[54] 发明名称
用于分选机的照明光源

[57] 摘要
一种用于提供沿着扫描线的物品流的分选机的
机器视觉观察器的照明光源包括具有安装在套管内
部的照明光源的细长的、圆柱形的套管。该照明光
源在套管中纵向配置并且沿着套管的内周成角度间
隔开。与套管轴线平行的连续的线状槽设置在套管
中以使物品进入或退出套管。与套管轴线平行延
伸的线状槽设置有接收器的用来观察通过套管的物
品。另外，圆筒内部是均匀的和光反射的。套管
的可供选择的实施例包括两个套管弧形部件，在其
之间具有允许物品在套管弧形部件之间通过的开
口。
1. 一种用于机器视觉分选机的照明光源，包括：
所述套管，其具有细长的基本圆柱形的套管壁；
所述套管具有中心套管轴线；
所述套管壁具有内部反射表面；
在所述套管壁中的物品入口槽；
在所述套管壁中的物品出口槽；
至少一个观察开口，其在所述套管壁中；以及
至少一个光源，其设置在所述套管和所述套管轴线中间；
所述套管轴线水平定向；
所述物品入口槽和所述物品出口槽的每一个都是水平延伸的；
所述物品入口槽位于所述套管轴线的上面；并且
所述物品出口槽位于所述套管轴线的下面。
2. 根据权利要求 1 的照明光源，其中：
所述物品入口槽配置成允许物品流入到所述套管中，并且所述物品出口槽配置成允许物品从所述套管中流出以致物品流可以在所述套管轴线附近通过。
3. 根据权利要求 1 的照明光源，其中：
所述物品入口槽和所述物品出口槽配置成允许物品流通过所述套管以致所述物品流可以通过所述套管轴线。
4. 根据权利要求 1 的照明光源，进一步包括：
所述光源包括多个细长的白炽灯；
每个所述多个白炽灯设置成平行于所述套管轴线；以及
所述多个白炽灯围绕所述套管轴线成角度间隔开。
5. 根据权利要求 4 的照明光源，进一步包括：
每个所述多个白炽灯与所述套管壁间隔开；以及
每个所述多个白炽灯与所述套管轴线间隔开。
6. 根据权利要求 4 的照明光源，进一步包括：
所述光源包括多个排成阵列的灯泡；
每个所述阵列都平行于所述套管轴线并且围绕所述套管轴线成角度间隔开；以及
每个所述阵列与所述套管壁间隔开并且与所述套管轴线间隔开。
7. 根据权利要求 4 的照明光源，进一步包括：
所述光源包括装配成阵列的多个发光半导体；
每个所述阵列平行于所述套管轴线并且围绕所述套管轴线形成角度
间隔开；以及
每个所述阵列与所述套管壁间隔开并且与所述套管轴线间隔开。
8. 根据权利要求 1 的照明光源，其中：
在所述套管壁中的所述至少一个观察开口定位在所述套管壁的第一
部分中；
在所述套管壁的第二部分中的第二开口；
覆盖所述第一观察开口的接收器套管；
位于所述接收器套管中的第一接收器；
覆盖所述相对的第二开口的背景套管；以及
所述接收器套管和所述背景套管中的每一个具有非反射内表面；
以及
所述第二开口和所述背景套管为所述接收器提供非反射背景。
9. 根据权利要求 1 的照明光源，其中在所述套管壁中的所述至少一个观察开口进一步包括：
在所述套管壁的第一部分中的第一观察开口；
在所述套管壁的第二部分中的第二观察开口；
覆盖所述第一观察开口的第一接收器套管；
覆盖所述第二观察开口的第二接收器套管；
位于所述第一接收器套管中的第一接收器；
位于所述第二接收器套管中的第二接收器；以及
每个所述第一接收器套管和所述第二接收器套管具有非反射内表面。
10. 根据权利要求 9 的照明光源，进一步包括：
在所述套管壁第二部分中的第一背景开口；
所述第二接收器套管覆盖所述第一背景开口；
在所述套管壁第一部分的第二背景开口；
所述第一接收器套管覆盖第二背景开口；
所述第一背景开口和所述第二接收器套管为所述第一观察开口提
供非反射背景；以及
所述第二背景开口和所述第一接收器为所述第二观察开口提供非反射背景。

11. 一种用于机器视觉分选机的照明光源，包括：
 第一套管和第二套管；
 所述第一套管包括第一套管壁，所述第一套管壁包括细长的中空圆筒的弧形部件；
 所述第二套管具有第二套管轴线；
 所述第二套管包括第二套管壁，所述第二套管壁包括细长的中空圆筒的弧形部件；
 所述第二套管具有第二套管轴线；
 每个所述第一套管壁和所述第二套管壁具有内部反射表面；
 所述第一套管和所述第二套管配置成限定在所述第一套管和所述第二套管之间具有第一开口和第二开口的基本上为圆柱形的套管结构；
 所述第一套管开口包括物品进口；
 所述第二套管开口包括物品出口；
 在所述第一套管壁或者所述第二套管壁的一个中的至少一个观察开口；
 设置在所述第一套管和所述第一套管轴线之间的至少一个光源；
 以及
 设置在所述第二套管和所述第二套管轴线之间的至少一个光源；
 所述第一套管轴线和所述第二套管轴线水平定向；
 所述物品进口和所述物品出口的每一个水平定向；
 所述物品进口在所述套管轴线的上面；以及
 所述物品出口位于所述套管轴线的下面。

12. 根据权利要求 11 的照明光源，其中：
 所述第一套管轴线与所述第二套管轴线重合。

13. 根据权利要求 11 的照明光源，进一步包括：
 所述物品进口设置成允许所述物品流入所述套管，所述物品出口配置成允许物品从所述套管流出以致物品从所述第一和第二套管轴线的附近流过。

14. 根据权利要求 12 的照明光源，进一步包括；
所述物品进口设置成允许所述物品流入所述套管，所述物品出口配置成允许物品从所述套管流出以致物品流从所述第一和第二套管轴线的附近流过。

15. 根据权利要求11的照明光源，进一步包括：
所述光源包括多个细长的白炽灯；
每个所述多个白炽灯设置成平行于所述套管轴线；以及
所述多个白炽灯围绕所述套管轴线成角度间隔开。
16. 根据权利要求15的照明光源，进一步包括：
每个所述多个白炽灯与所述套管壁间隔开；以及
每个所述多个白炽灯与所述套管轴线间隔开。
17. 根据权利要求11的照明光源，进一步包括：
所述光源包括多个排成线状阵列的灯泡；
每个所述线状阵列都平行于所述套管轴线并且围绕所述套管轴线成角度间隔开；以及
每个所述线状阵列与所述套管壁间隔开并且与所述套管轴线间隔开。
18. 根据权利要求11的照明光源，进一步包括：
所述光源包括排成线状阵列的多个发光半导体；
每个所述线状阵列平行于所述套管轴线并且围绕所述套管轴线成角度间隔开；以及
每个所述线状阵列与所述套管壁间隔开并且与所述套管轴线间隔开。
19. 根据权利要求11的照明光源，其中在所述第一套管壁或第二套管壁的任何一个中的所述至少一个观察开口进一步包括：
在所述第一套管壁中的第一观察开口；
在所述第二套管壁中的第二观察开口；
覆盖所述第一观察开口的第一接收器套管；
覆盖所述第二观察开口的第二接收器套管；
位于所述第一接收器套管中的第一接收器；
位于所述第二接收器套管中的第二接收器；以及
所述第一接收器套管和所述第二接收器套管的每一个具有非反射内表面。
20. 根据权利要求19的照明光源，进一步包括：
在所述第二套管壁中的第一背景开口；
所述第二接收器套管覆盖所述第一背景开口；
在所述第一套管壁中的第二背景开口；
所述第一接收器套管覆盖所述第二背景开口；
所述第二背景开口为所述第一接收器提供非反射背景；以及
所述第一背景开口为所述第二接收器提供非反射背景。
21. 根据权利要求11的照明光源，进一步包括：
在所述第一套管壁或所述第二套管壁的一个中的至少一个背景开口；
覆盖所述至少一个背景开口的每一个的至少一个背景套管；
所述背景套管具有非反射内表面；
所述套管壁外部的接收器；以及
所述至少一个背景开口为所述至少一个观察开口提供非反射背景。
22. 根据权利要求11的照明光源，进一步包括：
用来在优选的位置支撑物品的延伸通过所述物品进口和所述物品出口的透明面板。
23. 一种机器视觉分选机，包括：
漏斗；
传送机；
视觉系统；
选择器；
所述视觉系统包括套管和接收器；
所述套管包括细长的基本正方形的套管壁；
所述套管具有中心套管轴线；
所述套管水平定向；
所述套管壁具有内部反射表面；
在所述套管壁中的物品入口槽；
在所述套管壁中的物品出口槽；
所述物品入口槽和所述物品出口槽的每一个是水平延伸的；
所述物品入口槽位于所述套管轴线的上面；以及
所述物品出口槽位于所述套管轴线的下面；
在所述套管壁中的至少一个观察开口；以及
位于所述套管壁和所述套管轴线之间的至少一个光源。
24. 根据权利要求 23 的照明光源，进一步包括：
位于所述传送机和所述视觉系统之间的重力滑坡。
25. 根据权利要求 23 的照明光源，进一步包括：
所述传送机、所述物品入口槽和所述物品出口槽设置成允许物品
通过套管轴线的附近自由流动；以及
所述接收器和所述观察开口设置成允许在套管轴线附近的物品流
的扫描。
26. 根据权利要求 23 的照明光源，进一步包括：
所述传送机、所述所述物品入口槽和所述物品出口槽设置成允许
物品通过套管轴线的附近自由流动；以及
所述接收器和所述观察开口设置成允许在套管轴线附近的物品流
的扫描。
27. 根据权利要求 23 的照明光源，进一步包括：
所述物品入口槽和所述物品出口槽的每一个在套管壁的全部长度
上延伸以致套管壁包括两个不连接的套管壁部分；
所述传送机、所述物品入口槽和所述物品出口槽设置成允许物品
在套管轴线附近自由流动；以及
所述接收器和所述观察开口设置成允许在套管轴线附近的物品流
的扫描。
28. 根据权利要求 23 的照明光源，进一步包括：
所述物品入口槽和所述物品出口槽的每一个在套管壁的全部长度
上延伸以致套管壁包括两个不连接的套管壁部分；
所述传送机、所述物品入口槽和所述物品出口槽设置成允许物品
在套管轴线附近自由流动；以及
所述接收器和所述观察开口设置成允许在套管轴线附近的物品流
的扫描。
29. 根据权利要求 23 的照明光源，进一步包括：
所述光源包括多个细长的白炽灯；
每个所述多个白炽灯设置成平行于所述套管轴线；
所述多个白炽灯围绕所述套管轴线成角度间隔开；
每个所述多个白炽灯与所述套管壁间隔开；以及
每个所述多个白炽灯与所述套管轴线间隔开。
30. 根据权利要求23的照明光源，进一步包括：
所述光源包括多个排成线状阵列的光源；
每个所述线状阵列都平行于所述套管轴线并且围绕所述套管轴线
成角度间隔开；以及
每个所述线状阵列与所述套管壁间隔开并且与所述套管轴线间隔
开。
31. 根据权利要求23的照明光源，其中：
在所述套管壁中的所述至少一个观察开口包括在套管壁第一部分
中的第一观察开口和在套管壁第二部分中的第二观察开口；
遮住所述第一观察开口的第一观察盖；
在所述第一观察盖中的第一接收器；
覆盖所述第二观察开口的第二观察盖；
在所述第二观察盖中的第二接收器；以及
所述第一观察盖和所述第二观察盖的每一个具有非反射内表面。
32. 根据权利要求23的照明光源，进一步包括：
在所述套管壁第二部分中的第一背景开口；
所述第二观察盖覆盖所述第一背景开口；
在所述套管壁第一部分中的第二背景开口；
所述第一观察盖覆盖所述第二背景开口；
所述第一背景开口和所述第二观察盖为所述第一接收器提供非反
射背景；以及
所述第二背景开口和所述第一观察盖为所述第二接收器提供非反
射背景。
33. 根据权利要求23的照明光源，进一步包括：
在所述套管壁中的至少一个背景开口；
覆盖所述至少一个背景开口的每一个的至少一个背景盖；
所述背景盖具有非反射内表面；
至少一个接收器；
所述观察开口在所述接收器和所述背景开口之间；以及
所述至少一个背景开口和所述背景盖非反射内表面为所述至少一个接收器提供非反射背景。

34. 一种用于分选材料的方法，其包括：

建立将要检查的物品流；

让所述物品在水平位于圆柱形套管上延伸的中心轴线附近流动，所述套管具有水平延伸的位于所述水平延伸的中心轴线上面的物品入口槽以及水平延伸的位于所述水平延伸的中心轴线下面的物品出口槽；

在所述套管的内部提供反射表面；

在所述圆柱形套管的内部的所述套管轴线处提供散射的、高强度的光场；

当所述物品通过所述套管轴线附近的时候扫描通过所述圆柱形套管的物品；

确定将要从物品流分离的物品；以及

转移所述确定的物品。

35. 根据权利要求 34 的方法，其中：

所述建立步骤包括传送所述物品到确定的位置并且允许所述物品的自由落下；

所述扫描步骤包括接收来自所述物品的反射光波；

所述确定步骤包括处理来自所述反射光波的数据、处理所述数据并且将分离的指示传送给转移机构；以及

所述转移步骤包括对所述确定的物品进行定向的吹气。

36. 根据权利要求 34 的方法，其中：

提供所述散射的、高强度光场包括提供与所述圆柱形套管间隔开并且与所述套管轴线间隔开的多个高强度、散射的光源。
用于分选机的照明光源

相关申请的相互参考
本申请要求受益于 2002 年 5 月 28 日申请的序列号为 60/383727
的美国临时申请。

关于联合发起的研究或开发的声明
不适用。

技术领域
本发明总体上涉及分选机，尤其涉及用于机器视觉系统的照明光
源。

背景技术
组合了机器视觉系统的分选机典型地通过反射能量波的方式识别
和分选物品。视觉机器系统的主要元件之一就是照明光源。照明光源
提供视觉系统的接收质量的起始点。典型地，要求光源是均匀的并且在
视觉系统的物点（有时候称为扫描线）上具有高强度。大多数检查系
统包括某种光源。通用的光源包括白炽灯和荧光灯以及发光二极管。
为了实现更好的照明已经设计出各种各样的光学排列，例如环型灯阵
列、聚焦的灯丝聚光灯以及光纤发射体。在通用照明设备中不均匀的
照明会导致阴影检测的缺点。当通常测定的特性结合了包括人类可见
光源的光源的时候，机器视觉系统可以测量人类可视范围之外的能量
波。

Bjork 的美国专利 6355897 描述了用于分选颗粒的装置和方法，
其包括配置在透镜颗粒传输轨道上的光检测器以及设置在轨道背面的
光源。该检测器位于室的一端并且光源和轨道位于另外一端。该室得
到均匀的照明并且可以具有反射层。光源也可以从轨道的上面或者周
围照亮颗粒。其缺点在于在检测器中会存在较低强度势能。

Squyres 的美国专利 5201576 揭露了球形室，其由反射内表面盖
住，并且在室中具有光源。透明管沿着室的轴线延伸。要检查的物品
通过管传输。在室中至少提供两个观察窗口，检查摄像机定向穿过观
察窗口。该专利揭露了由克里利翁（Krylon）制成的聚丙烯白漆的使
用并且要求产品能够提供高于 90％的反射能力。该专利进一步揭露了
在光学积分球中作为先有技术的氧化钛涂层的使用。

室中装备了一个圆形管状灯、两个摄像机和一个具有两个开口端的透明的圆柱形管。物品通过管来输送，由灯照明并且使用摄像机来检查。与这个解决方案联合出现的一个问题就是在不影响室内部的光分布的条件下调整摄像机是困难的。这个问题由在美国专利5201576中描述的在室内部的来自灯的强度是不同的以及在灯附近的地方比与灯有一定距离的地方强度高的事实引起的。另一个问题是管影响了以反射形式存在的光的折射，例如可以显示出镜头的镜像。此外，这个技术方案限制于在该时间内在一侧检查连续的物品。

Boum等人的美国专利6238060描述了在可以检查物品的一点上不产生阴影的条件下用于提供聚集的、均匀的光的发光二极管或者类似的光点的环型光源。该专利显示了很多变化；然而，没有一个适于长扫描线。

Sommer的美国专利6234317描述了许多光源，其中每个光源都放置在能透射光的圆筒中，并且该圆筒是能够经常擦拭或者靠压缩空气清洁的。在检查过程中，物品在能够透射光的圆筒之间通过。

Lebens的美国专利5745176描述了具有线状阵列的光源和用于在物品上产生聚焦的光的位于光源和将要观察的物品之间的聚焦元件。光源具有能够阻止内部反射的背景，内部反射会另外的阻碍聚焦的光并且会使来自光源的光强度产生变化。被检查的物品不是移动的物品。

Graudejus等人的美国专利5586663描述了能够保持清洁的旋转背景。然而，其并不是围绕检查的物品的路径的圆柱。

将对先有技术进行改进以提供适于机器视觉系统的照明系统，其沿着直线或者延伸的扫描线提供所要观察的颗粒的强烈的均匀照明，因此能够提供所选择特征的一致的识别并且充分减少在具有障碍物或纯粹由阴影引起的其他的缺陷时对颗粒错误的特性描述。

发明内容

本发明包括用于分选机的机器视觉观察器的照明光源，该分选机提供沿着扫描线的物品流。本发明包括细长的、圆柱形的套管结构，并且照明光源装配在套管的内部。照明光源可以包括荧光灯、弧光灯、气体放电灯、灯丝光源或者半导体光源的阵列。光源纵向地配置在套

11
管中并且沿着套管的内周成角度地间隔开。

在套管中设置的线状开口平行于套管轴线以使附属的物品进入套管，并且提供与套管轴线平行的第二线状开口允许物品退出套管。所提供的平行于套管轴线的线状观察开口用来使检测器观察通过套管的物品。此外，圆筒内部是均匀的和反光的。

圆筒的直径限制能够实现在扫描线上的最大照明强度的最小尺寸，并且允许排气器的位置尽可能靠近扫描线以允许被精确的排出所选择的颗粒。然而，圆筒的直径必须足够大以减少在开口区域中的已经去除的圆筒表面的不理想的效果。

为了进一步增加照明的均匀性，圆筒可以比所需要的通路区域长，并且套管的端部可以是关闭的。圆筒部分和套管端部的整个内表面可以利用一种材料制成，该种材料具有适于在圆筒部分的最优的照明能量反射的光谱特性并且提供将要选出的物品的最大对比。

附图的简要说明

图1 描绘了包括本发明的照明系统的机器观察系统。
图2 描绘了本发明的照明系统的横断面视图。
图3 描绘了本发明的照明系统的可选择实施例的横截面视图。
图4 描绘了本发明的照明系统的可选择实施例的横截面视图。
图5 描绘了本发明的照明系统的可选择实施例的横截面视图。
图6 描绘了本发明的照明系统的可选择实施例的横截面视图。

发明的详细说明

首先参考附图1，其描述了包括本发明的照明系统10的作为例子的机器视觉系统100。该机器视觉系统100包括漏斗110，传送机120，视觉系统10，选择器130，用于分离物品的容器140和存储斗150。

将要通过本系统的机器视觉系统100观察和分选的物品保存在漏斗110中，并且被发送至传送机120上。传送机120可以包括振动装置（没有示出）以分离将要观察和分选的单个物品（没有示出）。传送机120除了包括用于分离物品的振动装置之外或者作为用于分离物品的振动装置的选择可以包括用于分离物品的轨道或者通道（没有示出）。

在典型机器视觉分选系统100中，将要分选的物品被传送通过传送机120的肩部122。传送机120被构造成提供使来自传送机120的
物品流以能够使物品均匀地通过照明系统 10 的速率流动。通过照明系统 10 的物品的流动路径由物品轨道 102 代表。图 1 和 2 中披露的实施例的机器视觉分类系统 100 提供在物品从传送机 120 上排出的同时物品的自由降落。这种物品流定义了物品轨迹 102。

在图 3 中描绘的机器视觉分类系统 100 的实施例包括重力滑坡 201。在这个实施例中，重力滑坡 201 设置在各种给料器（在图 3 中没有描绘）和视觉系统 10 之间。在这个例子中，来自重力滑坡 201 的物品的自由流动定义了物品的轨道。

物品可以为多种有机或者无机物品中的任何一个，例如谷物、坚果、塑料粒。可以基于由使用者确定的各种标准观察和分选物品，该确定的标准包括尺寸、颜色、缺陷和其他特征。

参考图 2，本发明的照明系统 10 包括细长的圆柱形套管 16。圆柱形套管 16 包括具有内反射表面 20 的套管壁 18 以及套管轴线 22。描绘出了指示出垂直轴线 24 和水平轴线 26 的线。这些轴线 24 和 26 正交于套管轴线 22。

在本发明的典型实施例中，配置和运行传送机 120 和套管 16 以使物品轨道 102 通过套管 16。物品轨道 102 在轨道 102 上的任何位置都基本平行于套管轴线 22。

在套管 16 中提供了物品入口槽 30 和物品出口槽 32。在典型的实施例中，入口槽 30 和出口槽 32 是在套管壁 18 中的细长的开口，每个槽都平行于套管轴线 22 延伸。槽 30 和 32 延伸到物品轨道 102 侧面边缘（没有示出）的外部。

在图 1 描绘的示例性的实施例中，入口槽 30 配置在水平轴线 26 上。出口槽 32 设置在套管 16 的相对侧的水平轴线 26 下面，其与入口槽 30 通过垂直轴线 24 分开。在套管 16 上的槽 30 和 32 的位置需要根据将要观察的物品的特定重力来调整。这种调整可以通过套管 16 相对于套管轴线 22 的旋转或者通过转换槽 30 和 32 的位置来实现。槽 30 和 32 的宽度保持在最小的水平以允许物品的无妨碍的流动并且保持反射表面 20 的最大的反射表面面积。

在本发明的最优实施例中，入口槽 30、出口槽 32 以及物品轨道 102 配置成使物品轨道 102 与套管轴线 32 重合。

扫描槽 34 装配在套管壁 18 中。在典型实施例中，扫描槽 34 是平
行于套管轴线 22 的直线形的或者细长的开口。扫描槽 34 被构造成允许扫描接收器 50 识别将要扫描和分选的物品的预定特征。接收器 50 可以包括单个接收器或者多个接收器。

参考图 2，接收器 50 与扫描槽 34 间隔开。接收器 50 沿着扫描轴线 38 聚焦。扫描轴线 38 与轨道 102 的交点识别要检查的物品的扫描线 23。扫描线与套管轴线 22 重叠或者接近套管轴线 22。在最优实施例中，多个接收器 50 沿着物品轨道 102 的侧部长度平行于扫描槽 34 配置。

接收器套管 35 在套管壁 18 和接收器 50 之间延伸。接收器套管 35 在扫描槽 34 和接收器 50 之间提供封闭的环境以限制接收器 50 和扫描槽 34 之间的环境光的进入。接收器套管 35 最好具有非反射内表面 33。

在套管 16 中设置了多个光源。在所描述的说明性实施例中，光源 12 包括平行于套管轴线 22 排列的四个细长的灯泡。许多光源 12 可以占据与物理限制一致的外壳，它们不会阻碍流动路径 102 或者扫描轴线 38。

反射表面 20 设置在套管壁 18 的内部。反射表面 20 包括具有适于优化套管 16 中的照明能量的最佳反射的光谱特性的反射涂层。反射表面 20 进一步包括由要进行分选的物品的接收器 50 观察的背景。优化应用在任何特定应用中的反射表面 20 涂层，以在考虑光源 12 发射的波长的条件下这个背景和将要观察的材料特性之间提供光谱对比。

在图 2–4 中描述的细长的光源 12 装配成与套管轴线 22 平行。每个光源 12 接近套管壁 18 设置，而与套管壁 18 具有充分的间隔开，以考虑在套管轴线 22 的末梢将要通过圆柱形反射表面 20 反射的每个光源 12 产生的光的反射。光源 12 围绕套管 16 内部的套管壁 18 彼此间隔开。

在典型实施例中，光源与套管轴线 22 等距。光源 12 并不是它们自己聚焦在定位方向上，而是高强度的散射光源。因此散射光通过反射表面 20 反射以在套管 16 中产生强烈的光。由于光源 12 射出放射状的光并且光源 12 容纳在圆柱形壁 18 中，因此多个光源 12 产生的光将在圆筒 18 范围内连续反射。在邻近套管轴线 22 的扫描线 23 中，因此将从所有的方向上接收到强烈的光，这些光包括来自光源 12 的光和从反射表面 20 反射的光，因此扫描线 23 将从所有的方向接收强烈的光。
光源 12 可以包括荧光管、灯丝光源的阵列、弧光灯、气体放电灯
或者例如发光二极管的发光半导体的阵列。在组合了这种可选择的光源 12 的可供选择的实施例中，光源 12 将被配置在套管壁 18 的附近，
但是与其间隔开并且与套管轴线 22 间隔开，因此在扫描线 23 上累积
提供强烈的光，这种光包括直接从光源 12 发射的光以及来自反射表面
20 的反射光。

圆柱形套管 16 的直径限制成能够实现在扫描线上的最大照明强度
的最小尺寸，并且限制了允许排出器的位置尽可能靠近扫描线以允许
更精确排出所选的颗粒。然而，圆筒直径必须足够大以减少在槽区域
中的已经去除的圆筒表面的不理想的效果。

为了更进一步的改进照明的均匀性，套管 16 构造成比将要检查的
颗粒的所需要通道要长。套管壁 18 在轨道 122 的侧部边缘以外沿着轴
线 22 横向延伸，因此存在足够的反射表面 20 来充分照明在轨道 122
中的最终产品颗粒。

在所描述的典型实施例中，圆筒末端 40 设置在套管 18 的相反端。
如果配置了圆筒末端 40，那么圆筒末端 40 的每个都由内部反射表面
20 覆盖。

在包括如图 1 和 2 所描绘的细长灯泡光源 12 的实施例中，圆筒末
端 40 配置在灯泡的产生光的部分的终端，同时不产生光的连接器延伸
到圆筒末端 40 的外面。圆筒末端 40 的这种配置增强了在套管 16 中的
反射并且消除了具有不同光谱表面的连接器或者连接器基座的任何反
作用。

参考图 1-3，在本发明的实施例中，选择器 130 包括许多喷嘴
134，这些喷嘴用于选择性地将压缩空气 131 间歇喷入轨道 102。喷嘴
134 沿着物品轨道 102 形成直线，因此识别出的将要被挑选的任何一块
产品可以被转移到轨道 102b 上，并且不转移没有被识别出的产品块。

在操作中，当一些物品沿着轨道 102 流过视觉系统 10 的同时，接
收器 50 获得相对于沿着扫描线 23 通过的物品的光学数据并且将这些
数据传输给处理装置以确定该已经获得的数据在可接受水平的范围内
还是在这个范围之外。如果数据在可接受的范围之外，那么选择器 130
被接合以在沿着轨道 102 的特定的点向在轨道 102 中的物品喷出压缩
气体 31，因此改变被识别出的落下物品的轨道。为了实现说明的目
将排出的物品的轨道描绘成 102b，并且将没有被排出的物品的轨道描绘为 102a。在正常操作中，选择器 130 对于物品流过扫描线 23 的时间进行定时，因此喷嘴 134 喷出很短持续时间的一段压缩气流来重新定向被排出的物体。

本发明的机器视觉系统 10 用在多种应用中以识别物品的测量特性。在扫描线 23 的在套管 16 中的很高的并且相当均匀的照明强度使得本发明特别使用在识别透明物品的缺陷上，该透明物品例如为塑料粒。

在涉及例如塑料粒的透明物品的应用中，根据扫描特性进行分选处理，将在物品中的污染物的存在作为要扫描的特性。透明物品涉及透镜效应，其中在物品外面的不同光会被物品反射。本发明通过提供相对小的入口槽 30、出口槽 32 以及观察槽 34 来部分最小化这种透镜效应，但是非常重要的是通过提供设置在套管 16 中的多个反射光源 12 的周围的圆柱形反射表面 20 来维持套管 16 中的光的强度，因此在扫描线 23 上产生了平衡的、多方向的光。

确定不透明污染物的一种方法就是测定在物品通过扫描线 23 的时候在接收器 50 上测量的光强度总量的偏差。不透明的污物会吸收某个能级的光照，导致在接收器读取的光照比对于不包含污染物的物品读取的光照要低。本发明的机器视觉系统 10 在扫描线 23 上产生光照能级，该光照能级不会因为非均匀光照产生的阴影以及将要被扫描的以及挑选的物品的表面不完整性而失真。

现在参考图 3，其描绘了本发明的可供选择的实施例。图 3 的实施例提供物品的物品轨道 202，该物品从倾斜的重力滑坡 201 自由落下。图 3 描绘了两个细长的弧形套管 216a 和 216b，它们组合起来称为套管 216。

将弧形套管 216a 和 216b 构造为中空圆筒的弧形且具有共同的半径。中心轴线 222 限定在套管 216a 和 216b 的半径中心。物品入口 230 和物品出口 232 由弧形套管 216a 和 216b 的相邻边缘的开口空间所限定。

如在图 1-2 的实施例中一样，观察槽 234 设置在套管 216a 中，并与接收器 250 在一直线上，以具有观察轴线 238。扫描线 223 定义在观察轴线 238 和物品轨道 202 的交点。如在图 1-2 中的实施例一
样，在套管 216a 和 216b 的内部提供多个光源 212。反射内部表面 220a 和 220b 设置在套管 216a 和 216b 上。光源 212 配置成与扫描线 223 平行并且与周围的内壁 218a 和 218b 都间隔开。在前面的描述中，光源 212 提供的光从多个方向在扫描线 223 上产生光的强度能级，这些光包括从光源 212 直射的光以及表面 220a 和 220b 反射的光。

现在参考图 4，其描绘了本发明第二个可选择的实施例。在图 4 的实施例中，将要扫描的物品由适于光谱的透明的例如玻璃的面板 302 支撑在可以组合称为套管 316 的两个细长的弧形套管 316a 和 316b 之间。弧形套管 316a 和 316b 分别构造为中空圆筒的弧形部件并且它们具有共同的半径。中心轴线 322 定义在套管 216a 和 216b 的半径中心。

物品进口 330 和物品出口 332 由弧形套管 316a 和 316b 的相邻边缘的开口空间所限定。和在图 1 和 2 的实施例中所述的一样，观察槽 334 设置在套管 316a 中，并且与接收器 350 在一直线上，以具有观察轴线 338。扫描线 323 定义在观察轴线 338 和面板 302 的交点。和在图 1-3 中的实施例一样，在套管 316a 和 316b 的内部设置了多个高强度光源 312，并且在套管 316a 和 316b 上设置了反射内部表面 320a 和 320b。光源 312 平行扫描线 323 设置，并且与内壁 318a 和 318b 间隔开。在前面所述的方式中，光源 312 提供的光产生来自从多个方向在扫描线 323 上产生光的强度能级，这些光包括从光源 312 直射的光以及表面 320a 和 320b 反射的光。

参考图 5，其描绘了第三个可供选择的实施例。这个实施例包括位于套管 416 中的在扫描槽 434 的垂直轴线 424 的相对侧的扫描槽 434b。扫描槽 434b 与扫描槽 434 一样是平行于套管轴线 422 的细长开口。第二扫描槽 434b 构造成允许第二扫描接收器 450b 识别将要被扫描以及分选的物品的预定特征。接收器 450b 可以包括单个的接收器或者多个接收器。通过接收器 450 和 450b 可以提供多种观察。这些观察可以通过处理进行比较或者单个使用来识别物品的预定特征。

接收器 450b 沿着扫描轴线 438b 聚焦。接收器 450 和 450b 并不直接相对，最佳的为扫描轴线 438 和 438b 成角度偏置以避免接收器 450 和 450b 之间的干扰或者反射。

背景开口 436 设置在套管 416 中沿着扫描轴线 438 位于观察槽 434 的对面。第二背景开口 436b 位于套管 416 中沿着扫描轴线 438b 位于
观察槽 434b 的对面。背景开口 436 和 436b 为平行于套管轴线 422 的细长开口。背景开口 436 提供对具有非反射内表面 433b 的接收器套管 435b 的开口。因此接收器 450 具有非反射背景，相对于这个背景来扫描物品。非反射背景的使用最小化在扫描物品时来自反射表面的任何失真。背景开口 436b 提供接收器套管 435 的开口，该接收器套管 435 也具有非反射内表面 433。因此接收器 450b 也具有依靠此扫描物品的非反射背景。

依赖于扫描轴线 438 和 438b 之间的角度，扫描槽 434 和背景开口 436b 可以合并成单个槽（没有示出）以用于扫描和提供非反射表面。同样，扫描槽 434b 和背景开口 436 可以如此组合。

虽然附图描绘了扫描轴线 438 和 438b 在单个扫描线 523 上交叉，这个实施例可以通过在流线 102 上的不同位置的相交物品流的每个扫描轴线 438 和 438b 实现。

参考图 6，其描绘了第四个可选择的实施例。在这个实施例中，背景开口 536 设置在套管 516 中沿着扫描轴线 538 的观察槽 534 的对面。背景开口为平行于套管轴线 522 的细长的开口。背景开口 536 提供背景套管 535b 的开口，这个套管具有非反射内表面 533。因此接收器 550 具有非反射背景，依靠这个背景来扫描物品。该非反射背景最小化在扫描物品时可能产生的任何失真。

前面的本发明的描述和说明是示例性的和说明性的。在不脱离本发明的精神的条件下，在附属的权利要求书的范围内可以形成示例性的处理细节上的不同变化。本发明仅仅通过所附的权利要求书以及它们的法律上的等同物来限定。