of updating data using scratch pad block
1250.

[0055] Figure 13 shows four threshold voltage ranges used to store two bits of data in

a multi-level cell.

[0056] Figure 14 shows two blocks of multi-level cells, an active block and a scratch
pad block, where the scratch pad block keeps a copy of a lower page of an active
block.

[0057] Figure 15 shows sectors of data from two files stored in a block and the
subsequent storage of the sectors of data when the two files are updated requiring

more than one block of space in the memory array.

[0058] Figure 16 shows an alternative system of updating the sectors of data of Figure

15 where a scratch pad block stores some sectors before they are copied to an active
block.

[0059] Figure 17 shows a scratch pad block storing sectors of unrelated data in the

same page and the subsequent copying of this data to different locations.

[0060] Figure 18 shows a scratch pad block storing sectors of unrelated data

undergoing multiple updates.

[0061] Figure 19 shows a scratch pad block identified by a marking sector.

-15 -

WO 2006/065668 PCT/US2005/044720

[0062] Figure 20 shows the scratch pad block of Figure 19 storing a group of sectors

and an index sector.

[0063] Figure 21 shows the scratch pad block of Figure 20 storing a second group of

sectors and a second index sector that supersedes the first index sector.

[0064] Figure 22 shows the scratch pad block of Figure 21 storing a third group of

sectors and a third index sector that supersedes the second index sector.

[0065] Figure 23 shows the scratch pad block of Figure 22 with a fourth index sector

that supersedes the third index sector when a group is copied to another block.

[0066] Figure 24 illustrates an example of sectors in a logical group being updated

and stored in an update block having single-sector pages in a conventional manner.

[0067] Figure 25 illustrates the same sequence of writes shown in Figure 24 as

applied to a memory where the pages are multi-sector and possibly once-writable.

[0068] Figure 26 is a flowchart illustrating a method of updating data by employing a
first memory block in conjunction with a second memory block, with an index of the
stored data saved in the second block, according to a general embodiment of the

invention.

[0069] Figure 27A illustrates a specific example of updating data and maintaining
indices by employing an update block in conjunction with a scratch pad block,

according to a preferred embodiment of the invention

[0070] Figure 27B illustrates another example of the sequential ordering of updating
data being maintained by employing an update block in conjunction with a scratch

pad block, according to a preferred embodiment of the invention.

[0071] Figure 28 illustrates a preferred scheme for saving an index of a memory

block for storing update data in a partial page of the block.

[0072] Figure 29 illustrates schematically, a scratch pad block used in a multi-stream

update in which several logical groups are concurrently undergoing updates.

-16 -

WO 2006/065668 PCT/US2005/044720

[0073] Figure 30 illustrates a conventional case of writing a sequence of input data to
a block.

[0074] Figure 31A illustrates a scheme of keeping track of the recording order or
priority even when the different writes are interleaved over two blocks, according to a

preferred embodiment of the invention.

[0075] Figure 31B illustrates another embodiment of keeping track of the recording

order when the writes are recorded over two blocks.

[0076] Figure 32A is a flowchart illustrating a method of synchronizing the recording
sequence between two data streams, according to a general embodiment of the

invention.

[0077] Figure 32B is a flowchart illustrating a method of synchronizing the recording
sequence between two data streams, according to an embodiment using a write

pointer.

[0078] Figure 33A shows the state of the scratch pad block and the update block after

two host writes #1 and #2 according to a first sequence.

[0079] Figure 33B shows the state of the scratch pad block and the update block after
two host writes #1 and #2 according to a second sequence which is the reverse of the

first sequence shown in Figure 33A.

[0080] Figure 34A illustrates a preferred data structure of the scratch pad block index
(SPBI).

[0081] Figure 34B illustrates example values in the Scratch Pad Block Index for the
host write #1 shown in Figure 33A.

[0082] Figure 35A and Figure 35B shows the intermediate state of the scratch pad
block and the update block relative to the scratch-pad write pointer respectively after

the successive host writes of Figure 33A and Figure 33B.

[0083] Figure 36 illustrates the scratch-pad write pointer being stored in an overhead

portion of a sector being recorded to the update block.

-17 -

WO 2006/065668 PCT/US2005/044720

[0084] Figure 37 illustrates the use of time stamps to keep track of the recording

sequence between two update streams.

[0085] Figure 38 is a flowchart illustrating a method of recording and indexing update
data to two memory blocks concurrently, each memory block having multiple-sector

pages, according to a general embodiment of the invention.

[0086] Figure 39 is a flowchart illustrating a more specific implementation of the

method of Figure 37 employing a scratch pad block and an update block.

[0087] Figure 40A illustrates schematically a memory device having a bank of
read/write circuits, which provides the context in which the present invention is

implemented.

[0088] Figure 40B illustrates a preferred arrangement of the memory device shown in
Figure 40A.

[0089] Figure 41 illustrates in more detail the sense module shown in Figure 40A.

[0090] Figure 42 is a flow diagram illustrating a multi-stream update employing a

predictive pipelining scheme, according to a preferred embodiment.

[0091] Figure 43 is a flow diagram illustrating a multi-stream update in which the
program data is loaded before the correct destination address is sent, according to

another embodiment.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

Memory Architectures and Their Operation

[0092] Referring initially to Figure 1A, a flash memory includes a memory cell array
and a controller. In the example shown, two integrated circuit devices (chips) 11 and
13 include an array 15 of memory cells and various logic circuits 17. The logic
circuits 17 interface with a controller 19 on a separate chip through data, command
and status circuits, and also provide addressing, data transfer and sensing, and other
support to the array 13. A number of memory array chips can be from one to many,

depending upon the storage capacity provided. The controller and part or the entire

-18 -

WO 2006/065668 PCT/US2005/044720

array can alternatively be combined onto a single integrated circuit chip but this is

currently not an economical alternative.

[0093] A typical controller 19 includes a microprocessor 21, a read-only-memory
(ROM) 23 primarily to store firmware and a buffer memory (RAM) 25 primarily for
the temporary storage of user data either being written to or read from the memory
chips 11 and 13. Circuits 27 interface with the memory array chip(s) and circuits 29
interface with a host though connections 31. The integrity of data is in this example
determined by calculating an ECC with circuits 33 dedicated to calculating the code.
As user data is being transferred from the host to the flash memory array for storage,
the circuit calculates an ECC from the data and the code is stored in the memory.
When that user data are later read from the memory, they are again passed through the
circuit 33 which calculates the ECC by the same algorithm and compares that code
with the one calculated and stored with the data. If they compare, the integrity of the
data is confirmed. If they differ, depending upon the specific ECC algorithm utilized,
those bits in error, up to a number supported by the algorithm, can be identified and

corrected.

[0094] The connections 31 of the memory of Figure 1A mate with connections 31° of
a host system, an example of which is given in Figure 1B. Data transfers between the
host and the memory of Figure 1A are through interface circuits 35. A typical host
also includes a microprocessor 37, a ROM 39 for storing firmware code and RAM 41.
Other circuits and subsystems 43 often include a high capacity magnetic data storage
disk drive, interface circuits for a keyboard, a monitor and the like, depending upon
the particular host system. Some examples of such hosts include desktop computers,
laptop computers, handheld computers, palmtop computers, personal digital assistants
(PDAs), MP3 and other audio players, digital cameras, video cameras, electronic
game machines, wireless and wired telephony devices, answering machines, voice

recorders, network routers and others.

[0095] The memory of Figure 1A may be implemented as a small enclosed card
containing the controller and all its memory array circuit devices in a form that is
removably connectable with the host of Figure 1B. That is, mating connections 31

and 31° allow a card to be disconnected and moved to another host, or replaced by

-19 -

WO 2006/065668 PCT/US2005/044720

connecting another card to the host. Alternatively, the memory array devices may be
enclosed in a separate card that is electrically and mechanically connectable with a
card containing the controller and connections 31. As a further alternative, the
memory of Figure 1A may be embedded within the host of Figure 1B, wherein the
connections 31 and 31° are permanently made. In this case, the memory is usually

contained within an enclosure of the host along with other components.

[0096] Figure 2 illustrates a portion of a memory array wherein memory cells are
grouped into erase blocks, the cells in each erase block being erasable together as part
of a single erase operation, usually simultaneously. An erase block is the minimum

unit of erase in this type of memory.

[0097] The size of the individual memory cell erase blocks of Figure 2 can vary but
one commercially practiced form includes a single sector of data in an individual
erase block. The contents of such a data sector are illustrated in Figure 3. User data
51 are typically 512 bytes. In addition to the user data 51 are overhead data that
includes an ECC 53 calculated from the user data, parameters 55 relating to the sector
data and/or the erase block in which the sector is programmed and an ECC 57

calculated from the parameters 55 and any other overhead data that might be included.

[0098] One or more flags may also be included in the parameters 55 that indicate
status or states. Indications of voltage levels to be used for programming and/or
erasing the erase block can also be stored within the paraméters 55, these voltages
being updated as the number of cycles experienced by the erase block and other
factors change. Other examples of the parameters 55 include an identification of any
defective cells within the erase block, the logical address of the erase block that is
mapped into this physical erase block and the address of any substitute erase block in
case the primary erase block is defective. The particular combination of parameters
55 that are used in any memory system will vary in accordance with the design. Also,
some or all of the overhead data can be stored in erase blocks dedicated to such a
function, rather than in the erase block containing the user data or to which the

overhead data pertains.

[0099] Different from the single data sector erase block of Figure 2 is a multi-sector

erase block of Figure 4. An example erase block 59, still the minimum unit of erase,

-20 -

WO 2006/065668 PCT/US2005/044720

contains four pages 0 — 3, each of which is the minimum unit of programming. One or
more host sectors of data are stored in each page, usually along with overhead data
including at least the ECC calculated from the sector’s data and may be in the form of

the data sector of Figure 3.

[0100] Re-writing the data of an entire block usually involves programming the new
data into a block of an erase block pool, the original block then being erased and
placed in the erase pool. When data of less than all the pages of a block are updated,
the updated data are typically stored in a page of a block from the erased block pool
and data in the remaining unchanged pages are copied from the original block into the
new block. The original block is then erased. Variations of this large block
management technique include writing the updated data into a page of another block
without moving data from the original block or erasing it. This results in multiple
pages having the same logical address. The most recent page of data is identified by
some convenient technique such as the time of programming that is recorded as a field

in sector or page overhead data.

[0101] A further multi-sector block arrangement is illustrated in Figure 5. Here, the
total memory cell array is physically divided into two or more planes, four planes 0 —
3 being illustrated. Each plane is a sub-array of memory cells that has its own data
registers, sense amplifiers, addressing decoders and the like in order to be able to
operate largely independently of the other planes. All the planes may be provided on
a single integrated circuit device or on multiple devices, an example being to form
each plane from one or more distinct integrated circuit devices. Each block in the
example system of Figure 5 contains 16 pages PO — P15, each page having a capacity

of one, two or more host data sectors and some overhead data.

[0102] Yet another memory cell arrangement is illustrated in Figure 6. Each plane
contains a large number of erase blocks of cells. In order to increase the degree of
parallelism of operation, erase blocks within different planes are logically linked to
form metablocks. One such metablock is illustrated in Figure 6 as being formed of
erase block 3 of plane 0, erase block 1 of plane 1, erase block 1 of plane 2 and erase
block 2 of plane 3. Each metablock is logically addressable and the memory

controller assigns and keeps track of the erase blocks that form the individual

-21-

WO 2006/065668 PCT/US2005/044720

metablocks. The host system preferably interfaces with the memory system in units
of data equal to the capacity of the individual metablocks. Such a logical data block
61 of Figure 6, for example, is identified by a logical block addresses (LBA) that is
mapped by the controller into the physical block numbers (PBNs) of the blocks that
make up the metablock. All erase blocks of the metablock are erased together, and
pages from each erase block are preferably programmed and read simultaneously. A
metablock may be considered the unit of erase in a system in which erase blocks are
linked in this way. In some memory arrays having metablock architecture, pages may
only be programmed in parallel with other pages of the metablock. In these memory
arrays, a metapage is a minimum unit of programming of a metablock that consists of

a page from each plane of the metablock.

[0103] There are many different memory array architectures, configurations and
specific cell structures that may be employed to implement the memories described
above with respect to Figures 2 — 6. One erase block of a memory array of the NAND
type is shown in Figure 7. A large number of column oriented strings of series
connected memory cells are connected between a common source 65 of a voltage Vss
and one of bit lines BLO — BLN that are in turn connected with circuits 67 containing
address decoders, drivers, read sense amplifiers and the like. Specifically, one such
string contains charge storage transistors 70, 71 . . 72 and 74 connected in series
between select transistors 77 and 79 at opposite ends of the strings. In this example,
each string contains 16 storage transistors but other numbers are possible. Word lines
WILO — WL15 extend across one storage transistor of each string and are connected to
circuits 81 that contain address decoders and voltage source drivers of the word lines.
Voltages on lines 83 and 84 control connection of all the strings in the erase block
together to either the voltage source 65 and/or the bit lines BLO — BLN through their

select transistors. Data and addresses come from the memory controller.

[0104] Each row of charge storage transistors (memory cells) of the erase block may
form a page that is programmed and read together. An appropriate voltage is applied
to the word line (WL) of such a page for programming or reading its data while
voltages applied to the remaining word lines are selected to render their respective
storage transistors conductive. In the course of programming or reading one row

(page) of storage transistors, previously stored charge levels on unselected rows can

-22.

WO 2006/065668 PCT/US2005/044720

be disturbed because of voltages applied across all the strings and to their word lines.
This may prevent programming of cells of a particular row after other cells in the row
have been programmed. Multiple state flash memories are particularly sensitive to
disturbance. The increased number of logic states results in narrow threshold voltage
ranges for individual states so that small changes in charge level may produce a
change in logic state. As data storage density is increased by using increased numbers
of logic states in a cell, sensitivity to disturbance increases. Thus, it may not be
possible to program data to cells in a row after other cells in that row are programmed
without corrupting the data in the programmed cells. Thus, disturbance from
subsequent programming of adjacent cells may define the page size. If cells in a row
may not be programmed subsequent to programming other cells in the same row, then
the row defines the minimum unit of programming. Thus, a row of cells may contain
one page of data. In such a memory array, if a group of cells in a row is programmed,
the row is considered programmed even where some cells in the row contain no data.
It is not efficient to have empty cells that cannot be subsequently programmed in the

memory array.

[0105] Empty cells in a programmed page may result from small numbers of sectors
being received by the memory system at a time. For example, a single sector may be
sent by a host to a memory system. The sector is stored in a page of the flash memory
array. The sector prevents subsequent writing to that page. In a memory system in
which a page holds multiple sectors, this may be inefficient. For example, where a
page comprises four sectors of data, a portion of the memory array that could hold
three sectors of data is left empty when a single sector is written to the page. As page
sizes increase, the wasted space from such partially filled pages increases. Metapages
may contain large numbers of sectors so storage may be particularly inefficient in
memory arrays that use metablocks. The problem is similar where two or more sectors
are received but the number of sectors received is less than the number of sectors in a
page. Such partial pages may be stored in the scratch pad block until a full page of

data is received.

[0106] Subsequent to writing partially filled pages of data, consolidation of stored
data may be performed to combine data from partially filled pages into filled pages.

This may be done as part of periodically performed garbage collection. Such

-23.

WO 2006/065668 PCT/US2005/044720

consolidation of data copies data from the partially filled pages to full pages that are
in a different erase block. The erase blocks that hold the partially filled pages are then
marked as obsolete so that they may be erased and reused. Such an operation may

take system resources that could be used for other functions.

Example of single sector writes to memory

[0107] Figure 8 shows an erase block, designated active block 800 of a memory array
in a memory system in which a page is comprised of four sectors of data. Pages 0-5
are shown each extending in the horizontal direction. Each page may contain four
sectors of data designated as sector 0, sector 1, sector 2 and sector 3. A host sends
single sectors of data to the memory system, which are stored in active block 800.
Sector X is received and stored as sector O of page 0. This prevents subsequent
programming of page 0. Thus, sectors 1, 2 and 3 of page 0 are not programmed and
remain empty (erased). After page O is programmed, sector X+1 is received. Sector
X+1 is stored as sector 0 of page 1. Sectors 1, 2 and 3 of page 1 remain empty. After
sector X+1 is programmed, sector X+2 is received. Sector X+2 is stored as sector 0 of
page 2. Sectors 1, 2 and 3 of page 2 remain empty. After sector X+2 is programmed,
sector X+3 is received. Sector X+3 is stored as sector 0 of page 3. Sectors 1, 2 and 3

of page 3 remain empty.

[0108] Figure 9 shows an alternative way of storing sectors in an erase block,
designated active block 900. Here, instead of storing just ome sector per page,
previously stored sectors are copied to a new page in the same erase block where they
are stored with a more recently received sector. Sector X is stored as sector 0 of page
0 as before. Then, sector X+1 is received and stored as sector 1 of page 1 with sector
X copied from page 0 to sector O of page 1. Thus, both sector X and sector X+1 are
stored in page 1. Subsequently, sector X+2 is received and stored as sector 2 of page
2. Sector X is stored as sector 0 of page 2 and sector X+1 is stored as sector 1 of page
2. Thus, sectors X, X+1 and X+2 are stored together in page 2. Subsequently, sector
X+3 is received and stored as sector 3 of page 3. Sector X is stored as sector 0, sector
X+1 is stored as sector 1 and sector X+2 is stored as sector 2 of page 3. Thus, four

sectors of data are stored in page 3 so that page 3 is fully populated with data.

-24 -

WO 2006/065668 PCT/US2005/044720

[0109] Subsequent to the storage of sectors shown in Figures 8 or in Figure 9, data
may be consolidated. Sectors X, X+1, X+2 and X+3 of either Figure 8 or Figure 9
may be copied to a single page of a new erase block. This may be done as part of
garbage collection at a time when it is convenient. Figure 10A shows sectors X, X+1,
X+2 and X+3 stored in page 0 of designated active block 1000. Page 0 of erase block
1000 is filled with data. When page O of active block 1100 is programmed with
sectors X, X+1, X+2 and X+3, sectors X, X+1, X+2 and X+3 may be erased from the
erase block from which they were copied. Active blocks 800, 900 may be erased and
made available for storage of new data when their contents are consolidated during

garbage collection.

[0110] Subsequent to programming of page 0, sector X+4 is received and is stored as
sector 0 of page 1 of active block 1000. Then, sectors X+5, X+6 and X+7 are
individually received and stored in pages 2, 3 and 4 respectively. Consolidation of
sectors may be needed again to consolidate sectors X+4, X+5, X+6 and X+7 to a
single page. Such consolidation of sectors takes time during which host data may not
be written. After the second consolidation of data to another erase block, erase block
1000 from which they are copied is marked as obsolete and may subsequently be

erased.

[0111] Figure 10B shows an active block 1010 after the second garbage collection
operation relocates data from the previous active block 1000. Sectors X+4 to X+7 are
consolidated into a single page (page 1) of active block 1010. Subsequently, more
sectors may be received and may be stored in active block 1010. If such sectors are
received in the form of single sectors, a single sector may be stored in a page as

before.

[0112] Figure 10C shows active block 1010 with additional sectors X+8 to X+11
stored in pages 2 - 5. Another garbage collection operation may be needed to
consolidate sectors X+8 to X+11 at this point. Thus, in order to efficiently store
sectors that are received from a host as single sectors, this method uses multiple
garbage collection operations that require transferring data from one erase block to
another erase block and erasing the first erase block. In larger erase blocks, the

number of garbage collection operations is larger. In memory systems that use

-25 -

WO 2006/065668 PCT/US2005/044720

metablocks, a group of erase blocks may be linked so that they are erased together and
programmed together. Data may be programmed in metapages containing many
sectors. Therefore, storing single sectors becomes very inefficient because of the

amount of garbage collection necessary.

[0113] Figure 11A shows an alternative method of storing data. Figure 11A shows
two erase blocks of a memory array. Active block 1110 is an erase block in which
data may be programmed for long-term storage. Scratch pad block 1120 is an erase
block in which data may be programmed for short-term storage. When small numbers
of sectors are received, they are first stored in scratch pad block 1120. Sectors
continue to be stored in scraich pad block 1120 until enough sectors are received to

fill a page of data. These sectors are then copied to a page of active block 1110.

[0114] Sector X is received and programmed as sector 0 of page 0 in scratch pad
block 1120 as before. Subsequently, sector X+1 is received and stored as sector 1 of
page 1 of scratch pad block 1120 with sector X copied to sector 0 of page 1.
Subsequently, sector X+2 is received and stored as sector 2 of page 2 of scratch pad
block 1120 with sectors X and X+1 stored as sector 0 and sector 1 of page 2
respectively. Subsequent to storing sector X+2 in scratch pad block 1120, sector X+3
is received. At this point, sectors X, X+1, X+2 and X+3 are written to page 0 of active
block 1110. These four sectors form a full page of data. Thus, sectors X, X+1, X+2
and X+3 are efficiently stored in page O of active block 1110. Subsequently, sectors
X+4, X+45, X+6 and X+7 are individually received. Sectors X+4, X+5 and X+6 are
stored in pages 3, 4 and 5 of scratch pad block 1120 and are copied to sectors 0, 1 and
2 of page 1 of active block 1110 when sector X+7 is received. Sector X+7 is
programmed directly to sector 3 of page 1 of active block 1110. At this point, scratch
pad block 1120 has no available pages for storing data and may be designated as
being ready for erase (obsolete). A new erase block may be designated as a scratch
pad block for the next sector, or group of sectors, to be received. While this example
shows single sectors being received, this method may also be used for groups of
sectors where the group of sectors has fewer sectors than the number of sectors in a
page. Also, while the above examples show writing data from a scratch pad block to
an active block with maximum parallelism, such writing may be done with less than

maximum parallelism and still provide an efficiency benefit. Thus, sectors are written

=26 -

WO 2006/065668 PCT/US2005/044720

to the scratch pad block with one degree of parallelism and subsequently written to
another block with a higher degree of parallelism so that the data is more densely

packed and requires less frequent garbage collection.

[0115] A scratch pad block may also be used in memory arrays that use metablocks.
For example Figure 11B shows two metablocks, active block 1130 and scratch pad
block 1140. Both active block 1130 and scratch pad block 1140 have four planes,
indicated as planes 0-3. Each plane is one sector wide, so four sectors are stored in a
metapage of block 1130 or 1140. Both blocks have 6 metapages, indicated as
metapage 0-5. The technique for efficiently storing data is the same as that described
above with respect to erase blocks. Sectors are accumulated in scratch pad block 1140
until a full metapage of data is available at which time a full metapage is programmed
to active block 1130. For example, when sector X+3 is received, a full metapage
(sectors X, X+1, X+2 and X+3) is programmed to metapage 0 of active block 1130. A
metapage may have a large number of sectors because metablocks may have many
planes and planes may be several pages wide. The technique described above is
particularly valuable for such large metapages because of the large amount of space in
the memory array that would otherwise be wasted. As shown with respect to Figures
11A and 11B, aspects of this invention described with respect to examples using erase
block architecture may also be applied to metablock architecture and vice versa. The
term “block” may indicate either an erase block or a metablock depending on the
configuration of the memory array. In either case, a block is the unit of erase used in
that configuration. Similarly, the term “page” may refer to either a page within a
single erase block or a metapage of a metablock. In either case, a page is the unit of

programming for the configuration.

[0116] Where a group of sectors is received that has more than the number of sectors
in a page, sectors may be programmed directly to the active block of the memory
array without first being stored in the scratch pad block. Thus, full pages of data may
be programmed directly to the active block with a high degree of parallelism, while
partial pages of data are programmed to the scratch pad block with a lower degree of
parallelism until they may be written as part of a full-page program to the active
block. A controller may determine the destination for a particular sector or group of

sectors. Where writing a group of sectors to the active block would include both

-7 -

WO 2006/065668 PCT/US2005/044720

partial-page and full-page writes, the full-pages may be written to the active block and
the partial page may be written to the scratch pad block.

[0117] Figure 12A shows a further example where sectors from a host are updated
while they are stored in a scratch pad block. A first sector Xg is received and stored in
page 0 of scratch pad block 1250. A page in this example stores four sectors of data.
A replacement for Xy, shown as X, is then received. The sectors in this example are
numbered according to their logical address, with a subscript to indicate whether the
sector is an update and if so, which version. Thus, sector X; is a sector with logical
address X and is the first updated version of this sector. This is a sector of data that
has the same logical address as Xy but may contain different data reflecting some
updated information. Sector X; is written to page 1 of scratch pad block 1250. The
controller keeps track of which sectors are current and which are obsolete. In scratch
pad block 1250, the most recently written copy of a sector with a particular logical
address is the current version. Any other version is obsolete. Thus X, becomes
obsolete when X; is programmed. Subsequent to receiving sector Xj, sector (X+1)p is
received. This is a sector that is logically sequential to sector Xj. Both sectors X; and
(X+1)o are written to page 2. Subsequently, sector (X+1)p is replaced by (X+1);. This
is an updated version of sector (X+1) that replaces sector (X+1)o. Sector (X+1); is
written to page 3 along with sector Xj. Subsequently, sector (X+2)p is received and
written to page 4. Sector (X+2)p is subsequently replaced by sector (X+2); and written
to page 5 along with sectors X; and (X+1);. Subsequently, sector (X+3)p is received.
Thus, a page of data (sectors X, (X+1)1, (X+2): and (X+3)o) are available. Sectors
X1, (X+1)1, (X+2); and (X+3) are written to a block designated as active block 1252.
Sectors X, (X+1);, (X+2); and (X+3)o are written to active block 1252 with
parallelism of a full page write. This is the maximum possible parallelism in this case.
Thus, even though sectors Xy, (X+1)1, (X+2); and (X+3)o were written to the scratch
pad block 1250 with a low degree of parallelism, they are subsequently written to
active block 1252 with a high degree of parallelism. This means that sectors Xj,
(X+1)1, (X+2); and (X+3) are more efficiently stored in the active block. More
efficient storage may result in garbage collection being necessary less frequently, thus

improving performance.

-28-

WO 2006/065668 PCT/US2005/044720

[0118] An alternative example is provided in Figure 12B. This example is similar to
that shown in Figure 12A but here sector (X+3), is stored in scratch pad block 1250
prior to being copied to active block 1252. This allows sector (X+3)y to be updated
before it is written to active block 1252. Sector (X+3)o is shown being updated by
being replaced by sector (X+3)1. The complete page of data (sectors X, (X+1),
(X+2); and (X+3);) may be held in scratch pad block 1250, ready to be updated, until
some triggering event. In this case, sector (X+4), is received, providing a triggering
event. Sectors Xy, (X+1)1, (X+2); and (X+3), are written to active block 1252 at this
point with maximum parallelism. Sector (X+4)o is written to the next available page

(page 8) in scratch pad block 1250.

[0119] Figure 12C shows another example of updating data using scraich pad block
1250. Sectors of data Xy to (X+15)p are stored in an original block 1254. A host sends
sector (X+6);, which is an updated sector with the same logical address as sector
(X+6)o. Thus, sector (X+6); is to replace (X+6)o. In order to replace sector (X+6)0,
page 1 of original block 1254 (containing sectors (X+4)o to (X+7)o) is combined with
sector (X+6); and the combination is written to page 0 of scratch pad block 1250.
Combining these sectors may take place in a Random Access Memory such as
controller ram 25 or may be done in memory registers that are connected to the
memory array. The updated page data may be kept in scratch pad block 1250 without
writing it to an active block for some time. Where a subsequent updated sector (X+5)1
is received from a host, the data may be updated in scratch pad block 1250 by writing
sector (X+5); along with copied sectors (X+4)o, (X+6)1, and (X+7)o to another page of
scratch pad block 1250 (in this case, page 1). Multiple updates of a page of data in
scratch pad block 1250 may be performed in this way. An update is carried out by
replacing the updated sector or sectors of data and copying of unchanged sectors of
data in a new page of scratch pad block 1250. The copied sectors are copied within
the same plane so that copying may be efficiently performed. Subsequently, the
updated page of data may be copied to active block 1252 in the memory array. Non-
sequential updates may be performed in this way without requiring a chaotic update
block. For example, updated sectors (X+6), and (X+5), are received non-sequentially

in the above example, but active block 1252 is sequential. Multiple pages of data may

-29 .

WO 2006/065668 PCT/US2005/044720

be held and updated at the same time in a scratch pad block in this way. A page may

be copied to an active block when the page is no longer expected to be updated.

Example of multi-level cell programming

[0120] Certain kinds of memories may store more than one bit of data in each cell of
the memory array by dividing the threshold voltage range of a floating gate memory
cell into more than two levels. Figure 13 shows an example of how such multi-level
cell (MLC) memories may be programmed to provide multiple threshold voltages that
signify different logical states. Four different threshold voltages are shown, labeled A,
B, C and D. Multiple cells are programmed to each voltage. Figure 13 represents the
distribution of cell states with the number of cells represented on the vertical axis.
Each threshold voltage A, B, C and D represents a different logical state. The four
states represent two bits of data, one bit from a lower page of data and one bit from an
upper page of data as indicated. In some examples, the lower page may be
programmed first. After programming of the lower page, the cell is in state A or B.
Subsequently, the upper page may be programmed so that the cell either stays in
states A or B (for upper bit =1) or is modified to states C or D (for upper bit =0).
Because these four states each have relatively narrow voltage windows, MLC
memories are particularly vulnerable to corruption of data from relatively small
changes in threshold voltages. In some examples, it may be advantageous to program
both lower and upper pages simultaneously. This may help to reduce corruption of
data in a cell caused by programming of adjacent cells, such as may occur during

programming of upper page data.

[0121] Figure 14 shows an example of how a scratch pad block 1460 may be used to
reduce corruption of data in MLC memories. Figure 14 shows both active block 1462
and scratch pad block 1460 as blocks of MLC memory. Pages of both blocks are
numbered and shown as either “upper” or “lower” depending on which threshold
voltage states are used to store the bits of data of the page. In this example, the
memory first receives sectors X to X+3 and stores these sectors in lower page 0 of
scratch pad block 1460. Subsequently, the memory receives sectors X+4 to X+7. At
this time, both the lower page (sectors X to X+3) and the upper page (X+4 to X+7)

are written simultaneously to active block 1462. This may avoid corruption of lower

-30 -

WO 2006/065668 PCT/US2005/044720

page 0 of active block 1462 during programming of upper page 0 of active block
1462. Typically, the time necessary to program the upper and lower pages together is
the same as the time necessary to program the upper page alone so that this system
does not carry a time penalty. Subsequent to programming of lower page 0 and upper
page 0 of active block 1462 with sectors X to X+7, sectors X+8 to X+11 are received
and are programmed to upper page 0 of scratch pad block 1460. When sectors X+12
to X+15 are received, sectors X+8 to X+11 and sectors X+12 to X+15 are
programmed in parallel to upper page 1 and lower page 1 of the active block. This
system is continued for subsequent sectors of data as shown. Thus, a page of data is
written to scratch pad block 1460 and subsequently this page is written together with
an additional page to active block 1462 as upper and lower pages of the same group of
memory cells. Programming to scratch pad block 1460 occurs with the parallelism of
a page, while programming to active block 1462 takes place with double the

parallelism of a page.

[0122] In an alternative embodiment, the upper and lower pages may be written to an
active block at different times but a copy of the lower page is kept in a scratch pad
block in case the lower page in the active block becomes corrupted during
programming of the upper page. In Figure 14, sectors X to X+3 may be received and
programmed to both the lower page 0 of active block 1462 and to lower page O of
scratch pad block 1460 at the same time. Subsequently, sectors X+4 to X+7 are
received and are programmed to upper page O of active block 1462. Sectors X+4 to
X+7 are not saved in scratch pad block 1460. If there is any problem during the
programming of X+4 to X+7 to upper page 0 of active block 1462 (such as loss of
power), the data in lower page 0 of active block 1462 could be corrupted. That is, the
threshold voltage of the cells being programmed could be modified so that they are no
longer in a state representing data of the lower page but have not been fully
programmed to a state representing data of the upper page. For example, a cell that is
being programmed from state A in Figure 13 to state D could be in state B or C at a
time when programming stops. If data is corrupted in this manner the upper page of
data that is being written may be recovered from the location from which it is being
copied. However, in many cases, no other copy of the lower page exists. Here, a copy

of the lower page is kept in scratch pad block 1460 until the programming of the

-31-

WO 2006/065668 PCT/US2005/044720

upper page is completed. Thus, an uncorrupted copy of the lower page exists and may

be used to recover the data of the lower page.

Examples of multiple files

[0123] Data from more than one host data file may be stored in a single block. The
break between files may occur within a page so that part of a page contains data from
one file and part of a page contains data from another file. Figure 15 shows an
example where page O to page i-1 of original block 1570 contain data from a first file
(file 1) and page i+1 to page n-1 contain data from a second file (file 2). Page i
contains sectors (i*4) and (i*4)+1 from file 1 and sectors (i*4)+2 and (i*4)+3 from
file 2. The sectors of file 2 are shaded to illustrate that sectors from two files are

present.

[0124] Figure 15 shows file 2 being updated to a new block 1572. The first page
(page 0) of new block 1572 is written with the contents of page i of original block
1570. Thus, page 0 of new block 1572 contains sectors from both file 2 and file 1.
Sectors (i*4) and (i*4)+1 from file 1 are not updated at this point but may be copied
in order to program a full page of data. The remainder of updated file 2 is
programmed to pages 1 to i-1 of new block 1572. Subsequently, file 1 is updated.
Sector 0 to sector (i*4)-1 are stored in page i to page n-1. However, sectors (i*4) and
(i*4)+1 are also part of file 1 and must be updated. Because new block 1572 is full at
this point, the updated sectors (i*4) and (i*4)+1 are programmed to another block.
Subsequently, sectors (i*4) and (i*4)+1 and the sectors in new block 1572 may be
consolidated to a single block as part of a garbage collection operation. However, this

takes time and system resources and is generally undesirable.

[0125] Figure 16 shows an alternative technique for updating sectors of original block
1570 of Figure 15 that contains sectors from two different files. This technique uses a
scratch pad block 1674 to store updated sectors until such time as they may be written
as part of a full updated page with the maximum parallelism of the system. When file
2 is updated, updated sectors (i*4)+2 and (i*4)+3 are written to scratch pad block
1674. Here, they are written to page 0 of scratch pad block 1674 and no data is written
to the rest of the page so that a low degree of parallelism is used. The remaining

sectors of file 2 (sectors (i*4)+4 to N-1) are copied to pages O to n-i of a new block

-32 -

WO 2006/065668 PCT/US2005/044720

1676. These sectors are all written in full-page writes using the maximum parallelism.
Subsequently, file 1 is updated. Sectors 0 to (i*4)-1 are programmed with maximum
parallelism into pages n-i+1 to n-2. Sectors (i*4) and (i*4)+1 of file 1 are then written
in parallel with copying of sectors (i*4)+2 and (i*4)+3 to page n-1 of new block 1676.
Thus, an updated copy of all the sectors that were previously held in original block
1570 are now held in new block 1676 and no obsolete data is held in new block 1676.
There is generally no need to garbage collect a block such as new block 1676. Each
page of new block 1676 is programmed with maximum parallelism to achieve
maximum density of data in the block. Sectors (i*4)+2 and (i*4)+3 in scratch pad
block 1674 may be marked as obsolete at this point. However, scratch pad block 1674
may be used for further operations without requiring a garbage collection operation

because the scratch pad block routinely contains both current and obsolete data.

Example of storing non-sequential sectors of data

[0126] In some of the previous examples, sectors of data are written to the scratch pad
block with a degree of parallelism that is less than that of writing a complete page. In
such examples, the remaining space in the page of the scratch pad block that is being
written may remain empty because it is not possible to program it later without
disturbing already-stored data. In some cases, it is possible to use this otherwise
empty space and otherwise unused programming bandwidth to store unrelated data in
the same page. For example, where a memory system receives host data in single
sectors or groups of sectors less than a page, these sectors of host data may be stored
in the scratch pad block in pages that also hold unrelated data such as unrelated host
data or sectors of control data. Similarly, sectors from the beginning of a file that are
being stored in a scratch pad block for later storage as part of a full page may have
additional sectors stored in the same scratch pad block page that are not logically

related.

[0127] Figure 17 shows an example where sectors X, X+1 and X+2 are stored in a
scratch pad block 1780 as in previous examples. However, here the remaining space
in the pages of the scratch pad block holding sectors X, X+1 and X+2 are used to
store other data. Sectors Y, Y+1 and Y+2 are stored with sector X in page 0. Sectors

Y, Y+1 and Y+2 may be logically unrelated to sectors X, X+1 and X+2. T hey may be

-33-

WO 2006/065668 PCT/US2005/044720

from another host data file or from another cluster of sectors within the same file.
Sectors Y, Y+1 and Y+2 may be non-sequential with sectors X, X+1 and X+2 and
may be separated in logical address space. Similarly, sectors Z and Z+1 are stored in
page 1 with sectors X and X+1. Sectors Z and Z+1 may be logically unrelated to both
sectors X, X+1 and X+2 and sectors Y, Y+1 and Y+2. Sectors X, X+1, X+2 and X+3
are subsequently written to a page of another block when sector X+3 is received.
Sectors Y, Y+1, Y+2 and Y+3 are written to a page of another block when sector Y+3
is received. Thus, unrelated data may be stored in the same page of the scratch pad

block to more efficiently use the available resources.

[0128] Figure 18 shows another example of unrelated data stored in a scratch pad
block 1890. Here, sectors X, X+1 and X+2 are stored and updated as before.
However, here sector Y is also stored and updated in parallel. Updated sectors are
denoted by a subscript indicating what version is stored. For example, sector Xo is the
original version of sector X, while X is the first updated version of sector X. Sector Y
may be a sector of host data or a sector of control data that is frequently updated. In
some systems, control data such as FAT information is updated as host data is stored.
Where small amounts of host data are received it may be advantageous to update the
control data in scratch pad block 1890. This may avoid updating a control structure
where only a single sector of control data is updated. At some later time, the control

data structures may be updated using control data from the scratch pad block.

Scratch Pad Block management

[0129] A scratch pad block may be a designated block in the memory array. A fixed
physical location may be chosen as the scratch pad block. However, this may result in
uneven wear of the memory array. Alternatively, the designated block may be
changed from time to time so that as the scratch pad block becomes filled with
obsolete data, another erase block is chosen as the scratch pad block. In this case, data
structures used by the memory controller may identify the location of the scratch pad
block or the designated scratch pad block may be marked so that if the controller
scans the erase blocks of the memory array it may determine which erase block is the
scratch pad block. A scratch pad block may be marked using a sector to identify it as a

scratch pad block. For example, Figure 19 shows marking sector 2110 as the first

-34 -

WO 2006/065668 PCT/US2005/044720

sector of scratch pad block 2100. When the card is powered on, the erase blocks of the
memory array (or a portion of the memory array) may be scanned to determine the
location of a scratch pad block or scratch pad blocks. In the example of Figure 19, the
first sector of each erase block is read to see if it is a marking sector indicating a

scratch pad block.

[0130] Data may be written to a scratch pad block as a data group. A data group is a
logically sequential group of sectors received from a host. When a data group is
stored in the scratch pad block, an index sector is also written that provides
information about the data group stored. The locations of the sectors of the data group
may be stored in an index sector. A scratch pad block such as scratch pad block 2100
of Figure 19 may be used to store multiple data groups. Figure 20 shows scratch pad
2100 storing one data group. Data group 1 consists of two sectors 2220, 2221. These
sectors, marking sector 2110 and an index sector 2230 are stored in scratch pad 2100.

Index sector 2230 stores information about group 1.

[0131] Figure 21 shows scratch pad block 2100 of Figure 20 after data group 2
consisting of two sectors 2340, 2341 is programmed. Index sector 2350 is a new index
sector that stores information about group 1 and group 2. Thus, index sector 2230 is
obsolete because index sector 2350 contains a complete record of the data groups of

scratch pad block 2100 including group 1.

[0132] Figure 22 shows scratch pad block 2100 of Figure 21 after programming of
data group 3 consisting of sectors 2460, 2461 and 2462. Index sector 2470 is a new
index sector that stores information about data groups 1, 2 and 3. Index sector 2470
contains a complete record of the data of scratch pad block 2100 and thus makes

index sector 2350 obsolete.

[0133] Figure 23 shows scratch pad block 2100 of Figure 22 after data group 1 and
data group 2 are read from scratch pad block 2100 and are written as a single page in
another block of the memory array. Index sector 2560 stores information about data
group 3. Data group 1 and data group 2 in scratch pad 2100 are obsolete and do not
require indexing because they are stored elsewhere. Thus, index sector 2560 contains

a complete record of all current data in scratch pad block 2100.

-35.

WO 2006/065668 PCT/US2005/044720

[0134] When a host requests a sector or sectors of data from the memory array, a
controller may first check if the requested sectors are in the scratch pad block. If the
sectors are not present in the scratch pad block, the sectors may be sought in the
regular manner. Thus, the scratch pad does not require changes to the regular media
management used to keep track of the locations of sectors of data in the memory

array.
MULTI-STREAM UPDATING AND INDEXING

[0135] FIG. 24 illustrates an example of sectors in a logical group being updated by
storing the updates in an update block having single-sector pages in a conventional
manner. The data is packaged into logical sectors and stored in metablocks (also
simply referred to as “blocks™) where all logical sectors of a metablock are erasable
together. The data is recorded into a block page by page, where all logical sectors
within each page are programmable together. The example shows a single-sector
page with each sector typically of size about 512 byte. At some instance, an ‘original®
block 10 is formed with an entire logical group of sectors stored in it according to a
predetermined order, such as ordered in ascending logical sector numbers. Such as
block is regarded as an intact block having intact all sectors of the logical group

preferably in sequential order.

[0136] Thereafter, when a host sends updates as latest versions of some of these
logical sectors of the logical group, the updated sectors are written to an update block
20 dedicated to the logical group. If the update data turns out to be in the
predetermined order, it could be recorded in the update block sequentially. The
update block is regarded to be a sequential update block with the potential of
becoming an intact block. On the other hand, when update sectors are not in
sequential order, the update block is regarded as non-sequential, or “chaotic”. In this
case, any latest version of sectors will eventually be copied elsewhere to form a new

intact block.

[0137] In host write #1, updated logical sector LS10’ is sent to the memory and
recorded in page O of the update block 20. In host write #2, updated logical sector
1.811” is sent to the memory and recorded in the next available location, page 1, in the

update block 20. In host write #3, updated logical sectors LS6” and LS7’ are recorded

-36 -

WO 2006/065668 PCT/US2005/044720

in pages 2 and 3 respectively. Finally, in host write #4, updated logical sector L10” is
sent to the memory and recorded in page 4 of the update block. The updating of the
logical group is said to form a stream, e.g., STREAM 1, with the update data
streaming to the update block from the host. In general, if there are multiple versions
of a logical sector distributed among the original block and the update block, only the
most recently written version will be the valid one that renders all previous versions
obsolete. For example, FIG. 24 shows LS10” recorded in page 4 of the update block,
being the most recently written version, and therefore is the current valid sector for
the data of logical sector number 10. The previous versions, L.S10 in the original
block 10 and LS10’ in the update block 20 are obsolete.

[0138] Eventually, the update block will be closed out and the valid sectors (latest
version of logical sectors) between the update block and the original block will be
consolidated in the predetermined order to form a new original block. The obsolete

original block and update block will be recycled.

[0139] FIG. 25 illustrates the same sequence of writes shown in FIG. 24 as applied to
a memory where the pages are multi-sector and possibly once-writable. The example
page structure differs from that shown in FIG. 24 in that each page now contains four
sectors instead of one and, in some embodiment, can only be written once after an
erase. In keeping with existing terminology, a memory device-imposed minimum
unit of programming will be referred to as a ‘physical page’ whereas a system-
imposed minimum unit of programming will be referred to as a ‘metapage’, which
may be constituted from multiple physical pages. For expediency, ‘metapage’ and

‘page’ will be used interchangeable unless otherwise stipulated.

[0140] As before, each logical sector is originally stored sequentially in ascending
logical number order in an original block 10. If the block has a four-sector page
structure, then the block will be further partitioned into pages and each logical sector
preferably have a definite page offset in each page. For example, page PO has logical
sectors LSO — LS3 stored in it. Thus LSO is stored in the first of the four slots of the
page and LS1 is stored in the second slots, etc. In the four-sector page example, the
page offset for a given sector LSn will be given by MOD [(m + 1), 4] if the first

logical sector of the block is numbered as LS0.

-37 -

WO 2006/065668 PCT/US2005/044720

[0141] Each time a host writes to a memory, it issues a write command to write a
number of data units, typically logical sectors, followed by transmission of the logical
sectors themselves. To prevent loss of data, the protocol between the host and the
memory is such that the next host write will not commence until after the current

write data has been successfully written to memory.

[0142] As explained earlier, in a memory architecture with multi-sector pages, it is
preferable to implement sector alignment in a page as this avoid the need for re-
alignment during garbage collection. Thus, the sectors received from each host write,
when aligned, do not necessary fill an integral number of pages in an update block.
This could result in a partially filled page being programmed. The partially filled
page could have gaps before or after the host data. These gaps can also be pre-padded
or post-padded with existing logical sectors in order to preserve the sequential order
as much as possible. It is generally preferably not to post-pad the partial page in case
the next host write is the next logical sector. However, in the case of a memory
architecture with once-writable pages, there is no option of rewriting the unfilled

portion of a partial page once it has been written.

[0143] In the examples the number of valid pages in one of the update streams (SPB)
has been optionally limited to one. This is enough to illustrate the principle, but it
should be noted, that more than one page can be stored in SPB, where more
information (older Write-pointers for example) need to be analysed in order to find

the latest written sectors.

[0144] For example in FIG. 25, in host write #1, updated sectors LS10’ is stored in
the third offset of the page PO of the update block 20. Optionally, for completeness
the first two slots can be padded with valid data such as LS8 and LS9 from the
original block 10. However, this still leaves the fourth slot unfilled when the page PO
is saved at the end of the host write #1. The partial page can be optionally post-
padded with the latest version of LS11. Since the page is once-writable, the unfilled

fourth slot will be closed to further programming.

[0145] In host write #2, the command is to write the received updated sector LS11’
which turns out to be in sequential order from the last sector LS10’. Ideally, this

should be recorded in the next slot after LS10° in PO0. However, PO is closed to

-38-

WO 2006/065668 PCT/US2005/044720

further writes and therefore, LS11” is stored in the next empty page P1 at the last slot,
which is its proper page offset. The first three slots of P1 are padded with LS8, LS9
and LS10°, which are valid versions of logical sectors that sequentially precede
LS11°.

[0146] In host write #3, the command is to write LS6’ and L.S7°. These are written to
P2, which is the next empty page in the update block, at the third and fourth slots
respectively. The first and second slots are padding with valid data such as 1.54 and
LS5.

[0147] Finally, in host write #4, the command is to write LS10” and this is stored in
P3, slot 3, while slots 1 and 2 are padded with LS8 and LS9 respectively and slot 4 is
left empty.

[0148] It can be seen that the update block is used inefficiently with much padding
and dead spaces while trying to maintain sector alignment within each once-
programmable page. An undesirable feature is that even if the host writes
sequentially (sector 10, then 11 in two separate write commands) the update block

stops being sequential, and cannot become intact, as it has some obsolete data.

[0149] In order to avoid the above-mentioned problems and to minimize inefficient
storage in the update block 20 due to partially filled pages, as well as excessive
padding, it has been described earlier to use an additional scratch pad block 30. The
scratch pad block (SPB) 30 serves as a temporary buffer and staging area for
incoming data so that a full page of data could be staged before being written to an
update block 20. In the four-sector page example above, the sectors are staged so that
four sectors are written to completely fill a page in the update block. In the case when
the host writes sequential data in separate writes, the SPB allows to buffer the partial
page writes and keep the update block sequential. However, it also means that valid

data may now distribute over the SPB in addition to the original and update blocks.

[0150] For expediency, the page size of the scratch pad block is the same as that of
the update block, although in general they can be different. For example, the pages of
the scratch pad block can have the size of a physical page if the memory system

supports programming at the physical page level.

-39.

WO 2006/065668 PCT/US2005/044720

SCRATCH PAD BLOCK AND UPDATE BLOCK INDEX MANAGEMENT

[0151] United States Patent Application Serial No. 10/917,725 filed August 13, 2004
discloses a memory system with block management, which entire disclosure is hereby
incorporated herein by reference. The block management provides an update block to
be associated with each logical group of data under update. Disclosed are examples
of various indexing schemes to locate valid data that may reside either on the original
block or the update block. In particular, when the update block contains logical
sectors in non-sequential order, it is considered to be a “chaotic update block” A
chaotic update block index (“CBI”) is used to keep track of the logical sectors

recorded in the chaotic update block.

SPBI/CBI Indices Saved in a Scratch Pad Block

[0152] According to another aspect of the invention, when a scratch pad block is
employed in addition to an update block, an associated scratch pad block index
(“SPBI™) is used to keep track of the update sectors recorded in the scratch pad block.
This is in addition to an index (e.g., “CBI”) used to keep track of the logical sectors
recorded in the update block. Whenever user data is stored in a partial page of the
scratch pad block, it means that at least the last slot of the page is unfilled. In one
embodiment, the SPBI can be stored in the last slot of the partial page in the scratch
pad block. In a preferred embodiment, the SPBI and the CBI can be packaged within
a SPBI/CBI sector and stored at the last slot of a partial page in the scratch pad block
which is unused anyway. Every time a new partial page is written, an updated

SPBI/CBI sector is written at the end slot, rendering all previous versions obsolete.

[0153] FIG. 26 is a flowchart illustrating a method of updating data by employing a
first memory block in conjunction with a second memory block, with an index of the
stored data saved in the second block, according to a general embodiment of the

invention.

[0154] STEP 80: Providing first and second nonvolatile storages, each for

sequentially recording data.

[0155] STEP 81: Maintaining at least one index of data that has been recorded in first

and second nonvolatile storages.

-40 -

WO 2006/065668 PCT/US2005/044720

[0156] STEP 82: Receiving input data.

[0157] STEP 84: Determining if a first predetermined condition is satisfied for
recording the buffered input data to the first storage. If satisfied, proceeding to STEP
85, otherwise proceeding to STEP 86.

[0158] STEP 85: Recording the buffered input data to the first storage. Proceeding to
STEP 88.

[0159] STEP 86: Recording the buffered input data together with the at least one
index to the second storage. Proceeding to STEP 88.

[0160] STEP 88: Proceeding to STEP 72 if there are more input data to be

processed, otherwise ending process.

[0161] FIG. 27A illustrates a specific example of updating data and maintaining
indices by employing an update block in conjunction with a scratch pad block,
according to a preferred embodiment of the invention. Each block is a metablock
where all its memory locations are erasable together. The block is organized into
pages where all memory locations within a page are programmable together.
Furthermore, each page has a size that stores more than one sector and is once-

writable each time the block has been erased.

[0162] A scratch pad block (“SPB™) 30 is provided in addition to the update block
(“UB™) 20. If ‘STREAM 1 is used to label the flow of data to the update block 20,
the corresponding flow to the scratch pad block 30 will be labeled as ‘STREAM 0°.

[0163] The same host writes example in FIG. 24 and FIG. 25 will be used to
illustrate the advantage of the invention shown in FIG. 27A. In host write #1, the
command is to write L.S10°. Since LS10’ should occupy slot 3, a full page could not
be written to the update block 20. Instead, it is staged by being buffered in a new
page of the SPB 30. Thus, LS10’ is stored in slot 3 of the next available partial page
PPO of the SPB 30. At the same time, slots 1 and 2 are optionally padded with LS8
and LS9 respectively. Also, according to the feature of the invention, both the SPBI
and the CBI are packaged within a sector, namely, an index sector SPBI/CBI; 50, and

-41 -

WO 2006/065668 PCT/US2005/044720

the index sector 50 is advantageously stored in the last, unused slot of the partial page
PPO.

[0164] In host write #2, the command is to write LS11°. Since LS11” belongs to slot
4, which is at a page end, a full page pre-padded with sequential LS8, L.S9 and LS10’
from the SPB 30 can be written to the next available page PO of the update block 20.
In this case, the index sector for SPBI/CBI is not updated since it is not writing to a
partial page in the SPB 30. Alignment, as well as pre-padding in SPB is preferred but

optional.

[0165] In host write #3, the command is to write LS6” and LS7’. They belong to slots
3 and 4 respectively. Thus, another full page, P1 of the update block 20 is written
when the preceding slots are padded with LS4 and LS5. Again, the index sector for
SPBI/CBI is not updated since it is not writing to a partial page in the SPB 30.

[0166] In host write #4, the command is to write LS10”. Since LS10” belong to slot
3, it will be written to the next partial page PP1 of the SPB 30. Similarly, the
preceding slots 1 and 2 are padded with LS8 and LS9, while the last slot will also be
stored with the latest update of the index sector, SPBI/CBI.

[0167] The scheme shown in FIG. 27A is a more efficient utilization of the update
block as evident from comparing the usage of the update block 20 at the end of host
write #4 with that of FIG. 25. For the same host writes, the scheme shown in FIG.
27A consumes less storage and requires less padding in the update block, albeit at the
expense of the scratch pad block 30. At the same time, the indexing scheme takes
advantage of the unused storage in the scratch pad block to store an index in

nonvolatile memory.

[0168] One important feature and advantage of the invention is that sequential order
of update sectors in the update block is maintained during a series of separate host
writes of sequential logical sectors, unlike the example shown in FIG. 25. This will

be evident from the example illustrated in FIG. 27B.

[0169] FIG. 27B illustrates another example of the sequential ordering of updating
data being maintained by employing an update block in conjunction with a scratch

pad block, according to a preferred embodiment of the invention. In this example,

-42 -

WO 2006/065668 PCT/US2005/044720

logical sectors LS10° — LS16” are written in sequence but over a number separate host

writes.

[0170] In host write #1, LS10 is written. Since it should occupy slot 3 of a page
which is not a page-end slot, it is recorded in slot 3 of a scratch pad block 30. At the
same time, an index SPBI/CBI1 is recorded in the page-end slot.

[0171] In host write #2, LS11° is written. Since it should occupy a page-end slot, it is
recorded directly to the last slot of a new page in an update block 20. At the same
time, the LS10’ temporarily stored in the scratch pad block is copied over to slot 3,
while slots 1 and 2 are pre-padded with LS8 and LS9 from the original or intact block
10.

[0172] In host write #3, L.S12° — LS14’ are written. Since none of them has an end-
page offset, they are stored in slots 1-3 of a new page in the scratch pad block. At the
same time, an updated index SPBI/CBI3 is recorded in the page-end slot.

[0173] In host write #4, LS15’ and LS16’ are written. Since LS15’ falls in a page-
end slot, it is written directly to the last slot of the next page in the update block. At
the same time, slots 1-3 are respectively filled with LS12’ — LS14’ from the scratch
pad block.

[0174] It will be seen that the sequential logical sectors LS10* — LS16’ are recorded
in the update block in a sequential manner even though they are written over several

separate host writes.

[0175] In the preferred embodiment, one valid partial page (e.g., the last written
partial page) is maintained per logical group in the scratch pad block. The invention
is equally applicable to having more than one valid partial page maintained per logical
group in the scratch pad block. In that case, the index information from more than

one page need to be analyzed in order to locate the recorded sectors.

[0176] Sector alignment and padding within the page of a scratch pad block is
preferable but optional. The alignment and padding will facilitate subsequent transfer

to the update block.

-43 -

WO 2006/065668 PCT/US2005/044720

[0177] Absolute sector alignment within a page of an update block will simplify
indexing and copying in some memory architecture. The sectors in the page are also
regarded as page-aligned even when all the sequential sectors in the page are
cyclically shifted by some number of slots. In that case, a page tag indicating the

location of the first logical sector in the page will provide the offset address.

[0178] The preferred embodiments shown have the two storages as two different
erasable blocks. In general the invention is equally applicable to the two storages

being two portions of the memory.

[0179] The invention is also equally applicable to two-state memories having each
memory cells storing one bit of data and multi-state memories having each memory
cells capable of storing more than one bit of data. For multi-state memories that
support multi-page storage, the lower page is preferable used for storage operation of
the scratch pad block. The partial page is preferably pre-padded if the first sector to

write does not start from the slot 1 location of a multiple-slot page.

[0180] Page level indexing is used for chaotic blocks and sector-level indexing for the
scratch pad block. All necessary indexing information for accessing all chaotic
blocks and the scratch pad block, i.e., SPBI/CBI, is maintained in the controller
SRAM for speedy access and processing. It is periodically written out to the scratch

pad block whenever a new partial page is written.

[0181] Generally, partial meta-page relocated data is programmed together with
incoming data to reduce the number of programming cycles. A scratch pad block
(SPB) is compacted when it becomes full. The SPB compaction is the relocation of
all valid data to a new block. As we have only one page with valid data per UB in
SPB, we only need to copy those pages to new block. If there are multiple pages with
valid data per update block (they might contain different or the same logical

addresses; in the latter it is preferable to consolidate them).

Update Block Index Saved in Partial Page

[0182] According to yet another aspect of the invention, data stored in a memory
block has its index stored in a portion of a partial page unoccupied by data. Thus, in a

memory organized into memory units where a page of memory units is programmable

-44 -

WO 2006/065668 PCT/US2005/044720

together and a block of memory pages is erasable together, partially filled pages will
exist when data units stored in the memory units are aligned in the page according to a
predetermined order, and especially if the page is once-programmable after each
erase. The index for the block is then stored in a partial page not filled with update

data. The partial page may be in the current block or in another block.

[0183] FIG. 28 illustrates a preferred scheme for saving an index of a memory block

for storing update data in a partial page of the block.

[0184] STEP 90: Organizing a nonvolatile memory into erasable blocks of memory
units, each memory unit for storing a logical unit of data, and each block also
organized into one or more pages, with the memory units in each page having

predetermined page offsets and being once programmable together after an erase

[0185] STEP 92: Providing a block as an update block for recording update versions

of logical units of data.
[0186] STEP 94: Receiving logical units of data from a host.
[0187] STEP 96: Maintaining an index for data in the update block.

[0188] STEP 98: Recording to the update block, page by page, with the received data
aligned in the page according to their page offsets, and when the page to be recorded
has a portion unoccupied by data, also recording the index to the portion unoccupied

by data.

MULTI-STREAM TRACKING AND SYNCHRONIZATION

[0189] FIG. 29 illustrates schematically, a scratch pad block used in a multi-stream
update in which several logical groups are concurrently undergoing updates. For
example, if there are k logical groups undergoing updating, there will be k update
streams using £ update blocks 20-1, ..., 20-k. In order to avoid partial pages among
the update blocks, a scraich pad block 30 is used in another stream (stream 0) to
buffer data in k corresponding partial pages for the k£ update blocks. Thus, there will
be k+1 blocks opened, and k partial pages to service the concurrent updating of &

logical groups of logical units in k update blocks. The example shown is for the

-45 -

WO 2006/065668 PCT/US2005/044720

preferred embodiment where there is one valid page per update block in the scratch
pad block.

[0190] With valid sectors distributed among the update and scratch pad blocks, a
problem may arise in identifying the most recently written version of sectors in the
case of power cycles as different copies of the same logical sectors can be found in
both the update and scratch pad blocks. A memory scan on the update block after a
power reset will establish the priority of multiple versions (if any) of a logical sector
since the locations of the update block is filled in a definite order. Similarly scanning
the scratch pad block, the last written version of a logical sector can be identified.
However, if there is a latest version in the scratch pad block and a latest version in the
update block, it is not readily determined which one is the very latest. For example,
in FIG. 27A the sectors LS8 - LS10 can be found in both streams. The same pattern
of data, as on FIG. 27A, can be created by different command sequence — write LS8’
—1.810%; write LS8” — LS10”; write LS8 — LS11””’; write LS4’ — LS7’. In this case
the valid sectors will be located in the update block rather than the scratch pad block.

[0191] According to another aspect of the invention, a method is provided to write
update data to a non-volatile memory with synchronization information that allows
identifying the most recently written version of data that may exist on multiple

memory blocks.

[0192] FIG. 30 illustrates a conventional case of writing a sequence of input data to a
block. The nonvolatile memory block 22 is organized such that it is filled in a
definite order. It is shown schematically as filling from the top. Thus, successive
write of segments of data “A”, “B”, “C” and “A’” are laid down in the block
sequentially. In this way, if for example, “A’” is another version of “A”, it can be
determined from its recorded location in the block 22 that it is a later version that
supersedes “A”. The embodiments below are just special, though effective, cases of
the broader idea of storing information about how full the streams were at the time of

update of one definite stream.

[0193] FIG. 31A illustrates a scheme of keeping track of the recording order or
priority even when the different writes are interleaved over two blocks, according to a

preferred embodiment of the invention. Each write, such as data segments “A”, “B”,

-46 -

WO 2006/065668 PCT/US2005/044720

«“C” and “A”” could either be recorded onto a first block (e.g., block 22) or a second
block (e.g., block 32) depending on one or more predetermined conditions. In the
example, “A” is recorded in a first write to the second block 32. This is followed by a
second write where “B” is recorded to the first block 22, and a third write where “C”
is recorded to the second block 32, and finally a fourth write where “A’” is recorded
to the first block 22.

[0194] In the figure shown, STREAM 0 is the stream of data recording to the second
block 32 and STREAM 1 is the stream of data recording to the first block 22. In the
case of interleaved update of the same logical data in two or more streams, it is
essential to keep track of the prioity of updates, which defines the locations of the
most recently recorded data. In a preferred embodiment, this is accomplished by

saving the prioity information at least every time a given stream is being recorded.

[0195] The priority information is being saved with the write data every time the
latter in STREAM O is being recorded onto the block 32. In the preferred
embodiment, the priority information is a write pointer 40 that points to the next
empty location (i.e., the address of the next recording location) in the first block 22.

The write pointer is saved along with the data that is being stored in STREAM 0.

[0196] Thus, in the write “A” operation, a pointer P 40-A that points to the next
empty location in block 22 is saved together with “A” in the block 32 in STREAM 0.
In the write “B” operation, no pointer is saved since the write is to the block 22 in
STREAM 1. In the write “C”, a pointer Pc 40-C is saved with “C” in the block 32 in
STREAM 0. In the write “A’” to the block 22, no pointer is being saved in STREAM
1.

[0197] If at the end of write “A’”, the memory is reset after a power interruption, any
indices in the controller RAM will be lost and have to be rebuilt by scanning the
memory. By scanning backwards, each of the blocks 22 and 32 will have located a
last written version of data “A”. The write pointer 40 can be used to determine the
very latest version between the two blocks. For example, the pointer Pc points to a
location in the block 22 prior to the recording of “A’”, hence “A’” is recorded after
“C”, Also, since “C” is recorded in the block 32 at a location after “A”, it therefore

can be concluded that “A’” is the later version of “A”,

-47 -

WO 2006/065668 PCT/US2005/044720

[0198] In another embodiment where there are more than one valid page in the SPB
per UB, then in order to detect the most recently written data, more than one write

pointer will have to be analyzed.

[0199] FIG. 31B illustrates another embodiment of keeping track of the recording
order when the writes are recorded over two blocks. This embodiment is similar to
that shown in FIG. 31A except the write pointer points to the next empty location in
the block 32 and is saved in the block 22. STREAM 0 is being recorded to a second
block (e.g., block 32) while STREAM 1 is being recorded to a first block (e.g., block
22). Every time STREAM 1 is being recorded onto a first block, a second-block write
pointer 40, that gives the address of the next recording location in the second block
22, is being saved with it. In this example, the pointers P°g 40’-B is being recorded
with “B”. Similarly, ,the pointer P’5- 40°-A’ is being recorded with “A’” in the first
block 22 in STREAM 1.

[0200] FIG. 32A is a flowchart illustrating a method of synchronizing the recording
sequence between two data streams, according to a general embodiment of the

invention.

[0201] STEP 100: Providing first and second nonvolatile storages, each for

sequentially recording data.

[0202] STEP 102: Designating either the first or second storage as the storage for
priority information, the priority information being used to determine whether a first
data unit in the first storage was recorded before or after a second data unit in the

second storage.
[0203] STEP 110: Receiving the input data.

[0204] STEP 120: Determining if a predetermined condition is satisfied for recording
the received input data to the first storage. If satisfied, proceeding to STEP 130°,
otherwise proceeding to STEP 140°.

[0205] STEP 130: Recording the received input data to the first storage. At the same
time, if the first storage is the designated storage, additionally recording the priority

information to the first storage. Proceeding to STEP 150.

-48 -

WO 2006/065668 PCT/US2005/044720

[0206] STEP 140: Recording the received input data to the second storage. At the
same time, if the second storage is the designated storage, additionally recording the

priority information to the second storage. Proceeding to STEP 150.

[0207] STEP 150: Proceeding to STEP 110 if there is more input data to be

processed, otherwise ending process.

[0208] In a preferred embodiment, the priority information is a writer pointer, which
is an address of the location of where a next recording will take place in the non-

desingated storage.

[0209] FIG. 32B is a flowchart illustrating a method of synchronizing the recording
sequence between two data streams, according to an embodiment using a write

pointer.

[0210] STEP 100’: Providing first and second nonvolatile storages, each for

sequentially recording data.
[0211] STEP 110’: Receiving the input data.

[0212] STEP 120’: Determining if a predetermined condition is satisfied for
recording the received input data to the first storage. If satisfied, proceeding to STEP
130°, otherwise proceeding to STEP 140°.

[0213] STEP 130’: Obtaining an address of the location where a next recording will

take place in the second storage.

[0214] STEP 132’: Recording the address and the received input data to the first
storage. Proceeding to STEP 150°.

[0215] STEP 140’: Recording the received input data to the second storage.
Proceeding to STEP 150°.

[0216] STEP 150’: Proceeding to STEP 110 if there is more input data to be

processed, otherwise ending process.

[0217] The invention is particular applicable to a nonvolatile memory that is

organized into erasable blocks of memory units, each memory unit for storing a

-49 -

WO 2006/065668 PCT/US2005/044720

logical unit of data, and each block also organized into one or more pages.
Furthermore, each page is once programmable after an erase with multiple logical
units, each logical unit in a predetermined order with a given page offset. The method
essentially provides two blocks (e.g., an update block and a scratch pad block) for
storing or buffering update data of a group of logical units, and maintains
synchronization information for helping to identify whether the most recently written
version of a logical unit is located in the first or second block. With regard to FIG.
29, the embodiment shown in FIG. 31A is preferable if there are multiple streams,

since it is more convenient to have all write pointers stored in one place in the SPB.

Update-Block Write Pointer Embodiment

[0218] Accordingly to a preferred embodiment, the synchronization information in
the form of a write pointer is saved together with host data every time it is being
buffered in a scratch pad block. The write pointer is an update-block write pointer
that gives the address of the location for the next write in the update block at the time
the write pointer is saved in the scratch pad block. In particular, it is saved in a
portion of the scratch pad block not utilized for storing host data anyway. Preferably,
the update-block write pointer is included in the index SPBI/CBI stored in a partial
page of the scratch pad block. The update-block write pointer would allow
determination of whether a given logical sector buffered in the scratch pad block has

been rendered obsolete by subsequent writes to the update block.

[0219] If there is a power reset, and two versions of the logical sector in question are
found among the two blocks, then the write pointer will allow resolution of which
version is the very latest. For example, if the logical sector in the update block is
recorded after the pointed location, it will supersede the version in the partial page in
the SPB. On the other hand, if the logical sector is not found in the update block or
was recorded at an earlier location, the conclusion will then be that the version

buffered in the partial page of the scratch pad block is still valid.

[0220] FIG. 33A shows the state of the scratch pad block and the update block after
two host writes #1 and #2 according to a first sequence. The first sequence is for host

write #1 to write LS10°, and host write #2 to write LS10” and LS11°.

-50-

WO 2006/065668 PCT/US2005/044720

[0221] In host write #1, the command is to write LS10’. Since LS10’ is not at a page
boundary, it is recorded in a partial page PPO in the scratch pad block 30 pre-padded
with LS8 and LS9 and terminated with the current index SPBI/CBL;. When the
partial page PPO is written, a write pointer 40 is included in the current index
SPBI/CBI; 50, which is saved in the last slot. The write pointer 40 points to the first
empty page PO in the update block 20.

[0222] In host write #2, the command is to write LS10” and LS11. Since LS11” is at
a page end, it is written directly to the last slot (slot 4) of PO in the update block 20.
At the same time, slot 3 is written with LS10’ and slots 1 and 2 are padded with LS8
and LS9 respectively.

[0223] If the memory now suffers a power interruption with the loss of indexing
information maintained in RAM, a backward scan of the physical memory will
attempt to rebuild the indexing information. It will be seen that both the update block
and the scratch pad block (SPB) will yield their latest versions of LS10, namely,
LS10° and 1LS10”. However, since LS10” is recorded after the write pointer recorded

in PPO of the SPB, it can be concluded that it is a later version than LS10°.

[0224] FIG. 33B shows the state of the scratch pad block and the update block after
two host writes #1 and #2 according to a second sequence which is the reverse of the
first sequence shown in FIG. 33A. The reverse sequence is for host write #1 to write

LS10° and L.S11°, and host write #2 to write LS10”.

[0225] In host write #1, the command is to write LS10* and LS11°. Since LS11° is at
a page end, it is written directly to the last slot (slot 4) of PO in the update block 20.
At the same time, slot 3 is written with LS10’ and slots 1 and 2 are padded with LS8
and LS9 respectively.

[0226] In host write #2 that follows host write #1, the command is to write LS10”.
Since LS10” is not at a page boundary, it is recorded in a partial page PPO in the
scratch pad block 30 pre-padded with LS8 and LS9 and terminated with the current
index SPBI/CBI,. When the partial page PPO is written, a write pointer 40 is included
in the current index SPBI/CBI, 50, which is saved in the last slot. The write pointer
40 points to the next empty page P1 in the update block 20.

-51-

WO 2006/065668 PCT/US2005/044720

[0227] In this case, after a power reset, the logical sector LS10’ in the update block,
for example, is found to be recorded before the pointed-to location of the update block
20. It can then be concluded that the latest version of LS10° in the update block 20 is
superseded by another version LS10” that resides in the partial page of the scratch pad
block 30.

[0228] FIG. 34A illustrates a preferred data structure of the scratch pad block index
(SPBI). The SPBI information contains the following fields for each of k update
blocks. This is a special case of SPB with one valid page per Logical Group/UB.

[0229] A Logical Group Number identifies the logical group undergoing update in a
given stream. Preferably, the null value “FFFF” is stored for free update blocks, or

update blocks with no valid scratch pad data.

[0230] A Page Starting Sector is the first logical sector of the partial page written to
the scratch pad block.

[0231] A Sector Run Length is the number of valid sectors of the partial page written

to a scratch pad page.

[0232] A Valid Page Number identifies the only valid (the only valid) partial page
written in the scratch pad block. This will be the last written partial page in the
scratch pad block. Alternatively, the addressing can be implemented with sector
offset, which points to the first valid sector of the partial page for an update block.
The sector offset is counted relative to the beginning of the block. In the preferred
embodiment, only one physical page contains valid data for a given update block.

FFEF is stored for sectors not written to the Scratch Pad Block.

[0233] An Update-Block Write Pointer 40 is the sector address of the first unwritten
sector location of the corresponding Update Block when the Scratch Pad was last
written. Any sectors written to the Update block from this sector position would

supersede sectors written in the Scratch Pad Block.

[0234] FIG. 34B illustrates example values in the Scratch Pad Block Index for the
host write #1 shown in FIG. 33A. In this example, the Logical Group Number is “17,
which contains logical sectors LSO to LSN-1. It is being updated in STREAM 1 with

-52.

WO 2006/065668 PCT/US2005/044720

an accompanying update block and a scratch pad block. The partial page is PPO and it
starts with LS8 or “8” and has a run of “3” to end with LS10°. The valid partial page
number is “0”. Finally, the write pointer points to the next write location in the

update block, which has a sector offset of “0”.

[0235] It will be clear that if the updated index is only stored in the scratch pad block,
and the scratch pad block does not get written whenever data is written directly to the

update block, the index will become invalid under those circumstances.

[0236] Generally, the entire SPB index information as well as the CBI index
information is maintained in data structure in controller SRAM at all times. Valid
sectors in the SPB are accessed based on the sector-level index information. In the
preferred embodiment, the SPBI/CBI indices are stored in non-volatile memory in the
scratch pad block. In particular every time a partial page is written in the scratch pad

block (SPB), the up-to-date SPBI/CBI is stored in the last sector of the partial page.

[0237] The SPB supports up to a predetermined number (e.g., 8) of update blocks.
Partial page data in the SPB block is consolidated to the associated update block when
the host writes the last sector of the page. Data may exist in more than one partial
page in the SPB for a logical group at a given instance but only the data for the last
written partial page is valid. Similarly, multiple copies of a SPBI/CBI sector can exist
in the SPB but only the last written copy is valid. When sectors need to be written to
the SPB and the SPB is full, the block is first copied to a new SPB block and the old
SPB is erased, after which the sectors are written to the new SPB. SPB is also written
when SPBI/CBI needs to be updated because a sequential update block becomes

chaotic, or because an update block, previously containing scratch pad data, is closed.

[0238] In the preferred embodiment, the scratch pad block (SPB) write is one page at
a time. The number of pages per stream/Logical.Group/Update Block is also limited
to one, so only the latest SPBI is needed, as there is only one logical page which may
be in question regarding where the valid copy is in the UB or SPB. Similarly, if the
number of pages per UB in SPB is more than one, then the old SPBIs would need to

be analyzed as well.

-53-

WO 2006/065668 PCT/US2005/044720

[0239] The embodiment described above stores an update-block write pointer as part
of the SPBI/CBI sector in the latest partial page of the scratch pad block. Alternative
embodiments are possible to identify the valid version of a logical sector from
multiple versions that may exist among multiple blocks. Also it is possible to have
either more than one page per stream in the scratch pad block, or if we have more than

one update block or stream per logical group.

Scratch-Pad-Block Write Pointer Embodiment

[0240] According to another embodiment of the invention, synchronization
information is maintained that would allow determination of whether a given logical
sector buffered in the scratch pad block has been rendered obsolete by subsequent
writes to the update block. This is accomplished by including a scratch-pad write
pointer that gives the address of the location for the next write in the scratch pad block

at the time the synchronization information is stored in a page of the update block.

[0241] FIG. 35A and FIG. 35B shows the intermediate state of the scratch pad block
and the update block relative to the scratch-pad write pointer respectively after the
successive host writes of FIG. 33A and FIG. 33B.

[0242] FIG. 35A illustrates the state of the scratch pad block and the update block
after host write #1. In host write #1, the logical sector LS10’ belongs to slot 3 of the
page and not at a page boundary and is therefore recorded in a partial page PPO in the
scratch pad block 30. It is optionally pre-padded with LS8 and LS9 and terminated
with the current index SPBI/CBI;. If the memory has since been restarted after a
power shut down, the valid version of the logical sector LS10” will be correctly
located by the last SPBI/CBI; index. This is true since nothing has been written to the
update block 20.

[0243] FIG. 35B illustrates host write #2 that follows host write #1, where the
command is to write LS11°. Since LS11’ falls at a page boundary (slot 4), it is
recorded in the fourth slot of a filled page PO, pre-padded with LS8, LS9 and LS10.
Synchronization information is in the form of a SPB write pointer 40’ that points to
the next empty location in the SPB 30. Unlike the earlier embodiment, the SPB write
pointer 40° is not included in the SPBI/CBI index in the SPB 30. Instead, it is stored

-54 -

WO 2006/065668 PCT/US2005/044720

in a header portion of a sector in the page currently being recorded to in the update
block 20. If the memory has since been restarted after a power shutdown, the valid
version of the logical sector LS10 will be correctly located in the update block 20
since the version of LS10 in the SPB is recorded before the location pointed to by the
SPB write pointer 40°.

[0244] FIG. 36 illustrates the scratch-pad write pointer being stored in an overhead
portion of a sector being recorded to the update block. The scratch-pad write pointer
40’ is saved in at least one of the sectors in the page currently being recorded to the
update block. In the preferred embodiment, it is saved in an overhead portion of at

least one of the sectors in the page being written.

Time Stamp Embodiment

[0245] In yet another embodiment, the synchronization information can be encoded
as time stamps for data sectors written to multiple streams so that the latest version

can be correctly found.

[0246] FIG. 37 illustrates the use of time stamps to keep track of the recording
sequence between two update streams. As before, each segment of the update data
can be recorded in either a first block (STREAM 1) or a second block (STREAM 2).
The example shows that at time T1, “A” is recorded in the first block, at T2, “B” is
recorded in the second block, at T3, “C” is recorded in the first block, and T4, “A’” is

recorded in the second block.

[0247] At least one time stamp for every new data update portion is stored. Thus,
“A” with have the time stamp TS1, “B” with TS2, “C” with TS3 and “A’” with TS4.
Thus, for example, “A’” is a later version of “A” since its has a later time stamp. In
the preferred embodiment, the time stamp information is stored in an overhead

portion of at least one of the sectors in the page being written.

MULTI-STREAM UPDATING OF BLOCKS HAVING MULTI-SECTOR PAGES

[0248] According to another aspect of the invention, a method of updating a
nonvolatile memory includes using a first block (update block) for recording update

data and a second block (scratch pad block) for temporary saving some of the update

.55 -

WO 2006/065668 PCT/US2005/044720

data before recording to the update block. The nonvolatile memory is organized into
erasable blocks of memory units, each memory units for storing a logical unit of data,
and each block also organized into one or more pages, with each page capable of
storing multiple logical units having definite page offsets, and being once
programmable together after an erase. The method further includes receiving the
logical units from a host and aligning the received logical units page by page, so that
when a predetermined condition is satisfied where a received logical unit has a page
end offset, storing the received logical unit and any preceding logical units to a page
in the update block with appropriate page alignment, otherwise, temporarily storing
any remaining received logical units to a partial page in the scratch pad block. The
logical units in the scratch pad block are eventually transferred to the update block

when the predetermined condition is satisfied.

[0249] In a preferred embodiment, the update data is received and parsed page by
page for transferring to the first block (e.g., update block). Any remaining partial
page of buffered data is transferred to the second block (e.g., scratch pad block) and
will remain there until a full page of data becomes available for recording to the first
block. When the buffered data is transferred to the second block, it is recorded page
by page, albeit the recorded page is only partially filled with the received data. The
spare, normally unused, space in the partial page is used to store an index for locating

the data in the second and first blocks.

[0250] FIG. 38 is a flowchart illustrating a method of recording and indexing update
data to two memory blocks concurrently, each memory block having multiple-sector

pages, according to a general embodiment of the invention.

[0251] STEP 200: Organizing a nonvolatile memory into erasable blocks of memory
units, each memory unit for storing a logical unit of data, and each block also
organized into one or more pages, with each page containing multiple memory units

and being once programmable together after an erase.

[0252] STEP 210: Providing a first block for recording full page by full page update

versions of logical units of data.

- 56 -

WO 2006/065668 PCT/US2005/044720

[0253] STEP 220: Providing a second block for buffering update versions of logical

units of data received from a host.
[0254] STEP 232: Receiving data in logical units from a host

[0255] STEP 234: Parsing the received logical units page by page by locating any

logical units with a page-end offset;

[0256] STEP 236: Recording each of the logical units having a page-end offset to a
new page in the first block while filling the new page with latest versions of preceding
logical units, and recording any remaining received logical units in a partial page in

the second block

[0257] FIG. 39 is a flowchart illustrating a more specific implementation of the
method of FIG. 37 employing a scratch pad block and an update block.

[0258] STEP 310: Providing an update block (UB) for recording update versions of
logical units, full page by full page, each logical unit having a predetermined page

offset according to a predetermined order.

[0259] STEP 322: Providing a scratch pad block (SPB) for temporarily buffering
updates directed thereto page by page.

[0260] STEP 324: Providing a SPBI index for locating valid (latest version) data in
the SPB.

[0261] STEP 332: Receiving the data of a current write request logical unit by logical

unit.

[0262] STEP 334: If the current logical unit is offset at page end, then proceed to
STEP 340, otherwise proceed to STEP 336.

[0263] STEP 336: If the write request has more data to be received, then proceed to
STEP 332, otherwise proceed to STEP 350.

[0264] STEP 340: Recording a new page of the UB with the current logical unit at
page end and filling the rest of the page with valid (latest versions) logical units

according to the predetermined order. Proceed to STEP 336.

-57-

WO 2006/065668 PCT/US2005/044720

[0265] STEP 350: If all received data has been recorded, then proceed to STEP 180,
otherwise proceed to STEP 360.

[0266] STEP 360: If unrecorded received data does not belong to the same page as
any existing valid (latest version) data in the SPB, then proceed to STEP 370,
otherwise proceed to STEP 362.

[0267] STEP 362: Updating the SPB Index.

[0268] STEP 364: Recording into a new page of the SPB the unrecorded received
data and any existing valid data at their page offsets, terminating with the SPB index.

Proceed to STEP 380.

[0269] STEP 370: Relocating existing valid data from current page of SPB to a new
page of the UB by consolidation.

[0270] STEP 372: Updating the SPB Index.

[0271] STEP 374: Writing into a new page of the SPB the unrecorded received data
at its page offsets, terminating with the SPB index.

[0272] STEP 380: End of the Current Write Request.

[0273] The SPB supports up to a predetermined number (e.g., 8) of update blocks.
Partial page data in the SPB block is consolidated to the associated update block when
the host writes the last sector of the page. Data may exist in more than one partial
page in the SPB for a logical group at a given instance but in the preferred
embodiment only the data for the last written partial page is valid. Similarly, multiple
copies of a SPBI/CBI sector can exist in the SPB but only the last written copy is
valid. By the same consideration, only the last write pointer is needed if the number
of valid pages per UB in SPB is limited to one. When sectors need to be written to the
SPB and the SPB is full, the block is first copied to a new SPB block and the old SPB
is erased, after which the sectors are written to the new SPB. SPB is also written
when SPBI/CBI needs to be updated because a sequential update block becomes

chaotic, or because an update block, previously containing scratch pad data, is closed.

-58-

WO 2006/065668 PCT/US2005/044720

[0274] In general, as noted before, more than one SPB partial pages for each update
block can be used to store valid data. In this way, the partial page need not be

consolidated to make way for a new one if the next host writes sector outside of the

page.

[0275] The multi-stream updating scheme allows a more efficient utilization of the
update block. This is especially true for block with multi-sector pages that are once-
writable. The scheme consumes less storage and requires less padding in the update
block. More importantly, sequential order of update sectors in the update block is

maintained during a series of separate host writes of sequential logical sectors.

Multi-stream Update with Predictive Pipelined Operation

[0276] In the multi-stream updating scheme described above, every time there is a
host write, decision will have to be made as to recording the received host data either
to the update block or the scratch pad block. The data units from the host could be
monitored one by one as they are received until one with an end-page offset is
received. At that point, the predetermined condition is confirmed for writing a full

page, albeit with possible pre-padding.

[0277] In order to write to the update block, the page to be written need to be set up
for programming. This involves addressing the page and then loading the data for the

page to the data latches.

[0278] According to a preferred embodiment, a predictive pipelined operation is
implemented in which, rather than waiting until the predetermined condition for
recording to the update block is confirmed, the update block is set up to be written to
as soon as the host write command indicates the predetermined condition is
potentially satisfied by the data units intended to be written. In this way, the set up
could have a jump start while waiting for the data units to come from the host. When
the actual data units received eventually do satisfy the predetermined condition,
programming of the page in the update block can take place immediately without
have to wait for setup, thereby improving write performance. In the event that the

host write was interrupted and the actual data units received no longer satisfy the

-59.

WO 2006/065668 PCT/US2005/044720

predetermined condition, the setup for recording to the update block will be

abandoned, and instead the data units will be recorded to the scratch pad block.

[0279] FIG. 40A illustrates schematically a memory device having a bank of
read/write circuits, which provides the context in which the present invention is
implemented. The memory device includes a two-dimensional array of memory cells
400, control circuitry 410, and read/write circuits 470. The memory array 400 is
addressable by word lines via a row decoder 430 and by bit lines via a column
decoder 460. The read/write circuits 470 is implemented as a bank of sense modules
480 (not shown) and allows a group (also referred to as a “page”) of memory cells to
be read or programmed in parallel. An entire bank of p sense modules 480 operating
in parallel allows a page of p cells along a row to be read or programmed in parallel.
One example memory array may have p = 512 bytes (512x8 bits). In the preferred
embodiment, the block is a run of the entire row of cells. In another embodiment, the
block is a subset of cells in the row. For example, the subset of cells could be one
half of the entire row or one quarter of the entire row. The subset of cells could be a
run of contiguous cells or one every other cell, or one every predetermined number of
cells. Thus, in a preferred embodiment, a page is constituted from a contiguous row
of memory cells. In another embodiment, where a row of memory cells are
partitioned into multiple pages, a page multiplexer 350 is provided to multiplex the

read/write circuits 470 to the individual pages.

[0280] The control circuitry 410 cooperates with the read/write circuits 470 to
perform memory operations on the memory array 400. The control circuitry 410
includes a state machine 412, an on-chip address decoder 414 and a power control
module 416. The state machine 412 provides chip level control of memory
operations. The on-chip address decoder 414 provides an address interface between
that used by the host or a memory controller to the hardware address used by the
decoders 330 and 370. The power control module 416 controls the power and

voltages supplied to the word lines and bit lines during memory operations.

[0281] FIG. 40B illustrates a preferred arrangement of the memory device shown in
FIG. 40A. Access to the memory array 400 by the various peripheral circuits is

implemented in a symmetric fashion, on opposite sides of the array so that access

- 60 -

WO 2006/065668 PCT/US2005/044720

lines and circuitry on each side are reduced in half. Thus, the row decoder is split into
row decoders 430A and 430B and the column decoder into column decoders 460A
and 460B. In the embodiment where a row of memory cells are partitioned into
multiple blocks, the page multiplexer 450 is split into page multiplexers 450A and
450B. Similarly, the read/write circuits are split into read/write circuits 470A
connecting to bit lines from the bottom and read/write circuits 470B connecting to bit
lines from the top of the array 400. In this way, the density of the read/write modules,
and therefore that of the bank of sense modules 480, is essentially reduced by one
half. Data directed to the read/write modules located at the top of the array will be
transferred via the 1/O at the top. Similarly, data directed to the read/write modules

located at the bottom of the array will be transferred via the I/O at the bottom.

[0282] FIG. 41 illustrates in more detail the sense module shown in FIG. 40A. Each
sense module 480 essentially includes a sense amplifier 482 for sensing a conduction
state of a memory cell, a set of data laiches 484 for storing sensed data or data to be
programmed, and an I/O circuit 486 for communicating with the external. A
preferred sense amplifier is disclosed in United States Patent Publication No. 2004-
0109357-A1, the entire disclosure of which is hereby incorporated herein by

reference.

[0283] During a program operation, first, the selected word lines and bit lines are
addressed. This is followed by transferring the data to be program via an 1/O port to
the respective data latches. Then bit lines are precharged before programming
commences with the application of programming voltages to the word lines. The
steps preceding the actual application of the programming voltage can be regarded as
program setup. When the page size is substantial, so will the time needed to transfer

the program data into the data latches.

[0284] During a host write, the host first sends a host write command indicating to the
memory device the range of data units it intends to write. This is then followed by
transmission of data units in the range, data unit by data unit until the end of the range
is reached. Depending on protocol, it is possible that the transmission may be
interrupted unexpectedly and the remaining data units be sent in a new write

command.

-61 -

WO 2006/065668 PCT/US2005/044720

[0285] To improve write performance, it would be desirable to have a pipeline
operation where the program setup process can take place while data units are still
being received. However, in a multi-stream scheme where data units could be
recorded to any of the multiple storages depending on whether certain data units are
received, the addressing to record to a given storage would not be certain until those

certain data units are actually received without interruptions.

[0286] To overcome this problem, a predictive pipelining scheme is employed. If
those certain data units that cause a recording to a given storage are found within the
range indicated by the host write command, the given storage will immediately be set
up for programming. When those certain data units are actually received, the given
storage will be in a position to program the data units without the delay due to
program setup. On the other hand, if those certain data units fail to materialize due to
interruptions, the program set for the given storage will be abandoned, and instead

another storage will be selected for set up and subsequent programming.

[0287] FIG. 42 is a flow diagram illustrating a multi-stream update employing a

predictive pipelining scheme, according to a preferred embodiment.

[0288] STEP 500: Providing first and second storage for recording host data units.
For example, the first storage is an update block which is an erasable block dedicated
to storing update data, and the second storage is a scratch pad block which is another

erasable block for temporarily buffering update data in transit to the update block.

[0289] STEP 510: Receiving Host Write Command indicating the range of data units

to be written.

[0290] STEP 512: If the range of data units contains ones that satisfies a
predetermined condition for recording the data units to the first storage, proceeding to
STEP 520, otherwise proceeding to STEP 530. For example, the erasable block is
organized into pages, each page capable of storing multiple data units that are
programmable together. The data units are stored in a page in a logically sequential
order so that each data unit has a predetermined page offset. The predetermined
condition for recording to the update block is when a full page can be recorded. A

sufficient condition is when a data unit with an end-page offset exists, where a full

-62 -~

WO 2006/065668 PCT/US2005/044720

page is formed by pre-padding any preceding data unit in the page if necessary. If
the predetermined condition is not satisfied, the host data will be recorded to the

scratch pad block.

[0291] STEP 520: Setting up addresses in preparation for recording to the first
storage. For example, if the range includes a data unit with an end-page offset, a full
page will be assumed to be recorded to the update block. In which case, a new page

in the update block will be addressed for recording.

[0292] STEP 522: Loading the data latches with received data in preparation for
recording to the first storage. As soon as data units are received from the host, they

will be loaded to the data latches for programming a new page.

[0293] STEP 524: If the data units that satisfied the predetermined condition are
actually received, proceeding to STEP 540, otherwise proceeding to STEP 526. For
example, when the data unit with an end-page offset is actually received from the

host, the predicted full page can definitely be formed.

[0294] STEP 526: Aborting the setup to record to the first storage. Proceeding to
STEP 530. For example, if the expected data unit with an end-page offset never
arrives due to interruptions, the prediction for a full page to be recorded to the update
block is no longer true. In that case, the program setup for the update block will have

to be abandoned. Instead, the scratch pad block will now be set up for programming.

[0295] STEP 530: Setting up addresses in preparation for recording to the second
storage. For example, when the predetermined condition for record a full page to the
update block is not satisfied, the host data will be recorded to the scratch pad block.

In which case, a new page in the scratch pad block will be addressed for recording.

[0296] STEP 532: Loading the data latches with received data in preparation for
recording to the second storage. As soon as data units are received from the host, they

will be loaded to the data latches for programming a new page.

[0297] STEP 540: Program the data in the data latches to the addressed storage. For

example, when the predicted recording to the update block or to the scratch pad block'

-63 -

WO 2006/065668 PCT/US2005/044720

is confirmed by the data units received, the setup block can be programmed without

delay.
[0298] STEP 550: Ending Current Host Write.

[0299] Depending on memory architecture, the STEP 520 and 530 may be in
different order, such as the addresses may be selected after the loading of the data
latches in STEP 522 or STEP 532.

[0300] In another preferred embodiment, as data is being received and when there is
initially uncertainty in recording the received data whether to the first or second
storage, the received data is loaded to the data latches of the programming circuits for
both first and second storage. In this way, the data will always be immediately
available for programming either the first or second storage. In a special case, the
first and second storages share the same set of data latches. For example, when first
and second storages are in the same memory plane, they could be served by the same
set of programming circuits with the same set of sense amplifiers and data latches. In
that case, data will be loaded to a set of default data latches irrespective of whether

first or second storage is to be programmed.

[0301] In the case where the first and second storages are served by different sets of
data latches, as for example in the cases of being in different memory pages of the
same plane or in different memory planes, the data could be loaded to both sets of

data latches.

[0302] FIG. 43 is a flow diagram illustrating a multi-stream update in which the
program data is loaded before the correct destination address is sent, according to

another embodiment.
[0303] STEP 600: Providing first and second storage for recording host data units.
[0304] STEP 610: Receiving host data.

[0305] STEP 620: Loading data as it is being received to data latches used for
programming the first storage and to data latches used for programming the second

storage.

-64 -

WO 2006/065668 PCT/US2005/044720

[0306] STEP 630: Addressing the first or the second storage for recording depending

on whether or not the received data satisfies a predetermined condition.
[0307] STEP 640: Programming data to the addressed storage from its data latches.
[0308] STEP 650: End Current Host Write.

[0309] Although the invention has been described with respect to various exemplary
embodiments, it will be understood that the invention is entitled to protection within

the full scope of the appended claims.

- 65 -

WO 2006/065668 PCT/US2005/044720

IT IS CLAIMED:

1. A method of recording data units from a host comprising:

providing first and second nonvolatile storages;

receiving a host write command that indicates the data units to be written;

setting up either the first or second storage for recording depending on
whether or not a predetermined condition is satisfied based on the data units to be
written;

sending the data units to the storage being set up as the data units are received
from the host; and

recording the data units to the set up storage when the predetermined condition
is confirmed based on the data units received, otherwise setting up the second storage

if not already set up, and recording the data units received to the second storage.

2. A method as in claim 1, wherein said setting up includes addressing the

selected storage.

3. A method as in claim 1, wherein said sending the data units to the storage
includes sending the data units to a set of data latches for programming the selected

storage.

4. A method as in claim 1, further comprising:

organizing the data into data units having a predetermined order; and

organizing the first and second nonvolatile storages into pages, each page for
programming together multiple data units having predetermined page offsets; and
wherein:

said predetermined condition is when one of the data units has a page-end
offset; and

said recording the data to the first storage includes recording to a page of the

first storage said page-end data unit and any preceding data units in the page.

- 66 -

WO 2006/065668 PCT/US2005/044720

5. A method as in claim 4, wherein each of the first and second storages is for

storing a block of memory units that are erasable together.

6. A method as in claim 4, wherein:

said data from the host is update data for a group of data units;

said first storage is for storing said update data; and

said second storage is for buffering said update data before being transferred

to the first storage.

7. A method as in claim 4, further comprising:
organizing the data into data units having a predetermined order; and
organizing the first and second nonvolatile storages into pages, each page for

programming together multiple data units having predetermined page offsets.

8. A method as in claim 7, wherein each page is once-programmable after an

crase.

9. A method as in claim 7, wherein:
said recording data to the second storage includes recording to a page thereof

at least one index of the data stored in the second storage.

10. A method as in claim 9, wherein said at least one index of the data stored

in the second storage is recorded to a location of said page having a page-end offset.

11. A method as in claim 7, wherein:
said recording data to the second storage includes recording to a page thereof

at least one index of the data stored in the first and second storages.

12. A method as in claim 11, wherein said at least one index of the data stored
in the first and second storages is recorded to a location of said page having a page-

end offset.

13. A method as in claim 7, wherein:

-67 -

WO 2006/065668 PCT/US2005/044720

said recording data to the second storage includes recording to a page thereof a

pointer pointing to the next recording location of the first storage.

14. A method as in claim 13, wherein said pointer is recorded to a location of a

page having said page-end offset.

15. A method as in any one of claims 1-14, wherein the first and second
nonvolatile storages are constituted from memory cells that individually store one bit

of data.

16. A method as in any one of claims 1-14, wherein said first and second
nonvolatile storages are constituted from memory cells that individually store more

than one bit of data.

17. A nonvolatile memory comprising:

a memory organized into a plurality of blocks, each block being a plurality of
memory units that are erasable together, each memory unit for storing a logical unit of
data;

a controller for controlling operations of said blocks;

first and second blocks, each for recording data from a host;

a buffer for receiving the data from the host; and

said controller setting up either the first or second storage for recording
depending on whether or not a predetermined condition is satisfied based on the data
units to be written; and

sending the data units to the storage being set up as the data units are received
from the host; and

recording the data units to the set up storage when the predetermined condition
is corifirmed based on the data units received, otherwise setting up the second storage

if not already set up, and recording the data units received to the second storage.

18. A nonvolatile memory as in claim 17, wherein said nonvolatile memory is

in the form of a removable memory card.

-68 -

WO 2006/065668 PCT/US2005/044720

19. A nonvolatile memory as in claim 17, wherein:

said data from the host is update data for a group of data units;

said first block is for storing said update data; and

said second block is for buffering said update data before being transferred to
the first block.

20. A nonvolatile memory as in claim 17, wherein:
the data is organized into data units having a predetermined order; and
said first and second blocks are organized into pages, each page for

programming together multiple data units having predetermined page offsets.

21. A nonvolatile memory as in claim 20, wherein each page is once-

programmable after an erase.

22. A nonvolatile memory as in claim 17, wherein:

said predetermined condition is when one of the received data units has a
page-end offset; and

said controller controlling recording the data to said first block includes
recording to a page of said first block said page-end data unit and any preceding data

units in the page.

23. A nonvolatile memory as in claim 17, wherein:
said controller controlling recording the data to said second storage includes

recording to a page thereof at least one index of the data stored in the second storage.

24. A nonvolatile memory as in claim 23, wherein said at least one index of
the data stored in the second storage is recorded to a location of said page having a

page-end offset.

25. A nonvolatile memory as in claim 17, wherein:
said controller controlling recording the data to said second storage includes
recording to a page thereof at least one index of the data stored in the first and second

storages.

-69 -

WO 2006/065668 PCT/US2005/044720

26. A nonvolatile memory as in claim 25, wherein said at least one index of
the data stored in the first and second storages is recorded to a location of said page

having a page-end offset.

27. A nonvolatile memory as in claim 17, wherein:
said controller controlling recording the data to said second storage includes
recording to a page thereof a pointer pointing to the next recording location of the first

storage.

28. A nonvolatile memory as in claim 27, wherein said pointer is recorded to a

location of a page having said page-end offset.

29. A nonvolatile memory comprising:

a memory organized into a plurality of blocks, each block being a plurality of
memory units that are erasable together, each memory unit for storing a logical unit of
data;

a controller for controlling operations of said blocks;

first and second blocks, each for sequentially recording data from a host;

a buffer for receiving the data from the host; and

means for controlling either recording of the data to said first block when a
predetermined condition is satisfied, or recording of the data to said second block

when the predetermined condition is not satisfied.

30. A nonvolatile memory as in any one of claims 17-29, wherein the first and
second nonvolatile storages are constituted from memory cells that individually store

one bit of data.

31. A nonvolatile memory as in any one of claims 17-29, wherein said first
and second nonvolatile storages are constituted from memory cells that individually

store more than one bit of data.

32. A method of recording data from a host comprising:

-70 -

WO 2006/065668 PCT/US2005/044720

providing first and second nonvolatile storages;

receiving the data from the host;

loading the data as it is being received to a set of data latches for programming
the first storage and to a set of data latches for programming the second storage;

addressing either the first or second storage depending on whether or not a
predetermined condition is satisfied based on the data received; and

recording the data to the addressed storage from its set of data latches.

33. A method as in claim 32, wherein said set of data latches for programming

the first storage is identical to that for programming the second storage.

34. A method as in claim 32, further comprising:

organizing the data into data units having a predetermined order; and

organizing the first and second nonvolatile storages into pages, each page for
programming together multiple data units having predetermined page offsets; and
wherein:

said predetermined condition is when one of the data units has a page-end
offset; and

said recording the data to the first storage includes recording to a page of the

first storage said page-end data unit and any preceding data units in the page.

35. A method as in claim 34, wherein each of the first and second storages is

for storing a block of memory units that are erasable together.

36. A method as in claim 34, wherein:

said data from the host is update data for a group of data units;

said first storage is for storing said update data; and

said second storage is for buffering said update data before being transferred

to the first storage.

37. A method as in claim 34, further comprising:

organizing the data into data units having a predetermined order; and

-71 -

WO 2006/065668 PCT/US2005/044720

organizing the first and second nonvolatile storages into pages, each page for

programming together multiple data units having predetermined page offsets.

38. A method as in claim 37, wherein each page is once-programmable after

an erase.

39. A method as in claim 37, wherein:
said recording data to the second storage includes recording to a page thereof

at least one index of the data stored in the second storage.

40. A method as in claim 39, wherein said at least one index of the data stored

in the second storage is recorded to a location of said page having a page-end offset.

41. A method as in claim 37, wherein:
said recording data to the second storage includes recording to a page thereof

at least one index of the data stored in the first and second storages.

42. A method as in claim 41, wherein said at least one index of the data stored
in the first and second storages is recorded to a location of said page having a page-

end offset.

43. A method as in claim 37, wherein:
said recording data to the second storage includes recording to a page thereof a

pointer pointing to the next recording location of the first storage.

44. A method as in claim 43, wherein said pointer is recorded to a location of a

page having said page-end offset.
45. A method as in any one of claims 32-44, wherein the first and second

nonvolatile storages are constituted from memory cells that individually store one bit

of data.

-7

WO 2006/065668 PCT/US2005/044720

46. A method as in any one of claims 32-44, wherein said first and second
nonvolatile storages are constituted from memory cells that individually store more

than one bit of data.

47. A nonvolatile memory comprising:

a memory organized into a plurality of blocks, each block being a plurality of
memory units that are erasable together, each memory unit for storing a logical unit of
data;

a controller for controlling operations of said blocks;

first and second blocks, each for recording data from a host;

a buffer for receiving the data from the host; and

said controller controlling loading the data as it is being received to a set of
data latches for programming the first storage and to a set of data latches for
programming the second storage;

addressing either the first or second storage depending on whether or not a
predetermined condition is satisfied based on the data received; and

programming the data to the addressed storage from its set of data latches.

48. A nonvolatile memory as in claim 46, wherein said nonvolatile memory is

in the form of a removable memory card.

49. A nonvolatile memory as in claim 46, wherein:

said data from the host is update data for a group of data units;

said first block is for storing said update data; and

said second block is for buffering said update data before being transferred to
the first block.

50. A nonvolatile memory as in claim 46, wherein:
the data is organized into data units having a predetermined order; and
said first and second blocks are organized into pages, each page for

programming together multiple data units having predetermined page offsets.

-73 -

WO 2006/065668 PCT/US2005/044720

51. A nonvolatile memory as in claim 49, wherein each page is once-

programmable after an erase.

52. A nonvolatile memory as in claim 46, wherein:

said predetermined condition is when one of the received data units has a
page-end offset; and

said controller controlling recording the data to said first block includes
recording to a page of said first block said page-end data unit and any preceding data

units in the page.

53. A nonvolatile memory as in claim 46, wherein:
said controller controlling recording the data to said second storage includes

recording to a page thereof at least one index of the data stored in the second storage.

54. A nonvolatile memory as in claim 52, wherein said at least one index of
the data stored in the second storage is recorded to a location of said page having a

page-end offset.

55. A nonvolatile memory as in claim 46, wherein:
said controller controlling recording the data to said second storage includes
recording to a page thereof at least one index of the data stored in the first and second

storages.

56. A nonvolatile memory as in claim 54, wherein said at least one index of
the data stored in the first and second storages is recorded to a location of said page

having a page-end offset.

57. A nonvolatile memory as in claim 46, wherein:
said controller controlling recording the data to said second storage includes
recording to a page thereof a pointer pointing to the next recording location of the first

storage.

-74 -

WO 2006/065668 PCT/US2005/044720

58. A nonvolatile memory as in claim 56, wherein said pointer is recorded to a

location of a page having said page-end offset.

59. A nonvolatile memory comprising:

a memory organized into a plurality of blocks, each block being a plurality of
memory units that are erasable together, each memory unit for storing a logical unit of
data;

first and second blocks, each for sequentially recording data from a host;

a buffer for receiving the data from the host; and

means for loading the data as it is being received to a set of data latches for
programming the first storage and to a set of data latches for programming the second
storage;

means for addressing either the first or second storage depending on whether
or not a predetermined condition is satisfied based on the data received; and

means for recording the data to the addressed storage from its set of data

latches.

60. A nonvolatile memory as in any one of claims 46-59, wherein the first and
second nonvolatile storages are constituted from memory cells that individually store

one bit of data.
61. A nonvolatile memory as in any one of claims 46-59, wherein said first

and second nonvolatile storages are constituted from memory cells that individually

store more than one bit of data.

-75 -

PCT/US2005/044720

WO 2006/065668

1/43

£l -
PN vL—DId
!
AYHHY ! et
adonan [vawy [| WO
HSY I " ! ozl e 3000 Ngz
_ _
! _
e e e - —— o ———— o — —] |
P *
O’ AVHHY AHOWIN N e ——
¢~ —+—] FovIuIINI JOV4HAINI
I Ave 1SOH
lilmulrllllulilll.ﬁ_ | 12— 62—
_ _ ‘
| l
AYHHY 1 SLINOHIO HOSSIO0Hd
I e I Fa i i OO [Nz
HSV T i !
—J Z1l —/ | b e e e
gl _
| 6/ HITIOHLNOOD AHOWAN

Ol AvhddY AHOWZN

WO 2006/065668 PCT/US2005/044720

2/43
+

] STSEM Micro- |37
2Ny PROCESSOR
A J
35
- 31’
MEMORY
$ = = INTERFACE
LOGIC
, Y
39 OTHER | 43
N GeF CIRCUITS AND P~
| SUBSYSTEMS
ERASEBLOCKO } oo
ERASE BLOCK 1 ,
ERASE BLOCK 2 E%\SE | ___PAGEO _ .
ERASE BLOCK 3 sgd |..__PAGET __|
ERASE BLOCK 4 | PAGEZ
ERASE BLOCK 5 PAGE 3
EraseBlocks | 000 el
51~ 53~ 55~ 57~
: ~c+ DATABLOCK ! ‘
HOST USER DATA SECTOR DATAECC AR AMETERS | O-H- ECC
A\ J
-
OVERHEAD ("O.H.")
FIG._3 DATA

l

PCT/US2005/044720

WO 2006/065668

3/43

.,IT

L I T R S P e

R mm e e Em e w e Mm e e em e e e
W R e mm EE e ke e ww e e e mm mm e

VAN

> 1310078
3svH3

>0 M007d
3Svy3d

£ ANV 1d

¢ ANVd

L INVId

0 IANVId

PCT/US2005/044720

WO 2006/065668

4/43

¢ 0014

9 "9Id

e N

720014

eM001d

L0014

X009

¢Ao01d

€ ANVYd

¢ INVld

X004

L ANVId

0 X004

A

0 ANV1d

Y

»0014g
v1iva
VOID0T

19—

WO 2006/065668 PCT/US2005/044720

5/43
+

<

nw

»n
/
&

i ek ﬁ ﬁ
. - 71
sLocr i - —H—H
ADDRESSES S%NE[?T . 'J rj 'J 'J
'LIVNVSK‘/\IIDL) : L| '-, S 72 '-| '-|
WL14
DRIVERS 4 — o [:H 1
' 74
WL15 S
- —
84 Vet ' [:
e - ——
BLO rBU IJBL(N1) BLN
FLDRESS BIT LINE DRIVERS
- . DATA _ AND READ CIRCUITS
\-67

FIG._7

WO 2006/065668

_|,

6/43

Active Block 800

PCT/US2005/044720

Sector 0 . Sector 1 Sector 2 Sector 3
X Vet e il Peseo
X\ V7 Frased 7 Frased /7 Erased /7] Page t
X+2 o Erased s pe Erased 7a ks Erased 7<) Page 2
X+3 Y Erased) f‘ Erased 77 Erased /7] Page 3
V7 Erased” 217 Erased? /777 Erased” 7/ ErasedZ /] Page 4
Ui Erased 7 Erased 7 /77 Erased /377 Erased///] Page 5
FIG._8
Active Block 900
Sector 0 Sector 1 Sector 2 Sector 3
X et e 577 P
X X+1 %}Erg@é@’%/ %” Erased //// Page 1
X X+1 X+2 e E‘}aé‘é"d’/ %2/] Page 2
X+1 X+2 X+3 Page 3
e Eragéa/ N Erased) ‘Efég,‘léa}/f” e Erased/] Page 4
4”%&6&%4«*%/ Eraéedf A A Erased”/Z) Page 5
FIG.__9
Active Block 1000 (After First Garbage Collection)
Sector 0 Sector 1 Sector 2 Sector 3
X X+1 X+2 X+3 Page 0
X+4 P Erasedi syt Erased i i Erased /44 Page 1
Xt5 U erasad A Erased i A A rased/”| Page 2
X6 et N eraed) Cased /) Paged
X+7 A Erasedas e Erased i duis Erased f) Page 4
“////// Erased#e b, Erasedsss Mes E é‘r"ésed/f/z,{ﬁ}’iz’r‘“é’s’éé 77| Pages

FIG._10A

WO 2006/065668

+

7/43

Active Block 1010 (After Second Garbage collection)

PCT/US2005/044720

Sector 0 Sector 1 Sector2 - Sector 3
X X+1 X+2 X+3 Page 0
X+4 X+5 X+6 X+7 Page 1
e x}’ /A:«'Vyy AT *’e“ﬁ/ji‘/ﬂ/ﬁ*’ .
E/%}e%/ gg‘{ %%i/ / /{5% ;:‘?"' Arasecﬂl Page 2
" f 3
) .,/Jf;!;raggg /,ﬁ' Er gée % Page
Py '. h V # .‘ " / E d P e 4
x/ % / .. f:&/fﬁ///,& _- ,// a9
//&/6’7 / émffd Pace &
/ff'?/g-? Zrty fﬁ‘f x&/ffﬁ?ﬁ?’f 75 age
Active Block 1010 (After Receipt of Additional Sectors)
Sector 0 Sector 1 Sector 2 Sector 3
X X+1 X42 X+3 Page 0
X+4 X+5 X+6 X+7 Page 1
S e e s
X+8 N Page 2
xy T // : Egsggf/; g"%@/%%d% 9
X+9 ~ o ‘ v f’ Page 3
f
X+10 rased ; Erased f'ﬁ / Page 4
j’éﬁ%ﬁ;/ /}/ 275 ,f"/ / Do ﬁ;-; g
: s _
X+11 77 Erase / Erase ‘ Erase
‘ 2 7 w""/f//ff//;f’f ,.»X/@Wx:«ifé% Page 5

FIG._10C

WO 2006/065668 PCT/US2005/044720

8/43
Active Block 1110
Sector-0 Sector 1 Sector 2 Sector 3
X X X+2 X+3 Page 0
X+4 X+5 X+6 X+7 Page 1

7 7 Erased 0 Erased S vis) Erased 4 j%_f}%’g}e‘ia‘"};’/ Page 2

e] e
D e e e) e

i i A e Pages

e e o

Scratch Pad Block 1120

Sector 0 Sector 1 Sector 2 Sector 3
X i) 777 eeidll]]] Paseo
X X1 et erased)| Page 1

X X+1 Xi2 ZA é?ééé”d}/j Page 2

x4 P Ermsedl 7 Erased /17 //{Zj%éW Page 3
X+4 - X+5 - .fg, Erasec’i;fy% ‘ Erasedff Page 4
X+4 X+5 X+6 /{f Erased”7Z| Page 5
N\ J

Y

FIG._11A

WO 2006/065668 PCT/US2005/044720
9/43

Active Block 1130

Sector 0 Sectof 1 Sector 2 Sector 3
X ‘ X+1 X+2 X+3 . Metapage 0
X+4 X+5 a X+6 X+7 Metapage 1

e e e A Eaeeii) wetapage 2
e e
[Erased 7 Erased 7 rased” /77 Erased /7] Metapage 4
4/” Erased 7/ 7 Erased /7 Erased’ /2 Erased//77] Metapage 5

"Plane 0 Plane 1 Plane 2 Plane 3

Scratch Pad Block 1140
Sector 0 Sector1 Sector 2 Sector 3
X VEeetr 7 eesed, 77 Erased /7] Metapage
X X+1 //{/ffg’(’a?&g?/ ek éré&e% Metapage 1
- X X+1 OX+2 ///;:;‘r‘égggy/ Metapage 2
i R et/ Metavages

X+4 X+5 (,{f;}ér)g@fed {7 /W Eréééaf/’ Metapage 4
X+4 X+5 X+6 F// /Erased777] Metapage 5
Plane 0 Plane 1 Plane 2 Plane 3
N _

-
FIG._11B

WO 2006/065668 PCT/US2005/044720

10/43
+

Active Block 1252

S'ectof 0 Sector 1 Sector 2 Sector 3
X4 X+t b (X+2)1 (X+3)o Page 0
ESssy sy e
Yy //fﬁggfgfy*y (el)| reoe

I-r'f/‘l'-l"ﬁ" //-"-F/ Ol .r*/'l-i".n"/‘

f//e"f P
g ,,,/ Sl / Page 3
7 féi‘?%/ %;;?ﬁff/ﬂ s Page 4
r Page
Eiii?,fV r{, %,i%?f;«f’ ’%E%’? Page ¢
, Exf’” ff‘% 522%33% ' Efsfsf/ff/ Page @
/ ?’,’,réﬁ,é,}’,’/ e Page 9

L EHSS S SIS S *’;rf s‘ //J"f// K SIS {;.-!'“
- f;sfzﬁ - . :5?2%/
G e) e

J’Q,Jt yo

Scratch Pad Block 1250
Sector 0 Sector 1 Sector 2 Sector 3

2/ 5
X4 % ES@?‘?; f / Erased/ f'ﬂ Page 1

l‘ LA .4'“
X 010 %ﬁé}ége’: /f?;‘é‘r’é’s’éf’% Y
X i)y el ke /] Peges
X4 1), (X+2)o /,f’ ”r’éég’/”/{/ Page 4
A FA ST ILE
X4 X+ (X+2); /;éf[;ﬁggd 7] Pages

e‘f e /.rf// .J/’,‘-" LTS / o //.1" L /
Vi A% Cased /77 el //Er,%ﬁ%ﬁi/f" Page 6

f’.p" /}’x-

Vi f«/m,%/:z
U

" fé;"//@t"/ r",‘fa’-‘ E’f!//a?// /;{‘//Efft“/fd/ f/f@f/// P 9
,.w/r??%f / _Erased /77 Erased /7 7 Frased7//] Page
f.-"x‘//"'x‘" f}’!//’r f//f.i‘ .-\'/ _if//..".t’/f

7. Erased / Erase /f Erased /;:z “Erase /
ff*'ff::;/;g;/ //giff ’f;‘fﬁﬁ; ﬁﬁﬁ;‘/
7 Erased 0 Erased 4 Erased? 7 Erased 7

Yo
FIG._12A

WO 2006/065668 PCT/US2005/044720

11/43
Active Block 1252
. Sector 0 Sector 1 Sector 2 Sector 3
Xi (X+1)4 (X+2)4 (X+3) Page 0

Ui ffEﬁ??%/f] et
%%2%9%"’ a7 4%% - Pages
,/ 7 s el el eased /| Paged
e i) ,%f;gg;eff/" page 5
//.-"'}“’/f A FEEL J" FLELLFEES L /f}’“//'d"f
f?é?,?»?f;/ o //I’fgﬁ?%?;/?//?%;a%a//" Pago ©
é”'f;;ér,as,eg?//’ 0 e
sy sy /f/) e
; SRS NETE, .." /-/.i"e“
55 W"E’%VE 7)] e
%,5;99;99/ s d E?%:?f”# Lased)

%/%//mwgﬁ
Scratch Pad Block 1250

e el o

e f SERIYRIIIAL

Sector 0 Sector 1 Sector 2 Sector 3
/A 75
/sy yssy) e

X4 OX+1)g ’é’r‘éfséd’/f A E ";gg‘aa/f// Page 2

4"“’/”/?4"/ /a“f“'f/i’#"

)]| s

X4 OX+1)4 (X+2)g %«}Eﬁ?ﬁ 7] Page4
X4 OX+1)4 (2 £ Erased//] Page5
X4 (1)1 (X+2); (X+3)q Page 6
X4 OX+1)4 (X+2); X+3); | Page7

iy Eced 7 Rresed] i kel 7] Pages
7577) e)
J'fffffffﬁ g @@;@#”’/%gggﬁ
Vel 5 sl 7 Erased 77 Eresed /7] Page -1
\ _J

~
FIG._12B

WO 2006/065668

_*,

12/43

Original Block 1254
Sector 0 Sector 1 Sector 2

PCT/US2005/044720

Sector 3

| X X+1)o (X+2)o . (x+3)o;j Page 0
V200 22 (KB 2 (KH8) 22 (X T)o 7] Page 1
(X+8)o (X+9)o (X+10)o. X+11)o Page 2
(X+12) (X+13)o (X+14)o (X+15)q Page 3
Déta from host
Scratch Pad Block 1250
[< \ Sector 0 Sector 1 Sector 2 Sector 3
X, 7 058 7056 77 X1 7) Page 0
2 (X)o7 (X 5) 257 (X+6) 2 (X T)o 2] Page 1
7 7 7, ’ Page 2
Page 3
Active Block 1252
Sector 0 Sector 1 Sector 2 Sector 3
KR, KD 7 Ko X 7] Page 0
Page 1
Page 2
Page 3
(. J
FIG._12¢C
Number |
of Cells
A B C D
v »-
Upper Page 1 1 0 0 Ve
Lower Page 1 0 1

0
FIG._13

WO 2006/065668 PCT/US2005/044720

13/43
+
Scratch Pad Block 1460

Sector 0 Sector 1 Sector 2 Sector 3
- X X1 X+2 X+3 | Page 0 - Lower
X+8 X+9 X+10 X+11 Page 0 - Upper
- X+16 X+17 , X+18 X+19 Page 1 - Lower
X+24 X+25 X+26 X+27 Page 1-Upper
e e e e oo o
| L’E’%’éé‘i’?) %E’Lr"éf%ie’;%f Jeed? //’Z’iiéiﬁs 1 Pese2-Upper
Vi 7 /éuﬁy //;fd% Page 3 - Lower
fé’”%”‘ Jrased/ 7 i Erased?/ 7/ Brased/ | Page 3 - Upper

Active Block 1462

Sector 0- Sector 1 Sector 2 Sector 3
X X+1 X+2 X+3 Page O - Lower
X+4 X+5 X+6 X+7 Page 0 - Upper
X+8 X+9 X+10 X+11 Page 1 - Lower
X+12 X+13 X+14 X+15 Page 1 - Upper
X+16 X+17 X+18 X+19 Page 2 - Lower
X+20 X+21 X+22 X+23 Page 2 - Upper
X+24 X+25 X+26 X+27 Page 3 - Lower
X+28 . X+29 X+30 X+31 Page 3 - Upper
\' J
~ :

FIG._14

-+

Original Block 1570
Sector 0 Sector 1 Sector 2 Sector 3
u 0 1 T 2 : 3 Page 0
4 5 6 7 Page 1
i*4-4 | (43 (*4y2 1 (i*4)-1 Page i-1
1 (i*4) (41 Ep(id)F2 /;’/,{{@i@)gsxjg Page i
o O A XY A (.:4):=7 17 Page i+1
W ez‘w//;f)
N 0747
»| Vs f_’ f Wﬁ%%%/f
! %m% f AR Pagem |
New Block 1572
Sector 0 Sector 1 Sector 2 Sector 3
(*4) P (4 r/(i*?i)+2” Tt (F4)+3 % Page 0
AR /5,//# W7 Z 7 (i*4)+6 %f/f(uyy)qf) Page 1
i
.
W//W/%/W /x/%%f%
v4 N«t{// N sff}f//,% N W NAZZ] Pageit
3 Page i
4 5 6 7 Page i+1
(i*4y4 § (*4)3 (i*4)-2 (i*4)-1 Page n-1
(i*4) (i*4)+1
(. J

End of File 1

PCT/US2005/044720

—
FIG._15

WO 2006/065668 PCT/US2005/044720

15/43
+

Scratch Pad Block 1674

"'«

Sector 0 Sector 1 Sector 2 Sector 3 :
8250 Eresed Erased Page 0
: Erased Erased Erased Erased Page 1

Erased Erased Erased Erased Page n-1

New Block 1676

Sector 0 Sector 1 Sector 2 Sector 3
455'(-4)+4¢§iﬁszi§’éﬁi$f?fw/<;kif23¥§;;§/f‘-;;jff:’.J{ Page 0
ésff /%’%{/X/% / / 7

\.//f/w%///;w%/ﬁww

Page n-i+1

7 6 5. - 4 Page n-i+2

(i*4)-4 (i*4)-3 (i*4)-2 (i*4)-1 Page n-2
(i*4) a1 7777 s 7] Page n-d

\ J

,
FIG._16

+

WO 2006/065668

Scratch Pad Block 1780

16/43

PCT/US2005/044720

% Y1 Y42 Page 0
X+1 z Z+1 Page 1
X+1 X+2 Page 2
Page 3
X X+1 X+2 X+3
Y Y+1 Y+2 Y+3
J
, Y
Scratch Pad BIoc;k 1890

Page 0

%, Yo age
X Y Page 1
X4 (X+1)o Y, Page 2
X4 (X+1)1 Y3 Page 3
X1 (X+1)4 (X+2)o Y, Page 4

FIG._18

WO 2006/065668 PCT/US2005/044720

+

17/43

FIG._21

2110 Scratch Pad Block 2100
(Sector 0 Sector 1 Sector 2 Sector 3.
ﬁéﬁiqg:ééfié} Erased Erased Erased Page 0
Erased Erased Erased Erased Page 1
Erased Erased Erased Erased Page 2
Erased Erased ‘Erased Erased Page 3
Erased Erased Erased Erased Page 4
Erased Erased . Erased Erased Page 5
FIG._19
2110 Scratch Pad Block2100
Sector 0 Sector 1 Sector 2 Sector 3
Cﬁé%ﬁéﬁ:éﬁgﬁ Grou"g)z"l’2 OSec1 GFOLE)ZII?_ 1SecZ f;)t‘de,‘;_(zggi’ Page 0
Erased Erased Erased Erased Page 1
Erased Erased Erased Erased Page 2
Erased Erased Erased Erased Page 3
Erased Erased Erased Erased Page 4
Erased Erased Erased Erased ‘Page 5
FIG._20
Scratch Pad Block2100
Sector 0 Sector 1 Sector2 | Sector 3

E?I%rj(ﬁiq/gggtﬁ; Group 1 Sec 1§ Group 1 Sec 2 gf%eﬁ(zggc;%’f; Page 0
Grou8324 gem Groug 3.24;39,(: 2 //f/‘l’%%ggzt”o/r; Erased Page 1
Erased Erased Erased Erased Page 2
Erased Erased Erased Erased Page 3
Erased Erased Erased Erased Page 4
Erased Erased Erased Erased Page &5

WO 2006/065668 PCT/US2005/044720
18/43

+

Scratch Pad Block 2100

Sector 0 A Sector 1 Sector 2 Sector 3

e e e /fﬁ//ﬁ//fx//f ‘
i, Marking Sectorz Group 1 Sec 1 Group 1Sec 2 ,f’ ndex Sectors . Page0
L T T IR A It

Group 2 Sec 1 Group.2 Sec 2 }g&gégs%%%é;ff Gr oug 436(?60 1 1| Page1
Grou2p4% 1Sec; 2 Groug 36 ;_Sec 3 ﬂgﬂeﬁf_}%ﬁ} / Erased Page 2
Erased Erased Erased Erased | Pages
Erased Erased Erased Erased Page 4
Erased ‘ Erased Erased Erased Page 5

FiG._22

Scratch Pad Block2100
Sector 0 Sector 1 Sector 2 Sector 3

- |
Markln Sectof Group 1 Sec 1 Group 1 Sec 2 / Index Sector: Page 0

by %w s P roup L{//ﬂ;f/w/f«fé g
Group 2 Sec 1 | Group 2 Sec 2 %ﬁéfei 'Sé/égr'f‘? Group 3Sec 1 | Page1
/,»’ff// TS

Vﬁf//ﬂ//’i’//?ﬁ/fflndex Sectors,

Grqup 3Sec2 i Group 3Sec3 ﬁ'@@}‘ﬁﬁﬁ@ﬁ@f%gsmy ’,;,5 Page 2
Erased Erased 4 Erased Erased Page 3
Erased Erased Erased Erased Page 4
Erased Erased " Erased " Erased Page 5

FIG._23

WO 2006/065668 . PCT/US2005/044720
19/43

_—10 __ _STREAM1_-20

Original | 1 Host Write | | Host Write | | Update Block

Block |, #1 !} # | (Non- | o
! | : Sequential) &
| P! I Q.
| |
| : Tt 0
: : .
: 2
: 3

4

Key: /05506867 | Erased

SINGLE-SECTOR PAGE UPDATE EXAMPLE

FIG. 24 (PRIOR ART)

WO 2006/065668 PCT/US2005/044720

20/43
10 R STREAM 1_—20
8| Original |1 HostWrite | 1 Host Write | | Update Block | &
2| Block { #1 . | (Non- g
|2 : :: 1 | Sequential) | ¢
] | [| o -
| | |
| ¥ W72
’ (- PP |°
b e e e e — — | | : g
— ' v ‘ . <
= x|
1 | i H;/%,é’% 1
________ ! | [w A 7
2
3

Key: Wj% _ Erased

> Padding

WRITE-ONCE, MULTIPLE-SECTOR PAGE UPDATE EXAMPLE

FIG. 25

WO 2006/065668 PCT/US2005/044720
21/43

Providing first and second nonvolatile storages, each for recording ~— 80
data sequentially

Maintaining at least one index for data in first and second

. —— 81
nonvolatile storages
\ 4
> Receiving input data —— 82
Y
Determining if a first predetermined condition is satisfied for Y
recording the received input data to the first storage s
TRUE FALSE
Y A 4
85 ' i
Recording the received s

Recording the received input |/ input data together with the
data to the first storage at least one index to the
second storage

Y Y

'End, unless there are more input data to be received

—— 88

Updating Using Two Streams With Index Stored In One Stream

FIG. 26

r

WO 2006/065668

_—10

Original
Block

\ metapage

rHost Write

#1

!
|
|
!
|
|
!
!
|

22/43

PCT/US2005/044720
20

\STREAMO "\ STREAM 1
Update Block [Update Block | &
(Scratch Pad) é % (Non- %
+ % | Sequential) | €
b7\
| b,

% 27

SPBI/CBI3

Key:

Erased

=> Padding

WRITE-ONCE, MULTIPLE-SECTOR PAGE UPDATE
WITH SPBI INDEX EXAMPLE

FIG. 27A

\ metapage

WO 2006/065668 PCT/US2005/044720
23/43
30 20
10 “\STREAMO "\ STREAM 1
r‘ ——————— T
Original | 1 Host Write 1 Update Block |5 | Update Block | &
Block : #1 ! (Scratch'Pad) ‘é% (Non- %
; ; £ % | Sequential) | €
I i f Ty TR —
| | 2 1n L B
| | A
bttty | () 0
s e o
£d
o .
L
apgdet] |]
2 2
SPBICBI, | B
3 3

Key:

Erased

‘®> Padding

WRITE-ONCE, MULTIPLE-SECTOR PAGE
SEQUENTIAL UPDATE

WITH SPBI INDEX EXAMPLE

FIG. 27B

WO 2006/065668 PCT/US2005/044720
24/43

Organizing a nonvolatile memory into erasable blocks of memory

units, each memory unit for storing a logical unit of data, and each

block also organized into one or more pages, with the memory [~—

units in each page having predetermined page offsets and being
once programmable together after an erase

90

Y

Providing a block as an update block for recording update
versions. of logical units of data

Y

Receiving logical units of data from a host — 94

A 4

Maintaining an index for data in the update block L 96

Recording to the update block, page by page, with the received
data aligned in the page according to their page offsets, and when
the page to be recorded has a portion unoccupied by data, also
recording the index to the portion unoccupied by data.

Updating Using One Stream With Index Stored In Partial Page

FIG. 28

WO 2006/065668 PCT/US2005/044720
25/43

30 STREAMO

N Scratch Pad Block
pm———————
| Host | ,
| Writes | Partial Page for St;e_am 1
|
| ¢ q Partial Page for Stream 2
| | 1
|
] i)
S '
b Partial Page for Stream k._l
20-1 STREAM1 v
\; Update Block 1
20-2 STREAM 2 v
N Update Block 2
|
| |
! |
! |
I
20-k STREAM k v
N Update Block k

y

MULTIPLE-SECTOR PAGE UPDATE USING SCRATCH PAD

FIG. 29

WO 2006/065668

Write A

Write B

Write C

Write A’

26/43

STREAM1

22

FIG. 30

PCT/US2005/044720

(PRIOR ART)

WO 2006/065668

Write A

Wirite B

Write C

Write A’

PCT/US2005/044720
27/43
P??gt--------
1 T40-A
32 oo

40-A

FIG. 31A

| _soc
”../.—-..--..-.)..

WO 2006/065668

Write A

A 4

‘\NMeB

A 4

Write C

A\ 4

-\/VriteA;A

28/43

STREAMO

32

40’

E;E(_-________

40’

40’

i <..--...-.-

FIG. 31B

PCT/US2005/044720

STREAM1

22

WO 2006/065668 PCT/US2005/044720

29/43

Providing first and second nonvolatile storages, each for recording {~ 700
data units sequentially

Designating either the first or second storage as the storage for
priority information, the priority information being used to
determine whether a first data unit in the first storage was

recorded before or after a second data unit in the second storage

102

Y

— 110

Receiving input data

A 4

Y

Determining if a predetermined condition is satisfied for recording (~— 120

the recieved input data to the first storage

TRUE FALSE

130 140

Y / Y /

Recording the received input Recording the received input
data to the first storage, and data to the second storage,

the recording including the
priority information if the first
storage is the designated
storage

Y

and the recording including

the priority information if the
seond storage is the
designated storage

Y

End, unless there are more input data to be received?

150

Synchronizing Two Update Streams

FIG. 32A

WO 2006/065668 PCT/US2005/044720
30/43

Providing first and second nonvolatile storages, each for recording ~— 700’
data units sequentially

Y

Receiving input data 110"

A 4

Y

Determining if a first predetermined condition is satisfied for |~ 720’
recording the received input data to the first storage

TRUE FALSE
\ 4
Obtaining an address of the
location where a next — 130'
recording will take place in the
second storage v
132'

Recording an address of the
location together with the
received input data to the first
storage

Recording the received [~ 740’
input data to the second
storage

Y Y

End, unless there are more input data to be received 150"

Synchronizing Two Update Streams Using Write Pointers

FIG. 32B

WO 2006/065668

10 F-====== |
Original Host Write
Block ‘

\ metapage

!
L #
|
|

Key:

. PCT/US2005/044720
31/43
30 STREAMQO 20 STREAM1
N\ Update Block G \Update Block | &
(Scratch Pad) |3 & (Non- g
> Gt
£ < | Sequential) | €
LY, ; T
oy 0
1 1
2 2
=t <A
3 3
| g
Erased ®=> Padding

(Valid LS10" in Full Page of Update Block)

FIG. 33A

WO 2006/065668 PCT/US2005/044720

32/43
/-1 0 30 STREAMO 20 STREAM 1
% Original | Host Write : N Update Block % m\ Update Block “é;
5 Block : #1 : (Scratch Pad) 73 §)_ (Non- E
o ! | T Sequential) | @
_—) — 2 .
i i > ||
| y e /
i | .__)/ :
: y 0 57
!]
[|
— L '
1 1 1
— : # : 1 =g =y
| L e e e — 1
2 2 2
3 3 3

| Key: (/90555%7) | FErased %> Padding

(Valid LS10" in Partial Page of Scratch Pad Block)

FIG. 33B

WO 2006/065668 PCT/US2005/044720
33/43
y— 50
Logical | Page Starting | Sector Run | Valid | Update Block
Group#- Sector Length Page# | Write Pointer

N

Scratch Pad Block (SPB) Index 40
— 50
Index entry for host write #1 in STREAM 1
1 8 3 0 0
Index entry for STREAM k

FIG. 34B

WO 2006/065668

/"10 SR —
Original Host Write
Block #1

\ metapage

Key:

(Valid LS10' in Scratch Pad Block)

FIG. 35A

PCT/US2005/044720
34/43
30 STREAMO 20 STREAM1
N\ Update Block B (D\ Update Block %
(Scratch Pad) o 2 (Non- 3
K < | Sequential) | 2
sl \1 ﬁ
0 0
= —
1 1
B]
2 2
S .
3 3
Erased > Padding

WO 2006/065668 PCT/US2005/044720

35/43
—10 30 STREAMO 20 STREAM1
| Original N Update Block 8 o | Update Block :‘é,
% Block (Scratch Pad) |2 & (Non- 3
2 o Sequential) | @
P e rrrrpseresest B N it b 4 T T,
:[Host Write : "’% . /j] [
: 50| 7
o ; seelichl; u
L 40— 1
i —— —
//W
2 . 2 2
3 3 3
Key: G /g Erased > Padding

(Valid LS10' in Update Block)

FIG. 35B

WO 2006/065668 PCT/US2005/044720

36/43
Overhead Data
Scratch Pad
Write Pointer
7
L
40’
LOGICAL SECTOR

FIG. 36

. Time Time
STREAM1 Stamp STREAM2 stamp

]

FIG. 37

WO 2006/065668 PCT/US2005/044720
37/43

Organizing a nonvolatile memory into erasable blocks of memory
units, each memory unit for storing a logical unit of data, and each . 200
block also organized into one or more pages, with each page
containing multiple memory ‘units and being once programmable
together after an erase

Y

Providing a first block for recording, full page by full page, update

versions of logical units of data N~ 210
Providing a second block fof buffering update versions of logical 220
‘ units of data received from a host T

\ 4

Receiving data in logical units from a host — 230

S 232
\ 4
Parsing the received logical units page by page by locating
any logical units with a page-end offset] 234

Recording each of the logical units having a page-end
offset to a new page in the first block while filling the new
page with latest versions of preceding logical units, and >~} 236
recording any remaining received logical units in a partial
page in the second block

FIG. 38

WO 2006/065668

PCT/US2005/044720

38/43
Providing an update block (UB) for recording update versions of :
logical units full page by full page, each logical unit having a 310
predetermined page offset according to a predetermined order !
___ —_— ._{
Providing a scratch pad block (SPB) for temporarily buffering N ~— 320
updates directed thereto page by page 322
Providing a SPB index for locating valid (latest version) data inthe [\ |-
SPB 324:
_.,__.._._.........,._._.._.._.....*._._,_____.__.1 _______________________ 3
o Receiving the data of a current write request logical unit by logical E\, 330
unit \
- " .|
If the current logical unit is »[Data transferred to UB 332
offset at page end Then — :
Recording a new page of the |
Then v Else - 334 UB with the current logical !
: unit at page end and filling |
|_| Ifthe write request has more | the rest of the page with 1 340
data to be received - : .
valid (latest versions) logical :
Else 336 units according to the |
predetermined order !
A 4 |
If all received data has been recorded E
Else 350 Then :
Y |
Data transferred to SPB :
If unrecorded received data |55 Consolidating SPB to UB !
does not belong to the same Relocating existing valid !
page as any existing valid ™\ data from SPB to a new !
(latest version) datainthe | 55, page of the UB by ~~— 370
SPB consolidation :
|
VEISG 362 3 :
Updating the SPB Index . Updating the SPB Index 1 372
Recording into a new page e :
of the SPB the unrecorded Vriting into a new. page of l
) the SPB the unrecorded u
received data and any received data at its page 374
existing valid data at their | 364 1 & 'S pag ,
o . offsets, terminating with
page offsets, terminating the SPB index :
with the SPB index y !
I
End of the Current Write Request ~:/ 380

FIG.

39

WO 2006/065668 PCT/US2005/044720
39/43

CONTROL
CIRCUITRY
410

Power
Control | <
416

MEMORY ARRAY
400

Y

ROW DECODER 430

On-Chip.

Address

Decoder
414

ADDR PAGE MULTIPLEXER 350 (optional)

READ/WRITE CIRCUITS 470

State Sense Sense | — 480 Sense
Machine | k¢ Module Module Module

412 1 2 | P

A 4

ADDR

» COLUMN DECODER 460

Data
1 110
Host/ '
Controller

FIG. 40A

WO 2006/065668 : PCT/US2005/044720

40/43
Data
i I10

COLUMN DECODER 4608

A 4

CONTROL
CIRCUITRY
410

READ/WRITE CIRCUITS 4708

A
\ 4

PAGE MULTIPLEXER 4508 (optional)

MEMORY ARRAY
400

A

A
ROW DECODER 430A
ROW DECODER 3308B -

PAGE MULTIPLEXER 450A (optional)

A
A

READ/WRITE CIRCUITS 470A

» ‘ COLUMN DECODER 460A
Data
/10
Host/
Controller

FIG. 40B

WO 2006/065668 PCT/US2005/044720
41/43 '

SENSE MODULE 480

SENSE AMPS - 482
DATA LATCHES ~— 484
/O — 486

I Data
110

FIG. 41

WO 2006/065668 t PCT/US2005/044720
42/43

Providing first and second storage for recording host data units .~ 500

Y

Receiving Host Write Command indicating the range of data units to

be written ~— 510
Does the range of data units predicts satisfying a predetermined
condition for recording the data units to the first storage 512
Yes No
\ A 520 \ 4
Setting up addresses in Setting up addresses in © [539
preparation for recording to » preparation for recording to
the first storage ‘ the second storage
Y 522 \ 4
L oading received data to data Loading the received data to |~ 532
latches, for programming data latches for programming
Is the prediction confirmed by Yes
the received data units?

No N\ g

A

Aborting the setup for
recording to the first storage
— 526
Y A 4
Program datainthe data |~ 549
latches to the addressed
storage
A _
End Current Host Write F 550

FIG. 42

WO 2006/065668 PCT/US2005/044720

43/43
Providing first and second storage for recording host data L 600
Y
Receiving host data 670
Y
Loading data as it is being received to data latches used for ~— 620

programming the first storage and to data latches used for
programming the second storage

Y

Addressing the first or second storage for. recording depending on
whether or not the received data satisfies a predetermined condition j~— 630

Y

Programming data to the addressed storage from its data laiches | 640

End Current Host Write —— 650

FIG. 43

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

