(21) 申请号 201310066859.8
(43) 申请公布日 2014.09.10

(22) 申请日 2013.03.04

(71) 申请人 天津康鸿医药科技发展有限公司
地址 300193 天津市南开区鞍山西道308号

(72) 发明人 任晓文 邹美香 孙敬慧 李洪起
王博 郭振华 连潇娴 吴疆
胡金芳

(74) 专利代理机构 北京泛华伟业知识产权代理有限公司 11280
代理人 刘利妮

(51) Int.Cl.
A61K 9/72(2006.01)
A61K 9/12(2006.01)
A61K 31/137(2006.01)

(54) 发明名称
盐酸氨溴索雾化吸入剂及其制备方法和应用

(57) 摘要
本发明提供一种盐酸氨溴索雾化吸入剂及其制备方法和应用,所述雾化吸入剂以注射用水为溶剂,含有浓度为7.5mg/ml的盐酸氨溴索和浓度为18~28mg/ml的药学上可接受的载体,所述载体包括pH值稳定剂,所述pH值稳定剂选自亚硫酸钠、亚硫酸钠和亚硫酸氢钠中的一种或多种;所述制备方法包括称取盐酸氨溴索和药学上可接受的载体加入适量注射用水中溶解,冷却后,用含有亚硫酸钠、亚硫酸钠和/或亚硫酸氢钠的pH值稳定剂调节pH值,加水至近全量;然后药用炭充分搅拌,过滤脱炭,加水至全量;再用微孔滤膜过滤后,以每支2ml、4ml、10ml或20ml的规格灌封并充氮气后,高压灭菌;及其在制备呼吸系统疾病的药物中的应用。
1. 一种盐酸氨溴索雾化吸入剂，所述雾化吸入剂以注射用水为溶剂，含有浓度为 7.5mg/ml 的盐酸氨溴索和浓度为 18～28mg/ml 的药学上可接受的载体，所述载体包括 pH 值稳定剂，所述 pH 值稳定剂选自焦亚硫酸钠、亚硫酸钠和亚硫酸氢钠中的一种或多种。

2. 根据权利要求 1 所述的盐酸氨溴素雾化吸入剂，其特征在于，所述 pH 值稳定剂的浓度为 2.5～9mg/ml；优选地，所述焦亚硫酸钠、亚硫酸钠或亚硫酸氢钠的浓度为 0.1～5mg/ml，更优选地，所述药学上可接受的载体还包括水溶性填充剂和 / 或渗透压调节剂；还优选地，所述盐酸氨溴索雾化吸入剂为单剂量包装。

3. 根据权利要求 1 所述的盐酸氨溴素雾化吸入剂，其特征在于，所述单剂量的盐酸氨溴素雾化吸入剂含有 15mg、30mg、75mg 或 150mg 的盐酸氨溴索。

4. 根据权利要求 1 至 3 中任一项所述的盐酸氨溴素雾化吸入剂，其特征在于，所述水溶性填充剂选自甘露醇、低分子右旋糖苷、山梨醇、聚乙二醇、葡萄糖、乳糖和果糖中的一种或多种，优选地，所述水溶性填充剂选自甘露醇、果糖、山梨醇和葡萄糖中的一种或多种，更优选地，所述水溶性填充剂选自果糖和 / 或山梨醇。

优选地，所述 pH 值稳定剂选自还可包括枸橼酸、盐酸、氢氧化钾、氢氧化钠、碳酸钠或钾或铵盐、硫酸氢钠或钾或铵盐、磷酸二钠和磷酸二氢钠中的一种或多种；

还优选地，所述渗透压调节剂为氯化钠和 / 或氯化钾；

更优选地，所述盐酸氨溴索雾化吸入剂的规格为 2ml、4ml、10ml 或 20ml。

5. 根据权利要求 1 至 4 中任一项所述的盐酸氨溴索雾化吸入剂的制备方法，其特征在于，所述方法包括以下步骤：

1) 称取盐酸氨溴素和药学上可接受的载体加入适量注射用水中溶解，冷却后，用含有焦亚硫酸钠、亚硫酸钠和 / 或亚硫酸氢钠的 pH 值稳定剂调节 pH 值，加水至近全量；

2) 然后用药用炭充分搅拌，过滤脱炭，加水至全量；

3) 再用微孔滤膜过滤后；

4) 以每支 1ml, 4ml, 10ml 或 20ml 的规格灌封并充氮气后，高压灭菌，即得。

6. 根据权利要求 5 所述的盐酸氨溴素雾化吸入剂的制备方法，其特征在于，在步骤 1) 中，所述适量注射用水为配制量 60～80% 的注射用水；优选地，调节至 pH 值为 4.5～5.5；

更优选地，所述注射用水的温度为 40～75℃，优选为 50～70℃；还优选地，冷却至 25～50℃，优选为 35～45℃；进一步优选地，所述 pH 值稳定剂中还含有 0.5～1mol/L NaOH 或 0.3～0.7mol/L 磷酸氢二钠溶液，再优选地，所述 pH 值稳定剂中还含有 0.5mol/L 磷酸氢二钠溶液。

7. 根据权利要求 5 或 6 所述的盐酸氨溴素雾化吸入剂的制备方法，其特征在于，在步骤 2) 中，搅拌 30 分钟，优选地，于 25～45℃下搅拌。

8. 根据权利要求 5 至 7 中任一项所述的盐酸氨溴素雾化吸入剂的制备方法，其特征在于，在步骤 3) 中，先用 0.45μm 再用 0.22μm 微孔滤膜过滤。

9. 根据权利要求 5 至 8 中任一项所述的盐酸氨溴素雾化吸入剂的制备方法，其特征在于，在步骤 4) 中，于 121℃，气压 0.1Mpa，高压灭菌 15～20 分钟。

10. 根据权利要求 1 至 4 中任一项所述的盐酸氨溴素雾化吸入剂在制备用于治疗呼吸系统疾病的药物中的应用。
盐酸氨溴索雾化吸入剂及其制备方法和应用

技术领域
[0001] 本发明涉及化学制药技术领域。具体涉及一种雾化吸入剂及其制备方法和应用，尤其涉及一种盐酸氨溴索雾化吸入剂及其制备方法和应用。

背景技术
[0002] 盐酸氨溴索化学名为；反式 4-[((2-氨基-3,5 二溴-苯基) 甲基-氨基)]环己醇，其结构如下所示：

[0003]

盐酸氨溴索是新一代呼吸道粘液调节剂，具有优越的祛痰效能，并对肺泡表面活性物质的合成与分泌具有显著的促进作用。盐酸氨溴索能刺激支气管粘液腺分泌更易于流动的粘液，使痰液稀释，粘稠度降低，并且能增加肺表面活性物质的生成与分泌，从而降低气道阻力，降低粘液的附着力，激活粘液纤毛功能，促进粘液纤毛转运。与第一代及第二代祛痰药物相比，盐酸氨溴索除具有强大的粘液溶解作用外，其最大特点在于它能刺激肺泡 II 型细胞，促进肺泡表面活性物质的合成与分泌，从而有力地增强粘液转运，促进排痰。

[0005] 盐酸氨溴索是目前临床上作用最强的祛痰药之一，适用于急慢性支气管炎、喘息性支气管炎、支气管哮喘和慢性肺部炎症痰液粘稠不易咳出或干咳无痰的患者，亦可用于新生儿呼吸窘迫综合征，临床疗效十分肯定，且盐酸氨溴索使用安全，耐受性好，重复使用无药物蓄积作用。

[0006] 目前，已上市的盐酸氨溴索口服制剂有片剂、胶囊剂、糖浆剂及缓释胶囊等；注射剂有小针注射剂、冻干剂等。口服制剂使用方便，但效果慢，且生物利用率低；注射剂起效快，但使用受限，局限较大。雾化吸入疗法是应用高速氧气把药物变成细微的气雾，经患者吸入进入气管、支气管和肺泡，使痰液稀释、利于排痰、消炎、解痉及平喘等作用。由于雾气大小可以自行调节，雾气分子小，易于黏膜吸收，起效快、疗效高，可将药物直接作用于支气管的病变部位，与其它口服和注射制剂相比，雾化溶液剂更适合于低龄儿童和术后病人及老年病人，安全有效方便，见效快，副作用小等优点，潜在的市场容量大。

[0007] 目前已公开了 200810110981.X 一种氨溴索雾化吸入用溶液剂及其制备方法，发明内容是制备量件的氨溴索雾化吸入溶液剂，采用吹-灌-封一体化全自动的生产药用包装，不含防腐剂，一次性单剂量使用，无需稀释、配制。虽然塑料瓶包装使用方便，降低微生物污染和浪费。但是塑料包装材料有安全性风险，尤其药物在长期放置过程中，塑料包装材料中某些组分有可能在放置过程中发生降解或与其他成分反应，而这些降解物或反应产
物可以迁移至制剂中，从而产生过敏现象，因此国家药品评审中心关于化学药品注射剂与塑料包装材料相容性研究技术指导原则中，明确采用聚乙烯 PE 安瓿，聚丙烯 PP 安瓿包装材料应做相关的相容性研究。对于可能带来的的 22 种塑料添加剂制定了相应的限度。塑料添加剂可能引起过敏、刺激等不良反应，必须进行详细的研究。由德国勃林格殷格翰制药有限公司（Boehringer Ingelheim Pharma GmbH&Co.KG）生产上市，商品名为 Mucosolv®，规格为 100ml:750mg，为多剂量包装的产品。其用途也是采用雾化吸入方式达到祛痰、消炎等治疗的目的。一般多剂量的产品，为了多次反复使用，通常会加入防腐剂增加药物的稳定性，即便如此也会在潮湿的天气下带来微生物的污染，稳定性不超过 60 天。另外防腐剂的加入很可能对于在肺部吸入时带来潜在的刺激性作用，影响雾化吸入的疗效，在临床上带来安全性隐患。

[0008] 目前雾化吸入溶液剂上市产品相对较少，主要为进口产品，国产市售较少。但临床上以注射液应用雾化吸入的较多。盐酸氨溴索注射液在临床上就采用雾化吸入方式治疗呼吸系统疾病。文献报道主要有雾化吸入盐酸氨溴索治疗毛细支气管炎（中国实用医学杂志 2010 年第 20 卷第 5 期 p19~20）、雾化吸入治疗慢性阻塞性肺疾病患者临床分析（中国医药指南 2010 年 6 月第 8 卷第 17 期 P54~55）、盐酸氨溴索雾化吸入在治疗小儿肺炎的作用（医学创新研究 2008 年 6 月第 5 卷第 18 期），氨溴索不同途径给药治疗婴幼儿支气管肺炎疗效比较（中国现代医学 2009 年 4 月第 47 卷第 1 期 P26~27）结果显示，氨溴索雾化吸入的治疗效果要好于静脉滴注，而且在咳嗽、气促和肺部啰音消失方面与静脉滴注相比明显缩短，经肺与气道吸入给药的吸收过程最快，因此药物通过吸入治疗呼吸道疾病比通过其他途径更有价值，氨溴索经雾化吸入呼吸系统后在局部聚集较高浓度，并直接作用于气道表面的感受器或靶受体而发挥作用，疗效迅速，且可从气道粘膜和肺部直接吸收，迅速发挥药理作用。

[0009] 盐酸氨溴索注射液在临床上雾化吸入治疗非常广泛，但说明书中均没有规范的使用方法，并且不够稳定，尤其在婴幼儿使用方面均有安全隐患。

发明内容

[0010] 因此，本发明的目的是针对目前盐酸氨溴索雾化吸入剂的不稳定性，不能安全使用的不足，提供一种盐酸氨溴索雾化吸入剂及其制备方法和应用，该盐酸氨溴索雾化吸入剂含有最佳稳定要素，可稳定储存，适合婴幼儿安全使用。

[0011] 针对该目的，本发明提供的技术方案如下：

[0012] 一方面，本发明提供一种盐酸氨溴索雾化吸入剂，所述雾化吸入剂以注射用水为溶剂，含有浓度为 7.5mg/ml 的盐酸氨溴索和浓度为 18 ~ 28mg/ml 的药学上可接受的载体，所述载体包括 pH 值稳定剂，所述 pH 值稳定剂选自焦亚硫酸钠、亚硫酸钠和亚硫酸氢钠中的一种或多种。

[0013] 优选地，所述 pH 值稳定剂的浓度为 2.5 ~ 9mg/ml。

[0014] 优选地，所述焦亚硫酸钠、亚硫酸钠或亚硫酸氢钠的浓度为 0.1 ~ 5mg/ml。

[0015] 优选地，所述盐酸氨溴索雾化吸入剂为单剂量包装。

[0016] 优选地，所述药学上可接受的载体还包括水溶性填充剂和/or 滴透压调节剂。

[0017] 优选地，所述单剂量的盐酸氨溴索雾化吸入剂含有 15mg、30mg、75mg 或 150mg 的盐
酸氨溴索。

[0018] 优选地，所述水溶性填充剂选自甘露醇、低分子右旋糖苷、山梨醇、聚乙二醇、葡萄糖、乳糖和果糖中的一种或多种。

[0019] 优选地，所述水溶性填充剂选自甘露醇、果糖、山梨醇和葡萄糖中的一种或多种，更优选地，所述水溶性填充剂选自果糖和/或山梨醇。

[0020] 优选地，pH值稳定剂还可选自枸橼酸、盐酸、氢氧化钠、氢氧化钾、碳酸钠或钾或铵盐、磷酸氢钠或钾或铵盐、磷酸氢二钠和磷酸氢二钠中的一种或多种。

[0021] 优选地，所述渗透压调节剂为氯化钠和/或氯化钾。

[0022] 优选地，所述盐酸氨溴索雾化吸入剂的规格为2ml、4ml、10ml或20ml，装于安瓿瓶棕色塑硼玻璃瓶内。

[0023] 另一方面，本发明提供一种上述本发明所述的盐酸氨溴索雾化吸入剂的制备方法，所述方法包括以下步骤：

[0024] 1) 称取盐酸氨溴索和药学上可接受的载体加入适量注射用水中溶解，冷却后，用含有焦亚硫酸钠、亚硫酸钠和/或亚硫酸氢钠的pH值稳定剂调节pH值，加水至近全量，优选地，调节至pH值为4.5～5.5；

[0025] 2) 然后用药用炭充分搅拌，过滤脱炭，加水至全量；

[0026] 3) 再用微孔滤膜过滤后；

[0027] 4) 以每支2ml、4ml、10ml或20ml的规格灌封并充氮气后，高压灭菌，即得。

[0028] 优选地，在步骤1)中，所述适量注射用水为配制量60～80%的注射用水。

[0029] 优选地，所述注射用水的温度为40～75℃，优选为50～70℃，通过试验证明该温度能够使制得盐酸氨溴索雾化吸入剂更稳定。

[0030] 优选地，冷却至25～50℃，优选为35～45℃，通过试验证明该温度能够使制得盐酸氨溴索雾化吸入剂更稳定。

[0031] 更优选地，所述pH值稳定剂中还含有0.5～1mol/L的NaOH或0.3～0.7mol/L的磷酸氢二钠溶液。

[0032] 再优选地，所述pH值稳定剂中还含有0.5mol/L的磷酸氢二钠溶液。

[0033] 优选地，在步骤2)中，搅拌30分钟。

[0034] 优选地，于25～45℃下搅拌。

[0035] 优选地，在步骤3)中，先用0.45μm再用0.22μm微孔滤膜过滤。

[0036] 优选地，在步骤4)中，于121℃，气压0.1Mpa，高压灭菌15～20分钟。

[0037] 还一方面，本发明提供一种本发明所述的盐酸氨溴索雾化吸入剂在制备用于治疗呼吸系统疾病的药物中的应用。

[0038] 本发明所述的盐酸氨溴索雾化吸入剂在特定的配比和组成下，经过试验表明，惊奇地发现各项指标性状、pH值、不溶性微粒、渗透压、含量、有关物质与0月比较，没有明显变化，说明本发明的配比和组成下的盐酸氨溴索雾化吸入剂样品稳定性好，可以预测储存24个月稳定；并且高温灭菌后，无菌，使用后安全，无毒副作用，适合婴幼儿使用，此外本发明的雾化吸入剂相比现有技术具有方便灵活的使用性，不需要特殊的环境，使用便携式雾化器更便于老人和儿童患者；此外，还惊奇地发现制备过程中，当注射用水的温度为50～70℃时或将盐酸氨溴索和药学上可接受的载体加入适量注射用水中溶解，冷却的温
度为35~45°C时，能够使制得盐酸氨溴索雾化吸入剂更稳定。

附图说明
[0039] 以下，结合附图来详细说明本发明的实施方案，其中：
[0040] 图1为实施例1制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0041] 图2为实施例2制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0042] 图3为实施例3制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0043] 图4为实施例4制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0044] 图5为实施例5制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0045] 图6为实施例6制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0046] 图7为实施例7制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0047] 图8为实施例8制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0048] 图9为实施例9制得的盐酸氨溴索雾化吸入剂的HPLC图谱；
[0049] 图10为国外市售品的HPLC图谱。

具体实施方式
[0050] 除非特别指明，以下实施例中的试剂均为分析纯级试剂，且可从正规渠道商购获得。
[0051] 以下实施例中所用的豚鼠的株系为Hartley，购自北京维通利华实验动物技术有限公司。
[0052] 实施例1 1000支
[0053] 处方：规格2ml：15mg
[0054] 盐酸氨溴索 15.0g
[0055] 枸橼酸 2.0g
[0056] 磷酸二氢钠 6.0g
[0057] 氯化钠 15.0g
[0058] 果糖 1.0g
[0059] 亚硫酸钠 10.0g
[0060] 加注射用水至2000ml
[0061] 工艺：
[0062] （1）取配制量80%的45°C±5°C注射用水，加入原辅料搅拌至溶解完全，冷却至25°C±5°C；测定pH值，加1mol/L的NaOH溶液调节pH值为5.3，加水至近全量。
[0063] （2）在25°C±5°C以下加药用炭充分搅拌30分钟，过滤脱炭，加水至全量。
[0064] （3）先用0.45μm再用0.22μm微孔滤膜过滤，取样测定pH值及有效成分的含量。
[0065] （4）以每支2ml灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121°C，0.1Mpa，灭菌15分钟，即得盐酸氨溴索雾化吸入剂。

实施例2 1000支
[0066] 处方：规格4ml：30mg
[0067] 盐酸氨溴索 30.0g
说明 书

[0069] 枸橼酸 4.0g
[0070] 磷酸二氢钠 8.0g
[0071] 氯化钾 34.0g
[0072] 山梨醇 2.0g
[0073] 亚硫酸氢钠 4.0g
[0074] 加注射用水至 4000ml
[0075] 工艺：
[0076] （1）取配制量 60% 的 50℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至
35℃ ±5℃；测定 pH 值，加 0.8 mol/L 的 NaOH 溶液调节 pH 值为 4.7，加水至近全量。
[0077] （2）在 35℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
[0078] （3）先用 0.45 μm 再用 0.22 μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
[0079] （4）以每支 4ml 灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15
分钟，即得盐酸氨溴索雾化吸入剂。

[0080] 实施例 3 1000 支量
[0081] 处方：规格 10ml：75mg
[0082] 盐酸氨溴索 75.0g
[0083] 枸橼酸 10.0g
[0084] 磷酸二氢钠 10.0g
[0085] 氯化钠 180g
[0086] 果糖 1.0g
[0087] 焦亚硫酸钠 5.0g
[0088] 加注射用水至 10000ml
[0089] 工艺：
[0090] （1）取配制量 70% 的 60℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至
40℃ ±5℃；测定 pH 值，加 0.6mol/L 的 NaOH 溶液调节 pH 值为 4.9，加水至近全量。
[0091] （2）在 40℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
[0092] （3）先用 0.45 μm 再用 0.22 μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
[0093] （4）以每支 10ml 灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15
分钟，即得盐酸氨溴索雾化吸入剂。

[0094] 实施例 4 1000 支量
[0095] 处方：规格 20ml：150mg
[0096] 盐酸氨溴索 150.0g
[0097] 枸橼酸 20.0g
[0098] 磷酸二氢钠 40.0g
[0099] 氯化钾 150.0g
[0100] 山梨醇 1.0g
[0101] 亚硫酸氢钠 4.0g
[0102] 加注射用水至 20000ml
[0103] 工艺：
【0104】(1) 取配制量 80% 的 60℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至 40℃ ±5℃；测定 pH 值，加 0.5mol/L 的 NaOH 溶液调节 pH 值为 5.5，加水至近全量。
【0105】(2) 在 35℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
【0106】(3) 先用 0.45μm 再用 0.22μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
【0107】(4) 以每支 20ml 灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15 分钟，即得盐酸氨溴索雾化吸入剂。
【0108】实施例 5 1000 支量
【0109】处方，规格 2ml： 15mg
【0110】盐酸氨溴索 15.0g
【0111】构橼酸 2.0g
【0112】磷酸氢二钠 9.0g
【0113】氯化钠 14.0g
【0114】焦亚硫酸钠 1.0g
【0115】加注射用水至 2000ml
【0116】工艺：
【0117】(1) 取配制量 80% 的 65℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至 35℃ ±5℃；测定 pH 值，加 0.5mol/L 磷酸氢二钠溶液调节 pH 值为 5.0，加水至近全量。
【0118】(2) 在 25℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
【0119】(3) 先用 0.45μm 再用 0.22μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
【0120】(4) 以每支 2ml 灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15 分钟，即得盐酸氨溴索雾化吸入剂。
【0121】实施例 6 1000 支量
【0122】处方，规格 4ml： 30mg
【0123】盐酸氨溴索 30.0g
【0124】构橼酸 4.0g
【0125】磷酸氢二钠 18.0g
【0126】氯化钠 28.0g
【0127】亚硫酸氢钠 1.0g
【0128】加注射用水至 4000ml
【0129】工艺：
【0130】(1) 取配制量 80% 的 60℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至 45℃ ±5℃；测定 pH 值，加 0.3mol/L 的磷酸氢二钠溶液调节 pH 值为 4.6，加水至近全量。
【0131】(2) 在 35℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
【0132】(3) 先用 0.45μm 再用 0.22μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
【0133】(4) 以每支 4ml 灌封于安瓿瓶棕色硅硼玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15 分钟，即得盐酸氨溴索雾化吸入剂。
【0134】实施例 7 1000 支量
【0135】处方，规格 10ml： 75mg
【0136】盐酸氨溴索 75.0g
说明书

[0137] 枸橼酸 10.0g
[0138] 磷酸氢二钠 27.0g
[0139] 氯化钠 90.0g
[0140] 亚硫酸钠 1.0g
[0141] 加注射用水至 10000ml
[0142] 工艺：
[0143] （1）取配制量 80% 的 50℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至 25℃ ±5℃；测定 pH 值，加 0.6mol/L 的磷酸氢二钠溶液调节 pH 值为 5.2，加水至近全量。
[0144] （2）在 25℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
[0145] （3）先用 0.45 μm 再用 0.22 μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
[0146] （4）以每支 10ml 灌封于安瓿瓶棕色硼硅玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15 分钟，即得盐酸氨溴索雾化吸入剂。

[0147] 实施例 8 1000 支量
[0148] 处方：规格 20ml： 150mg
[0149] 盐酸氨溴索 150.0g
[0150] 枸橼酸 20.0g
[0151] 磷酸氢二钠 50.0g
[0152] 氯化钠 140.0g
[0153] 果糖 2.0g
[0154] 亚硫酸钠 10.0g
[0155] 加注射用水至 20000ml
[0156] 工艺：
[0157] （1）取配制量 80% 的 70℃ ±5℃注射用水，加入原辅料搅拌至溶解完全，冷却至 35℃ ±5℃；测定 pH 值，加 0.8mol/L 的磷酸氢二钠溶液调节 pH 值为 4.5，加水至近全量。
[0158] （2）在 25℃ ±5℃以下加药用炭充分搅拌 30 分钟，过滤脱炭，加水至全量。
[0159] （3）先用 0.45 μm 再用 0.22 μm 微孔滤膜过滤，取样测定 pH 值及有效成分的含量。
[0160] （4）以每支 20ml 灌封于安瓿瓶棕色硼硅玻璃瓶内并充氮气，121℃，0.1Mpa，灭菌 15 分钟，即得盐酸氨溴索雾化吸入剂。

[0161] 对比例 1 1000 支量
[0162] 处方：规格 2ml： 15mg
[0163] 盐酸氨溴索 15.0g
[0164] 枸橼酸 2.0g
[0165] 磷酸氢二钠 6.0g
[0166] 苯扎溴铵（防腐剂） 2.0g
[0167] 氯化钠 15.0g
[0168] 加注射用水至 2000ml
[0169] 工艺同实施例 1。
[0170] 试验实施例 1 测定实施例 1-8 和对比例 1 制得的盐酸氨溴索的 pH 值、渗透压、粘度、有关物质
[0171] 1. 仪器及材料：
[0172] 酸度测定仪：METTLER TOLEDO FE-20
[0173] 微粒分析仪：GWF-8JA 天河医疗仪器有限公司
[0174] 渗透压摩尔浓度测定仪：SMC30C-1 天河医疗仪器有限公司
[0175] NDJ-5S 数字式粘度计，0 号转子，转速 60.0/分
[0176] 色谱仪：Laballiance Series III泵，AS 3000 自动进样仪，Spectra 100 检测器，CSplus 工作站
[0177] 国外市售品，即沐舒坦雾化吸入剂：德国勃林格殷格翰制药有限公司批号 1332793

[0178] 2. 测定方法
[0179] 取实施例 1-9 制得的雾化吸入剂及国外市售品，制成的供试品除去外包装直接测定溶液。
[0180] pH 值测定方法：取供试品，按照 2010 版中国药典二部附录 VI H，测定供试溶液的 pH 值。
[0181] 渗透压摩尔浓度测定方法：取供试品，按照 2010 版中国药典二部附录 IX G，测定供试溶液的渗透压摩尔浓度。
[0182] 粘度测定方法：取供试品，按照 2010 版中国药典二部附录 VI G，测定供试溶液的粘度。
[0183] 有关物质测定色谱条件：
[0184] 0.01mol/L 磷酸氢二铵（调节 pH=7.0）：乙腈 =40:60；
[0185] ODSC18 色谱柱；
[0186] 流速 1ml/分钟；
[0187] 柱温 30℃。
[0188] 测定结果如下述表 1 所示。
[0189] 表 1：各实施例制得的盐酸氨溴索吸入剂的 pH 值、渗透压、粘度及有关物质检查结果
<table>
<thead>
<tr>
<th>实施例</th>
<th>pH 值</th>
<th>滲透压 mOsmol/Kg</th>
<th>粘度 mpa.s</th>
<th>有关物质 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>5.21</td>
<td>285</td>
<td>1.03</td>
<td>0.116</td>
</tr>
<tr>
<td>实施例2</td>
<td>4.78</td>
<td>310</td>
<td>1.03</td>
<td>0.088</td>
</tr>
<tr>
<td>实施例3</td>
<td>4.89</td>
<td>308</td>
<td>1.04</td>
<td>0.117</td>
</tr>
<tr>
<td>实施例4</td>
<td>5.30</td>
<td>319</td>
<td>1.02</td>
<td>0.115</td>
</tr>
<tr>
<td>实施例5</td>
<td>4.98</td>
<td>300</td>
<td>1.03</td>
<td>0.086</td>
</tr>
<tr>
<td>实施例6</td>
<td>4.68</td>
<td>298</td>
<td>1.07</td>
<td>0.087</td>
</tr>
<tr>
<td>实施例7</td>
<td>5.14</td>
<td>273</td>
<td>1.06</td>
<td>0.059</td>
</tr>
<tr>
<td>实施例8</td>
<td>4.58</td>
<td>296</td>
<td>1.05</td>
<td>0.063</td>
</tr>
<tr>
<td>对比例1</td>
<td>5.20</td>
<td>301</td>
<td>1.08</td>
<td>0.154</td>
</tr>
<tr>
<td>国外市售品</td>
<td>5.48</td>
<td>297</td>
<td>1.07</td>
<td>0.127</td>
</tr>
</tbody>
</table>

[0191] 试验结果表明：加入防腐剂的对比例1有关物质略高于不加防腐剂的，国外市售品同样加入了防腐剂，高于本发明所述的盐酸溴己新氯化吸入剂。其它pH值、渗透压、粘度基本一致。

[0192] 表2 为实施例1测得的有关物质的结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.980</td>
<td>5510</td>
<td>0.092</td>
<td>599</td>
<td>0.116</td>
</tr>
<tr>
<td>8.714</td>
<td>5980908</td>
<td>99.908</td>
<td>516538</td>
<td>99.884</td>
</tr>
<tr>
<td>总计</td>
<td>5986418</td>
<td>100.000</td>
<td>517137</td>
<td>100.000</td>
</tr>
</tbody>
</table>

[0193] 表3 为实施例2测得的有关物质的结果
### 保留时间	面积	面积百分比	峰高	高度百分比
7.390 | 3773 | 0.065 | 411 | 0.088
9.331 | 5783075 | 99.935 | 466316 | 99.912
总计 | 5786848 | 100.000 | 466727 | 100.000

[0196] 表 4 为实施例 3 测得的有关物质的结果

保留时间	面积	面积百分比	峰高	高度百分比
6.896 | 5641 | 0.093 | 606 | 0.117
8.586 | 6063994 | 99.907 | 515463 | 99.883
总计 | 6069635 | 100.000 | 516069 | 100.000

[0198] 表 5 为实施例 4 测得的有关物质的结果

保留时间	面积	面积百分比	峰高	高度百分比
3.696 | 852 | 0.014 | 127 | 0.025
6.941 | 3614 | 0.060 | 404 | 0.078
8.648 | 5992087 | 99.916 | 514133 | 99.885
17.851 | 579 | 0.010 | 61 | 0.012
总计 | 5997132 | 100.000 | 514725 | 100.000

[0200] 表 6 为实施例 5 测得的有关物质的结果

保留时间	面积	面积百分比	峰高	高度百分比
7.373 | 4233 | 0.064 | 464 | 0.086
9.326 | 6646080 | 99.936 | 537593 | 99.914
总计 | 6650313 | 100.000 | 558057 | 100.000

[0202] 表 7 为实施例 6 测得的有关物质的结果

保留时间	面积	面积百分比	峰高	高度百分比
6.885 | 3687 | 0.066 | 415 | 0.087
8.558 | 5621883 | 99.934 | 476181 | 99.913
总计 | 5625570 | 100.000 | 476596 | 100.000

[0204] 表 8 为实施例 7 测得的有关物质的结果

[0205]
<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.865</td>
<td>2320</td>
<td>0.043</td>
<td>272</td>
<td>0.059</td>
</tr>
<tr>
<td>8.563</td>
<td>5444717</td>
<td>99.957</td>
<td>461452</td>
<td>99.941</td>
</tr>
<tr>
<td>总计</td>
<td>5447037</td>
<td>100.000</td>
<td>461724</td>
<td>100.000</td>
</tr>
</tbody>
</table>

[0206] 表 9 为实施例 8 测得的有关物质的结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.895</td>
<td>2860</td>
<td>0.048</td>
<td>319</td>
<td>0.063</td>
</tr>
<tr>
<td>8.589</td>
<td>6016559</td>
<td>99.952</td>
<td>509312</td>
<td>99.937</td>
</tr>
<tr>
<td>总计</td>
<td>6019419</td>
<td>100.000</td>
<td>509631</td>
<td>100.000</td>
</tr>
</tbody>
</table>

[0208] 表 10 为对比例 1 测得的有关物质的结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.946</td>
<td>3147</td>
<td>0.118</td>
<td>354</td>
<td>0.154</td>
</tr>
<tr>
<td>8.821</td>
<td>2653277</td>
<td>99.882</td>
<td>229670</td>
<td>99.846</td>
</tr>
<tr>
<td>总计</td>
<td>2656424</td>
<td>100.000</td>
<td>230024</td>
<td>100.000</td>
</tr>
</tbody>
</table>

[0209] 为国外市售品测得的有关物质的结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.696</td>
<td>1620</td>
<td>0.028</td>
<td>214</td>
<td>0.044</td>
</tr>
<tr>
<td>6.880</td>
<td>3807</td>
<td>0.066</td>
<td>408</td>
<td>0.084</td>
</tr>
<tr>
<td>8.559</td>
<td>5753998</td>
<td>99.906</td>
<td>487340</td>
<td>99.873</td>
</tr>
<tr>
<td>总计</td>
<td>5759425</td>
<td>100.000</td>
<td>487962</td>
<td>100.000</td>
</tr>
</tbody>
</table>

[0210] 上述有关物质中主要的为杂质 B，即反式-4-[6,8-二溴-1,4-二氢喹唑啉-3(II)环己醇。

[0211] 试验实施例 2

[0212] 以本发明的雾化吸入溶液实施例 5 给豚鼠雾化吸入 7 天，观察对气道、肺组织的刺激作用和病理情况。

[0213] 试验方法：试验设随机对照（质量体积百分比为 0.9% 的氯化钠注射液）、盐酸氨溴索雾化吸入剂（玻璃）组、盐酸氨溴索雾化吸入剂（塑料）组，选用鼠为实验对象，进行咽喉粘膜组织刺激性试验。根据临床使用剂量为 2ml:15mg 和 4ml:30mg，浓度为 7.5mg/mL。按体重折算（人 60kg 计；豚鼠 0.4kg 计），豚鼠的等效剂量为 2.25mg/kg 本实验选用采用具有超声波的雾化装置进行雾化吸入给药方式，连续给药 7 天，每日 1 次，给药浓度为 3.75mg/
ml。给药量为 0.6ml/kg。停药后继续恢复观察至给药后 14 天。观察及组织病理学检查药物对豚鼠咽部粘膜组织的刺激反应。

【0216】试验设计：实验设 3 个剂量组，分别为阴性对照组、盐酸黄连素氢化吸入剂（玻璃）剂量组、盐酸黄连素氢化吸入剂（塑料）剂量组，给药浓度及量参见表 12。

【0217】在雾化吸入时，为了达到最佳的气道湿化效果，该吸入剂与生理盐水混合按 1:1 的比例混合后雾化，配制方法见下述表 12 所述。

【0218】表 12：供试品配制方法表

<table>
<thead>
<tr>
<th>剂量组</th>
<th>剂量 (mg/kg)</th>
<th>药物浓度 (mg/ml)</th>
<th>给药量 (ml/kg)</th>
<th>配制方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>直接取用质量体积百分比为 0.9%的氯化钠注射液</td>
</tr>
<tr>
<td>盐酸黄连素</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸入溶液</td>
<td>2.25</td>
<td>3.75</td>
<td>0.6</td>
<td>取盐酸黄连素氢化吸入剂（玻璃安瓿瓶）1ml，加入质量体积百分比为 0.9%的氯化钠注射液 1ml 混合后使用</td>
</tr>
<tr>
<td>(玻璃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>盐酸黄连素</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸入溶液</td>
<td>2.25</td>
<td>3.75</td>
<td>0.6</td>
<td>取盐酸黄连素氢化吸入剂（塑料安瓿瓶）1ml，加入质量体积百分比为 0.9%的氯化钠注射液 1ml 混合后使用</td>
</tr>
</tbody>
</table>

【0220】观察每次给药前和给药后 24、48、72、96 小时动物反应。末次给药后 96 小时，每组处死豚鼠 2 只，解剖取出咽喉粘膜组织做病理组织学检查。剩余动物进行恢复观察，至末次给药后 14 天处死，同上法取咽喉粘膜组织做病理组织学检查。观察结果按表 13 换算成反应级数，若刺激平均反应级数在 2 以下，可以认为符合规定；若反应级数大于 2，则认为不符合规定。

【0221】表 13：粘膜刺激反应评分标准

<table>
<thead>
<tr>
<th>反应级数</th>
<th>刺激反应</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无明显反应</td>
</tr>
<tr>
<td>1</td>
<td>轻度充血</td>
</tr>
<tr>
<td>2</td>
<td>中度充血</td>
</tr>
<tr>
<td>3</td>
<td>重度充血，红肿</td>
</tr>
<tr>
<td>4</td>
<td>粘膜变性坏死</td>
</tr>
</tbody>
</table>
注：未查到粘膜刺激评分标准的相关文献，因此参考皮肤和肌肉刺激评分标准。
试验结果：
全身毒性反应：各组动物未见明显全身毒性反应。
肉眼观察：豚鼠经连续7次雾化吸入后恢复观察14天，各组动物给药期及恢复期均未见明显刺激症状，各组反应分值均为0分。
解剖检查：药后4天（96h）和14天，每组分别处死2只豚鼠，雌雄各半，解剖检查肉
眼未见明显异常，各组反应分值均为0分，并以（质量体积百分比为0.9%的氯化钠注射液）
为阴性对照，具体评分结果见表14。
表14豚鼠血管刺激性试验解剖检查评分结果（n＝动物数）

<table>
<thead>
<tr>
<th>组别</th>
<th>药后96h（n=2）</th>
<th>药后14d（n=2）</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>氯溴索（玻</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>璃）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯溴索（塑</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>料）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

组织学检查：玻璃包装和塑料包装的盐酸氯溴索雾化吸入剂豚鼠咽喉粘膜组织与
阴性对照组一样，无明显刺激性。
给药期和恢复期肉眼观察，各组豚鼠均未见明显刺激性和全身毒性反应；药后4
天和14天各组分别处死2只动物（1♂/1♀）进行解剖检查，肉眼及病理组织学检查玻璃包装
和塑料包装的盐酸氯溴索雾化吸入剂豚鼠咽喉粘膜组织未见明显药物相关刺激反应。
结论：在2.25mg/kg剂量下（7.5mg/ml），玻璃包装和塑料包装的盐酸氯溴索雾化
吸入剂对豚鼠咽喉粘膜组织无明显刺激作用。
试验实施例3
以本发明的雾化吸入溶液实施例5给豚鼠雾化吸入，观察引起豚鼠全身主动过敏
性反应。
试验方法：试验设阴性对照（质量体积百分比为0.9%的氯化钠注射液）、阳性对照
（卵清白蛋白）、盐酸氯溴索雾化吸入剂（玻璃）和盐酸氯溴索雾化吸入剂（塑料）4组，选用豚
鼠为实验动物，根据临床用药途径为吸入给药，临床用药剂量为2ml：15mg和4ml：30mg，
浓度为7.5mg/ml。按体表面积折算（人60kg计：豚鼠0.4kg计），豚鼠的等效剂量为2.25mg/
kg；致敏剂量；剂量设置为2.25mg/kg，给药浓度3.75mg/ml。各组给药量均为0.6ml/kg。连续
间日吸入相应剂量药物共致敏5次，末次致敏后14天前肢静脉一次快速给予2倍致敏剂
量相应药物进行激发，致敏阶段吸入给药，激发阶段静脉注射给药，观察动物的过敏反应情
况。
试验设计：实验设4组；阴性对照、阳性对照、盐酸氯溴索雾化吸入剂（玻璃）剂量
组、盐酸氯溴索雾化吸入剂（塑料）剂量组。给药剂量、给药浓度及给药体积参见表15。
激发剂量；致敏剂量的2倍，药物浓度7.5mg/ml，给药量均为0.6ml/kg。
药物浓度及致敏剂量

<table>
<thead>
<tr>
<th>组别</th>
<th>药物浓度 (mg/ml)</th>
<th>致敏剂量 (mg/kg)</th>
<th>致敏给药量 (ml/kg)</th>
<th>激发剂量 (mg/kg)</th>
<th>激发给药体积 (ml/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>阳性对照</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>盐酸氨溴索雾化吸入剂（玻璃）</td>
<td>3.75</td>
<td>2.25</td>
<td>0.6</td>
<td>4.5</td>
<td>0.6</td>
</tr>
<tr>
<td>盐酸氨溴索雾化吸入剂（塑料）</td>
<td>3.75</td>
<td>2.25</td>
<td>0.6</td>
<td>4.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

[0240] 致敏期间：各组动物均未见异常反应。
[0241] 试验结果：过敏反应情况
[0242] 过敏反应情况
[0243] 激发给药后，阳性对照组 6 只动物给药后立即出现呼吸困难，紫绀、步态不稳或痉挛等过敏反应症状，并于给药后 5 分钟内全部死亡，呈极强阳性过敏反应。
[0244] 盐酸氨溴索雾化吸入剂（玻璃）组未出现异常反应，盐酸氨溴索雾化吸入剂（塑料）组仅 1 只雌性动物出现不安，于 1 小时内消失，其余动物未见异常反应，具体结果见下述表 16 所示。
[0245] 表 16 盐酸氨溴索雾化吸入剂对豚鼠的主动过敏性反应情况
[0246] | 组别 | 动物数（只） | 过敏动物数及级别 | 死亡率 | 过敏反应发生率 | 结果判定 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0%</td>
<td>过敏反应阴性</td>
</tr>
<tr>
<td>阳性对照</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>过敏反应极性阳性</td>
</tr>
<tr>
<td>盐酸氨溴索雾吸入溶液（玻璃）</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>过敏反应阴性</td>
</tr>
<tr>
<td>盐酸氨溴索雾吸入溶液（塑料）</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0%</td>
<td>过敏反应弱性阳性</td>
</tr>
</tbody>
</table>

[0247] 体重检查
[0248] 与阴性对照组比较，各组动物体重增长均未见明显异常，具体结果见下述表 17 所
示。

[0249] 表 17 盐酸氨溴索雾化吸入剂对豚鼠体重的影响(\(\bar{X} \pm SD, g\))

<table>
<thead>
<tr>
<th>组别</th>
<th>致敏 1 次</th>
<th>致敏 2 次</th>
<th>致敏 3 次</th>
<th>致敏 4 次</th>
<th>致敏 5 次</th>
<th>激发当日</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照</td>
<td>373.1±11.6</td>
<td>393.6±10.8</td>
<td>408.6±14.5</td>
<td>415.3±21.7</td>
<td>453.8±19.4</td>
<td>557.8±35.1</td>
</tr>
<tr>
<td>阳性对照</td>
<td>376.8±17.6</td>
<td>400.9±18.7</td>
<td>413.0±25.9</td>
<td>434.5±31.1</td>
<td>457.8±31.5</td>
<td>565.0±71.4</td>
</tr>
<tr>
<td>盐酸氨溴索吸入溶液(玻璃)</td>
<td>368.1±16.4</td>
<td>394.3±21.7</td>
<td>418.3±24.9</td>
<td>428.3±26.3</td>
<td>457.3±29.4</td>
<td>564.0±42.8</td>
</tr>
<tr>
<td>盐酸氨溴索吸入溶液(塑料)</td>
<td>368.6±7.7</td>
<td>391.8±13.1</td>
<td>413.0±20.2</td>
<td>429.3±22.4</td>
<td>449.3±30.1</td>
<td>557.0±35.2</td>
</tr>
</tbody>
</table>

[0251] 注：各组动物数 n=4

[0252] 试验结论：玻璃包装的盐酸氨溴索雾化吸入剂在 2.25mg/kg 剂量下对豚鼠未见明显致敏作用；塑料包装的盐酸氨溴索雾化吸入剂在 2.25mg/kg 剂量下对豚鼠有轻度致敏作用，过敏反应程度呈弱阳性，临床使用中应该密切注意患者的药后反应，并做好过敏反应急救措施。

[0253] 试验实施例 4

[0254] 以公开专利申请 200810110981.1 实施例 1 的样品作为参考例，以及本发明制备的实施例 5、6 和 7 制备的样品放大样品三批进行加速试验，测定渗透压、不溶性微粒、含量、pH 值及有关物质，考察稳定性从而确定有效期，并进行二者各项指标的比较，结果如下述表 18 所示。

[0255] 表 18

[0256]
<table>
<thead>
<tr>
<th>批次</th>
<th>项目</th>
<th>120301（实施例 5 制得的盐酸氨溴索雾化吸入剂）</th>
<th>120302（实施例 6 制得的盐酸氨溴索雾化吸入剂）</th>
<th>120303（实施例 7 制得的盐酸氨溴索雾化吸入剂）</th>
<th>参考例</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 月</td>
<td>性状</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
</tr>
<tr>
<td>1 月</td>
<td>性状</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
</tr>
<tr>
<td>2 月</td>
<td>性状</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
</tr>
<tr>
<td>3 月</td>
<td>性状</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
</tr>
<tr>
<td>6 月</td>
<td>性状</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
<td>无色澄清溶液</td>
</tr>
<tr>
<td>0 月</td>
<td>pH 值</td>
<td>5.03</td>
<td>5.01</td>
<td>4.98</td>
<td>5.20</td>
</tr>
<tr>
<td>1 月</td>
<td>pH 值</td>
<td>5.05</td>
<td>4.95</td>
<td>5.03</td>
<td>5.22</td>
</tr>
<tr>
<td>2 月</td>
<td>pH 值</td>
<td>5.04</td>
<td>5.03</td>
<td>5.04</td>
<td>5.21</td>
</tr>
<tr>
<td>3 月</td>
<td>pH 值</td>
<td>5.08</td>
<td>5.04</td>
<td>5.06</td>
<td>5.26</td>
</tr>
<tr>
<td>6 月</td>
<td>pH 值</td>
<td>5.06</td>
<td>4.98</td>
<td>4.96</td>
<td>5.30</td>
</tr>
<tr>
<td>0 月</td>
<td>渗透压 mOsmol/Kg</td>
<td>302</td>
<td>298</td>
<td>307</td>
<td>301</td>
</tr>
<tr>
<td>1 月</td>
<td>渗透压 mOsmol/Kg</td>
<td>298</td>
<td>305</td>
<td>304</td>
<td>303</td>
</tr>
<tr>
<td>2 月</td>
<td>渗透压 mOsmol/Kg</td>
<td>308</td>
<td>302</td>
<td>306</td>
<td>306</td>
</tr>
</tbody>
</table>

[0257]
说明 书

<table>
<thead>
<tr>
<th>有关物质 (%)</th>
<th>3 个月</th>
<th>6 个月</th>
<th>0 个月</th>
<th>1 个月</th>
<th>2 个月</th>
<th>3 个月</th>
<th>6 个月</th>
</tr>
</thead>
<tbody>
<tr>
<td>已有杂质 B/总</td>
<td>294</td>
<td>308</td>
<td>309</td>
<td>304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>杂 0.08/0.08</td>
<td>297</td>
<td>301</td>
<td>304</td>
<td>310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>已有杂质 B/总</td>
<td>0.08/0.09</td>
<td>0.09/0.10</td>
<td>0.07/0.08</td>
<td>0.07/0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>已有杂质 B/总</td>
<td>0.11/0.15</td>
<td>0.11/0.14</td>
<td>0.10/0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>已有杂质 B/总</td>
<td>0.13/0.13</td>
<td>0.15/0.15</td>
<td>0.17/0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>已有杂质 B/总</td>
<td>0.15/0.15</td>
<td>0.15/0.15</td>
<td>0.19/0.19</td>
<td>0.20/0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

含量 (%)

<table>
<thead>
<tr>
<th>0 个月</th>
<th>1 个月</th>
<th>2 个月</th>
<th>3 个月</th>
<th>6 个月</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.3</td>
<td>99.5</td>
<td>99.2</td>
<td>100.2</td>
<td></td>
</tr>
<tr>
<td>100.4</td>
<td>101.0</td>
<td>98.4</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>99.2</td>
<td>99.6</td>
<td>99.6</td>
<td>98.7</td>
<td></td>
</tr>
<tr>
<td>99.6</td>
<td>99.8</td>
<td>99.5</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>99.7</td>
<td>100.1</td>
<td>101.0</td>
<td>99.7</td>
<td></td>
</tr>
</tbody>
</table>

不溶性微粒

<table>
<thead>
<tr>
<th>0 个月</th>
<th>符合规定</th>
<th>符合规定</th>
<th>符合规定</th>
<th>符合规定</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 个月</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
</tr>
<tr>
<td>2 个月</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
</tr>
<tr>
<td>3 个月</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
</tr>
<tr>
<td>6 个月</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
</tr>
</tbody>
</table>

[0258] 以上试验结果表明，参考例中的 pH 值、不溶性微粒、渗透压、含量比较稳定，而有关物质有明显增加；相比本发明制备的样品各项指标性状、pH 值、不溶性微粒、渗透压，含
量，有关物质与 0 月比较，均没有明显变化，说明本发明制备的样品稳定性好，可以预测储存 24 个月稳定。
图 1
<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.390</td>
<td>3773</td>
<td>0.065</td>
<td>411</td>
<td>0.088</td>
</tr>
<tr>
<td>9.331</td>
<td>5783075</td>
<td>99.935</td>
<td>466316</td>
<td>99.912</td>
</tr>
<tr>
<td>总计</td>
<td>5786848</td>
<td>100.000</td>
<td>466727</td>
<td>100.000</td>
</tr>
</tbody>
</table>

图 2
检测器 I

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.896</td>
<td>5641</td>
<td>0.093</td>
<td>606</td>
<td>0.117</td>
</tr>
<tr>
<td>8.586</td>
<td>6063994</td>
<td>99.907</td>
<td>515463</td>
<td>99.883</td>
</tr>
<tr>
<td>总计</td>
<td>6069635</td>
<td>100.000</td>
<td>516069</td>
<td>100.000</td>
</tr>
</tbody>
</table>

图 3
<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.696</td>
<td>852</td>
<td>0.014</td>
<td>127</td>
<td>0.025</td>
</tr>
<tr>
<td>6.941</td>
<td>3614</td>
<td>0.060</td>
<td>404</td>
<td>0.078</td>
</tr>
<tr>
<td>8.648</td>
<td>5992087</td>
<td>99.916</td>
<td>514133</td>
<td>99.885</td>
</tr>
<tr>
<td>17.851</td>
<td>579</td>
<td>0.010</td>
<td>61</td>
<td>0.012</td>
</tr>
<tr>
<td>总计</td>
<td>5997132</td>
<td>100.000</td>
<td>514725</td>
<td>100.000</td>
</tr>
</tbody>
</table>

图 4
检测器 I

结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.373</td>
<td>4233</td>
<td>0.064</td>
<td>464</td>
<td>0.086</td>
</tr>
<tr>
<td>9.326</td>
<td>6646080</td>
<td>99.936</td>
<td>537593</td>
<td>99.914</td>
</tr>
<tr>
<td>总计</td>
<td>6650313</td>
<td>100.000</td>
<td>538057</td>
<td>100.000</td>
</tr>
</tbody>
</table>

图 5
检测器1

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.885</td>
<td>3687</td>
<td>0.066</td>
<td>415</td>
<td>0.087</td>
</tr>
<tr>
<td>8.558</td>
<td>5621883</td>
<td>99.934</td>
<td>476181</td>
<td>99.913</td>
</tr>
</tbody>
</table>

总计 | 5625570 | 100.000 | 476596 | 100.000 |

图6
图 7

检测器 1
结果

<table>
<thead>
<tr>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.865</td>
<td>2320</td>
<td>0.043</td>
<td>272</td>
<td>0.059</td>
</tr>
<tr>
<td>8.563</td>
<td>5444717</td>
<td>99.957</td>
<td>461452</td>
<td>99.941</td>
</tr>
</tbody>
</table>

总计 | 5447037| 100.000 | 461724 | 100.000 |
检测器 1

<table>
<thead>
<tr>
<th>结果</th>
<th>保留时间</th>
<th>面积</th>
<th>面积百分比</th>
<th>峰高</th>
<th>高度百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.895</td>
<td>2860</td>
<td>0.048</td>
<td>319</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>8.589</td>
<td>6016559</td>
<td>99.952</td>
<td>509312</td>
<td>99.937</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>6019419</td>
<td>100.000</td>
<td>509631</td>
<td>100.000</td>
</tr>
</tbody>
</table>

图 8
图 9
图 10