
JP 5283810 B2 2013.9.4

10

20

(57)【特許請求の範囲】
【請求項１】
　第１のプロセッサと、
　前記第１のプロセッサへのコプロセッサとして使用するための第２のプロセッサと、
　メモリと、
　バースト命令に従ってデータ・バーストにおいて前記メモリに書き込みまたは読み取る
データを入れるための、少なくとも１つのデータ・バッファと、
　前記バースト命令を実行するためのバースト・コントローラと、
　前記バースト・コントローラによる実行のためにバースト命令を順番に提供するための
バースト命令エレメントと、
　コプロセッサ命令およびバースト命令の実行を、前記コプロセッサ命令およびバースト
命令が実行するデータの可用性により、同期化するための同期化機構と
　を含み、
　バースト命令が前記第１のプロセッサによって前記バースト命令エレメントへ提供され
、前記バースト・コントローラによって実行されたバースト命令に従って前記少なくとも
１つのデータ・バッファを通じて、データが、前記第２のプロセッサへの入力データとし
て前記メモリから読み取られ、前記第２のプロセッサからの出力データとして前記メモリ
へ書き込まれ、
　前記同期化機構は、
　特定のバースト命令の実行により増分され、特定のコプロセッサ命令の実行により減分



(2) JP 5283810 B2 2013.9.4

10

20

30

40

50

される第１のカウンタを少なくとも含み、　
　前記第１のカウンタを、第１の低しきい値を越えてさらに減分することができないとき
、前記第２のプロセッサの関連付けられた実行のためのコプロセッサ命令がストールある
いは防止され、
　前記第１のカウンタを、第１の高しきい値を越えてさらに増分することができないとき
、前記少なくとも１つのバッファから前記メモリへのデータの関連付けられた格納のため
のバースト命令がストールあるいは防止される
　コンピュータ・システム。
【請求項２】
　前記第２のプロセッサの実行を順番に制御するためのコプロセッサ命令を提供するため
のコプロセッサ命令エレメントをさらに含み、前記コプロセッサ命令が前記第１のプロセ
ッサによって提供される、
　請求項１に記載のコンピュータ・システム。
【請求項３】
　コプロセッサ・コントローラをさらに含み、
　前記コプロセッサ・コントローラがコプロセッサ命令を前記コプロセッサ命令エレメン
トから受信し、前記第２のプロセッサの実行を、受信されたコプロセッサ命令に従って制
御し、前記コプロセッサと前記少なくとも１つのデータ・バッファの間の通信を制御する
、　　
　請求項２に記載のコンピュータ・システム。
【請求項４】
　前記同期化機構が、前記少なくとも１つのデータ・バッファにまだロードされていない
データにおける前記第２のプロセッサの実行を必要とするコプロセッサ命令の実行をブロ
ックするように適合され、前記少なくとも１つのデータ・バッファから前記メモリへのデ
ータの格納のためのバースト命令の実行を、このようなデータが前記第２のプロセッサに
よって前記少なくとも１つのデータ・バッファへ提供されていない場合にブロックするよ
うに適合される、
　請求項１に記載のコンピュータ・システム。
【請求項５】
　前記同期化機構は、
　特定のコプロセッサ命令の実行により増分され、特定のバースト命令の実行により減分
される第２のカウンタをさらに含み、
　前記第２のカウンタを、第２の低しきい値を越えてさらに減分することができないとき
、前記少なくとも１つのバッファから前記メモリへのデータの関連付けられた格納のため
のバースト命令がストールあるいは防止される、
　請求項１に記載のコンピュータ・システム。
【請求項６】
　前記第２のカウンタを、第２の高しきい値を越えてさらに増分すること
ができないとき、前記第２のプロセッサの関連付けられた実行のためのコプロセッサ命令
がストールあるいは防止される、
　請求項５に記載のコンピュータ・システム。
【請求項７】
　前記バースト命令エレメントは、命令キューである、
　請求項１に記載のコンピュータ・システム。
【請求項８】
　前記バースト命令エレメントは、さらに加えられたプロセッサである、
　請求項１に記載のコンピュータ・システム。
【請求項９】
　前記バースト命令エレメントは、プログラム可能な状態機械である、
　請求項１に記載のコンピュータ・システム。



(3) JP 5283810 B2 2013.9.4

10

20

30

40

50

【請求項１０】
　前記第１のプロセッサは、コンピュータ装置の中央処理装置である、
　請求項１に記載のコンピュータ・システム。
【請求項１１】
　コンピュータ・システムを動作する方法であって、
　第１のプロセッサ、および前記第１のプロセッサへのコプロセッサとして動作する第２
のプロセッサによる実行のためのコードを提供することと、
　前記第２のプロセッサによって実行されるタスクを提供することとしての、前記コード
の一部の識別することと、
　前記タスクを提供するコードを、コプロセッサ・コントローラによる実行のためのコプ
ロセッサ命令で置換すること
　を含み、
　前記コプロセッサ命令は、
　前記第２のプロセッサによる前記タスクの実行を制御するように決定され、
　前記コードおよび前記タスクから、少なくとも１つのデータ・バッファにより、前記第
２のプロセッサによるアクセスのためにデータ・バーストにおいてメイン・メモリからデ
ータを読み取り、そこへ書き込むことができるようにするためのバースト命令を決定する
ことと、
　前記少なくとも１つのデータ・バッファと前記メイン・メモリの間でデータの転送を制
御するバースト・コントローラによるバースト命令の実行と共に、前記コプロセッサ上で
前記タスクを実行することと　
　を含み、
　前記タスクの実行において、コプロセッサ命令の実行とバースト命令の実行の間の同期
化が、同期化機構によって達成され、
　前記同期化機構は、
　特定のバースト命令の実行により増分され、特定のコプロセッサ命令の実行により減分
される第１のカウンタを少なくとも含み、
　前記第１のカウンタを、第１の低しきい値を越えてさらに減分することができないとき
、前記第２のプロセッサの関連付けられた実行のためのコプロセッサ命令がストールある
いは防止され、
　前記第１のカウンタを、第１の高しきい値を越えてさらに増分することができないとき
、前記少なくとも１つのバッファから前記メモリへのデータの関連付けられた格納のため
のバースト命令がストールあるいは防止される
　方法。
【請求項１２】
　バースト命令を決定する前記ステップが、前記バースト命令を、前記第１のプロセッサ
によって実行される前記コードの一部内に含めることをさらに含む、
　請求項１１に記載の方法。
【請求項１３】
　バースト命令を決定する前記ステップが、前記コードから前記第２のプロセッサによっ
てアクセスされるメモリ・アドレスを決定すること、および少なくとも１つのデータ・バ
ッファにより、前記第２のプロセッサによるアクセスのためにデータ・バーストにおいて
メイン・メモリからデータを読み取り、そこへ書き込むことができるように、前記第２の
プロセッサによって行われるメモリ・アクセスを編成することをさらに含む、
　請求項１１に記載の方法。
【請求項１４】
　前記同期化機構が、前記第１の命令の正しい実行のために完了が必要である第２の命令
が完了するまで、前記第１の命令をブロックすることを含む、
　請求項１１に記載の方法。
【請求項１５】



(4) JP 5283810 B2 2013.9.4

10

20

30

40

50

　前記コプロセッサ命令エレメントは、命令キューである、
　請求項２に記載のコンピュータ・システム。
【請求項１６】
　前記コプロセッサ命令エレメントは、さらに加えられたプロセッサである、
　請求項２に記載のコンピュータ・システム。
【請求項１７】
　前記コプロセッサ命令エレメントは、プログラム可能な状態機械である、
　請求項２に記載のコンピュータ・システム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、メイン・プロセッサおよびコプロセッサを含むコンピュータ・アーキテクチ
ャに関し、詳細にはこのようなアーキテクチャにおけるコプロセッサによるメモリ・リソ
ースの使用に関する。
【背景技術】
【０００２】
　マイクロプロセッサをベースとするコンピュータ・システムは、典型的には、ＣＰＵの
ような汎用マイクロプロセッサに基づいている。このようなマイクロプロセッサは、幅広
い範囲の計算タスクを処理するように十分に適合されるが、これらは必然的にすべてのタ
スクに合わせて最適化されるのではない。タスクが計算に集中する場合（媒体処理など）
、ＣＰＵはしばしば実行に困難を生じる。
【０００３】
　この問題への標準の手法の１つは、個々の計算的に困難なタスクを処理するように特に
適合されたコプロセッサを使用することである。このようなコプロセッサは、ＡＳＩＣ（
特定用途向けＩＣ）を使用して構築することができる。これらは特定の計算タスクのため
に構築され、したがってこのようなタスクに合わせて最適化することができる。しかし、
これらは使用において柔軟性がなく（これらが特定のタスクのみのために設計されるので
）、一般に製造に時間がかかる。解決策としては、ＦＰＧＡ（フィールド・プログラム可
能ゲート・アレイ）など、所与の計算タスクに特に適合された構成でプログラムすること
ができる、柔軟性のあるハードウェアの構築がある。このような構造が構成可能であるだ
けでなく、再構成可能である場合は、さらなる柔軟性が達成される。このような再構成可
能な構造の一例がＣＨＥＳＳアレイであり、これは、国際特許出願第ＧＢ９８／００２６
２号、国際特許出願第ＧＢ９８／００２４８号、１９９８年１２月１１日出願の米国特許
出願第０９／２０９，５４２号、およびその欧州の相当する欧州特許出願第９８３０９６
００．９号において論じられている。
【発明が解決しようとする課題】
【０００４】
　このようなコプロセッサの使用は、このような計算の効率を著しく改善することができ
るが、従来のアーキテクチャの構成がコプロセッサの有効性を抑制する可能性がある。計
算をなおより有効にコプロセッサに移すことができる装置を達成することが、特にこれら
の計算が大量のデータを処理することを含む場合、望ましい。
【課題を解決するための手段】
【０００５】
　したがって、第１のプロセッサ、第１のプロセッサへのコプロセッサとして使用するた
めの第２のプロセッサ、メモリ、バースト命令に従ってデータ・バーストにおいてメモリ
へ書き込まれるかあるいはそこから読み取られるデータをバッファに入れるための少なく
とも１つのデータ・バッファ、バースト命令を実行するためのバースト・コントローラ、
バースト・コントローラによる実行のためにバースト命令を順番に提供するためのバース
ト命令エレメントを含み、それによってバースト命令が第１のプロセッサからバースト命
令エレメントへ提供され、バースト・コントローラによって実行されたバースト命令に従



(5) JP 5283810 B2 2013.9.4

10

20

30

40

50

って少なくとも１つのデータ・バッファを通じて、データが第２のプロセッサによってメ
モリから読み取られ、そこへ書き込まれるコンピュータ・システムが提供される。
【０００６】
　この装置は特に、コプロセッサが大きいブロックのデータで作業する場合、特にこのよ
うなブロックのメモリ・アドレスが定期的に変わる場合に有利である。この装置により、
このようなブロックを、メイン・プロセッサ（それらを使用するにあまり適していないシ
ステム・コンポーネント・エレメントである）の関与を最小にして、有効にメイン・メモ
リに出し入れすることができる。
【０００７】
　コプロセッサがデータ・バッファと類似の方法で制御される場合、特に効率的な構造を
達成することができる。これは、第２のプロセッサの実行を制御するためのコプロセッサ
命令を順番に提供するためのコプロセッサ命令エレメントにより行うことができる（コプ
ロセッサ命令は初めに第１のプロセッサによって提供される）。コプロセッサ・コントロ
ーラがコプロセッサ命令をコプロセッサ命令エレメントから受信し、それに従って第２の
プロセッサの実行を制御するのがよい。このコプロセッサ・コントローラは、コプロセッ
サと少なくとも１つのデータ・バッファの間の通信を制御することができ、たとえば、バ
スがコプロセッサ・コントローラとデータバッファの間に存在する場合、コプロセッサ・
コントローラが、第２のプロセッサからバスに別々のデータ・ストリームの出入りのアク
セスを制御することができる。
【０００８】
　コプロセッサおよびバースト命令が実行するデータの可用性により、コプロセッサとバ
ースト命令の実行を同期化するための同期化機構がある場合、特定の利点を得ることがで
きる。これは、コプロセッサがコプロセッサ命令に基づいて実行する場合、特に十分に実
施される。有効な手法は、データ・バッファにまだロードされていないデータに対し第２
のプロセッサの実行を必要とするコプロセッサ命令の実行をブロックし、データが第２の
プロセッサによってデータ・バッファへ提供されていない場合、データ・バッファからメ
モリへのデータの格納のためのバースト命令の実行をブロックするように、同期化機構を
適合させることである。同期化機構を実行するための特に有効な方法は、カウンタを使用
することであり、このカウンタは、適切なバーストおよびコプロセッサ命令を通じて増分
あるいは減分することができ、特定の命令をさらに減分できない場合はブロックする。
【０００９】
　さらなる態様では、本発明はコンピュータ・システムを動作する方法を提供し、これは
、第１のプロセッサによる実行のためのコードを提供すること、第１のプロセッサへのコ
プロセッサとして動作する第２のプロセッサによって実行されるタスクをコードから抽出
すること、コードおよびタスクから、少なくとも１つのデータ・バッファにより、第２の
プロセッサによるアクセスのためにデータ・バーストにおいてメイン・メモリからデータ
を読み取り、そこへ書き込むことができるようにするためのバースト命令を決定すること
、および少なくとも１つのデータ・バッファとメイン・メモリの間でデータの転送を制御
するバースト・コントローラによるバースト命令の実行と共に、コプロセッサ上のタスク
の実行を含む。
【００１０】
　コードからのタスクの抽出に続いて、コプロセッサ・コントローラによる実行のための
コプロセッサ命令が、第２のプロセッサによるタスクの実行を制御するために決定される
のがよい。
【００１１】
　タスクの実行の場合、コプロセッサ命令の実行とバースト命令の実行の間の同期化が同
期化機構によって達成されるのがよい。この同期化機構は、第１の命令の正しい実行のた
めに完了が必要である第２の命令が完了するまで、第１の命令をブロックすることを、有
効に含むことができる。この機構は、適切なバーストまたはコプロセッサ命令を通じて増
分あるいは減分することができるカウンタを使用することができる。



(6) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００１２】
　本発明の特定の実施形態を添付の図面を参照して、以下に説明する。
【発明を実施するための形態】
【００１３】
　図１は、本発明の第１の実施形態によるシステムの基本エレメントを示す。本質的に、
このシステムはプロセッサ１およびコプロセッサ２を含み、これらは、最大の計算効率の
ために、計算をプロセッサ１とコプロセッサ２の間で区分することができるよう構成され
ている。プロセッサ１は本質的にいかなる汎用プロセッサ（たとえば、ｉ９６０）でもよ
く、コプロセッサ２は本質的に、著しくより高い有効性により計算の一部を処理すること
ができるいかなるコプロセッサでもよい。ここで記載された特定のシステムでは、本質的
に計算全体がプロセッサ１によるよりもコプロセッサ２によって処理されるが、本発明は
この特定の構成に限定されるものではない。
【００１４】
　特に記載されたシステムでは、コプロセッサ２が再構成可能ＦＰＧＡの形式であり、こ
れについては以下でさらに述べられるが、コプロセッサ２の他の形式、たとえば、ＡＳＩ
ＣＳ、ＤＳＰなどを代りに使用することができる（対応する修正を計算モデルに行うこと
が必要）。プロセッサ１およびコプロセッサ２は共にＤＲＡＭメイン・メモリ３へのアク
セスを有するが、プロセッサ１はより高速なアクセス・メモリ４のキャッシュ、典型的に
はＳＲＡＭへのアクセスも有する。ＤＲＡＭ３への効率的なアクセスが、情報の「バース
ト」の効率的なローディングおよび格納のためにＤＲＡＭと通信するように適合された「
バースト・バッファ」メモリ５によって提供され、バースト・バッファについては以下で
さらに記載される。バースト・バッファ５への命令が、バースト命令待ち行列６を通じて
提供され、バースト・バッファ５がバースト・バッファ・コントローラ７の制御下で動作
する。バースト・バッファのアーキテクチャは、以下に述べられる理由のため、コプロセ
ッサ２に関連付けられたアーキテクチャにおいて、ミラーリングされる。コプロセッサ２
への命令がコプロセッサ命令待ち行列８において提供され、コプロセッサがコプロセッサ
・コントローラ９の制御下で動作する。バースト・バッファおよびコプロセッサの動作、
およびそれらの関連付けられた命令待ち行列の同期化が、プロセッサ１自体による一般の
方法ではなく、特定の機構によって達成される。この実施形態では、この機構がロード／
実行セマフォ(semaphore)１０および実行／格納セマフォ１１を含み、これらは以下に記
載される方法で動作する（他のこのような同期化機構が可能であり、これらについても以
下に述べられる）。
【００１５】
　システム・アーキテクチャにおけるエレメントの説明
　このシステムの個々のエレメントが、以下でより詳細に論じられる。プロセッサ１は一
般に計算を制御するが、計算自体におけるステップのいくつか（または、記載された実施
形態では、すべて）がコプロセッサ２において実行されるような方法で制御する。プロセ
ッサ１が、バースト命令待ち行列６を通じて特定のタスクのための命令、すなわち、バー
スト・バッファ・コントローラ７の構成、およびバースト・バッファ・メモリ５とメイン
・メモリ３の間のデータの転送のための命令を提供する。さらに、コプロセッサ命令待ち
行列８を通じて、プロセッサ１はさらなるタスクのための命令、すなわち、コプロセッサ
・コントローラ９の構成、およびコプロセッサ２上の計算の開始のための命令を提供する
。コプロセッサ２上で実行されるこの計算は、バースト・バッファ・メモリ５を通じてデ
ータにアクセスする。
【００１６】
　コプロセッサ命令待ち行列８の使用が有効にプロセッサ１をプロセッサ２の動作から減
結合し、バースト命令待ち行列６の使用が有効にプロセッサ１をバースト・バッファ５か
ら減結合する。この構成の特定の詳細は、以下でより詳細に論じられる。この減結合につ
いては、本発明のこの実施形態のための計算モデルに関連して、以下でさらに論じられる
。



(7) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００１７】
　コプロセッサ２が、実際の計算のいくつかまたはすべてを実行する。特に適したコプロ
セッサはＣＨＥＳＳ　ＦＰＧＡ構造であり、これは、国際特許出願第ＧＢ９８／００２６
２号、国際特許出願第ＧＢ９８／００２４８号、１９９８年１２月１１日出願の米国特許
出願第０９／２０９，５４２号、およびその欧州の相当する欧州特許出願第９８３０９６
００．９号に記載されており、それらの出願の内容が参照により本明細書に組み込まれる
。このコプロセッサは再構成可能であり、４ビットＡＬＵのチェッカーボード・アレイお
よびスイッチング構造を含み、それにより、コプロセッサが構成可能であり、１つの４ビ
ットＡＬＵからの出力を使用して別のＡＬＵへ命令することができる。ＣＨＥＳＳアーキ
テクチャは特に、パイプライン計算に有効であり、ここでは入力および出力データ・スト
リームと対話するように有効に適合される。コプロセッサ・コントローラ９（この動作が
以下でさらに論じられる）が、高レベルの制御命令（計算の詳細に関する命令ではなく、
コプロセッサ２の制御全体のための命令、たとえば「ｎサイクル実行する」）を、コプロ
セッサ命令待ち行列８から受信する。ＣＨＥＳＳコプロセッサ２はコプロセッサ・コント
ローラ９の制御下で動作し、バッファ・バースト５との対話を通じてデータを受信し、格
納する。したがって、ＣＨＥＳＳコプロセッサ２は入力ストリーム上で動作して、出力ス
トリームを生成する。これは、ＣＨＥＳＳコプロセッサの動作が非常に予測可能なので、
効率的なプロセスにすることができる。このモデルに従った計算の詳細な動作が、後で論
じられる。
【００１８】
　プロセッサ１が、従来の方法によるＳＲＡＭにおける高速アクセス・メモリ・キャッシ
ュ４へのアクセスを有するが、メイン・メモリはＤＲＡＭ３として提供される。ＤＲＡＭ
への有効なアクセスが、バースト・バッファ５によって提供される。バースト・バッファ
は、欧州特許出願第９７３０９５１４．４号、および１９９８年１月６日出願の対応する
米国特許出願第０９／３，５２６号において記載されており、それらの出願が参照により
本明細書に組み込まれる。バースト・バッファ・アーキテクチャについては本明細書で簡
単に記載されるが、このアーキテクチャの十分な詳細については、先の出願を参照してい
ただきたい。
【００１９】
　この実施形態で使用されたバースト・バッファ・アーキテクチャのバージョンのエレメ
ント（前記の出願において論じられるように、変形も可能）が、図２および図３に示され
る。バースト・バッファ構成エレメントがプロセッサ１と通信する接続１２が提供される
。メモリ・バス１６が、メイン・メモリ３（図２においては図示せず）への接続を提供す
る。このメモリ・バスはキャッシュ４と共有することができ、この場合、メモリ・データ
パス・アービタ５８が、キャッシュ４との通信も可能にする。
【００２０】
　この装置におけるバースト・バッファの全体の役割は、計算をコプロセッサ２上で実行
できるようにすることであり、このコプロセッサ２とメイン・メモリ３の間のデータ転送
を、両方が各システム構成エレメントの効率を最大にすると同時に全体のシステム効率を
最大にする方法で行うことを含む。これは、以下のいくつかの技術の組み合わせによって
達成される。
【００２１】
　1)以下に記載されるようなバースト・バッファ５を使用した、ＤＲＡＭへのバースト・
アクセス、
2)「ダブル・バッファリング」とよばれる技術を使用した、コプロセッサ２上の計算の同
時実行、およびメイン・メモリ３とバースト・バッファ・メモリ５の間のデータ転送、お
よび
3)プロセッサ１の実行をコプロセッサ２およびバースト・バッファ・メモリ５の実行から
、命令待ち行列の使用を通じて切り離すことである。
【００２２】



(8) JP 5283810 B2 2013.9.4

10

20

30

40

50

　「ダブル・バッファリング」は、たとえば、コンピュータ・グラフィックスにおいて知
られている技術である。本明細書で使用される形式では、バースト・バッファ・メモリ５
の一部からのデータを消費すること、すなわち読み取ること、他のデータを同じメモリの
異なる領域へ生成すること、すなわち書き込むことを含み、先に書き込まれた領域を読み
取り、その逆もできるスイッチング機構を有する。
【００２３】
　バースト・バッファの利点は、従来のＤＲＡＭ構造の特徴の有効な利用である。ＤＲＡ
Ｍは、正方行列におけるメモリ位置のアレイを含む。アレイにおけるエレメントにアクセ
スするには、行が最初に選択され（あるいは「開かれ」）なければならず、その後に適切
な列の選択が続く。しかし、行が選択された後、その行における列への連続アクセスは、
単に列アドレスを提供することによって実行することができる。行を開くことおよびその
行にローカルな一連のアクセスを実行することの概念が、「バースト」と呼ばれる。媒体
集中計算（典型的には、いかなるデータ依存アドレス指定もなしに長いアレイにアクセス
する、規則正しいプログラム・ループを使用するアルゴリズムを含む）におけるように、
データが規則正しい方法で構成されるとき、バーストの有効な使用が劇的に計算速度を向
上させることができる。バースト・バッファは、バーストの効率的な使用を通じてＤＲＡ
Ｍからのデータにアクセスするように適合された、新しいメモリ構造である。
【００２４】
　システムがいくつかのバースト・バッファを含むことができる。典型的には、各バース
ト・バッファがそれぞれのデータ・ストリームへ割り振られる。アルゴリズムが、異なる
数のデータ・ストリームを有するので、固定量のＳＲＡＭ２６がバースト・バッファ・メ
モリ領域としてバースト・バッファに使用可能であり、この量が、必要とされるバッファ
の数に従って分割される。たとえば、固定ＳＲＡＭの量が２Ｋバイトである場合、かつ、
アルゴリズムが４つのデータ・ストリームを有する場合、メモリ領域を４つの５１２バイ
トのバースト・バッファに区分することができる。
【００２５】
　このタイプのアーキテクチャでは、バーストが、以下によって定義されたアドレスの組
を含む。
【００２６】
【数１】
　バースト＝｛Ｂ＋Ｓ×ｉ｜Ｂ，Ｓ，ｉ∈Ｎ∧０≦ｉ＜Ｌ｝
【００２７】
　ただし、Ｂは転送の基底アドレスであり、Ｓはエレメントの間のストライド(stride)で
あり、Ｌは長さであり、Ｎは自然数の組である。この式において明示的に定義されないが
、バースト順序が、０からＬ－１まで増分するｉによって定義される。したがって、バー
ストは、次の３個のエレメントからなる集合によって定義することができる。
【００２８】
　（ｂａｓｅ＿ａｄｄｒｅｓｓ，ｌｅｎｇｔｈ，ｓｔｒｉｄｅ）
　ソフトウェアでは、バーストをエレメントサイズによって定義することもできる。これ
は、バーストをバイト、ハーフワード、またはワードのサイズにすることができることを
意味する。ストライドの単位は、このことを考慮しなければならない。「サイズド・バー
スト」は、次の形式の４個のエレメントからなる集合によって定義される。
【００２９】
　（ｂａｓｅ＿ａｄｄｒｅｓｓ，ｌｅｎｇｔｈ，ｓｔｒｉｄｅ，ｓｉｚｅ）
　「チャネル・バースト」は、サイズがメモリへのチャネルの幅である、サイズド・バー
ストである。コンパイラが、ソフトウェア・サイズド・バーストからチャネル・バースト
へのマッピングを担う。チャネル・バーストは、次の４個のエレメントからなる集合によ
って定義することができる。
【００３０】
　（ｂａｓｅ＿ａｄｄｒｅｓｓ，ｌｅｎｇｔｈ，ｓｔｒｉｄｅ，ｗｉｄｔｈ）



(9) JP 5283810 B2 2013.9.4

10

20

30

40

50

　チャネル幅が３２ビット（または４バイト）である場合、チャネル・バーストが常に以
下の形式である。
【００３１】
　（ｂａｓｅ＿ａｄｄｒｅｓｓ，ｌｅｎｇｔｈ，ｓｔｒｉｄｅ，４）
　あるいは、３個のエレメントからなる集合（ｂａｓｅ＿ａｄｄｒｅｓｓ，１ｅｎｇｔｈ
，ｓｔｒｉｄｅ）に短縮される。
【００３２】
　このメモリの制御およびバースト・バッファの割り振り（および解放）が、ソフトウェ
ア処理によって高レベルで処理される。この実施形態では、「ダブル・バッファリング」
が使用されるが、他の戦略も確かに可能であり、この判断は記憶の効率と簡潔性の間のト
レードオフを含む。バースト・バッファ・メモリ領域２６がメイン・メモリ３からデータ
をロードし、そこヘデータを格納し、これはメモリ・データパス・アービタ５８を通じて
行い、これがＤＭＡコントローラ５６の制御下で動作し、バースト命令待ち行列６を通じ
て受信される命令に応答する。データが、バースト・バッファ・メモリ領域２６とプロセ
ッサ１またはコプロセッサ２の間で、接続手段１２を通じて交換される。図３に示すよう
に、バースト・バッファ・システム５のための制御インタフェースは、１組のテーブルに
基づいている。すなわち、バースト・バッファ・メモリへバーストし、そこからバースト
するためのメイン・メモリの領域を記述するメモリ・アクセス・テーブル（ＭＡＴ）６５
、およびバースト・バッファ・メモリの領域を記述するバッファ・アクセス・テーブル（
ＢＡＴ）６６である。この実施形態では、デュアルポートＳＲＡＭの同次領域が、バース
ト・バッファ・メモリ領域２６のために使用される。
【００３３】
　ＭＡＴおよびＢＡＴを使用しなかったバースト・バッファ構成（これも欧州特許出願第
９７３０９５１４．４号に記載されているようなもの）を、本発明の代替実施形態におい
て使用することができ、ＭＡＴおよびＢＡＴにおいて暗示的に符号化されたパラメータ（
ソース・アドレス、宛先アドレス、長さ、ストライド）が、次いで、発行されたバースト
転送毎に明示的に指定されなければならない。直接のアドレス、長さおよびストライドで
はなく、ＭＡＴおよびＢＡＴを使用するための主な理由は、これが全体のコード・サイズ
を著しく減らすことである。本発明に関連して、これは典型的には重要というよりも有用
である。
【００３４】
　プロセッサ１から発信するバースト命令が、バースト命令待ち行列６により、バースト
・バッファ５へ提供される。バースト命令待ち行列６からの命令が、バッファ制御エレメ
ント５４によって処理されて、ＭＡＴ６５およびＢＡＴ６６におけるスロットが参照され
る。バッファ・コントローラは、８個のバースト制御レジスタ５２からの制御入力も受信
する。これらの２つのテーブルに含まれた情報が、実行時間で共に結び付けられて、完全
なメイン・メモリ対バースト・バッファのトランザクションが記述される。出力がバッフ
ァ・コントローラ５４から直接メモリ・アクセス（ＤＭＡ）コントローラ５６へ、よって
メモリ・データパス・アービタ５８へ提供されて、メイン・メモリ３とバースト・バッフ
ァ・メモリ領域２６の間のトランザクションが実施される。
【００３５】
　重要なバースト命令は、データをメイン・メモリ３からバースト・バッファ・メモリ領
域２６ヘロードするため、かつ、データをバースト・バッファ・メモリ領域２６からメイ
ン・メモリ３へ格納するために使用されるものである。これらの命令は「ロードバースト
」および「ストアバースト」である。ロードバースト命令が、データ・ワードのバースト
を、メモリ３における決定された位置からバースト・バッファのそれへ転送させる。対応
するストアバースト命令もあり、これは、データ・ワードのバーストを、バースト・バッ
ファの１つからメモリ３へ、メモリ３における特定のアドレスで開始して、転送させる。
図１のアーキテクチャでは、追加の同期化命令も必要とされ、これらは以下でさらに論じ
られる。



(10) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００３６】
　命令のロードバーストおよびストアバーストは、通常のロードおよび格納命令とは異な
り、これらは転送が起こっていなくとも単一のサイクルで完了する。本質において、ロー
ドバーストおよびストアバースト命令が、メモリ・インタフェース１６へバーストを実行
するように伝えるが、これらはバーストが完了するまで待機しない。
【００３７】
　基本動作は、２つのテーブル・エントリへ、メモリ・アクセスおよびバッファ・アクセ
ス・テーブルのそれぞれにおける１つを索引付けする命令を発行することである。メモリ
・アクセス・テーブルへの索引が、転送のメモリ側で使用された基底アドレス、エクステ
ントおよびストライドを検索する。バッファ・アクセス・テーブルへの索引が、バースト
・バッファ・メモリ領域内の基底アドレスを検索する。図示の実施形態では、マスキング
およびオフセットが索引値へ、コンテキスト・テーブル（これは欧州特許出願第９７３０
９５１４．４号においてさらに論じられている）によって提供されるが、代りに実アドレ
スを使用することが可能である。直接メモリ・アクセス（ＤＭＡ）コントローラ５６がパ
ラメータを２つのテーブルから渡され、これらを使用して、要求された転送を指定する。
【００３８】
　表１は、可能な命令セットを示す。
【００３９】
【表１】

【００４０】
　ストアバースト命令（ＢＢ＿ストアバースト）が、ＭＡＴおよびＢＡＴにおけるパラメ
ータを索引付け(index)し、これが要求された転送の特性を定義する。
ｂｌｏｃｋ＿ｉｎｃｒｅｍｅｎｔビットが設定される場合、ＭＡＴにおいて索引付けされ
たエントリのｍｅｍａｄｄｒフィールドが、転送が完了するときに自動的に更新される（
以下で論じられるように）。
【００４１】
　ロードバースト命令（ＢＢ＿ロードバースト）も、ＭＡＴおよびＢＡＴにおけるパラメ



(11) JP 5283810 B2 2013.9.4

10

20

30

40

50

ータを索引付けし、再度これが要求された転送の特性を定義する。前のように、ｂｌｏｃ
ｋ＿ｉｎｃｒｅｍｅｎｔビットが設定される場合、ＭＡＴにおいて索引付けされたエント
リのｍｅｍａｄｄｒフィールドが、転送が完了するときに自動的に更新される。
【００４２】
　必要とされた同期化命令が、Ｌｏａｄ－Ｅｘｅｃｕｔｅ　Ｉｎｃｒｅｍｅｎｔおよびｅ
Ｘｅｃｕｔｅ－Ｓｔｏｒｅ　Ｄｅｃｒｅｍｅｎｔ（ＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮＴおよ
びＢＢ＿ＸＳ＿ＤＥＣＲＥＭＥＮＴ）として提供される。ＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮ
Ｔの目的は、特定のデータのバーストにおけるコプロセッサ２の実行が、必要とされたデ
ータがロードバースト命令の後に続いてバースト・バッファ・メモリ５に到着した後に起
こるようにすることである。ＢＢ＿ＸＳ＿ＤＥＣＲＥＭＥＮＴの目的は、ストアバースト
命令の実行が、結果がメイン・メモリ３に格納され戻される（コプロセッサ２上の）計算
の完了の後に続くようにすることである。
【００４３】
　この実施形態では、これらの命令が動作する特定の機構は、２つのカウンタの組であり
、それぞれ次のものを追跡する。すなわち、a)ストアバーストを受信する用意ができてい
るバースト・バッファ・メモリ５における領域の数、およびb)完了されたロードバースト
命令の数、である。
【００４４】
　コプロセッサ２によるデータの要求が、ＬＸカウンタを減分することによって実行され
るが、データの可用性は、ＸＳカウンタを増分することによって信号で通知される。これ
らのカウンタは、２つの特性を満たさなければならない。すなわち、これらがただ１つの
システム構成エレメントへいかなる所与のときにもアクセス可能でなければならないこと
、およびこれらが使用不可能なデータを要求する処理を中断する能力を有していなければ
ならないことである。
【００４５】
　要求されるものにもっとも近く合致する既存の概念はセマフォであり、Ｄｉｊｋｓｔｒ
ａ（「［Ｄｉｊｋｓｔｒａ　１９６８］　Ｅ．Ｄｉｊｋｓｔｒａ，「Ｃｏ－ｏｐｅｒａｔ
ｉｎｇ　Ｓｅｑｕｅｎｔｉａｌ　Ｐｒｏｃｅｓｓｅｓ」，Ｆ．Ｇｅｎｕｙｓ（編集者），
Ｐｒｏｇｒａｍｍｉｎｇ　Ｌａｎｇｕａｇｅｓ，Ｎｅｗ　Ｙｏｒｋ：Ａｃａｄｅｍｉｃ　
Ｐｒｅｓｓ，（１９６８），４３－１１２ページ）に記載されている。したがって、用語
「セマフォ」は、本発明の実施形態において使用されたカウンタを記載するために使用さ
れるが、これらのカウンタがＤｉｊｋｓｔｒａによって記載されたセマフォには等しくな
いが広く類似していることに留意されたい。
【００４６】
　セマフォの基本原理は以下の通りである。セマフォは整数値を含む。Ｗａｉｔ（）命令
をセマフォ上で実行することはこの値をディクリメント(decrement、減分)するが、Ｓｉ
ｇｎａｌ（）命令を実行することはこれをインクリメント(increment、増分)する。Ｗａ
ｉｔ（）を、値がすでに０であるセマフォ上で実行すると、セマフォの値が増分されるま
で、Ｗａｉｔ（）を実行しようと試みているソフトウェア処理またはハードウェア構成エ
レメントが停止する。
【００４７】
　この実施形態では、ＢＢ＿ＸＳ＿ＤＥＣＲＥＭＥＮＴ命令がＸＳセマフォ（図１の１１
）上でＷａｉｔ（）のように動作するが、ＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮＴ命令はＬＸセ
マフォ（図１の１０）上でＳｉｇｎａｌ（）のように動作する。以下で記載されるように
、コプロセッサ・コントローラ９が、反対に、Ｗａｉｔ（）をＬＸセマフォ１０上で、Ｓ
ｉｇｎａｌ（）をＸＳセマフォ１１上で実行する。これらの命令の意味は、Ｄｉｊｋｓｔ
ｒａの論文に記載されたものと同じにすることができるが、Ｓｉｇｎａｌ（）およびＷａ
ｉｔ（）動作の構成全体は元の論文に記載されたものとは著しく異なる。システムの正確
さに必要な、あるイベントの相対的時間順序が守られるようにするため、これらの命令が
適切な順序で（以下でさらに論じられるように）発行される。



(12) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００４８】
　メモリ・アクセス・テーブル（ＭＡＴ）６５が、以下で図３を参照して記載される。こ
れは、バースト・トランザクションに含まれたメイン・メモリ位置に関連する情報を保持
するメモリ記述子テーブルである。ＭＡＴにおける各エントリは、メイン・メモリへのト
ランザクションを記述する、索引付けされたスロットである。この実施形態では、ＭＡＴ
６５が１６個のエントリを含むが、異なる実施がもちろん可能である。各エントリが以下
の３個のフィールドを含む。
　１．メモリ・アドレス（ｍｅｍａｄｄｒ）。メイン・メモリにおける関連領域の開始ア
ドレス。この位置が物理メモリ空間にあることが理想的であり、これは、仮想アドレス変
換が２つの物理ページにまたがるバースト要求の結果となる可能性があり、これがメモリ
・コントローラに難点を引き起こすからである。
　２．エクステント（ｅｘｔｅｎｔ）。転送のエクステント。これは転送の長さであり、
ストライドで乗算され、転送された最後のアドレス＋１を与える。転送の長さは、エクス
テントをストライドにより除算することによって計算され、これは、転送が完了した後で
、関連するＢＡＴ６６（以下参照）のｂｕｆｓｉｚｅフィールドへ自動的にコピーされる
。
　３．ストライド（ｓｔｒｉｄｅ）。転送における連続したエレメントの間の間隔。
【００４９】
　ｍｅｍａｄｄｒ：チャネル・バーストの第１のエレメントの３２ビット、符号なし、語
調整されたアドレスである。
【００５０】
　ｅｘｔｅｎｔ：ｅｘｔｅｎｔレジスタにおけるパラメータは、バースト転送の範囲を包
含するアドレス・オフセットである。転送がＳのストライドによって分離されたＬ個のエ
レメントを必要とする場合、エクステントはＳ＊Ｌである。
【００５１】
　ｓｔｒｉｄｅ：パラメータｓｔｒｉｄｅは、アクセスの間でスキップされたバイト数で
ある。転送ストライド間隔の値は、１から１０２４までの範囲に制限される。１０２４よ
り大きい値は自動的に１０２４に切り捨てられる。このレジスタの読取りが、バーストの
ために使用された値を戻す（すなわち、切り捨てが必要であった場合、切り捨てられた値
が戻される）。ストライドはメモリ・バス幅の倍数でなければならず、この場合は４バイ
トである。自動切り捨て（丸めなし）が、この位置合わせを実施するために実行される。
【００５２】
　ＭＡＴスロットによって含まれた値の一例は、以下のようになる可能性がある。
【００５３】
　｛０ｘ１ｆｅｅｌｂａｄ，１２８，１６｝
　これは、３２語（３２個の４バイト語）バーストの結果となり、各語が４語（４個の４
バイト語）によって分離される。
【００５４】
　バースト命令の自動増分標識ビットは、ＭＡＴ６５にも関連している。このビットがバ
ースト命令において設定される場合、もしバーストが３２を越えて継続しているならば、
開始アドレス・エントリがポイント・トゥ・ポイントで、次のメモリ位置へ増分される。
これは、長いシーケンスのメモリ・アクセスにおいて次のバーストのための開始アドレス
を計算することにおける、プロセッサ・オーバーヘッドを節減する。
【００５５】
　バッファ・アクセス・テーブル（ＢＡＴ）６６が、以下で図３を参照して記載される。
これもまたメモリ記述子テーブルであり、この場合はバースト・バッファ・メモリ領域２
６に関する情報を保持する。ＢＡＴ６６における各エントリが、バースト・バッファ・メ
モリ領域２６へのトランザクションを記述する。ＭＡＴ６５の場合のように、ＢＡＴ６６
が１６個のエントリを含むが、もちろんＭＡＴ６５の場合のように変わる可能性がある。
この場合は各エントリが以下の２つのフィールドを含む。



(13) JP 5283810 B2 2013.9.4

10

20

30

40

50

　１．バッファ・アドレス（ｂｕｆａｄｄｒ）。バッファ領域におけるバッファの開始。
　２．バッファ・サイズ（ｂｕｆｓｉｚｅ）。最後の転送で使用されたバッファ領域のサ
イズ。
【００５６】
　バッファ・アドレス・パラメータｂｕｆａｄｄｒは、バッファ領域におけるチャネル・
バーストの第１のエレメントのためのオフセット・アドレスである。バースト・バッファ
領域は、ハードウェアによってプロセッサのメモリ空間の領域へ物理的にマッピングされ
る。これは、バースト・バッファ領域にアクセスするときにプロセッサが絶対アドレスを
使用しなければならないことを意味する。しかし、ＤＭＡ転送は単にオフセットを使用し
、そのため、ハードウェアが、要求されたいかなるアドレス解決をも管理することが必要
である。不当に位置合わせされた値は、切り捨てによって自動的に位置合わせすることが
できる。このレジスタの読取りが、バーストのために使用された値を戻す（すなわち、切
り捨てが必要であった場合、切り捨てられた値が戻される）。デフォルト値は０である。
【００５７】
　パラメータｂｕｆｓｉｚｅは、もっとも最近のバーストによって占有されたバッファ領
域内の領域のサイズである。このレジスタは、そのエントリを目標としたバースト転送の
完了時に、自動的に設定される。格納された値がバーストの長さであり、これは、０の値
が使用されていないバッファ・エントリを指示するからであることに留意されたい。この
レジスタに書き込むことができるが、これは、バッファが保存されリストアされるときに
、文脈切り換え後にのみ有用である。デフォルト値は再度０である。
【００５８】
　ＭＡＴおよびＢＡＴエントリをプログラムすることが、ＢＢ＿ＳＥＴ＿ＭＡＴおよびＢ
Ｂ＿ＳＥＴ＿ＢＡＴ命令の使用を通じて実行される。エントリ・パラメータが、現在の命
令が参照するＭＡＴ（またはＢＡＴ）におけるエントリを決定する。
【００５９】
　バースト・バッファ・アーキテクチャおよびその制御のための機構のさらなる詳細が、
欧州特許出願第９７３０９５１４．４号および対応する米国特許出願第０９／３，５２６
号において提供される。上記で提供された詳細は、主として、バースト・バッファ・シス
テムのアーキテクチャエレメントを示し、バースト・バッファ・システムが実施すること
ができる機能効果を、それが提供する入力および出力と共に示すように意図される。バー
スト・バッファ・システムが、特定のタイプの計算モデルに合わせて最適に適合され、こ
れは、本明細書で、本発明の記載された実施形態のための計算モデルに展開される。この
計算モデルについてさらに説明する。
【００６０】
　バースト命令待ち行列６が上で記載された。この実施形態の著しい態様は、命令が類似
の方法でコプロセッサへ、コプロセッサ命令待ち行列８を通じて提供されることである。
コプロセッサ命令待ち行列８は、コプロセッサ・コントローラ９との接続において動作し
、これは、コプロセッサがプロセッサ１から命令を受信する方法、およびそれがデータを
バースト・バッファ・システム５と交換する方法を決定する。
【００６１】
　コプロセッサ命令待ち行列８の使用は、プロセッサ１自体が計算自体から切り離される
重要な効果を有する。したがって、計算中に、プロセッサ・リソースが他のタスクの実行
のために使用可能である。プロセッサ１の動作がストールされることにつながる可能性の
ある唯一の状況は、命令待ち行列６、８の一方が命令で満たされることである。この場合
は、プロセッサ１が、いずれかの待ち行列のための命令を、命令が消費されるよりも速い
速度で生成するときに起こる可能性がある。この問題の解決策は入手可能である。事前定
義の時間量の後、あるいは、いずれかの待ち行列において占有されたスロットの数が事前
定義の量まで減分された事実によってトリガされた割り込みの受信の上で、文脈切り換え
を実行してこれら２つの待ち行列にサービスするために戻るように、プロセッサ１へ要求
することによって、有効性を改善することができる。反対に、プロセッサ１が、命令が消



(14) JP 5283810 B2 2013.9.4

10

20

30

40

50

費される速度に遅れないでいることができないために、２つの待ち行列の一方が空になる
場合、これらの命令の消費者（コプロセッサ・コントローラ９またはバースト・バッファ
・コントローラ７）は、新しい命令がプロセッサ１によって生成されるまで、ストール（
機能停止）する。
【００６２】
　修正を、プロセッサ１からのそれ以上の関与がまったく必要とされないようにするアー
キテクチャにも提供することができ、これらについては本明細書の最後の部分において論
じられる。
【００６３】
　コプロセッサ・コントローラ９の基本機能は、データをバースト・バッファ・メモリ５
からコプロセッサ２へ（およびコプロセッサ２からバースト・バッファ・メモリ５へ）取
り出すこと、コプロセッサの動作を制御すること、およびコプロセッサ２の実行をバース
ト・バッファ・メモリ５からの適切なロードまたはそれへの格納と同期化することである
。これらの機能を達成するには、コプロセッサ・コントローラを、本質において、ある規
則に従ってアドレスを生成することができる、相対的に簡素な状態機械にすることができ
る。
【００６４】
　図４は、コプロセッサ・コントローラ９を、アーキテクチャの他の構成エレメントとの
関係において示し、その構成エレメント、およびアーキテクチャ全体における他のエレメ
ントとの接続も示す。その厳密な機能は、コプロセッサ２およびその初期化要件（ある場
合は）によって必要とされた入力および出力のタイプに依存し、そのため、以下に記載さ
れたものから詳細において変わる可能性がある。ＣＨＥＳＳコプロセッサの場合、これら
の入力および出力が、バースト・バッファ・メモリ５と交換された入力および出力データ
・ストリームである。
【００６５】
　コプロセッサ・コントローラ９は、次の２つの主なタスクを実行する。すなわち、1)コ
プロセッサ２とバースト・バッファ・メモリ５との間の通信の制御、および2)制御有限状
態機械４２の使用を通じたシステム状態の維持である。
【００６６】
　コプロセッサ２がストリームにおけるデータにアクセスし、そのそれぞれがいくつかの
制御レジスタ４１の１つとの関連付けを与えられる。これらのレジスタ４１のためのアド
レスが、制御有限状態機械４２によってアドレス指定ロジック４３と共に、有限状態機械
４２によって生成されたシーケンスに従って、周期的な様式において生成される。
【００６７】
　有限状態機械４２内のクロックの各チックで、有限状態機械は、レジスタ４１の（多く
とも）１つが、そのために生成された新しいアドレス、およびレジスタ４１がバースト・
バッファ・メモリ５をアドレス指定できるようにするために使用されたアドレスを有する
ための許可を与える。同時に、適切な制御信号が有限状態機械４２によって生成され、マ
ルチプレクサ４４へ送信されて、適切なアドレスが正しい読み／書き信号と共にバースト
・バッファ・メモリ５へ送信されるようにする。特定の読み／書き信号が各レジスタ４１
に、全体の計算中で変化しない値と共に関連付けられる。
【００６８】
　レジスタ４１のために得られたアドレスがメモリをアドレス指定するために使用された
後、一定量がその値へ追加され、これは一般にコプロセッサ２とバースト・バッファ・メ
モリ５との間の接続の幅と同じである。つまり、この接続の幅が４バイトである場合、カ
ウンタ４１に行われた増分が４となる。これは、本質的に、バースト・バッファのプログ
ラミングにおける「ストライド」に比較可能である。
【００６９】
　上述のコプロセッサ・コントローラの機構は、単一のバスに沿った異なるデータ・スト
リームの多重化を可能にする。各データ・ストリームは、それ自体のポートを通じて単一



(15) JP 5283810 B2 2013.9.4

10

20

30

の共有バスヘアクセスするとみなすことができる。
【００７０】
　このシステムが、通信の完全性が保証されるように動作するためには、バスの他方の端
でコプロセッサ２が、同期した方法でこのバスから読み取り、このバスへ書き込みする用
意ができていることが必要である。アプリケーション・ソフトウェア（および具体的には
、コプロセッサ２を構成するアプリケーション・ソフトウェアの一部まで）の責任は、つ
ぎのことを保証することである。すなわち、1)２つのストリームが同時にバスにアクセス
しようと試みないこと、および2)コプロセッサ２の実行がバースト・バッファ・メモリ５
とのデータ転送と同期であることである。
【００７１】
　この後者の要件は、コプロセッサ２が、２つのデバイスの間の接続上で、バースト・バ
ッファ・メモリ５によって配置されたデータを読み取るため、かつその逆のための用意が
できることを保証する。
【００７２】
　通常は、複数の物理線をＣｈｅｓｓアレイ２とバースト・バッファ・メモリ５の間に設
けることができるが、一般の多重化の必要性はなお残る。コプロセッサ２とバースト・バ
ッファ・メモリ５の間の物理接続の数が、コプロセッサ２のための論理Ｉ／Ｏストリーム
の合計数以上でない限り、２つ以上の論理ストリームが同じワイヤ上で多重化されなけれ
ばならないことが常に真となる。（バースト・バッファ・メモリ５に有利に使用されるよ
うに）高速ＳＲＡＭの設計に関係した技術的な理由が、コプロセッサ２との複数の接続の
使用を防止する。
【００７３】
　コプロセッサ・コントローラ９は、コプロセッサ２を含むＣＨＥＳＳアレイの実行を制
御するようにも動作し、それが指定数のクロック・サイクルで実行するようにする。これ
は、コプロセッサ２におけるパイプラインの内部状態に影響を与えない方法において、Ｃ
ＨＥＳＳアレイを、その内部クロックを「ゲーティング」すること（つまり、停止するこ
と）によって「フリーズ」する前に、指定数のサイクルだけチッキングする、制御有限状
態機械４２におけるカウンタによって達成される。このチックの数が、以下に記載された
ＣＣ＿ＳＴＡＲＴ＿ＥＸＥＣ命令を使用して指定される。
【００７４】
　コプロセッサ・コントローラ９が、プロセッサ１によって、コプロセッサ命令待ち行列
８の使用を通じてプログラムされる。このコプロセッサ・コントローラ９のための可能な
命令セットが、以下の表２において示される。
【００７５】



(16) JP 5283810 B2 2013.9.4

10

20

30

40

50

【表２】

【００７６】
　前記の命令では、命令フォーマットの異なる選択を行うことができる。１つの可能なフ
ォーマットは３２ビットの数字であり、１６ビットが演算コードを符号化し、１６ビット
が上述の任意選択のパラメータ値を符号化する。
【００７７】
　個々の命令の意味は、以下の通りである。
・ＣＣ＿ＣＵＲＲＥＮＴ＿ＰＯＲＴは、ポートの１つを、すべての後続のＣＣ＿ＰＯＲＴ
＿ｘｘｘ命令の受信者として、次のＣＣ＿ＣＵＲＲＥＮＴ＿ＰＯＲＴまで、選択する。
・ＣＣ＿ＰＯＲＴ＿ＰＥＲＩＯＤ（）は、現在のポートの活動化の周期を、整数パラメー
タの値に設定する。
・ＣＣ＿ＰＯＲＴ＿ＰＨＡＳＥ＿ＳＴＡＲＴ／ＣＣ＿ＰＯＲＴ＿ＰＨＡＳＥ＿ＥＮＤ（ｓ

ｔａｒｔ　ｅｎｄ）は、現在のポートの活動化の段階の開始／終了を、整数のパラメータ
（ｓｔａｒｔ　ｅｎｄ）の値に設定する。
・ＣＣ＿ＰＯＲＴ＿ＴＩＭＥ＿ＳＴＡＲＴ／ＣＣ＿ＰＯＲＴ＿ＴＩＭＥ＿ＥＮＤ（ｔｓｔ

ａｒｔ　ｔｅｎｄ）は、現在のポートの活動の最初／最後のサイクルを設定する。
・ＣＣ＿ＰＯＲＴ＿ＡＤＤＲＥＳＳ（ａｄｄｒｓｔａｒｔ）は、現在のポートの現在のア
ドレスを、整数のパラメータａｄｄｒｓｔａｒｔの値に設定する。
・ＣＣ＿ＰＯＲＴ＿ＩＮＣＲＥＭＥＮＴ（ａｄｄｒｉｎｃｒ）は、現在のポートのアドレ
ス増分を、整数のパラメータａｄｄｒｉｎｃｒの値に設定する。
・ＣＣ＿ＰＯＲＴ＿ＩＳ＿ＷＲＩＴＥ（ｒｗ）は、現在のポートのためのデータ転送方向
を、ブール・パラメータｒｗの値に設定する。
・ＣＣ＿ＳＴＡＲＴ＿ＥＸＥＣ　ｎｃｙｃｌｅｓは、コプロセッサ・コントローラ２の実
行を、関連付けられた整数パラメータｎｃｙｃｌｅｓによって指定されたクロック・サイ
クルの数だけ開始する。
・ＣＣ＿ＬＸＳ＿ＤＥＣＲＥＭＥＮＴは、ＬＸセマフォの値を（以前に記載されたように
、中断の方法において）減分する。
・ＣＣ＿ＸＳＳ＿ＩＮＣＲＥＭＥＮＴは、ＸＳセマフォの値を増分する。
【００７８】



(17) JP 5283810 B2 2013.9.4

10

20

30

40

50

　カウンタ４２の現在値、ｔｃｕｒが、ｔｓｔａｒｔｔｃｕｒ＜ｔｅｎｄであり、ｓｔａ

ｒｔ（ｔｃｕｒ　ｍｏｄ）＜ｅｎｄである場合、ポートが能動（つまり、バースト・バッ
ファ・メモリ５との通信の制御を有する）として定義される。これは、たとえば、２つの
ストリームが、等しい周期、言わば５で存在し、一方が最初の４サイクルのためのＢＢメ
モリの制御を有し、他方が残りのサイクルのための制御を有する、システムの可能性を可
能にする。
【００７９】
　このアーキテクチャを使用するアルゴリズムを実行する処理は、最初にコプロセッサ２
のプログラミング、次いでコプロセッサ・コントローラ９およびバースト・バッファ・コ
ントローラ７のプログラミングまたは初期化と、その後に続くアルゴリズムの実際の実行
を含む。
【００８０】
　コプロセッサ２の初期化では、デバイスの実際の実施形態に特定の手段によって、構成
がコプロセッサ自体にロードされることが、一般にもっとも直接になる。
【００８１】
　コプロセッサ・コントローラ９のプログラミングでは、そのステップは次の通りである
。
　１．メイン・コプロセッサ・コントローラ９が、前に記載されたように、Ｃｈｅｓｓア
レイにおいて存在する各論理ストリーム毎の合計数、周期、段階およびアドレス増分に従
って構成される。所望の機能を実行するためのコプロセッサ・コントローラ９のプログラ
ミングの一例が、下に示される。
　２．コプロセッサ・コントローラ９の構成における次のステップは、アドレス構成であ
る。各論理ストリームの特性（周期、段階）がアルゴリズム中で同じであり続ける可能性
が高いが、バースト・バッファ・メモリ５におけるコプロセッサ・コントローラ９によっ
てアクセスされた実アドレスは変わる。それはこの可変性であり、これは、バースト・バ
ッファ・コントローラ７がダブル・バッファリングを、バースト・バッファ・アーキテク
チャ内で直接の方法で実行できるようにする。このダブル・バッファリングの効果は、先
に述べられたように、コプロセッサ２に、それが連続ストリームと対話中である印象を与
えることであるが、実際にはバッファが連続的に交換されている。
【００８２】
　バースト・バッファ・コントローラ７も構成される必要がある。これを行うには、メイ
ン・メモリ３からバースト・バッファ・メモリ５へのデータの転送を構成するために、適
切なコマンドがバースト命令待ち行列６へ送信されなければならない。これらの命令（Ｂ
Ｂ＿ＳＥＴ＿ＭＡＴおよびＢＢ＿ＳＥＴ＿ＢＡＴ）が、ＢＡＴおよびＭＡＴ内で適切なエ
ントリを、コプロセッサ・コントローラ９のプログラミングに適合する方法で構成する。
この実施形態では、ＭＡＴおよびＢＡＴエントリをプログラムするための命令が、バース
ト命令待ち行列６を通じて発行される。代替の可能性は、プロセッサ１が読み書きするメ
モリ・マップ・レジスタの使用となる。この実施形態の場合のように、メモリ・マップ・
レジスタから読み取られる可能性がなく（それらが存在しないので）、プロセッサ１がバ
ースト・バッファ・コントローラ７の状態を照会することができないが、これは著しい制
限ではない。さらに、この目的のためのバースト命令待ち行列６の使用は、バースト転送
の実行によりＭＡＴおよびＢＡＴエントリを構成するための命令をインターリービングし
、したがって、プロセッサ１の監視なしに正しい時間的意味を維持する可能性を可能とす
る。
【００８３】
　これらのステップが実行された後、ＣＨＥＳＳアレイの実際の実行を開始することがで
きる。この実施形態では、ＣＨＥＳＳアレイに指定数のサイクルで実行するように命令す
ることのみが必要である。これは、正確な数のサイクルをパラメータとして、コプロセッ
サ命令待ち行列８におけるＣＣ＿ＳＴＡＲＴ＿ＥＸＥＣ命令へ書き込むことによって達成
され、次いでこのデータをコプロセッサ・コントローラ９へ渡すことができるようにする



(18) JP 5283810 B2 2013.9.4

10

20

30

40

50

。この値がコプロセッサ・コントローラ９に転送された１クロック・サイクル後、コント
ローラが値をバースト・バッファ・メモリ５とコプロセッサ２のＣＨＥＳＳアレイの間で
転送することを開始し、ＣＨＥＳＳアレイの実行を可能にする。
【００８４】
　しかし、重要なステップを、計算に関係する命令がそれぞれの命令待ち行列に配置され
る前に追加しなければならない。これは、必要な同期化機構が、同期化およびダブル・バ
ッファリングの原理をうまく実施するために適切であるようにするためである。この機構
における基本エレメントは、コプロセッサ・コントローラ９がＬＸセマフォの値を減分し
ようと試み、上述のロジックに従って、それがそうできるようになるまでコプロセッサの
動作を中断することである。このセマフォの初期値は０である。すなわち、したがって、
コプロセッサ・コントローラ９およびコプロセッサ２がこの段階で「フリーズ」される。
成功したロードバースト命令の後にＬＸセマフォの値がバースト・バッファ・コントロー
ラ７によって増分されるときにのみ、コプロセッサ２がその実行を開始（あるいは再開）
できるようになる。この効果を達成するため、ＣＣ＿ＬＸ＿ＤＥＣＲＥＭＥＮＴ命令がコ
プロセッサ命令待ち行列８において、「コプロセッサ２の実行を開始する」（ＣＣ＿ＳＴ
ＡＲＴ＿ＥＸＥＣ）命令の前に挿入される。以下に示されるように、対応する「ＬＸセマ
フォを増分する」（ＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮＴ）命令が、バースト命令待ち行列６
において、対応するロードバースト命令の後に挿入される。
【００８５】
　ＣＨＥＳＳ論理ストリームおよびバースト・バッファ・メモリ５の間の実際のデータの
転送が、先に記載されたようなコプロセッサ・コントローラ９のプログラミングに従って
実行される。
【００８６】
　カウンタ４２が実行しなければならないチックの数は、１つまたは複数の入力バースト
を消費するためにどれだけの時間がかかるかに依存する。システムの正確さを保証するこ
とは、アプリケーション・ソフトウェアに任される。カウンタ４２のプログラミングは、
バッファが消費された後にコプロセッサ２の実行が停止するようにしなければならない。
コプロセッサ命令待ち行列８における次の命令は、次のデータのバーストがバースト・バ
ッファ・メモリ５に到着しているようにするため、同期化命令（つまり、ＣＣ＿ＬＸ＿Ｄ
ＥＣＲＥＭＥＮＴ）でなければならない。この命令（および場合によっては、必要とされ
たデータが使用可能になるまでの待機期間）の後に続いて、この新しいデータのバースト
の初期アドレスがデータ・ストリームに割り当てられ（ＣＣ＿ＰＯＲＴ＿ＡＤＤＲＥＳＳ
命令により）、実行がＣＣ＿ＳＴＡＲＴ＿ＥＸＥＣ命令を介して再開される。この手順は
出力ストリームの場合に類似している（重要な違いは、データがメイン・メモリ３からバ
ースト・バッファ・メモリ５に到着するために必要としたものに等しい待機期間がなくな
ることである）。
【００８７】
　計算モデル
　計算モデル全体の例を図５を参照して説明する。この例は、アルゴリズムがこのアーキ
テクチャにおいて使用するためにどのように記録することができるかを指示し、一例とし
て簡素なベクトル加算を使用し、これは従来のマイクロプロセッサ向けに以下のようにＣ
でコーディングすることができる。
【００８８】
【表３】
　ｉｎｔ　ａ［１０２４］，ｂ［１０２４］，ｃ［１０２４］；
　ｆｏｒ（ｉ＝０；ｉ＜１０２４；ｉ＋＋）
　　ａ［ｉ］＝ｂ［ｉ］＋ｃ［ｉ］；
【００８９】
　図１のアーキテクチャ上で元のベクトル加算ループ・ネストと同じ機能性を達成するよ
うプロセッサ１を走らせるＣコードの一部分は、次の通りである。



(19) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００９０】
【表４】

【００９１】
　この構成では、３つのポートがコプロセッサ・コントローラ９において使用され、すな
わち、各入力ベクトルのためのもの（ｂおよびｃ）、および出力ベクトルのためのもの（
ａ）である。行４、６および８の文は、これらの３つのポートを初期化するためのコード
・マクロである。これらは、拡張されるとき、次の表のコマンドになる（これは行４を参
照し、他の拡張されたマクロは直接類似している）。
【００９２】
【表５】
　ＣＣ＿ＣＵＲＲＥＮＴ＿ＰＯＲＴ（０）；
　ＣＣ＿ＰＯＲＴ＿ＩＮＣＲＥＭＥＮＴ（４）；
　ＣＣ＿ＴＲＡＮＳＦＥＲ＿ＳＩＺＥ（４）；
　ＣＣ＿ＰＯＲＴ＿ＰＥＲＩＯＤ（３）；



(20) JP 5283810 B2 2013.9.4

10

20

30

40

50

　ＣＣ＿ＰＯＲＴ＿ＰＨＡＳＥ＿ＳＴＡＲＴ（０）；
　ＣＣ＿ＰＯＲＴ＿ＰＨＡＳＥ＿ＥＮＤ（１）；
　ＣＣ＿ＰＯＲＴ＿ＳＴＡＲＴ＿ＴＩＭＥ（０）；
　ＣＣ＿ＰＯＲＴ＿ＥＮＤ＿ＴＩＭＥ（３＊ＢＬＥＮ＊ＭＡＸＫ＋３）；
　ＣＣ＿ＰＯＲＴ＿ＩＳ＿ＷＲＩＴＥ（０）；
【００９３】
　このコードは、ポート０が、カウンタ４２の３チック毎、正確にはチック０、３、６．
．．３＊ＢＬＥＮ＊ＭＡＸＫ＋３の４バイトのデータを読み取り、それが読み取るアドレ
スを毎回４バイト増分するという効果を有する。ＢＬＥＮ＊ＭＡＸＫは、合計する２つの
ベクトルの長さ（この場合、１０２４）であり、ＢＬＥＮはＤＲＡＭからの単一のデータ
のバーストの長さ（たとえば、６４バイト）である。これらの値で、ＭＡＸＫは１０２４
／６４＝１６に設定される。
【００９４】
　行９から１４は、バースト・バッファ転送のためのＭＡＴおよびＢＡＴを確立し、これ
らのテーブルにおけるエントリをメイン・メモリ３およびバースト・バッファ・メモリ５
におけるアドレスに結合する。コマンドＢＩＱ＿ＳＥＴ＿ＭＡＴ（０，＆ｂ［０］，ＢＬ
ＥＮ＊４，４，ＴＲＵＥ）はコード・マクロであり、これはＢＢ＿ＳＥＴ＿ＭＡＴ（０，
＆ｂ［０］，ＢＬＥＮ＊４，４）に拡張され、ＭＡＴにおけるエントリ０をアドレス＆ｂ
［０］へ結合し、バースト長をＢＬＥＮ＊４バイトに（つまり、整数が３２ビットの場合
、ＢＬＥＮ整数）、ストライドを４に設定する。後に続く２行は、ｃおよびａに類似し、
関係する。行ＢＩＱ＿ＳＥＴ＿ＢＡＴ（０，０ｘ００００，ＢＬＥＮ＊４）は、ＢＢ＿Ｓ
ＥＴ＿ＢＡＴ（０，０ｘ００００，ＢＬＥＮ＊４）に拡張され、ＢＡＴのエントリ０をバ
ースト・バッファ・メモリ５におけるアドレス０ｘ００００へ結合する。後に続く２行は
再度類似している。
【００９５】
　この点まで、計算は行われていないが、コプロセッサ・コントローラ９およびバースト
・バッファ・コントローラ７が設定されている。行１５から３８のループ・ネストは、実
際の計算が行われるところである。このループはＭＡＸＫ回繰り返され、各反復がＢＬＥ
Ｎエレメント上で動作し、処理されたＭＡＸＫ＊ＢＬＥＮエレメントの合計を与える。こ
のループは、コプロセッサ命令待ち行列８へ送信された命令の組ＣＩＱ＿ｘｘｘで開始し
て、コプロセッサ２およびコプロセッサ・コントローラ９の動作を制御し、その後に、バ
ースト・バッファ・コントローラ７およびバースト・バッファ・メモリ５を制御すること
が目的である、バースト命令待ち行列６へ送信された１組の命令が続く。これら２組の相
対的な順序は、原理においては重要でなく、これは、異なるシステムエレメントの間の同
期化が、セマフォによって明示的に保証されるからである。互いの後に実行する２つの異
なるループを有すること（２つの命令待ち行列が十分深かったと仮定して）、または、２
つの異なる制御のスレッドを有することさえも可能となる。
【００９６】
　ＣＩＱ＿ｘｘｘ行は、ソース・コードを書くことを簡約にするコード・マクロである。
これらの意味は、次の通りである。
　ＣＩＱ＿ＬＸＤ（Ｎ）：Ｎ個のＣＣ＿ＬＸＳ＿ＤＥＣＲＥＭＥＮＴ命令をコプロセッサ
命令待ち行列８に挿入する。
　ＣＩＱ＿ＳＡ（ポート、アドレス）：ＣＣ＿ＣＵＲＲＥＮＴ＿ＰＯＲＴ（ポート）およ
びＣＣ＿ＰＯＲＴ＿ＡＤＤＲＥＳＳ（アドレス）命令をコプロセッサ命令待ち行列８に挿
入する。
　ＣＩＱ＿ＳＴ（ｃｙｃｌｅｎｏ）：コプロセッサ２にカウンタ４２のｃｙｃｌｅｎｏチ
ックだけ実行させるために、ＣＣ＿ＥＸＥＣＵＴＥ＿ＳＴＡＲＴ（ｃｙｃｌｅｎｏ）命令
を挿入する。
　ＣＩＱ＿ＸＳＩ（Ｎ）：Ｎ個のＣＣ＿ＸＳＳ＿ＩＮＣＲＥＭＥＮＴ命令をコプロセッサ
命令待ち行列８に挿入する。



(21) JP 5283810 B2 2013.9.4

10

20

30

40

50

【００９７】
　上に示したコードのネットの効果は、以下の通りである。すなわち、1)ＬＸＳセマフォ
上で対応するロードバーストと同期化すること、2)コプロセッサ２上で計算を、カウンタ
４２の３＊ＢＬＥＮチックだけ開始すること、および3)ＸＳＳセマフォ上で対応するスト
アバーストと同期化することである。
【００９８】
　ＢＩＱ＿ｘｘｘ行は再度、ソース・コードを書くことを簡約にするコード・マクロであ
る。これらの意味は、次の通りである。
　ＢＩＱ＿ＦＬＢ（ｍａｔｅ，ｂａｔｅ）：ＢＢ＿ロードバースト（ｍａｔｅ，ｂａｔｅ
，ＴＲＵＥ）命令をバースト命令待ち行列６に挿入する。
　ＢＩＱ＿ＬＸＩ（Ｎ）：Ｎ個のＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮＴ命令をバースト命令待
ち行列６に挿入する。
　ＢＩＱ＿ＦＳＢ（ｍａｔｅ，ｂａｔｅ）：ＢＢ＿ストアバースト（ｍａｔｅ，ｂａｔｅ
，ＴＲＵＥ）命令をバースト命令待ち行列６に挿入する。
　ＢＩＱ＿ＸＳＤ（Ｎ）：Ｎ個のＢＢ＿ＸＳ＿ＤＥＣＲＥＭＥＮＴ命令をバースト命令待
ち行列６に挿入する。
【００９９】
　上に示したコードのネットの効果は、メインＤＲＡＭメモリ３からバースト・バッファ
・メモリ５へ２つのバーストをロードし、次いでＬＸセマフォ１０の値を増分して、コプ
ロセッサ２がその実行を上述のように開始できるようにすることである。最初のものを除
くすべての反復において、コプロセッサ２の計算の結果が、次いで、ストアバースト命令
を使用してメイン・メモリ３に戻すように格納される。２番目の反復が、最初の反復にお
いて実行された計算の結果を格納することを待機する必要は厳密にはないが、これはコプ
ロセッサ２とバースト・バッファ・メモリ５の間の並行性を向上させる。
【０１００】
　２つの変数ｅｏおよびｎｏｔ＿ｅｏの使用は、先に記載されたダブル・バッファリング
効果を可能にするためにここで使用された機構である。
【０１０１】
　行３９から４２は、バースト・バッファ・メモリ５からメイン・メモリ３への最後のバ
ースト転送を実行し、ループ本体の最初の反復におけるストアバースト命令の不在を補償
する。
【０１０２】
　結果として生じる時間線は図６の通りである。ロードバースト６０１は最初の動作であ
り（これらが完了されるまで、コプロセッサ２がロード／実行セマフォによってストール
されるので）、これらが完了されるとき、コプロセッサ２が６０２を実行開始することが
できる。バースト命令待ち行列６における次の命令は別のロードバースト６０１であり、
これが、最初の２つのロードが終了するとすぐに実行される。次いで、バースト命令待ち
行列６における次の命令がストアバースト６０３であり、これは、ＸＳセマフォ１１が、
コプロセッサ２上の最初の計算が完了したことを信号で知らせるまで待機しなければなら
ない。この処理は、ループ中で継続する。
【０１０３】
　上に示された例は非常に簡素なアルゴリズムの場合であるが、これは、より複雑である
計算において必要とされる基本原理を例示する。当業者は、上に示された手法、原理およ
び技術を、より複雑なアルゴリズムをこのアーキテクチャによる実行に適合させるために
図１のアーキテクチャをプログラムすることに使用できる。
【０１０４】
　計算のためのツールチェーン
　計算モデルの原理を、ハンド・コーディングによって直接の様式で活用することができ
る。つまり、手動でＣコードを書いて、従来の方法でシステム構成エレメントの適切な動
作をスケジュールするように適合されたＣＰＵ上で実行して（命令を適切な待ち行列に配



(22) JP 5283810 B2 2013.9.4

10

20

30

40

50

置し、記載されたようにシステム構成エレメントを動作に設定し）、コプロセッサのため
の適切な構成を、そのコプロセッサを構成するための標準の合成ツールに従って提供する
ことである。ＣＨＥＳＳのような、構成可能またはＦＰＧＡに基づいたプロセッサでは、
このツールが一般にハードウェア記述言語となる。ＣＨＥＳＳに使用するための適切なハ
ードウェア記述言語はＪＨＤＬであり、たとえば、Ｐｅｔｅｒ　ＢｅｌｌｏｗｓおよびＢ
ｒａｄ　Ｈｕｔｃｈｉｎｇｓによる１９９８年４月の「ＪＨＤＬ－Ａｎ　ＨＤＬ　ｆｏｒ
　Ｒｅｃｏｎｆｉｇｕｒａｂｌｅ　Ｓｙｓｔｅｍｓ」Ｐｒｏｃｅｅｄｉｎｇｓ　ｏｆ　ｔ
ｈｅ　ＩＥＥＥ　Ｓｙｍｐｏｓｉｕｍ　ｏｎ　Ｆｉｅｌｄ－Ｐｒｏｇｒａｍｍａｂｌｅ　
Ｃｕｓｔｏｍ　Ｃｏｍｐｕｔｉｎｇ　Ｍａｃｈｉｎｅｓに記載されている。
【０１０５】
　好ましい代替手法は、特定のツールチェーンがこの計算アーキテクチャのために使用さ
れることである。このようなツールチェーンおよびその実際の動作のエレメントを次に簡
単に説明する。
【０１０６】
　ツールチェーンは、従来の順次コードから、有効な動作に特に適合されたコードへ変換
すること、およびシステム構成エレメントの相互運用の機能を有する。例示的ツールチェ
ーンは入力としてＣコードを受信し、出力として次のものを提供する。すなわち、1)計算
の実行のためのＣＨＥＳＳコプロセッサ構成、2)データをシステム・メモリとバースト・
バッファ・メモリの間で移動するためのバースト・バッファ・スケジュール、および3)デ
ータをＣＨＥＳＳコプロセッサとバースト・バッファ・メモリの間で移動するためのコプ
ロセッサ・コントローラ構成である。
【０１０７】
　ツールチェーン自体は２つの構成エレメントを有する。第１のものはフロントエンドで
あり、これはＣコードをその入力として取り、注釈付きのディペンデンスグラフをその出
力として提供する。第２の構成エレメントはバックエンドであり、これはフロントエンド
によって生成されたディペンデンスグラフを取り、これらからＣＨＥＳＳ構成、バースト
・バッファ・スケジュール、およびコプロセッサ・コントローラ構成を生成する。
【０１０８】
　フロントエンドの主なタスクは、計算を、それがコプロセッサ２において起こるように
、適切に記述するグラフを生成することである。実行された主なステップの１つは、値に
基づいた依存解析であり、これはＷ．ＰｕｇｈおよびＤ．Ｗｏｎｎａｃｏｔｔによる１９
９３年１２月の「Ａｎ　Ｅｘａｃｔ　Ｍｅｔｈｏｄ　ｆｏｒ　Ａｎａｌｙｓｉｓ　ｏｆ　
Ｖａｌｕｅ－ｂａｓｅｄ　Ａｒｒａｙ　Ｄａｔａ　Ｄｅｐｅｎｄｅｎｃｅｓ」，Ｕｎｉｖ
ｅｒｓｉｔｙ　ｏｆ　Ｍａｒｙｌａｎｄ，Ｉｎｓｔｉｔｕｔｅ　ｆｏｒ　Ａｄｖａｎｃｅ
ｄ　Ｃｏｍｐｕｔｅｒ　Ｓｔｕｄｉｅｓ－Ｄｅｐｔ．　ｏｆ　Ｃｏｍｐｕｔｅｒ　Ｓｃｉ
ｅｎｃｅ，Ｕｎｉｖｅｒｓｉｔｙ　ｏｆ　Ｍａｒｙｌａｎｄに記載されている。生成され
た出力は、ＣＨＥＳＳアレイにおいて実施されるデータフローの記述、および（ロードバ
ースト命令を介して）入力としてロードされるか、あるいは（ストアバースト命令を介し
て）出力として格納される必要のあるすべてのアドレスの表現、およびデータがメイン・
メモリ３から検索され、それへ格納されなければならない順序の表現である。これは、バ
ースト・バッファ・コントローラ７のための効率的なスケジュールが導出される基礎であ
る。
【０１０９】
　一例として、４タップＦＩＲフィルタのためのＣコードを仮定する場合、次の表のよう
になる。
【０１１０】
【表６】
　int i，j，src[]，kernel［］，dst［］；
　for（i=0 ; i<1000; i++）
　　for（j=0；j<4; j++）



(23) JP 5283810 B2 2013.9.4

10

20

30

40

50

　　　dst［i］＝dst［i］＋src［4+i-j］*kernel［j］；
【０１１１】
　テキスト・ファイルとして提供された、フロントエンド、出力への入力として、次の形
式を有する。
【０１１２】
【表７】

【０１１３】
　このテキスト・ファイルは注釈付きのグラフの表現である。グラフ自体が、図７に示さ
れる。このグラフは、フロントエンド・アルゴリズムによって判明された依存性を明瞭に
示す。エッジ８１が、依存性が存在する条件、および適用可能である場合の依存性の距離
によりマーク付けされる。記述は、必要とされる機能性を有するハードウェア構成エレメ
ントを生成するに必要なすべての情報を含む。
【０１１４】
　コンパイル・ツールチェーンのバックエンドは、ある基本機能を有する。１つは、フロ
ントエンドから得られた、拡張されたディペンデンスグラフをスケジュールし、時間変更
することである。これは、十分に機能的なＣＨＥＳＳ構成を得るために必要である。スケ
ジューリングは、拡張されたディペンデンスグラフにおけるノード８２のそれぞれが活動
化される時点を決定することを含み、時間変更は、たとえば、エッジが値を適切な瞬間に
伝播するようにするための遅延の挿入を含む。スケジューリングは、シフト線形スケジュ
ーリングを使用して実行することができ、これはハードウェア合成において幅広く使用さ
れる技術である。時間変更は、ハードウェア合成における共通で静かな直接のタスクであ



(24) JP 5283810 B2 2013.9.4

10

20

30

40

50

り、適切な数のレジスタを回路に追加して、回路における異なる経路が適切な時点で交わ
るようにすることのみを含む。この点で、コプロセッサ２（ここでは、ＣＨＥＳＳコプロ
セッサ）の機能性の完全な記述を有する。この記述が図８に示される。次いで、この記述
を適切なツールへ渡して、この機能性を有するＣＨＥＳＳコプロセッサをプログラムする
ために必要な一連の信号（一般に「ビットストリーム」と呼ばれる）を生成することがで
きる。
【０１１５】
　バックエンドの必要とされる別の機能は、バースト・バッファおよびコプロセッサ・コ
ントローラ・スケジュールの生成である。ＣＨＥＳＳ構成が得られた後、これにメイン・
メモリからの値を入れる必要があるとき、および値をメイン・メモリへ戻すように格納で
き、バースト・バッファ・スケジュールを確立できるときが明らかである。したがって、
バースト・バッファ・メモリ５にロードされ、そこから格納される必要のあるすべてのデ
ータのアドレス空間を、バースト・バッファ・コントローラ７が動作できる固定のデータ
のバーストに分割することを含む、ステップが提供される。
【０１１６】
　たとえば、上に提示されたＦＩＲの例では、入力アレイ（ｓｒｃ［］）が適切なサイズ
のいくつかのバーストに分割され、アルゴリズムのために必要とされたすべてのアドレス
範囲が包含されるようになる。このツールチェーンは長さＢｌｅｎのバーストを使用して
（Ｂｌｅｎは２の累乗であり、このツールチェーンへの実行パラメータとして指定される
）、できるだけ多くの入力アドレス空間を包含する。このバースト長でそれ以上達成でき
ないとき、ツールチェーンは、長さを減分するバースト、すなわち、Ｂｌｅｎ／２、Ｂｌ

ｅｎ／４、Ｂｌｅｎ／８、．．．、２、１を、このアルゴリズムのために必要とされたあ
らゆる入力アドレスが唯一のバーストに属するまで使用する。
【０１１７】
　これらのバーストのそれぞれについて、ロードされたデータのいずれかが必要とされる
、反復空間におけるもっとも早い点が計算される。すなわち、各入力バーストに対して、
反復空間において関連付けられた１点があり、そこでは、それより早い反復が、バースト
によってロードされたデータのいずれをも必要としないことが保証される。コプロセッサ
２の実行が反復空間におけるこの点に到達するときを検出することは容易である。したが
って、次のものが作成される。すなわち、1)データをバースト・バッファ・メモリ５に移
動するための、関連アドレスのためのロードバースト命令、および2)コプロセッサ２の実
行が関連ロードバースト命令と同期化されることを保証するための、対応する同期化点（
ＣＣ＿ＬＸ＿ＤＥＣＲＥＭＥＮＴ／ＢＢ＿ＬＸ＿ＩＮＣＲＥＭＥＮＴの組）である。
【０１１８】
　計算および通信の効果的なオーバーラップを達成するには、バスを介したデータの転送
に関連付けられた待ち時間を隠すために、ロードバースト命令が予め発行されなければな
らない。
【０１１９】
　アルゴリズムによって包含されなければならないすべての出力アドレス空間が、類似の
ロジックに従って出力バーストに区分される。再度、出力空間が、可変長のバーストに区
分される。
【０１２０】
　ツールチェーンは、1)関連アドレスのためのストアバースト命令、および2)対応する同
期化点（ＢＢ＿ＸＳ＿ＤＥＣＲＥＭＥＮＴ／ＣＣ＿ＸＳ＿ＩＮＣＲＥＭＥＮＴの組）を作
成する。
【０１２１】
　この点で、我々は、次のことに関連する情報を有する。すなわち、1)ロードバーストお
よびストアバースト命令の相対的順序、およびそれらの実行のパラメータ（アドレスなど
）、および2)コプロセッサ２上で実行される計算に相対的なそれらの位置である。
【０１２２】



(25) JP 5283810 B2 2013.9.4

10

20

30

40

50

　次いで、この情報が使用されて、上述のＦＩＲの例のように、全体の計算を編成するた
めの適切なＣコードが生成される。
【０１２３】
　実際のコード生成段階（つまり、プロセッサ１上で実行するためのＣコードの排出）を
、ｈｔｔｐ：／／ｗｗｗ．ｃｓ．ｕｍｄ．ｅｄｕ／ｐｒｏｊｅｃｔｓ／ｏｍｅｇａ／で入
手可能である、Ｏｍｅｇａ　Ｌｉｂｒａｒｙ　ｏｆ　ｔｈｅ　Ｕｎｉｖｅｒｓｉｔｙ　ｏ
ｆ　Ｍａｒｙｌａｎｄに含まれたコード生成ルーチンと、その後に続いて、これらのルー
チンの総称出力を上述の形式に変換する、カスタマイズされたスクリプトを使用して実施
することができる。
【０１２４】
　実験結果－画像たたみこみ
　画像たたみこみアルゴリズムが、次の表のループ・ネストによって記述される。
【０１２５】
【表８】
　for（i=0；i＜ＩＭＡＧＥ＿ＨＥＩＧＨＴ；i++）
for（j=0；j＜ＩＭＡＧＥ＿ＷＩＤＴＨ；j++）
for（k=0；k＜ＫＥＲＮＥＬ＿ＨＥＩＧＨＴ；k++）
for（l=0；1＜ＫＥＲＮＥＬ＿ＷＩＤＴＨ；l++）
Dest［i，j］＋＝Source［（i+1）-k，（j+1）-l］*C［k，l］；
【０１２６】
　境界条件を簡約するために、ソース画像を、垂直方向においてＫＥＲＮＥＬ＿ＨＥＩＧ
ＨＴ－１画素、水平方向においてＫＥＲＮＥＬ＿ＷＩＤＴＨ－１画素だけ拡張するために
、複製が使用された。２つのカーネル、すなわち共にメディアン・フィルタ（median fil
tering）を実行する３ｘ３カーネルおよび５ｘ５カーネルが、システム性能を評価するこ
とに使用される。
【０１２７】
　図９および図１０は、（ＢＢＣとして示す）本発明の一実施形態によるアーキテクチャ
の性能を、バースト・バッファ（ＢＢとして示す）を使用した従来のプロセッサ、および
従来のプロセッサおよびキャッシュの組み合わせ（キャッシュとして示す）に対するもの
として例示する。２つのバージョンのアルゴリズムが実施され、１つは３２ビットの画素
により、１つは８ビットの画素による。同じ実験測定値が、異なる画像サイズで、８ｘ８
から１２８ｘ１２８までの範囲で、異なるバースト長でとられた。
【０１２８】
　図から分かるように、ＢＢＣ実装が、ＢＢおよびキャッシュ実装に勝る高い性能上の利
点を示した。このアルゴリズムは相対的に複雑であり、ＢＢおよびキャッシュ実装におけ
るシステムの性能全体が非常にコンピュータ制約的(computer bound)であり、アルゴリズ
ムが高度に複雑であるためにＣＰＵがついていけない。本発明の実施形態を使用すると、
計算がＣＨＥＳＳアレイ上で（その固有の並行性により）実行されるので計算が大いに効
果的であり、性能はあえていうとＩＯ制約的(IO bound)である。最も、ＩＯもバースト・
バッファの有効な使用を通じて効率的である。マルチメディア命令（ＭＩＰＳ　ＭＤＭＸ
など）がＢＢまたはキャッシュ実施におけるＣＰＵの性能を向上させることができ、これ
は、それらがいくつかの算術命令の並列実行を可能にできるからである。それでもなお、
性能向上の結果は、この構成において専用コプロセッサを使用して得られた性能レベルに
到達する可能性が低い。
【０１２９】
　修正および変形形態
　プロセッサ１をコプロセッサ２およびバースト・バッファ・メモリ５から切り離す機能
を、命令待ち行列６、８以外によって達成することができる。有効な代替物は、２つの待
ち行列を、図１２に記載されたような、命令をバースト・バッファ・メモリ５およびコプ
ロセッサ２へ発行することに完全に専用にされた２つの小型プロセッサ（それぞれが各待



(26) JP 5283810 B2 2013.9.4

10

20

30

40

50

ち行列用）と置換することである。バースト命令待ち行列が（図１の実施形態を参照して
）バースト・コマンド・プロセッサ１０６によって置換され、コプロセッサ命令待ち行列
が、コプロセッサ・コマンド・プロセッサ１０８によって置換される。これは、これらの
２つの構成エレメントによって実行された唯一のタスクとなるので、これらがコプロセッ
サ２およびバースト・バッファ７からそれぞれ切り離される必要はなくなる。コマンド・
プロセッサ１０６、１０８のそれぞれが、コマンドをコプロセッサまたはバースト・バッ
ファ（適切なように）へ発行することによって動作でき、次いで、そのコマンドがその実
行を完了するまで何も行わず、別のコマンドを発行することなどができる。これは、設計
を複雑にするが、メイン・プロセッサ１をその残りの、命令を待ち行列へ発行する単純な
タスクから解放する。プロセッサ１によって実行される唯一の作業は、次いで、これらの
２つのプロセッサの初期設定となり、これは計算の開始直前に行われる。したがって、計
算中に、プロセッサ１が完全にコプロセッサ２およびバースト・バッファ・メモリ５の実
行から切り離される。
【０１３０】
　２つの従来の、しかしより小型のマイクロプロセッサ（あるいは、別法として、２つの
制御の独立スレッドを実行する唯一のプロセッサ）を使用することができ、それぞれが適
切なコード（ループ・ネスト）の関連部分を実行する。別法として、外部挙動がコードの
関連部分の実行を反映する、２つの汎用状態機械を合成することができる（つまり、これ
らが同じ命令のシーケンスを提供する）。このような状態機械のハードウェアの複雑さお
よびコストは、同等の専用プロセッサのものよりも著しく低くなる。このような状態機械
が、メイン・プロセッサ１によって、上述のものに類似した方法でプログラムされる。主
な違いは、イベントの繰り返しも符号化されることである。すなわち、これは、プロセッ
サ１が、多少の（複雑である場合は）命令における１つのアルゴリズムの挙動を符号化で
きるために必要である。イベントのｘ回の繰り返しを得るために、プロセッサ１がｘ個の
命令を待ち行列に挿入する必要はないが、この繰り返しパラメータを命令定義において符
号化しなければならない。
【０１３１】
　上に示したように、特に有効な機構は、有限状態機械（ＦＳＭ：Finite StateMachine
）を待ち行列の代りに使用して、メイン・プロセッサ１の実行をコプロセッサ２およびバ
ースト・バッファ・コントローラ７の実行から切り離すことである。この機構が以下でよ
り詳細に論じられる。
【０１３２】
　図１に例示されたアーキテクチャでは、異なるＩ／Ｏストリームの実行を駆動するため
の命令を、コプロセッサ２の実行のための命令と混合することができる。これは、システ
ム構成エレメントの間の相互関係がコンパイル時に知られており、したがって、異なるシ
ステム構成エレメントへの命令を正しい順序でソース・コードにおいてインタリーブする
ことができるので、可能である。
【０１３３】
　２つの状態機械を、まったく同じ方法による実行のためのこれらの命令を発行するよう
に、構築することができる。このような状態機械の一方は、コプロセッサ２の挙動を制御
し、必要とされるようなＣＣ＿ｘｘｘ＿ｘｘｘ命令を発行し、他方はバースト・バッファ
・コントローラ７の挙動を制御し、必要とされるようなＢＢ＿ｘｘｘ＿ｘｘｘ命令を発行
する。
【０１３４】
　このような状態機械を、いくつかの異なる方法において実施することができる。１つの
代替手法が図１３に示される。上で提示されたベクトル加算の例を参照して、この状態機
械１５０（コプロセッサ２のためのものであるが、バースト・バッファ・コントローラ７
のための同等のマシンが直接類似している）が、以下のパターンから構築された命令のシ
ーケンスを実施する。
【０１３５】



(27) JP 5283810 B2 2013.9.4

10

20

30

40

50

【表９】
　ＣＣ＿ＬＸ＿ＤＥＣＲＥＭＥＮＴ、
　ＣＣ＿ＬＸ＿ＤＥＣＲＥＭＥＮＴ、
　ＣＣ＿ＳＴＡＲＴ＿ＥＸＥＣ、
　ＣＣ＿ＸＳ＿ＩＮＣＲＥＭＥＮＴ
【０１３６】
　メインの状態機械１５０が効果的に、より簡素な状態機械１５１、１５２、１５３に分
割され、それぞれが１種類の命令の実行を制御する。周期および段階（これが、コプロセ
ッサ２とバースト・バッファ・コントローラ７の間で通信するＩ／Ｏストリームに関連付
けることができる周期および段階とは、何の関係も有していないことに留意されたい）が
、より簡素な状態機械のそれぞれに関連付けられる。状態機械１５０のハードウェアは、
典型的には、意図されたアプリケーションの要件を満たすために十分な数の、このような
より簡素な状態機械のアレイを含む。
【０１３７】
　イベント・カウンタ１５４が定義される。イベント・カウンタ１５４の役割は、（この
場合、コプロセッサ２のための）命令が順番に送信されることを可能にすることである。
イベント・カウンタ１５４が増分される毎に、Ｍ＊周期ｉ＋段階ｉ＝イベント・カウンタ
の値であるような値Ｍが存在する場合、状態機械ｉ（すなわち、より簡素な状態機械１５
１、１５２、１５３の１つ）が、比較ロジック１５５を通じた実行のために選択され、そ
の命令が実行される。アプリケーション・ソフトウェアの責任は、２つの異なる状態機械
がこの式を満たすことができないようにすることである。この命令の実行が完了されると
き、イベント・カウンタ１５４が再度増分される。このイベントのシーケンスは、次のよ
うに要約することができる。
【０１３８】
　１：イベントカウンタを増分する、すなわち、ＥＣ＋＋
　２：Ｍ＊周期ｉ＋段階ｉ＝ＥＣであるようなＭが存在する場合、状態機械ｉを実行のた
めに選択する
　３：このような状態機械ｉが発見された場合、状態機械ｉによって記述された命令を実
行する（これは、中断動作を含むことができる）
　４：１へ戻る
【０１３９】
　命令の実行に関係する多少の余分なパラメータ（読み／書きするためのアドレス、ＣＣ
＿ＳＴＡＲＴ＿ＥＸＥＣのための実行の長さなど）が、状態機械１５０において符号化さ
れなければならない。複数の状態機械が、典型的には異なるパラメータを有する所与の命
令を発行することができることに留意されたい。
【０１４０】
　このシステムは、周期的挙動を生成するために特に十分に動作する。しかし、イベント
が一度だけ起こらなければならない場合、これは容易に、無限周期および有限段階を有す
る簡素な状態機械において符号化することができ、唯一の帰結は、この簡素な状態機械が
一度だけ使用されることである。
【０１４１】
　この手法はそれ自体を変更することができる。たとえば、この機構に柔軟性を追加する
には、可能な選択肢は、１つまたは複数の簡素な状態機械の実行を所定の「時間ウィンド
ウ」に制限するために、「開始時間」および「終了時間」パラメータを簡素な状態機械に
追加することである。
【０１４２】
　これらの状態機械のプログラミングは、システムの初期化中に、たとえば、プロセッサ
１によって割り当てられたメモリマップ・レジスタの使用を通じて起こる。代替物は、こ
れらの状態機械をメイン・メモリ３の事前定義の領域から、おそらくは専用チャネルおよ
び直接メモリ・アクセス（ＤＭＡ）機構の使用を通じて、プログラムするために必要なす



(28) JP 5283810 B2 2013.9.4

10

20

30

40

50

べてのパラメータのローディングとなる。
【０１４３】
　２つの専用マイクロプロセッサを使用する、提案された他の代替機構は、図１のアーキ
テクチャのためのプログラミング・モデルに著しい修正を必要としない。すなわち、メイ
ン・プロセッサ１をプログラムするために使用された同じ技術を、コプロセッサ２のため
に意図されたコマンドをバースト・バッファ・コントローラ７のために意図されたものか
ら分割する追加ステップと共に、使用することができる。実現可能であるが、この構成は
、状態機械の手法に関して不利である可能性がある。これらのプロセッサに、システムの
複雑さに加えて、メイン・メモリ３または他のＤＲＡＭへのアクセスを提供することが必
要となる。システムのコストおよび複雑さは、２つのマイクロプロセッサをこのように追
加すること（およびそれらが非常に簡素な計算を実行するためにのみ存在することにおい
て、十分に利用しないこと）によっても増大される。
【０１４４】
　図１およびその代替物のアーキテクチャを越えた様々な開発も、本発明の本質の原理か
ら逸れることなく行うことができる。３つのこれらの開発の分野が以下に記載される。す
なわち、パイプライン、データ依存条件／知られていない実行時間、およびメモリへの非
アフィン・アクセスである。
【０１４５】
　パイプライン・アーキテクチャは、アプリケーションがそれらの入力データ・ストリー
ム上で複数の変換が実行されることを必要とする値を有する。たとえば、たたみこみの直
後に続いて相関を行うことができる。この種類の構成を収容するために、アーキテクチャ
および計算モデルへの変更が必要となる。アーキテクチャ上では、逐次的にバッファされ
たＣＨＥＳＳアレイ、またはより大きい区分されたＣＨＥＳＳアレイ、または計算段階の
間に再構成されたＣＨＥＳＳアレイを提供することができる。図１１Ａおよび図１１Ｂは
、このようなアプリケーションを処理するために有効であり、複数のＣＥＥＳＳアレイを
含む、異なるパイプライン・アーキテクチャを示す。図１１Ａは、プロセッサ１４３から
命令された互い違いのＣＨＥＳＳ／バースト・バッファ・パイプラインによる構成、およ
びメイン・メモリ１４４とのデータの交換を示し、ＣＨＥＳＳアレイ１４１がデータを第
１の組のバースト・バッファ１４２から受信して、これを第２の組のバースト・バッファ
１４５へ渡し、この第２の組のバースト・バッファ１４５がさらにＣＨＥＳＳアレイ１４
６と対話する（潜在的には、このパイプラインを、さらなる組のＣＨＥＳＳアレイおよび
バースト・バッファにより継続させることができる）。同期化はより複雑になり、近接し
たＣＨＥＳＳアレイの間、および近接したバースト・バッファの組の間の通信を含むが、
同じ汎用パイプラインを後に続けて、バースト・バッファの効率的な使用、およびＣＨＥ
ＳＳアレイの間の効率的な同期化を可能にすることができる。すなわち、セマフォを使用
して、パイプラインの逐次段階によって実行された計算の正確さを保証することができる
。
【０１４６】
　図１１Ｂは、異なるタイプの計算パイプラインを示し、２つのＣＨＥＳＳアレイ１５１
、１５６の間にＳＲＡＭキャッシュ１５５を有し、第１の組のバースト・バッファ１５２
へ提供されたロード、および第２の組のバースト・バッファ１５７によって提供された格
納を有する。プロセッサ１５３およびメイン・メモリ１５４の役割は、本質的に他の実施
形態から不変である。同期化はこの構成においてそれほど困難でない可能性があるが、こ
の構成が並行性をそれほど効果的でなく活用する可能性がある。
【０１４７】
　上述のようなアーキテクチャにおけるコプロセッサの効率的な使用上の１つの制約は、
コプロセッサ実施の実行時間が知られるべきであることである（効率的なスケジューリン
グを可能にするため）。これは、多数の媒体処理ループについて達成可能である。しかし
、実行時間がコンパイル時に知られていない場合、ツールチェーンにおけるスケジューリ
ング要件を緩和させる必要があり、プロセッサ、コプロセッサおよびバースト・バッファ



(29) JP 5283810 B2 2013.9.4

10

20

30

40

の間の同期化および通信プロトコルにおいて、適切な許容が行われる必要がある。コプロ
セッサ・コントローラは、この状況のための特定の構成も必要とする。
【０１４８】
　別の拡張は、バースト・バッファ・メモリへの非アフィン参照を可能にすることである
。上で使用されたバースト・バッファ・モデルでは、すべてのアクセスがＡＩ＋Ｆのタイ
プであり、ただしＡは定数行列、Ｉは反復ベクトル、Ｆは定数ベクトルである。この制限
されたアクセス・モデルの使用により、コプロセッサ・コントローラおよびプロセッサが
予め、どのデータがいずれかの所与の時点で必要とされるかを知ることができ、論理スト
リームの効率的な作成が可能となる。このアーキテクチャへのこの有意性は、全体として
、どのように非アフィン・アクセスを完全に任意の方法で提供することができるかが不明
瞭である（同期化機構が失敗するように思われる）が、非アフィン・アレイ・アクセスを
使用してルックアップ・テーブルを参照することが可能になるということである。これは
、ルックアップ・テーブルをバースト・バッファにロードすることによって行うことがで
き、次いで、コプロセッサが、後続アクセスのためのルックアップ・テーブルの開始に相
対的なバースト・バッファ・アドレスを生成することができる。このようなアドレスを、
それらが使用されるときより十分に前もって生成できるようにすること（場合によっては
、これを、同期化機構への精練化によって達成することができる）、およびこのタイプの
回帰参照を支持するように論理ストリーム機構を修正することが必要となる。
【０１４９】
　したがって、図１のアーキテクチャへの多数の変形形態および拡張を、特許請求の範囲
に記載されたような本発明から逸脱することなく、実行することができる。
【図面の簡単な説明】
【図１】本発明の第１の実施形態によるシステムの基本エレメントを示す図。
【図２】図１のシステムにおいて使用されたバースト・バッファ構造のアーキテクチャを
示す図である。
【図３】図２のバースト・バッファ構造のさらなる機能を示す図である。
【図４】図１のシステムにおいて使用されたコプロセッサ・コントローラの構造、および
他のシステム構成エレメントとの関係を示す図である。
【図５】図１のシステム上で使用可能な計算モデルを例示するための一例を示す図である
。
【図６】図５の例のための計算およびＩ／Ｏ動作のための時間線を示す図。
【図７】図１のシステムのためのコードを提供するために有用なツールチェーンのフロン
トエンドからの出力として提供された、注釈付きグラフを示す図。
【図８】図７における仕様から導出された、コプロセッサの内部構成を示す図。
【図９】３２ビット・ピクセルを使用する５ｘ５画像たたみこみのための代替アーキテク
チャの性能を示す図である。
【図１０】８ビット・ピクセルを使用する５ｘ５画像たたみこみのための、図９を生成す
るために使用された代替アーキテクチャの性能を示す図である。
【図１１Ａ】本発明のさらなる実施形態を使用する代替パイプライン・アーキテクチャを
示す図である。
【図１１Ｂ】本発明のさらなる実施形態を使用する代替パイプライン・アーキテクチャを
示す図である。
【図１２】図１のアーキテクチャにおける、コプロセッサ命令待ち行列およびバースト命
令待ち行列の代替として使用可能な、２つの補助プロセッサを示す図。
【図１３】図１のアーキテクチャにおけるコプロセッサ命令待ち行列の代替としての状態
機械の実施を示す図である。



(30) JP 5283810 B2 2013.9.4

【図１】 【図２】

【図３】 【図４】



(31) JP 5283810 B2 2013.9.4

【図５】 【図６】

【図７】 【図８】



(32) JP 5283810 B2 2013.9.4

【図９】 【図１０】

【図１１Ａ】

【図１１Ｂ】

【図１２】



(33) JP 5283810 B2 2013.9.4

【図１３】



(34) JP 5283810 B2 2013.9.4

10

フロントページの続き

(72)発明者  マッカーシー・ドミニク・ポール
            イギリス、ビーエイチ６、５ディーキュー、ボーンマス、サウスボーン、アメウッド・ロード　１
            ９

    合議体
    審判長  金子　幸一
    審判官  田中　秀人
    審判官  長島　孝志

(56)参考文献  特開平１０－２３２８２６（ＪＰ，Ａ）
              特開平１１－２５１４４２（ＪＰ，Ａ）
              特開昭５６－４８６２（ＪＰ，Ａ）
              特開平７－２８１８３６（ＪＰ，Ａ）
              特開平１１－６５９８９（ＪＰ，Ａ）

(58)調査した分野(Int.Cl.，ＤＢ名)
              G06F9/38


	biblio-graphic-data
	claims
	description
	drawings
	overflow

