20047019190 A1 |10 YO OO T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
4 March 2004 (04.03.2004)

(10) International Publication Number

WO 2004/019190 A1

(51) International Patent Classification’: GO6F 1/00
(21) International Application Number:
PCT/SG2002/000199

(22) International Filing Date: 8 August 2002 (08.08.2002)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US):
NANYANG TECHNOLOGICAL UNIVERSITY
[SG/SG]; c/o Innovation and Technology Transfer Office,
Blk 1, Unit 213, 16 Nanyang Drive, Singapore 637722
(SG).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): CHEN, Tai, Pang
[GB/SG]; c/o Innovation and Technology Transfer Office,
Blk 1, Unit 213, 16 Nanyang Drive, Singapore 637722
(8G). YAU, Wei, Yun [MY/SG]; c/o Innovation and Tech-
nology Transfer Office, Blk 1, Unit 213, 16 Nanyang Drive,
Singapore 637722 (SG).

(74) Agent: NAMAZIE, Farah; Namazie & Co., Robinson
Road Post Office, P.O. Box 1482, Singapore 902932 (SG).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
7ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DISTRIBUTED PROCESSING IN AUTHENTICATION

(57) Abstract: Identity authentication systems and techniques are disclosed which solves the problem associated with limited pro-
cessing power and smart card technology in the handling of biometric authentication. By distributing the processing of an identity
authenticating process between a smart card and a computer terminal, the complicated calculation involved in a biometrics matching
process can be carried out to allow verification using biometric parameters stored on smart cards. There is disclosed a system and
technique for user authentication, together with a system and technique for distributed processing. A registration method is also

described.

WO 2004/019190 PCT/SG2002/000199

DISTRIBUTED PROCESSING IN AUTHENTICATION

In an electronic or other remote transaction, identifying the real user is difficult as
there is no actual contact. For example, if one would like to purchase anything
over the Internet, most likely a credit card number is required but it is not
necessary to physically produce the card for verification. However, such a number
can be obtained rather easily by hackers, not to mention the numerous fake credit
cards in circulation. Bankcards need PIN (Personal Identification Number)
numbers to authenticate the identity of the user. However, in many situations, the
PIN numbers can be obtained easily either because the users wrote the PIN on
their cards or at some other associated place or because the PIN numbers were
obtained through fraudulent means. Some customers have more than one bank
account and thus it is challenging to remember all the various PIN numbers on
top of the various PINs/passwords used daily. The most important problem of
mobile or electronic commerce is how to identify the “real” customer without
resorting to any complex and troublesome mechanism for verification. Biometrics

is one of the best candidates to solve this problem.

Smart cards are becoming a popular feature for e-commerce transaction
nowadays because they are small, portable and contain a secure computing
platform. The conventional way of using a smart card is just to store and verify
user's PIN on card. For example the Subscriber Identity Module (SIM) card which
is a form of smart card used in the GSM mobile phone is used to store the user's
PIN number and some access security code to mobile stations. It also verifies the

PIN number as well.

It would be desirable to utilize smart card technology to handle biometric
authentication, that is to allow user biometrics data to be used for authentication
instead of or in addition to a personal identification number. The difficulty with
using smart cards arises in the limited processing power and memory available
on the smart card whereas authentication techniques using biometric data

frequently require extensive processing power. A similar situation is faced by any

WO 2004/019190 PCT/SG2002/000199

general portable secure computing and data storage platform including Universal
Serial Bus (USB) token, contactless card, multimedia card, memory stick, secure

processor chip and smart watch.

US 5,767,504 describes a smart card with plurality of zones for verification and
validation. The zones are formed by counters and certificates and not related to

biometrics template.

US 6,012,049 describes a smart card for financial transaction system. The access
to the records stored in the smart card is divided into hierarchy of 3 or more
levels. It is recognized that the system can incorporate biometrics and PIN for

verification but these are done at the smart card reader level.

US 6,052,690 describes an invention of coherent data structure with multiple
interaction contexts for a smart card. The technique introduced is suitable for
separate execution environment in the smart card and introduced methods to
share resources as well as defining multiple access conditions for shared data by
multiple applications. However, the operations are limited by the processing
power of the smart card and does not attempt to acquire additional resources

externally.

US 6,157,966 describes a smart card connected to a terminal, which is in turn
connected to a host computer and/or a network. The smart card is configured to
initiate communications with the terminal, which enables the smart card to control
the terminal, host computer, or network and to access the resources connected to
the terminal, host computer, or network. A communications protocol defines the
commands that the smart card can send and allows the smart card to
communicate using asynchronous or logical asynchronous communication. As
the communication speed is slow, such an approach is not suitable for execution

of computationally-intensive task involving lots of commands.

WO 2004/019190 PCT/SG2002/000199

US 6,182,892 describes a fingerprint authentication methodology in which a smart
card with a credit card form factor is used to transmit the imprint of a fingerprint to
a live-scan device. The smart card is mainly used to store the fingerprint with little

mention of the processing aspect of it.

US 6,199,114 describes methods and systems to initiate a user session at an
internet terminal using a smart card. The internet terminal is coupled to a server
system. The internet terminal detects the presence of a smart card in which is
stored a unique smart card identifier and uses the identifier to locate the
configuration information associated with a particular user of the server. The
configuration information may include a defined customer environment or
customer preferences for customizing the operation of the internet terminal such
as the type of on-screen keyboard presented by the internet terminal, the font
used by the internet terminal for displaying text, background music options, and e-

mail options. It is not related to the smart card security and identity authentication.

US 6,226,744 describes a method and apparatus for authenticating a user over a
network, with the network having a client computer and a server computer, and
the client computer having a smart card and a smart card reader. The client
sends a request to the server to access restricted information stored by the
server. The server sends a smart card interface module to the client. The server
requests an access code from the user to access the smart card. Once the server
receives the access code, the server accesses user information stored on the
smart card utilizing the program and the access code. The server compares the
user information with authentication information available to the server but not the
client. If the user information matches the authentication information, the server
grants the client access to the restricted information. The access code is not part

of biometrics and does not involve processing of the biometrics information.

It is an aim of one aspect of this invention to increase the security of identity
authentication using biometrics and having the processing done at a user

presented device such as a smart card.

WO 2004/019190 PCT/SG2002/000199

It is an aim of another aspect of this invention to solve the problem associated

with limited processing power of smart cards to handle biometric authentication.

It is an aim of yet another aspect of the invention to provide a technique for
distributing processing of tasks across more than one processor, to allow a

superior processing power of one of the processors to be used to advantage.

According to one aspect of the present invention there is provided a method of
authenticating a user according to a biometrics parameter of the user presented
at an authentication device on a user-presented device on which is stored a
biometrics identification template divided into a secure portion and an open
portion, the method comprising: transmitting to a client terminal data derived from
said user biometrics parameter at the authentication device; transmitting to the
client terminal only the open portion of the said biometrics identification template
held on the user-presented device; at the client terminal, implementing a first
stage of an identity authentication process between said data and said portion
and transmitting the results of said authentication process to the user-presented
device; and at the user-presented device implementing a second stage to
complete the identity authentication process using said results and issuing an

authentication result based thereon.

The results of the first stage can be transmitted to the user-presented device

either directly or via the authentication device.

Another aspect of the invention provides a system for authenticating a user
according to a biometrics parameter of the user, the system comprising: a user-
presented device on which is stored a biometrics identification template divided
into a secure portion and an open portion, wherein only said open portion can be
transmitted out of the said device; an authentication device operable to read
biometrics data derived from a user, and comprising means for communicating

with the user-presented device and a client terminal; a client terminal arranged to

WO 2004/019190 PCT/SG2002/000199

receive the said open portion of the biometrics identification template held on the
user-presented device and the biometrics data derived from the user, and
comprising a client processor operable to implement a first stage of and identity
authentication process between said data and said portion and to transmit the
results of said identity authentication process to the user-presented device, and
wherein the user-presented device comprises a device processor operable to
implement a second stage to complete the identity authentication process using

said results and to issue an authentication result based thereon.

The authentication device and the user-presented device can be physically
separate devices or as a single physical unit, in which the user-presented device
is only a process or an internal special portion of the single device which is
capable of high-security processing and is separated from the general processing
unit which forms the authentication device. For example, it can be an ASIC chip
in which the user-presented device is a secure processor module while the rest of

the chip is the authentication device.

The client terminal and the authentication device can also be separate devices or
a single physical unit if the authentication device has sufficient processing and
memory resources. In the latter case, there is no distinction between the client

terminal and the authentication device.

A further aspect of the invention provides a method of registration of a user
according to a biometrics parameter of the user presented at an authentication
device, the method comprising: transmitting to an authorized client terminal data
derived from said user biometrics parameter obtained at the authentication
device; at the authorized client terminal, dividing the biometrics identification
template computed into secure portion and open portion, transmitting from the
authorized client terminal to a user-presented device both the open portion and
the secure portion of a biometrics identification template, storing the said template

consisting of open and secure portions on the user-presented device, with the

WO 2004/019190 PCT/SG2002/000199

secure portion only accessible within the user-presented device and not

externally.

The particular biometrics parameter discussed herein is a fingerprint, but it will be
appreciated that the invention can be applied to any suitable biometrics
parameter. In addition, the particular user-presented device discussed herein is a
smart card, but it will be appreciated that the invention can be applied to any

general portable secure computing and data storage platform.

A further aspect of the invention provides a method of executing an operation
using first and second processors, the method comprising: storing in the first
processor a first task table containing a plurality of process names with
associated process identifiers, each associated with a process locator; storing in
the second processor a second task table containing said process names and
process identifiers; identifying at the second processor a process to be executed
and issuing a request to the first processor to execute said process; locating said
process using the process locator and executing said process at the first

processor to generate a result; and returning the result to the second processor.

A still further aspect of the invention provides a processing system comprising: a
first processor in which is stored a first task table containing a plurality of process
names and process identifiers, each associated with a process locator; a second
processor in which is stored a second task table containing said process names
with associated process identifiers; the second processor including a distributed
object execution manager for identifying a process to be executed and issuing a
request to the first processor to execute said process; and the first processor
including a client distributed object execution manager for controlling the
execution of said processes at the first processor, the results of execution of the
processes implemented at the first processor being returned to the second

processor.

WO 2004/019190 PCT/SG2002/000199

The present invention is useful where the second processor has significantly less
processing power than the first processor, or where the second processor is using
its processing power for other applications and the first processor is secure and

trusted.

A particular application of these aspects of the invention allows a fingerprint

authentication process to be distributed across a client terminal and a smart card.

Thus, the embodiments of the invention discussed in the following solve the
problem associated with limited processing power of smart card technology in the
handling of biometric authentication. Currently, smart cards have limited RAM
(less than 2k bytes), EEPROM (less than 64k bytes) and processing power. By
using the PC as a co-processor to handle the complicated calculations involved in
part of the fingerprint matching process, verification using biometric parameters
stored on smart cards is possible. There are described in the following secure
authentication protocols to protect electronic or mobile commercial transactions.
It will be appreciated that the whole scheme can be applied to any portable

computing device for performing secure authenticated transactions.

In the described embodiments, the security of the system is increased because
the complete fingerprint template (or other biometric template) stored in the smart
card is not transmitted from the smart card. In the preferred embodiment, the
identity of the user is communicated to the external world in the form of a unique

personal identification number that incorporates the results of biometric matching.

In particular, the following elements are discussed in more detail in the specific

description of the preferred embodiments which follow by way of example.
Protocols

A secure fingerprint matching protocol has been developed to transmit a portion

of the fingerprint template from a smart card to a client terminal. It avoids the

WO 2004/019190 PCT/SG2002/000199

need to transmit the whole template from the smart card to the PC, which could
constitute a security risk by revealing the person’s fingerprint template. The
fingerprint template in the smart card is divided into secure portion and open
portion. The secure portion will always reside in the smart card at any
circumstances. Only the open portion of the fingerprint template is transmitted
from the smart card to the client terminal, and the open portion of the template
which is transmitted is not enough to construct a fake template to gain access of

the smart card.

Also, a secure fingerprint-smart card enable transaction protocol is discussed
which protects against any intruder attempts to hack into a transaction server for
illegal access. The smart card becomes a physical key for the transaction since
all the transactions need to go through the fingerprint enable transaction applet

which is stored on the smart card.

Load Sharing

By distributing the fingerprint authentication processing across the processor of
the smart card and the processor of the client terminal, the load on the smart card
is reduced. Therefore it is not necessary to use a smart card with powerful
computational resource which can be expensive to perform on-card matching with
a high accuracy of verification. Also, it can be ensured that the client terminal is
trusted and secure and the codes performing the fingerprint authentication

processing are secured.

User ldentification Number

A unique user identification number that is capable of changing every time it is
used is provided. A user does not have to remember the identification number.
Instead only the system of the issuing company and the smart card of the user

has a copy of the user identification number. The user relies on another personal

WO 2004/019190 PCT/SG2002/000199

identification number or biometrics data to synthesise a user identification number

to determine the granting of access to a transaction.

Distributed Remote Execution Manager Protocol

This protocol allows concurrent processing of an operation to be implemented
across first and second processors, in particular a smart card and a client
terminal. This overcomes the problem of a smart card or other mobile device
having limited processing power which would mean that some computationally
intensive techniques such as fingerprint matching would take too long to execute
on a smart card. Load sharing with a client terminal with more computing power
speeds up the process. The protocol can be implemented not only on smart
cards but on any device with limited processing power including personal digital

assistants.

For a better understanding of the present invention and to show how the same
may be carried into effect, reference will now be made by way of example to the

accompanying drawings in which:

Figure 1 is a schematic diagram of an authentication system;

Figure 1A is a schematic diagram of a smart card;

Figure 2 is a dataflow diagram of implementing matching shared between
client terminal and a smart card;

Figure 3 is a schematic block diagram of the message flow for performing
a business transaction;

Figure 4 illustrates the format of a security access check key;

Figure 5 is a simplified architecture diagram of multiple processing units;
Figure 6 illustrates a task table;

Figure 7 illustrates a simplified architecture for distributed computing;
Figure 7A is a flow diagram illustrating the procedure for initializing the task
table;

Figure 8 shows the format of an Initialization_Of_Object command;

WO 2004/019190 PCT/SG2002/000199

Figure 9 shows the format of a command string;

Figure 10 shows the format of a return parameter;

Figure 11 shows the format of the stack;

Figure 12 is a schematic diagram of multiple remote devices with a single
client processor;

Figure 12A is a flow diagram of the procedure for initializing a software
object and its member function;

Figure 13 shows the encoding format for object and function IDs;

Figure 13A is a flow diagram illustrating the procedure for load sharing a
fingerprint matching operation;

Figure 14 shows a system incorporating multiple processing units;

Figure 15 illustrates the architecture of a distributed object execution
manager bridge;

Figure 16 is an example of a task table in the distributed object execution
manager bridge;

Figure 17 shows the format of an object identifier in a muitiple server
environment;

Figure 18 is a schematic block diagram of a network execution manager;
Figure 19 is a schematic block diagram of a distributed object execution
manager in a remote device;

Figure 20 is a block diagram of a distributed object execution manager in a
client terminal;

Figure 21 is a schematic block diagram of a distributed object execution
manager in a bridge; and

Figure 22 is a schematic block diagram of an execution manager.

The follows a description of a scheme for secure electronic and mobile commerce
transactions. Figure 1 shows the connections of the components in one
embodiment. The scheme consists of a smart card reader 1, local client computer
2, a network connection 4, a security server 5 and a fransaction server computer
6. Before the discussion of the method of transaction, we will define all the items

involved and the terms used. The smart card reader 1 is a hardware device for

10

WO 2004/019190 PCT/SG2002/000199

communication between the smart card 1a and the local client computer 2. The
local client computer 2 is the terminal for the user to connect to the server 6 to
perform a transaction. The terminal 2 can be a PC, PDA or handheld computer
that has built-in communication devices. The network connection 4 is the method
of communication between the client 2 and server 6, and comprises a connection
Link 1 which can be a wireless or wired connection that provides communication
on a Local Area Network or Wide Area Network 4 basis. Wireless connection can
be either using the GSM, IEEE 802.11b wireless LAN, Bluetooth or IrDA infrared
data communication standard. Wired connection can be using the Ethernet, RS-
232C, IBM token ring etc. The security server 5 secures the transaction server 6
from intruders and manages the user’s portfolio. The transaction server 6 is the
server that performs all the actual business transactions. The location of the
transaction server 6 can be behind the Security server 5 which is guarded by the
security server’'s firewall 7 or a separate server 6 which is guarded by local
firewalls 7 and 8. The details of how to enable the firewall will be discussed later.
The smart card reader 1 is connected to the local client computer 2, such as via
standard RS-232C or USB link. That link itself does not have any data encryption.
The smart card 1a and the client computer 2 do the encryption to conceal
information. The smart card 1a in the present embodiment comprises Java Card,
a type of smart card which can execute Java Byte Codes. With reference to

Figure 1A the smart card 1a has a memory 10 storing the following information:

(a) Local-matching applet

(b) Client-matching applet

(c) URL (Uniform Resource Locator) of the security server
(d) Transaction applet

(e) Security applet for comparing SACKs

The memory 10 also holds a fingerprint identification template 11 of the

authorised user of the smart card. The smart card 1a also has a processor 13 for

executing code on the smart card 1a.

11

WO 2004/019190 PCT/SG2002/000199

The local-matching applet (a) is a compact executable program such as the Java
Byte Code that can run on smart card 1a. The client-matching applet (b) is
another complimentary executable program such as the Java Byte Code that can
execute in the client computer 2. The client-matching applet (b) can be stored in
the smart card’s memory 10. However, for some smart cards with limited memory,
the size of the client-matching code may be too large. Instead, the URL (c) of the
security server where the code for the client-matching applet can be obtained is
provided. A URL (c) is necessary for the client to access the Internet to reach the
server and download the code. No matter where the client downloads the client-
matching code, the client should always check the integrity of the Java Byte code.
The Transaction applet (d) performs actual business transactions. The only way
of enabling this transaction applet is by a local-matching applet. As described in
more detail later, once the local matching applet has verified the user’s fingerprint
is valid, it will send a security enable code to the internal firewall of the smart card
to allow the transaction server 6 to do a business transaction. The details of how

the transaction server 6 performs a business transaction will be discussed later.

A fingerprint sensor 3 captures the image of the fingerprint and sends it to the
client computer 2. The client computer 2 processes the image and constructs a
fingerprint template. The fingerprint template contains crucial information of the
fingerprint features that allow unique recognition of the fingerprint. The client-
matching applet (b) and the local-matching applet (a) compare the template from
the sensor 3 and the template 11 stored on smart card 1a. The result of the
comparison yields a similarity level, which indicates the degree of match between
the fingerprint templates, one obtained live from the fingerprint sensor 3 and the

other stored in the smart card 1a.

Link 1 is the wired or wireless connection to the LAN and WAN 4. The LAN and
WAN 4 connect to servers 5, 6 through the firewall 7, 8. The security server 5 and
transaction server 6 can be implemented in the same server machine or in
different machine. If both servers are installed in the same machine, only one

firewall is necessary. Otherwise, each server should have its own firewall. Link 4

12

WO 2004/019190 PCT/SG2002/000199

is the optional network connection between the security server 5 and transaction
server 6. If both servers are in the same sub-net in the LAN 4 and trust
relationship has been established, the communication can be a direct connection
via LAN 4. However, where information may go through the WAN 4, encryption
and error detection schemes are necessary to avoid any information exposure

and communication error respectively.

The client computer 2 accesses the security server 5 and gets all the necessary
components for identity verification. The client-matching applet (b) can be
downloaded from the security server or from the smart card 1a to the client
computer 2. Once the client computer 2 has all fingerprint detection and maftching

components, user can proceed to choose the combination of the verification.

1) Fingerprint Only

2) PIN (identification number or password) only
3) Fingerprint + PIN

4) Other Biometric only

5) Other Biometric + Fingerprint

6) Other Biometric + Fingerprint + PIN

Other biometrics can be hand written recognition, face recognition, retina scan or
other suitable biometric identifiers. The transaction server 6 can adjust a
confident index based on the chosen combination, so as to control the limitation
of the access of the user to perform transaction. The issuer can assign an
accuracy level for each type of biometric. The following equation is an example
for calculating the matching score using confident index for the case where

fingerprint and PIN are used.

Cl = FM*K¢+ PIN -----(1)
Cl: Confident Index
FM: Fingerprint Matching Score (from 0 to 100)
K4: Coefficient

13

WO 2004/019190 PCT/SG2002/000199

PIN: PIN score.

The PIN score is either 50 (correct PIN) or 0 (Incorrect PIN). If Kiequals to 0.5,
the range of Cl will be from 0 to 100. For low security applications, the threshold
score can be set to lower than 50. Hence, the user who can access to the system
has either a correct PIN or valid fingerprint. For high security applications, the
threshold can be adjusted to greater than 50. In this case, the user should have

both valid fingerprint and PIN number in order to access the transaction server 6.

Registration

Before the user can use the smart card to perform verification, the user should
register the fingerprint on the smart card. Figure 1 shows the system of
performing transaction and fingerprint authentication. Registration does not
involve any transaction. Hence, link 3 to the transaction server can be removed.
Smart card reader 1, smart card 1a, a client terminal 2 and a fingerprint sensor 3
are necessary for registration. The connection to security server is necessary as
well, since the security server should record down the information of the new
user. An authorized client terminal 2 must be used for secure registration. The
user presents the fingerprint on the fingerprint sensor. The sensor captures the
biometric parameter and transmits the parameter to the client terminal 2. The
client terminal 2 constructs a fingerprint template with two portions, secure portion
and open portion. The client terminal 2 uploads both portions of template to the
smart card 1a. The secure portion which contains crucial information is stored in
the user-presented device and this portion will never be sent out from the device.
The open portion which contains less crucial information is stored as a
compressed form on the smart card 1a. Once the client terminal 2 completes the
processing of the template which consists of open portion and secure portion, it
will upload the information of the user to both the smart card 1a and the security

server 5 for recording purpose.

14

WO 2004/019190 PCT/SG2002/000199

Protocol for Fingerprint Matching on Smart Card.

The fingerprint matching algorithm as disclosed in XD Jiang, WY Yau, “Fingerprint
Minutiae Matching Based on the Local and Global Structures”, 15™ International
Conference on Pattern Recognition, Proc. ICPR 2000, Barcelona, Spain, Sept.
2000 is suitable for use in this scheme. The algorithm is divided into two stages —
the local stage and the global stage. The local stage uses a subset of fingerprint
minutiae (which is the open portion mentioned earlier) to establish the
correspondence between the minutiae in the user-presented fingerprint and the
stored template 11. Once sufficient correspondence is found, a transformation
function that maps the minutiae in the user-presented fingerprint to the subset of
minutiae of the stored template will be computed. This transformation function
then aligns the two templates using the minutiae. Global matching is then
performed to ascertain the degree of confidence that the query fingerprint is
similar to the registered fingerprint. Such an algorithm is naturally suited for
distributed or client-server processing. As mentioned in the previous section, the
finger matching process is divided into two sides: smart card 1a side and the
client computer 2 side. Both sides work in tandem to perform the matching
process. The client computer 2 computes all pre-processing parameters and re-
aligns the templates from both the client computer 2 side and the smart card 1a
side. Then the client computer 2 passes it to the smart card 1a to perform the

final matching. The reasons for matching a fingerprint template in such a way are:

1) Better authentication security because the original enrolled template 11 is
never revealed to the public, but only a subset of the minutiae.

2) Increase the speed of matching by using the client computer 2 processing
power to augment the processing power of a smart card 1a processor
which is very limited.

3) Because of the inherent!y high security nature of smart card 1a, hacker can
never use any software method to view the matching program residing in

the smart card 1a.

15

WO 2004/019190 PCT/SG2002/000199

Figure 2 shows the procedures of performing matching on smart card 1a. All
arrows indicate the direction of data flow. The description of each arrow is stated

below:

A) Client computer 2 (PC) computes the template of the fingerprint
obtained from the fingerprint sensor 3 (Step S1).

B) After initialization (Step S2), smart card 1a sends partial base
information of minutiae (Step S3) for the PC to calculate the matching coefficients
(encrypted information) (Step S4).

C) PC requests the coordinate of maximum of nine potential minutiae
from the smart card 1a. These minutiae are used to align the two templates so
that they are in the same coordinate space.

D) Smart card 1a sends encrypted coordinates of minutiae (maximum
nine minutiae) to PC (Step S5).

E) PC aligns templates (Step S6) and sends the aligned input
fingerprint template and matching coefficients to smart card 1a.

F) Smart card 1a receives the template and matching coefficients,
calculates a matching result (Step S7) and sends an acknowledge signal to PC,
which acknowledges finish of template matching (Step S8).

Since the remote computation (i.e. at the client terminal 2) is only used to align
the two sets of minutiae, does not have even the full minutiae information of the
maximum nine minutiae for alignment and does not affect the actual global
matching process itself, thus the proposed distributed processing will not

compromise the security of the fingerprint matching in any way.
Fingerprint-Smart Card enabled transaction protocol.

Once the smart card 1a has finished the calculation of the matching result, the
smart card 1a notifies the security server 5 through the client computer 2 by an

acknowledge signal and requests a Security Access Check Key (SACK) from the
server 5. The SACK is used to allow the matching applet (a) to activate the

16

WO 2004/019190 PCT/SG2002/000199

transaction applet (d) on the smart card 1a. The SACK code is a UIN (Unique
Personal Identification Number) with a time stamp. The details of the SACK key
will be discussed later. Figure 3 shows the message paths of how the system
performs the transaction. The following sequence shows the method of using the

SACK to enable the transaction applet (d).

(1.1) Matching applet (a) notifies the security server 5 that the matching
process has been finished (path 15).

(1.2) The security server 5 sends a SACK key to the matching applet (@)
on the smart card 1a (path 12) and the transaction server 6 as well.

(1.3) Once the matching applet (a) receives the SACK (path 14), it will
add the matching score to the SACK (equation 2 below).

(1.4) The matching applet (a) transmits the SACK to the transaction
applet (d) internally (path 16).

(1.5) The transaction applet (d) decodes the SACK to check the matching
score. If authentication is successful (i.e. the score is higher than the security
threshold), the applet (d) will switch itself to transaction-enabled status, otherwise
(i.e. the score is lower than the security threshold), the transaction applet (d) will
disable itself immediately and it notifies the card manager to handle the security

exception. Path 18 is the message path to perform the transaction.
SACKMatching app]et:: UIN = SACK Security Server::UIN + MatCh[ng SCOFe “““ (2)

Note: the notation of “:' means the member of. Therefore, SACKwatching applet::UIN
means the UIN field of the SACKwatching applet-

Up to this point, all security-enabled procedures for the transaction applet (d)
have been done inside the core of the smart card 1a, except for the SACK key
that is issued by the security server 5. The external client computer 2 only
performs some assistance for the computation of matching. The final matching
result, security-enable code and transaction applet (d) activation are done on the

smart card 1a: none of this information is sent out to the client computer 2. The

17

WO 2004/019190 PCT/SG2002/000199

role of the client computer 2 is just a communication bridge between the server
and the smart card 1a, and as a co-processor for the smart card 1a. The final
decision still depends on the matching result on the smart card 1a. If the security
applet (e) in Procedure (1.5) disables itself and causes a security exception, the
applet (e) will notify the card manager to handle the security exception. The card
manager disables all transactions to the security applet (e) and it reports to the
client computer 2 by throwing a security exception. Of course, the client computer
2 has the capability to handle the exception. If cIientA computer 2 receives the
exception from the smart card 1a, the client computer 2 will execute the security
exception handling routine to report to the user as well as the transaction server 6
of such error. The transaction server 6 terminates the transaction and it reports to

the administrator for further instruction.

Once the transaction applet (d) has been enabled, the transaction server 6 will
perform a business transaction. For example, the user wants to pay $100 to a
credit card company. The following procedures can be used to perform a
business transaction. Bi-directional communication channels (path 18) will be

established for the transaction.

(2.1) The client computer 2 sends the purchase-request and the amount
of transaction ($100) to the transaction server 6 via path 18. The client computer
2 also sends the amount of transaction to the smart card 1a as well.

(2.2) The transaction server 6 sends a SACK key with a new time stamp
to the smart card 1a.

(2.3) The transaction applet (d) of smart card 1a compares the SACK
keys and checks the time stamp (one is from the matching applet and the other
one is from transaction server 6).

(2.4) If both keys are the same and the time stamp is within the time limit,
the applet (d) will deduct the value from the smart card 1a ($100). Then, the
applet (d) notifies the transaction server 6 that the transaction has been

successfully completed.

18

WO 2004/019190 PCT/SG2002/000199

(2.5) If both keys are invalid or the time stamp is out of the time limit, the
transaction applet (d) sends a transaction-failed message. The transaction server
6 aborts the transaction and it notifies the administrator immediately.

(2.6) If the transaction receives the transaction-successful message from
the smart card 1a, it will proceed to run the actual transaction with the credit card
company to deposit $100 to the account of credit card company. At this moment,

the user has paid $100 to the credit company by way of an electronic transaction.

In procedure (2.2), the SACK key, in fact, is the one from the security server 5 as
mentioned earlier. The only difference is that it has a new time stamp but without
the matching score. In procedure (2.3), the method of verifying the SACK keys is
by testing the UIN field from the SACK. Since both keys are from security server
5, they should have the same UIN key except the matching score. Hence, the
method of verifying the UIN key is:

SACKmatching appet:'-UIN — SACKTransaction server::UIN = Matching Score ----- (3), if so
SACKrransaction server::UIN = SACKsecurity server::UIN === 4)

The transaction applet (d) on the smart card 1a performs subtraction of both keys.
The result should be the matching score. Otherwise, either one of the keys or
both keys are invalid. The time stamp field indicates the time of login or
performing transaction. Equation 5 calculates the duration of the time between

login and transaction.

Duration = SACKTansaction server:: TimeStamp - SACKnwatching Applet:: TimeStamp ----- (5)

If the duration between the login time (SACKuatching applet:: TimeStamp) and the
transaction time (SACKrransaction Server:: TimeStamp) is longer than the time limit
(e.g. 5 minutes), the transaction applet (d) aborts the transaction and it sends an
error message back to the transaction server 6. In this case, user needs to login

again in order to continue the transaction.

19

WO 2004/019190 PCT/SG2002/000199

Unique personal Identification Number and the SACK

Since the SACK is the key for permitting the security applet (e) to enable the
transaction applet (d), it is a unique key of allowing the transaction applet (d) to
perform transaction. To achieve this, a unique personal identification number

(UIN) is proposed here as well.

For each person, a Unique personal Identification Number (UIN) is assigned to
him, but he will not know nor has he to remember the UIN. The UIN will be
randomly generated. It is also possible for the UIN to incorporate a number which
can identify the issuing company and the biometric system in use. In addition, a
biometrics of the person is obtained, such as his fingerprint. As already
explained, the person can use his fingerprint to authenticate his identity by
presenting his finger to a fingerprint verification system, which prior to that, he has
already registered for such a service. The fingerprint verification system will then
produce a number corresponding to the confidence level as to whether the
person is the same as the person registered in the system. In other words, the
fingerprint verification system produces the level of certainty that the person is
who he claimed he is, called the matching score. When this number is added to
the UIN, the new number is called the biometric identification number (BIN). The
maximum achievable matching score (AMS), corresponding to 100% confidence
that the person is who he claimed he is, can be any number, and need not
necessarily be 100, such as 10,000. Similarly, a minimum matching score (IMS)
can also be assigned to the system. To increase the security, a time stamp and a
random Key are added to the key. Figure 4 illustrates the format of the SACK key,

where the fields are as follows:

A1: Scramblie Function Key.
A2: Random Key

A3: Time Stamp

A4: UIN

CS: Check Sum

20

WO 2004/019190 PCT/SG2002/000199

Where A1 is the Scramble Function Key, A1 is not encoded. A1 is used to select
which Scramble Function (such as shifts, rotates, add constant or etc) and which
bit or byte is associated with which data type in order to scramble the following
fields (A2-A4) for security reason. A2 and A3 are a Random Key and a Time
Stamp respectively which were discussed in the previous section. CS is the

check sum of the whole key to avoid any transmission error. A4 is the UIN.

An example of UIN is shown below:

Unique personal identification number: 2 345 678 988 011 009

Maximum matching score: 10 000.

Minimum matching score: 2500

Maximum BIN: 2 345 678 988 011 009 + 10 000 = 2 345 678 988 021 009
Minimum BIN: 2 345 678 988 011 009 + 2500 = 2 345 678 988 013 509

Since a user does not know the UIN, the BIN will also not be known to the user.
Similarly, the user need not remember this number as well. The UIN will be kept
by the computer storage medium of the company such as the security server 5
that issues it and the user. For example, when a user is interested to use the
system, he will register for the service, where his biometrics such as fingerprint
will be obtained. The issuing company stores the UIN and the fingerprint template
in a smart card 1a which is then given to the user. For better security, the UIN can
be changed every time the system is used. In order to change the UIN every time,
the security server 5 and the remote client machine (smart card 1a or client
computer 2) should have a security applet (e) or process, to manage the change
of UIN. The server sends a new encrypted UIN to the remote client machine. The
client machine decrypts the UIN and appends it to the old UIN. The upper half of
the message length is the old UIN and the lower half the new UIN. Once the
transaction has been done, the upper half of the UIN will be deleted and the lower
half of the UIN will be moved to the upper half for next transaction to use. The

following example shows how to generate and use UIN:

21

WO 2004/019190 PCT/SG2002/000199

Number received: 2 345 678 988 011 009

Current UIN: 23 456 789

Next UIN: 88 011 009

Maximum matching score: 10 000.

Minimum matching score: 2500

Maximum current BIN: 23 456 789+ 10 000 = 23 466 789
Minimum BIN: 23 456 789+ 2500 = 23 459 289

In the next process, assuming the number received is 8 801 100 977 123 456
Current UIN: 88 011 009
Next UIN: 77 123 456

A reset code, such as null UIN can be used to reset the UIN for the case when a
new device is installed or new user. Upon reset, the UIN will be ignored by both
the client machine and the security server 5 and the client machine will use the

new UIN from a new SACK generated by the security server 5.

Procedure of identification of user using biometric

The following sequence occurs when the user tries to access the system.

(3.1) User inserts the smart card 1a to the card reader 1.

(3.2) Client computer 2 prompts for password or personal identification
number (PIN).

(3.3) User inputs his password or PIN at client computer 2.

(38.4) Client computer 2 prompts for fingerprint.

(3.5) User places his finger on the sensor 3.

(3.6) Client computer 2 acquires the fingerprint and extracts the fingerprint
template.

(3.7) Client computer 2 provides the PIN and fingerprint template to the
smart card 1a.

(3.8) Smart card 1a matches the fingerprint against its stored template 11.

22

WO 2004/019190 PCT/SG2002/000199

(3.9) Matching applet (a) requests the UIN from the security servers 5 or
from the smart card 1a.

(3.10) If the matching score obtained is valid (i.e. the matching score obtained
is between the IMS (minimum matching score) and the AMS (maximum
matching score), the matching score obtained will be added to the UIN, to
obtain the biometric identification number (BIN).

Example: Obtained matching score = 4500
BIN =2 345 678 988 011 009 + 4 500 = 2 345 678 988 015 509

(3.11) If the fingerprint matches below the IMS or above the AMS, a random
number above the AMS will be added to the UIN to obtain the BIN.
Example: Obtained matching score =100

Random matching score generated = 18 000
BIN =2 345 678 988 011 009 + 18 000 = 2 345 678 988 029 009

(3.12) Smart card 1a will combine the PIN and the BIN, encrypt them and
send them to the client computer 2, which will then send to the transaction
server 6. Other information, such as name of the user etc. can be included
in the message sent as well. The transaction server 6 also can compute
the SACK key as well.

(3.13) Transaction server 6 will match the PIN and subtract the UIN from the
BIN to obtain the matching score (MS). There are 6 possible cases as
follows:

a) PIN matches and MS is within the possible score (IMS <= MS <=

AMS)

b) PIN matches but MS is outside the possible score

c¢) PIN does not match but MS is within possible score

d) PIN does not match and MS is outside the possible score

e) PIN matches and MS =0

f) PIN does not match and MS =0

(Note: if the transaction applet (d) is not enabled, that means login failed

from the smart card 1a side and the transaction is terminated here.)

(3.14) From the above results, corresponding decision can be made.

Example: For case (a), full access is granted

23

WO 2004/019190 PCT/SG2002/000199

For case (b), limited access is granted (or user tries again)
For case (c), limited access is granted (or user tries again)
For case (d), the smart card 1a is retained.
For case (e) it is treated as credit card with password
protection.
For case (f), it is treated as normal credit card.

(3.15) The transaction server 6 will then send the decision to the smart card

where the smart card will act according to the decision obtained.

The UIN can include an identifier which identifies the organization, such as the
bank code. Similarly, the UIN can incorporate authentication results from more
than one biometric parameters and include together the type of biometrics used
and the biometrics system provider. Another alternative is to attach these
numbers to the encrypted message as a header or footer. These numbers need

not be encrypted.

Including the identifier code to the biometrics system has the following

advantages:

1. The company that issues the smart card need not be tied to a single
biometrics system provider. Any smart card that complies with the protocol
specified by the issuing company can be used.

2. The user can select which biometrics he is comfortable with.

3. The issuing company need not keep track of all the biometrics used and
implement the matching of the biometrics in the server. As such the BIN
allows a mix and match of the biometrics system.

4. The BIN is similar to PIN system in use today, and as such, the issuing
company can easily upgrade the current transaction server 6 with existing

PIN system in use to incorporate the biometrics feature.

It is also possible to implement automatic selection of the most secure or suitable

way of authenticating the identity of the user. The mode of authentication includes

24

WO 2004/019190 PCT/SG2002/000199

the type of biometrics used or password etc. There is a unique number, the
authentication device identity number, assigned to each type of authentication
mode. The client computer 2 will identify all the available authentication modes
and store these device identity numbers. On the security server 5 side, the server
system ranks the confidence level or security of each of these authentication
modes. The ranking is usually dependent on the choice or preference of the user.
Such a ranking is done by providing a table of entry in which the device identity
number is stored. The entry at the top of the table corresponds to the most
confident means of user authentication while the bottom most entry is the least
confident means. When identity authentication is needed, the client computer 2
will indicate the available authentication mode by providing the authentication
device identification numbers available. The security server 5 will then choose
from these entries, the most appropriate means to authenticate the identity of the

user.
The protocol is as follows:

(4.1) Security server 5 has a table of entry to rank the confidence level of the
authentication modes accepted by the company.

(4.2) When the client computer 2 is used, an indicator of the available
authentication mode will be sent to the security server 5.

(4.3) Security server 5 decides the type of authentication mode to be used
and send a reply to the client computer 2.

(4.4) The client computer 2 obtains the command and executes the required
authentication mode to be used to identify the user.

(4.5) The security server 5 then matches the response from the data
collected and processed by the client computer 2 and smart card 1a in

order to authenticate the identity of the user.

Distributed Remote Execution Manager Protocol

25

WO 2004/019190 PCT/SG2002/000199

A protocol for fingerprint matching on the smart card 1a with the assistance from
the client computer 2 has been presented. Now the details of how the smart card

1a executes the functions in parallel with the client computer 2 will be discussed.

Conventional Smart cards have limited resources such as limited memory (RAM/
EEPROM), processing power (8-bit/16-bit) and speed (less than 15MHz). The
data transfer rate from client computer 2 to smart card 1a is slow as well. A
Distributed Remote Execution Manager Protocol is discussed below which allows
shared execution while overcoming the problem of low data transfer rates. This
protocol is described in the context of the above specified remote authentication
process but is also suitable for other computing devices with low computing
power and with a slow communication link. The architecture supporting the
protocol is able to scale up to multiple remote devices to request remote

execution or multiple servers to manage requested processes.

Distributed Computing Architecture

Figure 5 shows a simplified architecture of multiple-processing units.

Assuming that Processing Unit 1 (PU1) has much more computing power than
Processing Unit 2 (PU2). PU1 and PU2 are client computer and Remote Device
(Device with lower processing power such as smart card or Personal Digital
Assistant) respectively. The client computer PU1 performs processing of tasks.
The remote device PU2 requests the client computer PU1 to execute tasks. Each
processing unit has a copy of a task table holding details of tasks. Figure 6 is an

example of the task table.

In the task table, the first column contains the names of the objects and their
functions. The second column contains the Object ID and Function ID. All names
are in ASCII format. Object ID can be a 32-bit signed integer and Function ID can
be a 16-bit signed integer. EOT stands for End Of Table that can be a 16-bit
signed integer. EOT equals to -1. The third column and fourth column of the task

26

WO 2004/019190 PCT/SG2002/000199

table are only for the client side (PU1). The remote device (PU2) does not have
columns 3 and 4. Column 3 is the parameters table. It contains the type casting of
parameters. Column 4 contains the function/object entry point that is the starting
address of the function or object. The number of objects in the task table is not
limited, but programmer should aware of the memory size of the remote device
(PU2) to avoid memory overflow exception. The task table is a mapping of the
function’s/object's name to the ID number. A Distributed-Object Execution
Manager (D-OEM) executed on the remote device (PU2) uses this task table to
notify a manager D-OEM on the client side PU1 (D-OEM_client) which task
(object and function) should be executed. The D-OEM_client on the client side
PU1 executes the function by mapping the ID to the starting address of the

function using the task table.

Figure 7 is a schematic diagram showing the architecture of Distributed
Computing. Dynamic binding is used to initialize all the entries of the task table in
PU1 and PU2, that is the function entry point is determined during runtime. The
client processing unit, PU1 has been divided into 4 levels. The first level is the
Client Manager (CM) that handles communication over the communication
channel CL denoted by a solid black line in Figure 7. The second level is the D-
OEM_client. The task table TT1 is stored inside the D-OEM_client. The third level
is the Execution Manager EM1 which controls the execution of functions. The
fourth level is the program area PA1. All functions and objects are stored in this

level.

The remote device unit PU2 has a similar structure but in place of the Client
Manager CM it has a Remote Device Manager RDM, and it does not have an
Execution Manager. Instead the D-OEM in PU2 has a stack S to handle the return

value of the function. The details of using this stack will be discussed later.
Before initialization of the task tables, all the entries in the task tables except the

Object Name column are empty. Before the remote device PU2 calls the function
or object in the local client PU1, the D-OEM should initialize the task tables in

27

WO 2004/019190 PCT/SG2002/000199

both client PU1 and remote device PU2. The steps of figure 7A show the method

of initialising the task table.

Step S10 Remote device PU2 sends a request command
(Initialization_Of_Object) TT1 to the client PU1. The format of the

Initialization_Of_Object request command is shown in Figure 8.
Step S12 D-OEM_client searches the object name in the task table TT1.

Step S14 If D-OEM_client has found the object in the task table TT1, D-
OEM client will call the Execution Manager EM1 to invoke the
object’s constructor in order to initialise all the object's variables and
functions. Execution Manager EM1 computes all parameters and
entry points and it fills these entries into the task table (column 3
and 4) TT1.

Step S16 If D-OEM_client cannot find the object with the given name, the D-
OEM _client will throw an exception to the system and terminate the

process.
Step S18 Once the Execution Manager EM1 finishes the construction of the
object, the D-OEM_client will generate all the 1Ds for the public
functions, protected functions and the object itself. The D-
OEM_client will fill the IDs into the task table TT1 (column 2).

Step S20 D-OEM_client sends the IDs in column 2 to the remote device PU2.

Step S22 The remote device PU2 receives the IDs and saves the entries to
the local task table TT2.

The object can be initialized at any time, as the system needs to use the object.

An array of objects can be used, as the D-OEM will generate multiple copies of

28

WO 2004/019190 PCT/SG2002/000199

task table TT2 for the system to call different objects. The details of generating
the IDs will be discussed later. Once the code on the remote device PU2 has

been terminated, all the entries in the task tables will be flushed.

We refer now to Figure 8, which shows the format of the Initialization-Of-Object
command. The first field is the Remote Device ID 82. For smart cards, this ID
can be the smart card ID. For mobile device with network support, this ID can be
the IP address or MAC address. The D-OEM init command 80 is a unique binary
command to instruct the D-OEM_client to perform remote object execution
initialization. The Object Name 84 is the name of object in ASCI| format. The
parameters 86 are the initial value for construction of object. The End code 88

indicates the end of transmission.
Execution of a remote function and Synchronization

In order to execute a remote function, the remote device PU2 needs to use its D-
OEM to call a function and run it on the client computer PU1 side. Here is an
example for the case where the remote device PU2 needs to call function1 that is

the member function of object1:

Return value =

D_OEM.execute(“object1”,"function1”,wait_status,parai,para2,....);

D-OEM is the static base object. This object can be a dynamic object as well if the
local function or object creates or inherits its own copy of D-OEM object. The
function execute(...) is the public member function of D-OEM. This function starts
the function remotely on the client computer PU1. The first parameter is the name
of the object. The second parameter is the name of the function. The third
parameter is the type of wait state for synchronization. If the next function does
not need the return value to execute and it can execute with this function
concurrently, no_wait can be used to perform concurrent processing. Otherwise,

the system waits for the response from the remote process. The range of time to

29

WO 2004/019190 PCT/SG2002/000199

wait for the remote procedure response is from 1 to 65535 (for the case of 16-bit
unsigned integer). Zero stands for no_wait. The unit is in milliseconds. If the
process cannot receive any response after timeout, a timeout exception will be
thrown to the D-OEM. The other parameters (parat, paraz, ..) are the parameters
of function1. The D-OEM pushes the reference of the return value, Object ID and
Function ID on the stacks. The stack is used for handling the return parameter.
The D-OEM encodes the parameters to a command string (figure 9) and sends
this string to the remote device manager RDM. The D-OEM looks the Object ID
91 and Function ID 92 up from the task table TT2. In figure 9, the command string
has only two parameters (Parameter 1 94 and Parameter 2 95). The number of
parameters depends on the function itself. Hence, the string can contain any

number of parameters (not necessarily two as shown in Figure 9).

This command string is sent to the remote device manager RDM. Then, the
remote device manager RDM will send it to the client computer PU1 through the
communication link CL. Any on-device cryptographic engine can be used to
encrypt the string for secure data transfer. Once the client computer PU1 receives
this command string, it will send it to the client manager CM. The D-
OEM_func_call 90 is the binary command to indicate that the remote device PU2
requests a remote function call. The D-OEM_client decodes the string and it uses
the task table TT1 to look up the software entry point of the object and function.
The D-OEM_client passes the entry point and all the function’s parameters to the
Execution Manager EM so as to start the function. The reason for using an
Execution Manager EM is the function can be a normal function or a thread. If the
function is a thread, the Execution Manager EM will perform synchronization for
the remote device PU2. The remote device PU2 can virtually control the remote
thread directly. Once the function has been terminated, the function sends back
the return value to the D-OEM client (the dash line in figure 7). The D-
OEM_client passes the retun value to D-OEM via Client Manager CM,
communication link CL and Remote Device Manager RDM. Figure 10 shows the

format of the return parameter from the client.

30

WO 2004/019190 PCT/SG2002/000199

The D-OEM on the remote device PU2 checks the header of the return
parameter. D-OEM_return_param 100 indicates this binary string contains the
return parameter of the function. D-OEM only accepts the binary string with valid
header. The D-OEM searches the reference of the return object by the Object ID
102 and the Function ID 104 in the stack S. Then, D-OEM will save the return
value to the variable and push the variable on the stack S. The Type 106
indicates the type casting of the return value. The fifth field contains the actual

Return Value 108 of the function. The End code 110 indicates the end of string.

Synchronization of concurrent functions is necessary. If the wait_status is set to
no_wait, the D-OEM on the remote device PU2 will need to do extra procedures
for synchronization. A synchronized(...) function can be used if the program

needs an explicit synchronization. Consider the following fragment of Java code:

” n,

1: r_value = D_OEM-execute(“object1”,
2: coef = calc(input);
3: result = coef * return_value;

functional1”,no_wait,para1,para2),

The first line calculates the r_value. The second line calculates the coef. Both
lines do not have any dependence, therefore, they can execute at the same time.
The first line is executed on the client computer PU1, and the second line is
executed locally, i.e. in the remote device PU2. However, all return values are
needed to calculate the result in line 3. If the function in line 1 has not finished the
computation but the function in line 2 has finished the computation (in other
words, coef is ready to use but r_value is not ready yet), the function in line 3 will
encounter an error provided that line 3 executes without any waiting for the
calculation of r_result. Hence, it is necessary to perform synchronization in this

case. Consider the following code fragment.

1: r_value = D_OEM.execute(“object1 " *function1”,no_wait,paral,para2);
2: coef = calc(input);

3: D_OEM.synchronize(“object1”,”function1”.timeout);

4: Result = coef * return_value;

31

WO 2004/019190 PCT/SG2002/000199

An extra line is added in the code fragment. The function in line 3 handles the
synchronization. The function synchronize (...) is a public member function of D-
OEM. This function forces the system to wait until the variable (r_value) receives
the return value from the client computer PU1. The first two parameters are used
to identify which function has been called that needs to perform synchronization.
The third parameter indicates the maximum timeout in milliseconds. If D_OEM
object encounters any timeout, an exception will be thrown out to the system. The
remote device manager RDM catches the exception and then handles the error.
Once the return_value is received, the system will execute the next line to
calculate the result. The following procedures show how to perform

synchronization by the D-OEM.

(56.1) Starts synchronization method and reset the timer.

(5.2) Checks the timer value, if the value is equals to timeout, an exception
will be thrown and the synchronization method will be aborted.

(5.3) Checks the D-OEM commit buffer has received any return parameters.
If any valid parameter belongs to the function, synchronization method will
be terminated and the data will be sent back to the variable (r_value).

(5.4) Loops back to step 2 to continue wait function.
Generation of Object ID and Function ID

Since this is a distributed computing architecture, the communication can be any
kinds of communication (wired or wireless). It is possible to connect multiple
remote devices to a single client computer PU. In this case, the client computer
PU needs more computing power to cope with multiple remote devices. Hence,
the processing unit can be a high performance server. Regardless of whether the
system contains single client or multiple-clients, the method of generating the ID

and the protocol of handling multiple requests are the same.

Figure 12 shows two remote devices RD1, RD2 connected to a single client

computer PU. Each remote device requests the client computer PU to execute

32

WO 2004/019190 PCT/SG2002/000199

some objects. These objects may or may not be identical processes. No matter
which process or object is requested by the remote device, the execution
manager needs to assign a unique ID to the object and its member functions. In
order to generate unique 1D, a separate task table for each remote device will be
generated. In the case a 24-bit counter is used to generate all Object IDs and 16-
bit counter to generate all Function Ids, then each member function’s ID is 48-bit
(16-bit + 32-bit). Even if there are lots of remote devices requesting concurrent
tasks at the same time, it is not easy to overflow the counter and causes
duplicated ID. For the case the Object ID is a 32-bit integer, the object counter
can only generate a 24-bit ID. The last 8 bits are reserved for a server ID in a
multiple-server environment. Multiple-server environment will be discussed later.
In this case, the last 8 bits are all set to zero. The execution manager uses the

steps shown in Figure 12A to initialize a software object and its member function.

Step S30 D_OEM_client receives the request from one of the remote

devices (Initialization_Of-Object).

Step S32 D-OEM_client searches the object using the Object Name in
the task table. If D-OEM client cannot find any object with
the given name, an exception will be thrown (Step S34).
Otherwise, object construction (Step S36) will be performed.
The Execution manager constructs the object and requests a
new Object ID from the Object ID counter. Then, the

manager will add one to the counter for next object.
Step S38 Execution Manager generates all function IDs using Function
ID counter for the public and protected member functions of

the object.

Step S40 Execution manager sends all IDs back to D-OEM_client.

33

WO 2004/019190 PCT/SG2002/000199

Step S42 D-OEM_client checks the existence of the task table that
belongs to particular remote device. If it does not exist, a
new copy of task table with the remote device ID will be
created. Otherwise, D-OEM_client appends the entries to
the existing table. If the client computer PU connects to
multiple remote devices, a separate task table wil be
generated for the specific device that sent the
Initialization_Of_Object.

Step S44 D-OEM_client sends back all IDs to the requester.

In Step S42, if only one remote device RD1 is connected to the client, only a
single copy of the task table will be generated. For multiple devices, each device
has its own copy of task table. Figure 13 shows the binary string that encodes the
Object ID and Function IDs.

The D-OEM_client sends this string to the client manager. The client manager
knows the path of sending back this binary string to the correct remote device.
Once the remote device receives this string, it inspects the Remote Device ID of
that remote device. if the ID is correct, it will send this string to the D-OEM. The
D-OEM decodes all IDs and stores these IDs in the task table. The Number of IDs
indicates the total number of ID (including the Object ID) in the string.

Using distributed computing to perform load sharing for fingerprint

matching on smart card

It is very time consuming to-perform a full matching on smart card 1a or remote
device computer with low processing power. To overcome this problem, a load
sharing mechanism by a more powerful local client computer 2 can speed up the
processing time of the fingerprint matching. There follows a discussion of using
Distributed Remote Execution Protocol to perform load sharing for the fingerprint

matching discussed earlier.

34

WO 2004/019190 PCT/SG2002/000199

Apart from the minutiae detection, the minutiae-based matching algorithm
discussed earlier can be divided into two parts, the base finding (local stage) and
minutiae matching (global stage). The base finding procedure is to find the best
base minutiae to align two different fingerprint templates. The base finding
procedure computes some parameters that are necessary for the alignment of
two templates, and then passes these parameters to the matching stage so as to
determine if the input fingerprint is a match or not. However, the base finding
section is computationally intensive. If that part is computed by the smart card 1a,
it will take more than one minute to get the matching result. In order to increase
the speed, the client computer 2 does part of the computation. The client
computer 2 acts as a co-processor for smart card 1a to perform verification. As
discussed earlier, this in no way compromises the security as the base finding
section only handles a very small subset of the fingerprint minutiae. The steps of
Figure 13A illustrate an example of how to use Distributed Remote Execution

Protocol to perform load sharing for fingerprint matching on smart card 1a.

Step S50 Starts fingerprint matching.

Step S52 The D-OEM on the smart card 1a sends Initialization_Of-
Object to the client computer 2 for initialization of the base

estimation object.
Step S54 The D-OEM_client at the client computer 2 initialises the
objects via execution manager and sends back the Object ID

and Function IDs back to the smart card 1a.

Step S56 Smart card 1a sends base information to the client computer
2.

35

WO 2004/019190 PCT/SG2002/000199

Step S58 The D-OEM of the smart card 1a sends a Remote Process
Request Command to start base estimation remotely on the

client computer 2.

Step S60 The D-OEM_client signals the Execution Manager to execute

the base estimation routine.

Step S62 Smart card 1a waits until the client computer 2 has finished

the Bases Estimation.

Step S64 If the number of minutiae index is zero from the Base
Estimation, the smart card 1a will stop fingerprint matching
and return matching-failed to client computer 2.

Step S66 Smart card 1a downloads the pre-matching coefficients and
the aligned input fingerprint template.

Step S68 Performs final matching on smart card 1a.

Steps S54 and S66 use the protocol which has been mentioned above to transmit

matching information between smart card 1a and client computer 2.

Process Execution via multiple processing units

The scenario which has been discussed in the above sections, is simple peer-to-
peer communication and processing: that is a remote device 200 with lower
processing power requests a client computer 202 to handle the processing.
However, if some of the processes are not secure to execute on the client
computer 202, or the client computer 202 is not able to process the code as it is
too computationally intensive, then a more powerful processing unit such as
multiprocessor server 204, 206 will be used to help perform the execution.

Consider Figure 14.

36

WO 2004/019190 PCT/SG2002/000199

In Figure 14, a remote device 200 is connected to the client computer 202. If the
client computer 202 is just a terminal with limited processing power, the client
computer 202 will not be able to help the remote device 200 to perform load
sharing. Moreover, if the client computer 202 is a public computer and the
network server does not have any trust relationship with this client computer 202,
the execution of the authentication procedures that has the intention of
performing load sharing with the remote device 200 is not secure at all.
Therefore, for low performance client computer 202 or untrustworthy client
computer 202, the load sharing can be performed on the server side. The client
computer 202 acts as a communication bridge between the remote device 200
and the servers 204, 206.

In Figure 14, two servers 204, 206 are connected to the client computer 202. If
the remote device 200 needs to execute some fingerprint authentication process,
the remote device 200 will start a remote process request on the authentication
server 204. Similar architecture can be used as mentioned in the earlier section.
A D-OEM on the remote device 200 can be used to request for remote
processing and a D-OEM_client on the authentication server 204 can be used to
manage the processing of function/object. For the client computer 202, a D-
OEM_bridge is used to manage the bridging procedure. The structures and the
commands of D-OEM and D-OEM_client are the same as the original format
discussed earlier; no modification is necessary for this new environment. The D-
OEM_bridge has similar architecture to the D-OEM_client. However, it does not
have execution manager and the program area. It has the Network Execution

Manager instead. Figure 15 shows the basic architecture of the D-OEM_bridge.

The D-OEM_bridge has a client manager executed on the client computer 212 to
handle the communication between the remote device 210 and the client
computer 212. It has a Task table TT as well. However, only the first two columns,
Object Name and Object ID are the same as the table in figure 6. The third
column is the network address of the servers. The address can be a URL or an IP

37

WO 2004/019190 PCT/SG2002/000199

address with an optional port number. Figure 16 is the example of the task table
in the D-OEM_bridge section. The Network Execution Manager NEM is used to
monitor the process or thread synchronization between the remote device 210
and the servers 214, 216 (there can be more than 2 servers). The NEM connects
to the servers 214, 216 via wired or wireless network. The role of NEM is to help
the remote device 210 to start any remote process directly on the servers 214,
216. The NEM controls, translates and synchronizes data and network
commands for the remote device 210 and the servers 214, 216. In fact, NEM is a

software agent for managing distributed computing process with multiple servers.

Initialization of the D-OEM object and Object ID

The initialization of the D-OEM object is similar to the method shown in Figure 7A.
However, in this case, the client computer 212 does not do any processing at all.
The client computer 212 needs to know the method of accessing the servers 214,
216. Hence, D-OEM on the remote device 210 can notify the actual address
either the URL or the IP address to the client computer 212. The following
procedures describe the method of initialization of D-OEM-bridge and D-
OEM_client object.

(6.1) D-OEM on the remote device 210 sends a request
(Initialization_Of_Object) with a URL/IP address to the client computer
212.

(6.2) D-OEM_bridge receives this request. It sends this request to the server
214, 216 by the URL/IP address from the remote device 210.

(6.3) The D-OEM_client on the server 214, 216 initializes all objects and the
task table.

(6.4) The server 214, 216 sends back the task table to the D-OEM_bridge.

(6.5) The NEM adds the Server ID to the Object ID.

(6.6) The D-OEM_bridge records the Objects IDs and URL/IP addresses in
the local task table TT.

38

WO 2004/019190 PCT/SG2002/000199

(6.7) The D-OEM_bridge sends the Object IDs to the remote device 210 to

perform D-OEM initialization as mentioned above.

In procedure (6.5), the Object ID can be generated from different servers. Each
server follows the procedure shown in Figure 12A to generate all IDs. It is
possible that different objects will have the same Object ID, provided that these
two objects are initialized on different server. In earlier example, an 8-bit Server
ID field has been reserved in the 32-bit Object ID. In figure 15, the Network
Execution Manager NEM has a Server ID counter SIC. This counter SIC is used
to generate a unique Server ID for each individual server. The following

procedures show the method of assigning a new Server ID to the new location.

(7.1) The NEM receives the request the Initialization_Of_Object command
from D-OEM_bridge.

(7.2) The NEM checks the location whether is there any pre-assigned Server
ID.

(7.3) If NEM has recently accessed to the address of the server, NEM will
use the old Server ID in the NEM cache memory.

(7.4) If NEM did not have any recent access to the requested location for
distributed execution, the NEM get a new ID from the Server ID counter.
NEM increments the counter by one for next Server ID.

(7.5) NEM sends back the Server ID to the D-OEM_bridge to calculate the
new Object ID.

The new Object ID is the combination of the Object ID from the server and the
Server ID from NEM. Figure 17 shows the format of a combined object ID. Each
Object ID has a unique number in the task table to avoid incorrect invocation of
the function. The NEM inspects for any Server ID that has been released by a
terminated object. The NEM can recycle any used Server ID but lose the
reference to the old object. For an 8-bit Server ID, the maximum possible server

number is 256.

39

WO 2004/019190 PCT/SG2002/000199
Execution, Synchronization and Return Parameter

The method for remote execution of an object and function is similar to the
method described above, but with the client computer 212 acting as a bridge. All
requests for remote processing are passed to the servers 214, 216 directly. The
D-OEM_bridge looks up the URL/IP address from the task table TT and passes
the command and all parameters to the servers 214, 216. The servers 214, 216
follow the method described above under the heading “Execution of a remote
function and synchronization” to perform processing and synchronization of the
object/function. The servers 214, 216 ignore the Server ID because this ID is only
for the bridge to discriminate the ID from different servers. Once a server receives
the Object ID, it will perform Logical-AND as shown in equation 6 for the case of
32-bit in order to get back the original 24-bit version of the Object ID. It uses this
Object ID to look up the entry point of the function from the task table TT. The

servers 214, 216 then executes the function described above.

Server Object ID = (D-OEM_Bridge Object ID) AND" OXOOFFFFFF--- (6)
AND’: Logical AND

For Synchronization, the remote device 210 waits for the response from the
processing server. Once any of the servers 214, 216 completes the operation, it
will pass the return parameters to the D-OEM_bridge. When the D-OEM_bridge
receives the return parameter, it will notify the remote device 210 of the return
parameters from the respective server. The D-OEM_bridge in fact acts as a
communication bridge to pass all information between the remote device 210 and
the servers 214, 216; thus allowing the remote device 210 to virtually command a
direct communication to multiple servers. The D-OEM_ bridge handles the

procedures of accessing multiple servers.
The return parameter format is the same as that shown in Figure 10. However,

the only modification is the Object ID 102. Once the D-OEM_bridge receives the
return parameter string from the server 214, 216, it will extract the Object ID 102.

40

WO 2004/019190 PCT/SG2002/000199

Since the Server ID field is empty in the Object ID 102, a Server ID assigned
earlier for this server connection is added to the Object ID 102. Then, the updated
Object ID 102 will be put back to the return parameter string and sent back to the
remote device 210. The remote device 210 uses the function return address that
is saved on the stack earlier to save the return value to the targeted memory

location.
Network Execution Manager (NEM)

The architecture of the NEM which, in fact, is a software agent will now be
described. The role of this agent is to start any remote execution on behalf of the
remote device 210 at the server 214, 216. The following tasks are performed by
the NEM:

(1) As communication controller to link together the remote device 210 and the
server 214, 216.

(2) Translates the communication protocol between the remote device 210
and the server 214, 216.

(3) Handles network exception.

(4) Manages Server IDs for multiple servers.

(5) Buffers the requests to minimize network congestion.

(6) Acts as a Firewall to avoid illegal access.

Figure 18 shows the basic structure of the NEM. It has a Command Controller
300 to handle the commands from the D_OEM_bridge 302. A Protocol Translator
304 manages the translation of the data and commands from one network to
another network. For example, the smart card uses the 1ISO7816-4 format. Before
entering the request to the network, the protocol should be translated from
ISO7816-4 to TCP/IP for Internet connection. A Server Manager 306 manages
the connection of the server and the Server IDs. A Network Controller 308
manages the connection to the network. It has a local network buffer to minimize

the network congestion. A firewall 310 is used to avoid any illegal connection. In

41

WO 2004/019190 PCT/SG2002/000199

addition a Network Exception Controller 312 is used to cope with any network
errors and reports any network exception that occurs to the Command Controller
300 directly.

Distributed-Object Execution Manager (D-OEM)

D-OEM manages the remote execution request for the remote device 210. The
remote device 210 sends a load-sharing request to the local client/server. If the
client computer 212 can process the object/function, the D-OEM_client will
execute the function locally by the Execution Manager. Otherwise, the D-
OEM_bridge passes the requests to the server 214, 216 and performs execution
on the server 214, 216 side. Figure 19 shows the basic structure of D-OEM. The
D-OEM has a Kernel 414 with single entry point. It has the privilege to access all
resources within the D-OEM object. The D-OEM has an object’'s Constructor 416
to initialize all components inside the object. A Command Encoder and Decoder
418 synthesizes the D-OEM commands which were described above. A Network
Interface 420 is a software interface that binds with the external network object for
the purpose of establishing communication with the external parties. A
Synchronization Manager 422 manages all synchronization requests. Exception
Handler 424 manages all exceptions either from the remote functions or the local
D-OEM exception. A Stack Controller 426 manages the return parameters of the
function and the stacks. An Object and the function pseudo entry point area 428
is a descriptor of the remote process that the local function can perform a virtual
call to the respective function/object. This allows the local function to call any of
the remote functions as easily as calling a local function. The Kernel 414 does the
actual remote process invocation. A Task Manager 430 controls the initialization

of the remote objects and functions. It also manages the task table TT2 as well.

For the D-OEM_client, it is slightly different from the D-OEM, as shown in Figure
20.

42

WO 2004/019190 PCT/SG2002/000199

In Figure 20, a basic structure of D-OEM_client is shown. It is similar to the D-
OEM. However, all return parameters are sent back directly to the remote device
210. The parameters do not need to be stored in the D-OEM_client, hence the
Stack Controller 426 is not required. The Execution Manager EM controls the
execution of the function and thread. The Network Interface 520 receives the
request command from the remote device 210. All commands are sent to the
Kernel 514 for processing. The object initialization is done by the system. The
other components have the same functionality as D-OEM. The Execution
Manager EM manages the requested object or function that needs to be executed
locally. Once the D-OEM_client decodes the executing command and gets the
process entry point, the entry point will be passed to the Execution Manager EM

for process execution. The detail of Execution Manager EM is discussed below.

For D-OEM_bridge, its role is to pass the commands and parameters between
the server 214, 216 and the remote device 210. The structure is simpler than D-
OEM and D-OEM_client.

Figure 21 is the structural diagram of D-OEM_bridge. The D-OEM_bridge acts as
a communication bridge between the remote device 210 and the server 214, 216.
The Kernel 614 controls and initializes all components inside the object. The Task
Manager 630 manages the task table TT2. A System buffer 632 stores the
unfinished task for the kernel 614 to process later. An NEM bridge 634 is a
software interface to the NEM. The NEM controls the higher-level network

management as mentioned above.

The Execution Manager EM is used to control the execution of threads and
functions. Figure 22 shows the structure of the Execution Manager. |[f the
requested process is a thread, a Thread Controller 740 will manage all
synchronization procedures. If the requested process is a function/object, a
Function Executioner 742 will start and monitor the process execution. If there is
any exception from either the function or thread, an Exception Handler 744 will

handle the process execution. This Handler 744 tries to terminate any ill

43

WO 2004/019190 PCT/SG2002/000199

procedure so as to minimize the impact of the error to the other concurrent

processes.

44

WO 2004/019190 PCT/SG2002/000199

CLAIMS:

1. A method of authenticating a user according to a biometrics parameter of
the user presented at an authentication device on a user-presented device on
which is stored a biometrics identification template divided into a secure portion
and an open portion, the method comprising:
transmitting to a client terminal data derived from said user biometrics
parameter at the authentication device;
transmitting from a user-presented device to the client terminal only the
open portion of the said biometrics identification template held on the user-
presented device;
at the client terminal, implementing a first stage of an identity
authentication process between said data and said portion and transmitting
the results of said authentication process to the user-presented device; and
at the user-presented device implementing a second stage to complete the
identity authentication process using said results and issuing an authentication

result based thereon.

2. A method of registration of a user according to a biometrics parameter of
the user presented at an authentication device, the method comprising:
transmitting to an authorized client terminal data derived from said user
biometrics parameter obtained at the authentication device;
at the authorized client terminal, dividing the biometrics identification
template computed into secure portion and open portion,
transmitting from the authorized client terminal to a user-presented device
both the open portion and the secure portion of a biometrics identification
template,
storing the said template consisting of open and secure portions on the
user-presented device, with the secure portion only accessible within the user-

presented device and not externally.

45

WO 2004/019190 PCT/SG2002/000199

3. A method according to claim 1 or 2, wherein the secure portion of the
biometrics identification template is the portion containing data unauthorized
modification of which may cause an impostor to be incorrectly authenticated

as a genuine user.

4. A method according to claim 1 or 2, wherein the open portion of the
biometrics identification template is the portion containing data unauthorized
modification of which may not cause an impostor to be incorrectly

authenticated as a genuine user.

5. A method according to claim 1, 2 or 3, wherein the biometrics parameter is

a fingerprint.

6. A method according to any preceding claim, wherein said open portion of
the template comprises parameters of a predetermined number of unique

features of the template.

7. A method according to claim 6, wherein the first stage of said identity
authentication process implemented at the client terminal comprises locating
unique features using the data derived from the user biometrics parameter
and aligning them with said predetermined number of unique features from the

identification template held on the user-presented device.

8. A method according to any preceding claim, wherein the second stage of
the said identity authentication process implemented on the user-presented
device is implemented using a local executable matching program stored on

the device.
9. A method according to any preceding claim, wherein the first stage of the

identity authentication process implemented at the client terminal is

implemented using a client executable matching program.

46

WO 2004/019190 PCT/SG2002/000199

10. A method according to claim 9, wherein the client executable matching
program is stored on the user-presented device or the authentication device

and is transmitted to the client terminal at the time of authentication.

11. A method according to claim 9, wherein the client executable matching
program is downloaded by the client terminal from a remote memory at the

time of authentication.

12. A method according to any preceding claim wherein the authentication

result is used to authenticate a user for authorising a secure transaction.

13. A method according to claim 12, wherein the secure transaction is
controlled by an executable transaction program stored on the user-presented

device.

14. A method according to any preceding claim wherein, when the
authentication result indicates an adequate match, a first security access

check key is constructed including the authentication result.

15. A method according to claims 13 and 14, wherein a second security
access check key is requested and compared with the first security access
key, the result of said comparison being used to enable the executable

transaction program if it yields a positive authentication resuit.

16. A method according to claim 15, wherein the second security access

check key is issued from a security server.
17. A method according to any of claims 14 to 16, wherein the first and

second security access check keys each include a unique identification

number.

47

WO 2004/019190 PCT/SG2002/000199

18. A method according to claims 15 and 17, wherein the unique identification
number contains a number obtained from a mathematical operation on a

randomly generated number and the authentication result.

19. A method according to claim 18, wherein the randomly generated number

changes at each time the number is used.

20. A method according to claim 19, wherein the changing random number is
tracked by dividing the number into two portions, a first portion to be used as
the current random number and a second portion to be used as the next

random number.

21. A method according to claims 17 to 20, wherein the unique identification

number contains a number that is remembered by the user.

22. A method according to claims 18 to 21, wherein more than one
authentication methods can be used to obtain the authentication result, each

being incorporated into the unique identification number.

23. A method according to claims 17 to 22, wherein the access is divided into
several levels and wherein the level of access granted to a user is dependent
on the confidence level of positive identity obtained from the unique

identification number.

24. A system for authenticating a user according to a biometrics parameter of
the user, the system comprising:

a user-presented device on which is stored a biometrics identification
template divided into a secure portion and an open portion, wherein only said
open portion can be transmitted out of the said device;

an authentication device operable to read biometrics data derived from a
user, and comprising means for communicating with the user-presented

device and a client terminal;

48

WO 2004/019190 PCT/SG2002/000199

a client terminal arranged to receive the said open portion of the
biometrics identification template held on the user-presented device and the
biometrics data derived from the user, and comprising a client processor
operable to implement a first stage of and identity authentication process
between said data and said portion and to transmit the results of said identity
authentication process to the user-presented device, and wherein the user-
presented device comprises a device processor operable to implement a
second stage to complete the identity authentication process using said

results and to issue an authentication result based thereon.

25. A system according to claim 24, wherein the secure portion of the
biometrics identification template is the portion containing data unauthorized
modification of which may cause the system to incorrectly authenticate an

impostor as a genuine user.

26. A system according to claim 24, wherein the open portion of the biometrics
identification template is the portion containing data unauthorized modification
of which may not cause the system to incorrectly authenticate an impostor as

a genuine user.

27. A system according to claim 24, wherein the biometrics parameter is a
fingerprint, and wherein the authentication device includes a fingerprint

Sensor.

28. A system according to claim 24 or 27, wherein said portion of the
template comprises parameters of a predetermined number of unique features

of the template.
29. A system according to claim 24, 27 or 28, wherein the user-presented

device comprises a memory in which is stored a local executable matching

program for implementing the second stage of the matching process.

49

WO 2004/019190 PCT/SG2002/000199

30. A system according to claim 29, wherein the memory on the user-
presented device stores a client executable matching program which is
transmitted to the client processor to implement the first stage of the matching

process.

31. A system according to any preceding claim, which comprises a security

server connected to the client terminal.

32. A system according to claim 31, wherein the security server holds a client
executable matching program for implementing the first stage of the matching

process.

33. A system according to claim 31 or 32, wherein the security server holds a
security access check key requestable by the client terminal for enabling a

transaction.

34. A system according to any of claims 24 to 33, which comprises a
transaction server arranged to implement secure transactions and which is in
communication with the client terminal so that the authentication result is

usable to authenticate a user for authorising a secure transaction.

35. A system according to claim 34, wherein the user-presented device
stores an executable transaction program for controlling the secure

transaction.

36. A system according to claims 34 and 35, wherein more than one

authentication methods can be used to obtain the authentication result.
37. A system according to claims 34 to 36, wherein the access to the

transaction server is divided into several levels and wherein the level of

access granted to a user is dependent on the confidence level of positive

50

WO 2004/019190 PCT/SG2002/000199

identity obtained based on the results from the various authentication methods

used.

38. A method of executing an operation using first and second processors,
the method comprising:

storing in the first processor a first task table containing a plurality of
process names with associated process identifiers, each associated with a
process locator;

storing in the second processor a second task table containing said of
process names and process identifiers;

identifying at the second processor a process to be executed and issuing a
request to the first processor to execute said process;

locating said process using the process locator and executing said process
at the first processor to generate a result; and

returning the result to the second processor.

39. A method according to claim 38, wherein said process names include

object names associated with respective object identifiers.

40. A method according to claim 39, wherein each object has associated
therewith a plurality of functions each identified by function names and

associated function identifiers in the first and second task tables.

41. A method according to claim 38, 39 or 40, wherein the process locator

identifies the starting address of a process in a program memory.

42. A method according to any of claims 38 to 41, wherein the second

processor has significantly less processing power than the first processor.
43. A method according to any of claims 38 to 42, wherein the second

processor is arranged to execute locally processes requiring less processing

power than those executed by the first processor.

51

WO 2004/019190 PCT/SG2002/000199

44. A method according to any of claims 38 to 43, wherein the operation
being executed is a fingerprint-matching algorithm comprising a base minutiae
finding process executed by the first processor and a minutiae matching

process executed by the second processor.

45. A method according to any of claims 38 to 44, wherein there are a
plurality of second processors in communication with a single first processor,
each second processor holding a respective task table, and the first processor
holding a first task table including all processes identified by the task tables of

the second processors.

46. A method according to any of claims 38 to 44, wherein a client bridge is
connected between the first and second processors, the client bridge
conveying said requests from the second processor to the first processor and

returning the results from the first processor to the second processor.

47. A method according to any of claims 38 to 46, wherein the first processor
is a client terminal and the second processor is embedded on a secure

portable computing and data storage platform.

48. A method according to any of claims 38 to 44, wherein there are a
plurality of first processors connected via a client bridge to one or more
second processor and arranged to implement different subsets of the

processes in the task table of the second processor.

49. A processing system comprising:

a first processor in which is stored a first task table containing a plurality of
process names and process identifiers, each associated with a process
locator;

a second processor in which is stored a second task table containing said

process names with associated process identifiers;

52

WO 2004/019190 PCT/SG2002/000199

the second processor including a distributed object execution manager for
identifying a process to be executed and issuing a request to the first
processor to execute said process; and

the first processor including a client distributed object execution manager
for controlling the execution of said processes at the first processor, the
results of execution of the processes implemented at the first processor being

returned to the second processor.

50. A processing system according to claim 49, wherein the first processor
includes a client manager for handling communications between the first and

second processors.

51. A system according to claim 48 or 49, wherein the first processor includes

an execution manager for handling the execution of processes.

52. A system according to any of claims 49 to 51, wherein the first processor
comprises a program store for holding said processes, the process locator

being used to identify the location of said processes in the program store.

93. A system according to any of claims 49 to 52, wherein the second
processor includes a remote device manager for transmitting said requests to

the first processor.

54. A system according to any of claims 49 to 53, wherein the second
processor comprises a stack for holding results returned to it from the first

processor.

55. A system according to any of claims 49 to 54, wherein the second

processor includes a program store for holding said processes.

56. A system according to any of claims 49 to 55, wherein the first processor

comprises a client terminal.

53

WO 2004/019190 PCT/SG2002/000199

57. A system according to any of claims 38 to 56, which comprises a plurality
of first processors, the system further comprising a client bridge for handling

communications between the first processors and the second processor.

98. A system according to claim 57, wherein each first processor comprises a

server.

59. A system according to claim 57 or 58, wherein the client bridge includes a
network execution manager for transmitting requests from the second
processor to the appropriate one of the first processors, based on a processor

identifier in the request.

60. A system according to any of claims 38 to 56, comprising a plurality of
second processors and a client bridge for connecting said second processors

to said first processor.
61. A system according to any of claims 38 to 60, wherein the or each second

processor is embedded on a respective portable secure computing and data

storage platform such as smart card.

54

WO 2004/019190 PCT/SG2002/000199
1/14

(10)

(n
K ‘ @

I Link 1

(1a) (1)

Figure 1

WO 2004/019190 PCT/SG2002/000199
2/14
Compute the template PC2 Smart Card la
of fingerprint obtained A /\ 52
from the smart card. \D Initialization of smart (E{d.
/J Calculating the B Smart card sends partial base
S1 base information / information.
and compgte the \S3
pre—ma.tchmg c Sends selected Minutiae
coefficients. \> .
D to the Client.
. | S5
sS4 Aligns E
Template. \"
/J eceive the input
S6 fingerprint template and
the matching
F coefficients from the
/ client. The smart card
calculates the actual S7
matching result. —/
Acknowledgment
1| of the finish of the

template matchin

S8

Figure 2.

WO 2004/019190 PCT/SG2002/000199
3/14

Figure 3.

Figure 4: SACK Format

WO 2004/019190 PCT/SG2002/000199
4/14
CL
PU2
/ PUL
Remote Device
Client Computer
Figure 5.
Object Name Object ID Parameters | Entry Point
Objectl Objectl ID void *Objectl
Functionl Functionl ID (int)P1,(int)P2 | *Functionl(..)
Function2 ' Function2 ID (float)P1 *Function2(..)
Function3 Function3 ID void *Function3(..)
Function4 Function4 ID (bool) P1, *Functiond(..)
(bool)P2
FunctionN FunctionN ID void *FunctionN(..)
Object2 Object2 ID (byte) P1 *Object2
Function5 Function5 1D void *Function5(..)
Function6 Function6 ID void *Function6(..)
Function? Function7 ID void *Function7(..)
Function8 Function8 ID void *Function8(..)
FunctionN FunctionN ID Void *FunctionN(..)
EOT EOT EQOT EOT

Figure 6.

WO 2004/019190 PCT/SG2002/000199
5/14

WO 2004/019190 PCT/SG2002/000199
6/14

- ' Funétxa;;lD © Type’ ‘,«;Ret‘uih'Vélu‘e ‘. Endcode -

" D-OFM_retum_param Object 1D - Iy
104 106

102

Figure 10

Object ID Function ID Reference of the return
object

OID1 FID1 (int*) result
0ID2 FID2 (float*) result2
0ID3 FID3 (double™®) coef
OIDN FIND (int**) array

Figure 11

Figure 12

Figure 13

WO 2004/019190 PCT/SG2002/000199
7/14

Figure 14

Figure 15

WO 2004/019190 PCT/SG2002/000199

8/14
Object Name Object ID Address
Objectl Objectl ID www.csp.ntu.edu.sg:1080
Functionl Functionl ID www.csp.ntu.edu.sg:1080
Function2 Function2 ID www.csp.ntu.edu.sg:1080
Function3 Function3 ID www.csp.ntu.edu.sg:1080
Function4 Function4 ID www.csp.ntu.edu.sg:1080
Object2 Object2 ID 131.120.12.1:70
Functionl Functionl ID 131.120.12.1:70
Function2 Function2 ID 131.120.12.1:70
Figure 16

Figure 17

WO 2004/019190

9/14

D-OEM_Bridge ™

L —~302

PCT/SG2002/000199

-
Server Manager K CC%r:tTo?l[;?
¥ Protocol Translatog | —~304
Network Controller Network Exception
\ Controller
Network | \308 AN
Execution Network Buffe
r
Manager - 314 312
Firewall Controlleq_[—~310
Network
Figure 18
D-OEM
Entry point
/“14 Distributed
— -Object
Kernel Constructon—" 416 Execution
Manager
Object and l y
function psuedo Stack Task | Task | | Synchronization
entry point Command (Controller (S fack Manager | Table Manager
Encoder)
area and 42 s 35 TT)2 452
l?ecoder 430
) r\ktwork Interface (Exception Handler

418

(
42g

20

424

v

Network to
Client computer

Fib 19

WO 2004/019190

(EM

Execution

Manager

1

Objects and
functions

PCT/SG2002/000199
10/14
Figure 19
Object
Initialization
514 516
Kernel Constructor | D-OEM_client
1 1!
Command Task Task || Synchronization
Encoger _Manager |(Table Manager
an
Decoder 3) Tﬂ/ /7
530 522
518

~Network Interface |
524

r Exception Handler

o

v

Network

Figure 20

D-OEM_bridge
Entry Point

/-634

%" D.OEM_bridge

NEM bridg/e Kerned
{ , 3
Command Task Task L System
Processor | |~ Manager f—T able Buffer
6%0 TT2 632

NEM

Figure 21

WO 2004/019190 PCT/SG2002/000199

11/14
Objetc
Entry Point
Execution 713
Manager Kernel
746 T
y 4 742 1 740 Il 4
Retumn kj Function ™) Thread Exception
Parameter)
Executioner Controller Controller
Manager L
744

Objects and Functions

Figure 22

WO 2004/019190

PU2 sends Request
Command

D_OEM_clien
searches TT1 for
Object.

EM invokes object’s
constructor + fills
parameters and entry

12/14

points into TT. ~ ~p~ 914

A 4

D_OEM_client
generates object/

function IDs. L—518

L

D_OEM_client sends
IDs to PU2.

L

S$22: PU2 receives and

stores IDs in TT2. S22

Figure 7A

Throws Exception to
the Exception
Handler.

S16

PCT/SG2002/000199

WO 2004/019190 PCT/SG2002/000199
13/14

D_OEM client
receives request.. | —s30

_OEM_cliel
searches TT1 for
object.

No Throws Exception to
the Exception
$32 Handler.

-

S34

EM constructs object
and generates new

object ID. 536

A 4

EM generates function

IDs \,K\SSS

EM sends IDs to
D_OEM

\ /—\S 40

h 4

D_OEM_client stores

IDs into TT1 \J 42

Y

D_OEM_clientreturns
IDs to requester.

Figure 12A

WO 2004/019190 PCT/SG2002/000199
14/14

Start Fingerprint Matching
L850

D-OEM sends
Initialization_Of_Object to
PC for initialization of

base estimation object. \l.~"552

}

D_OEM_client initializes
object and return IDs to
smart card.

854
Smart card sends base
info. To PC.

y

D-OEM sends Rrmote
Process Request
command to start base

estimation remotely. | | _—g58

A

D_OEM_client signals EM
to execute base
estimation.

_/\SGO

h 4
D-OEM waits until the

D_OEM_client finishes the
execution of Base

Estimation. |_—~862

Return Matching_Failed to
PC for termination of
authentication.

minutiae index that is
returned from Base

If 1=zero

Download Matching
Coefficients and aligned

template to smart card.
——%566

)

Performs Matching on
smart card.

568

Figure 13A

INTERNATIONAL SEARCH REPORT

PCT/SG 02/00199

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F1/00

According 1o International Patent Classification (IPC) or to both national classification and IPG

B, FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GOG6F

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

EPO~Internal

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A WO 01 11577 A (PRECISE BIOMETRICS AB
;WIEBE LINUS (SE))

15 February 2001 (2001-02-15)

the whole document

A US 6 219 439 Bl (BURGER PAUL M)

17 April 2001 (2001-04-17)

the whole document

A GB 2 331 825 A (NIPPON ELECTRIC CO)

2 June 1999 (1999-06-02)

the whole document

A US 6 003 135 A (BIALICK WILLIAM P ET AL)
14 December 1999 (1999-12-14)

the whole document

1-37

1-37

1-37

1-37

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

*A’ document defining the general state of the art which is not
considered to be of particular relevance

*E' earlier document but published on or after the international
filing date

invention

which is cited 1o establish the publication date of another
citation or other special reason (as specified)

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theoty underlying the

X document of patticular relevance; the claimed Invention
cannot be considered novel or cannot be considered to
"L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31~70) 340-2040, TX. 31 651 epo nl,

Fax: (+31-70) 340-3016 Harms, C

*Q" document referting to an oral disclosure, use, exhibition or document is comblned with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed '&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
9 May 2003 16/05/2003
Name and mailing address of the 1ISA Authorized officer

Form PCT/SA/210 (second sheet) (July 1992)

s

INTESNATIONAL SEARCH REPORT

“mmormation on patent family members

PCT/SG 02/00199

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 0111577 A 15-02-2001 SE 518419 C2 08-10-2002
AU 6194600 A 05-03-2001
CA 2382042 Al 15-02-2001
CN 1369085 T 11-09-2002
EP 1210695 Al 05-06-2002
WO 0111577 Al 15-02-2001
SE 9902846 A 07-02-2001
US 2002030359 Al 14-03-2002

US 6219439 B1 17-04-2001 NONE

GB 2331825 A 02-06-1999 JP 2950307 B2 20-09-1999
JP 11161793 A 18-06-1999
AU 736113 B2 26-07-2001
AU 9422298 A 17-06-1999
CN 1221160 A 30-06-1999

US 6003135 A 14-12-1999 AU 7709498 A 21-12-1998
WO 9855912 Al 10-12-1998

Fomn PCT/ISA/210 (patent family annex) (July 1962)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

