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(57) ABSTRACT 

A router routes data packets. The router includes input 
physical channels for incrementally receiving portions of the 
data packets, and output physical channels. The router 
further includes data buffers, coupled with the input and 
output physical channels, for Storing the portions of the data 
packets. The router further includes control circuitry, 
coupled with the input and output physical channels and the 
data buffers, for generating virtual channel assignments that 
assign virtual channels to the data packets, and generating 
physical channel assignments that assign the output physical 
channels to the virtual channels. Each of the assignments is 
generated in response to queued arrival and credit events. 
The portions of the data packets are forwarded from the data 
buffers to the output physical channels according to the 
generate Virtual and physical channel assignments. 
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METHODS AND APPARATUS FOR 
EVENT DRIVEN ROUTING 

RELATED APPLICATIONS 

0001. This application is a continuation of application 
Ser. No. 09/887,960, filed Jun. 22, 2001, which is a con 
tinuation of application Ser. No. 09/084,636, filed May 26, 
1998, which is a continuation-in-part of application Ser. No. 
08/918,556 filed Aug. 22, 1997. The entire teachings of the 
above applications are incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

0002 Data communication between computer systems 
for applications Such as web browsing, electronic mail, file 
transfer, and electronic commerce is often performed using 
a family of protocols known as IP (internet protocol) or 
sometimes TCP/IP. As applications that use extensive data 
communication become more popular, the traffic demands 
on the backbone IP network are increasing exponentially. It 
is expected that IP routers with several hundred ports 
operating with aggregate bandwidth of Terabits per Second 
will be needed over the next few years to Sustain growth in 
backbone demand. 

0003. As illustrated in FIG. 1, the Internet is arranged as 
a hierarchy of networks. A typical end-user has a WorkSta 
tion 22 connected to a local-area network or LAN 24. To 
allow users on the LAN to access the rest of the internet, the 
LAN is connected via a router R to a regional network 26 
that is maintained and operated by a Regional Network 
Provider or RNP. The connection is often made through an 
Internet Service Provider or ISP. To access other regions, the 
regional network connects to the backbone network 28 at a 
Network Access Point (NAP). The NAPs are usually located 
only in major cities. 
0004. The network is made up of links and routers. In the 
network backbone, the links are usually fiber optic commu 
nication channels operating using the SONET (synchronous 
optical network) protocol. SONET links operate at a variety 
of data rates ranging from OC-3 (155 Mb/s) to OC-192 (9.9 
Gb/s). These links, Sometimes called trunks, move data from 
one point to another, often over considerable distances. 
0005 Routers connect a group of links together and 
perform two functions: forwarding and routing. A data 
packet arriving on one link of a router is forwarded by 
Sending it out on a different link depending on its eventual 
destination and the State of the output linkS. To compute the 
output link for a given packet, the router participates in a 
routing protocol where all of the routers on the Internet 
eXchange information about the connectivity of the network 
and compute routing tables based on this information. 
0006 Most prior art Internet routers are based on a 
common bus (FIG. 2) or a crossbar switch (FIG. 3). In the 
bus-based Switch of FIG. 2, for example, a given SONET 
link 30 is connected to a line-interface module 32. This 
module extracts the packets from the incoming SONET 
Stream. For each incoming packet, the line interface reads 
the packet header, and using this information, determines the 
output port (or ports) to which the packet is to be forwarded. 
To forward the packet, the line interface module arbitrates 
for the common bus 34. When the bus is granted, the packet 
is transmitted over the bus to the output line interface 
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module. The module Subsequently transmits the packet on 
an outgoing SONET link 30 to the next hop on the route to 
its destination. 

0007 Bus-based routers have limited bandwidth and 
scalability. The central bus becomes a bottleneck through 
which all traffic must flow. A very fast bus, for example, 
operates a 128-bit wide datapath at 50 MHz giving an 
aggregate bandwidth of 6.4 Gb/s, far short of the Terabits per 
Second needed by a backbone Switch. Also, the fan-out 
limitations of the bus interfaces limit the number of ports on 
a bus-based switch to typically no more than 32. 
0008. The bandwidth limitation of a bus may be over 
come by using a crossbar switch as illustrated in FIG. 3. For 
N line interfaces 36, the Switch contains N(N-1) crosspoints, 
each denoted by a circle. Each line interface can Select any 
of the other line interfaces as its input by connecting the two 
lines that meet at the appropriate crosspoint 38. To forward 
a packet with this organization, a line interface arbitrates for 
the required output line interface. When the request is 
granted, the appropriate croSSpoint is closed and data is 
transmitted from the input module to the output module. 
Because the crossbar can simultaneously connect many 
inputs to many outputs, this organization provides many 
times the bandwidth of a bus-based Switch. 

0009. Despite their increased bandwidth, crossbar-based 
routers still lack the scalability and bandwidth needed for an 
IP backbone router. The fan-out and fan-in required by the 
crossbar connection, where every input is connected to every 
output, limits the number of ports to typically no more than 
32. This limited scalability also results in limited bandwidth. 
For example, a State-of-the-art crossbar might operate 32 
32-bit channels simultaneously at 200 MHz giving a peak 
bandwidth of 200 Gb/s. This is still short of the bandwidth 
demanded by a backbone IP router. 

SUMMARY OF THE INVENTION 

0010. In a previous related application (application Ser. 
No. 08/918,556, filed Aug. 22, 1997) which has been incor 
porated by reference, a novel Internet Switch Router was 
presented. The internet router receives data packets from a 
plurality of internet links and analyzes header information in 
the data packets to route the data packets to output internet 
links. The internet router comprises a fabric of fabric links 
joined by fabric routers, the number of fabric links to each 
fabric router being substantially less than the number of 
internet links served by the internet router. The fabric links 
and fabric routers provide data communication between 
internet links through one or more hops through the fabric. 
0011 A preferred embodiment of the present invention 
relates to an event-driven technique for handling virtual 
channels in a router that routes data packets. The router 
includes input physical channels that receive portions of the 
data packets, output physical channels, and data buffers that 
are coupled with the input and output physical channels. The 
data bufferS Store the portions of the data packets. The router 
further includes control circuitry that is coupled with the 
input and output physical channels and the data buffers. The 
control circuitry generates channel assignments in response 
to queued events, and outputs the portions of the data 
packets through the output physical channels according to 
the generated channel assignments. Preferably, the control 
circuitry assigns virtual channels to the data packets, assigns 
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the output physical channels to the Virtual channels in 
response to the queued events. In one embodiment, the 
router further includes a line interface coupled with an input 
physical channel and an output physical channel Such that 
the router forms an internet Switch fabric router. In another 
embodiment, the router further includes a multicomputer 
interface coupled with an input physical channel and an 
output physical channel Such that the router forms a multi 
computer router for a multicomputer System. 
0012. According to the preferred embodiment, the con 
trol circuitry includes output controllers that correspond to 
the output physical channels. Each output controller has a 
State table that records States of output virtual channels, and 
identifies input virtual channels connected with the output 
virtual channels. The input virtual channels hold the portions 
of the data packets. 
0013 Each output controller further includes an arbiter 
that is adapted to Select arrival events from multiple arrival 
queues, and State table logic that accesses that output con 
troller's State table to assign output virtual channels in 
response to the Selected arrival events. Each State table 
includes State vectors that correspond to output virtual 
channels. 

0.014. Each state vector includes a busy indication that 
indicates whether that State vector's corresponding output 
Virtual channel is assigned to a data packet. Additionally, 
each State vector includes a wait field that indicates which of 
the input physical channels have received at least portions of 
data packets awaiting assignment to that State vector's 
corresponding output Virtual channel. Each wait field further 
indicates an order in which the input physical channels 
received the data packet portions. Each State vector further 
includes a present field that indicates a number of portions 
of a data packet present for transferring through that State 
vector's output virtual channel to a downstream router. 
Furthermore, each State vector includes a credit field that 
indicates an amount of buffer Space available in a down 
Stream router coupled to that State vector's corresponding 
output virtual channel. 
0.015 Each output controller further includes a transport 
circuit that queues transport requests when that output 
controller's State table is accessed in response to the queued 
events, and forwards data packets through that output con 
troller's output physical channel according to the queued 
transport requests. The portions of the data packets are flits 
of the data packets. Each transport circuit transmits a flit in 
response to a queued transport request. 

0016 Each output controller receives credit events from 
a downstream router and, in response to the received credit 
events, queues a transport request to transport a portion of a 
data packet over the corresponding output physical channel. 
In one embodiment, the queued events include tail credit 
events, and the output controllers free virtual channels only 
in response to the tail credit events. 
0.017. The control circuitry can be shared by multiple 
Virtual channels and activated to handle a particular virtual 
channel in response to an event. 
0.018 Preferably, the control circuitry is adapted to gen 
erate virtual channel assignments that assign virtual chan 
nels to the data packets, and generate physical channel 
assignments that assign the output physical channels to the 
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Virtual channels. Each of the assignments can be generated 
in response to queued arrival and credit events. The portions 
of the data packets are forwarded from the data buffers to the 
output physical channels according to the generated Virtual 
and physical channel assignments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0019. The foregoing and other objects, features and 
advantages of the invention will be apparent from the 
following more particular description of preferred embodi 
ments of the invention, as illustrated in the accompanying 
drawings in which like reference characters refer to the same 
parts throughout the different views. The drawings are not 
necessarily to Scale, emphasis instead being placed upon 
illustrating the principles of the invention. 
0020 FIG. 1 illustrates an internet configuration of rout 
ers to which the present invention may be applied. 
0021) 
0022 FIG. 3 is a prior art crossbar Switch internet router. 
0023 FIG. 4 illustrates a two-dimensional torus array 
previously used in direct multiprocessor networkS. 
0024 
0025 FIG. 6 illustrates tree saturation of a network. 
0026 FIG. 7 illustrates a three-dimensional fabric 
embodying the present invention. 
0027 FIG. 8 illustrates the line interface module of a 
node in the array of FIG. 7. 
0028 FIG. 9 illustrates a fabric router used in the 
embodiment of FIGS. 7 and 8. 

0029 FIGS. 10A and 10B illustrate buffers, registers and 
control vectors used in the router of FIG. 9. 

0030 FIGS. 11A and 11B illustrate alternative allocation 
control logic provided in input and output controllers, 
respectively, of the router of FIG. 9. 
0031 FIG. 12 illustrates a virtual channel state table used 
in the router of FIG. 9. 

0032 FIG. 13 illustrates a loop used to demonstrate 
dispersion routing. 

FIG. 2 is a prior art bus-based internet router. 

FIG. 5 illustrates an indirect network. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0033. A description of preferred embodiments of the 
invention follows. 

0034. In implementing an internet router, the present 
invention borrows from multiprocessor technology and 
modifies that technology to meet the unique characteristics 
and requirements of internet routers. In particular, each 
internet router is itself configured as either a direct or 
indirect network. 

0035) Multicomputers and multiprocessors have for 
many years used direct and indirect interconnection net 
Works to Send addresses and data for memory accesses 
between processors and memory banks or to Send messages 
between processors. Early multicomputers were constructed 
using the bus and crossbar interconnects shown in FIGS. 2 
and 3. However, to permit these machines to Scale to larger 
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numbers of processors they Switched to the use of direct and 
indirect interconnection networkS. 

0036) A direct network, as illustrated in FIG. 4, is com 
prised of a Set of processing nodes 40, each of which 
includes a router, R, along with a processor, P, and Some 
memory, M. These multicomputer routers should not be 
confused with the IP routers described above. They perform 
only forwarding functions and only in the very constrained 
environment of a multicomputer interconnection network. 
Each multicomputer router has Some number, four in the 
example, of connections to other routers in the network. A 
processing node may send a message or make a memory 
access to any other node in the System. It is not limited to 
communicating only with the immediately adjacent nodes. 
Messages to nodes that are further away are forwarded by 
the routerS along the path between the Source and destination 
nodes. 

0037. The network shown in FIG. 4 is said to be direct 
Since the channels are made directly between the processing 
nodes of the system. In contrast, FIG. 5 shows an indirect 
network in which the connections between proceSS nodes 42 
are made indirectly, via a set of router-only Switch nodes 44. 
Direct networks are generally preferred for large machines 
because of the scalability. While an indirect network is 
usually built for a fixed number of nodes, a direct network 
grows with the nodes. AS more nodes are added, more 
network is added as well Since a Small piece of the network, 
one router, is included within each node. 

0.038 Multicomputer networks are described in detail in 
Dally, W.J., “Network and Processor Architectures for Mes 
sage-Driven Computing,” VLSI and PARALLEL COMPUTA 
TION, Edited by Suaya and Birtwistle, Morgan Kaufmann 
Publishers, Inc., 1990, pp. 140-218. It should be stressed that 
multicomputer networks are local to a single cabinet or room 
as opposed to the Internet backbone network which spans 
the continent. 

0.039 Direct and indirect multicomputer networks are 
Scalable. For most common topologies the fan-in and fan 
out of each node is constant, independent of the size of the 
machine. Also, the traffic load on each link is either constant 
or a very slowly increasing function of machine size. 
Because of this Scalability, these networks have been Suc 
cessfully used to construct parallel computers with thou 
Sands of processing nodes. 
0040. Unfortunately, while multicomputer networks are 
Scalable, they give up the two properties of crossbar net 
Works that were crucial to IP Switching: non-blocking 
behavior and stiff backpressure. Most economical direct and 
indirect networks are blocking. Because links are shared 
between multiple Source-destination pairs, a busy connec 
tion between a pair of nodes can block the establishment of 
a new connection between a completely separate pair of 
nodes. Because packets in multicomputer networks are 
forwarded over multiple links with considerable queuing at 
each link, the backpressure, if any, from an overloaded 
destination node to a transmitting Source node is late and Soft 
if present at all. 

0041. The blocking nature of these switches and the soft 
nature of this backpressure is not a problem for a multicom 
puter because multicomputer traffic is Self-throttling. After a 
processor has sent a Small number of messages or memory 
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requests (typically 1-8), it cannot send any further messages 
until it receives one or more replies. Thus, when the network 
Slows down because of blocking or congestion, the traffic 
offered to the network is automatically reduced as the 
processors Stall awaiting replies. 

0042 An IP switch, on the other hand, is not self 
throttling. If some channels in the network become blocked 
or congested, the offered traffic is not reduced. Packets 
continue to arrive over the input links to the Switch regard 
less of the state of the network. Because of this, an IPSwitch 
or router built from an unmodified multicomputer network is 
likely to become tree-Saturated, and deny Service to many 
nodes not involved in the original blockage. Moreover 
transient conditions often exist in IP routers where, due to an 
error in computing routing tables, a single output node can 
be overloaded for a Sustained period of time. This causes no 
problems with a crossbar router as other nodes are unaf 
fected. With a multicomputer network, however, this causes 
tree Saturation. 

0043 Consider the situation illustrated in FIG. 6. A 
Single node in a 2-dimensional mesh network, node (3.3) 
labeled a, is overloaded with arriving messages. AS it is 
unable to accept messages off the channels at the rate they 
are arriving, all four input channels to the node (b,a),(c,a), 
(d,a), (e.,a), become congested and are blocked. Traffic 
arriving at nodes b-e that must be forwarded acroSS these 
blocked linkScannot make progreSS and will back up along 
the edges into nodes b-e. For example, traffic into node b 
backs up along (f,b), (g,b), and (h,b). If the blockage 
persists, the channels into f-h and related nodes become 
blocked as well and So on. If the overload on node a persists, 
eventually most of the channels in the network will become 
blocked as a tree of Saturation expands outward from node 
a. 

0044) The major problem with tree saturation is that it 
affects traffic that is not destined for node a. A packet from 
(1,4) to (5.3) for example may be routed along a path (dotted 
line) that includes (fb) and (b,a) for example. Since these 
links are blocked, traffic from node (1,4) to node (5.3) is 
blocked even though neither of these nodes is overloaded. 
004.5 The router of the present invention overcomes the 
bandwidth and scalability limitations of prior-art bus- and 
crossbar-based routers by using a multi-hop interconnection 
network, in particular a 3-dimensional torus network, as a 
router. With this arrangement, each router in the wide-area 
backbone network in effect contains a Small in-cabinet 
network. To avoid confusion we will refer to the Small 
network internal to each router as the Switching fabric and 
the routers and links within this network as the fabric routers 
and fabric links. 

0046. Unlike multicomputer networks, the Switching fab 
ric network is non-blocking and provides Stiff backpressure. 
These crossbar-like attributes are achieved by providing a 
Separate Virtual network for each destination node in the 
network. 

0047 Typical packets forwarded through the internet 
range from 50 bytes to 1.5 Kbytes. For transfer through the 
fabric network of the internet router of the present invention, 
the packets are divided into Segments, or flits, each of 36 
bytes. At least the header included in the first flit of a packet 
is modified for control of data transfer through the fabric of 
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the router. In the preferred router, the data is transferred 
through the fabric in accordance with a wormhole routing 
protocol. 

0.048. Each virtual network comprises a set of buffers. 
One or more buffers for each virtual network are provided on 
each node in the fabric. Each buffer is sized to hold at least 
one flow-control digit or flit of a message. The Virtual 
networks all share the Single set of physical channels 
between the nodes of the real fabric network. A fair arbi 
tration policy is used to multiplex the use of the physical 
channels over the competing virtual networks. Each Virtual 
network has a different set of buffers available for holding 
the flits of its messages. 
0049. For each pair of virtual networks A and B, the set 
of buffers assigned to Acontains at least one buffer that is not 
assigned to B. Thus if network B is blocked, A is able to 
make progreSS by forwarding messages using this buffer that 
is not shared with Balthough it may be shared with some 
other virtual network. 

0050. One simple method for constructing virtual net 
WorkS is to provide a separate flit buffer, a virtual channel, 
on each node for each virtual network and thus for each 
destination. For example, in a machine with N=512 nodes 
and hence 512 destinations, each node would contain 512 
distinct flit buffers. Bufferion each node is used only to hold 
flits of messages destined for node i. This assignment clearly 
Satisfies the constraints above as each virtual network is 
associated with a singleton set of buffers on each node with 
no sharing of any buffers between virtual networks. If a 
Single virtual network becomes congested, only its buffers 
are affected, and traffic continues on the other virtual net 
Works without interference. An alternative dispersive 
approach is discussed below. 
0051. The preferred router is a 3-dimensional torus net 
work of nodes as illustrated in FIG. 7. Each node N 
comprises a line interface module that connects to incoming 
and outgoing SONET internet links. Each of these line 
interface nodes contains a Switch-fabric router that includes 
fabric links to its six neighboring nodes in the torus. IP 
packets that arrive over one SONET link, say on node A, are 
examined to determine the SONET link on which they 
should leave the internet router, Say node B, and are then 
forwarded from A to B via the 3-D torus Switch fabric. 

0.052 The organization of each node or line-interface 
module is illustrated in FIG. 8. Packets arrive over the 
incoming SONET link 46, and the line interface circuit 48 
converts the optical input to electrical signals and extracts 
the packets and their headers from the incoming Stream. 
Arriving packets are then passed to the forwarding engine 
hardware 50 and are stored in the packet memory 52. The 
forwarding engine uses the header of each packet to look up 
the required output link for that packet. In conventional IP 
router fashion, this lookup is performed by traversing a tree 
indexed by the header fields. The leaves of the tree contain 
the required output link, as in a conventional IP router, and 
additionally include the route through the Switch fabric to 
the output link. Finally, the packet along with its destination 
and route are passed to the fabric router 54 of the node for 
forwarding through the fabric to the output node. From the 
fabric router 54 of the output node, the packet is delivered 
through the packet buffer 52 of that node and through the 
line interface circuit 48 to the output link 56. 
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0053 Packets in the internet router are forwarded from 
the line-interface module associated with the input trunk to 
the line-interface module associated with the output trunk 
using Source routing. With Source routing, the route of linkS 
through intermediate fabric routerS is determined by a table 
lookup in the input module. This lookup is performed by the 
forwarding engine before presenting the packet to the fabric 
router. Alternative paths allow for fault tolerance and load 
balancing. 

0054 The source route is a 10-element vector where each 
element is a 3-bit hop field. Each hop field encodes the 
output link to be taken by the packet for one Step of its route, 
one of the six inter-node links or the seventh link to the 
packet buffer of the present node. The eighth encoding is 
unused. This 10-element vector can be used to encode all 
routes of up to 10 hops which is sufficient to route between 
any pair of nodes in a 6x10x10 torus. Note that all 10 
elements need not be used for shorter routes. The last used 
element selects the link to the packet buffer 52 or may be 
implied for a 10-hop route. 

0055 As the packet arrives at each fabric node along the 
route, the local forwarding vector entry for that packet is Set 
equal to the leftmost element of the Source route. The Source 
route is then shifted left three bits to discard this element and 
to present the next element of the route to the next router. 
During this shift, the 3-bit code corresponding to the packet 
buffer of the present node is shifted in from the right. 
Subsequent flits in that packet follow the routing Stored for 
that packet in the router. 

0056. One skilled in the art will understand that there are 
many possible encodings of the fabric route. In an alterna 
tive embodiment, the fact that packets tend to travel in a 
preferred direction in each dimension may be exploited to 
give a more compact encoding of the fabric route. In this 
embodiment, the route is encoded as a three-bit preferred 
direction followed by a multiplicity of two-bit hop fields. 
The three-bit field encodes the preferred direction (either 
positive or negative) for each dimension of the network (X, 
y, and Z). For each Step or hop of the route, a two-bit field 
Selects the dimension over which the next hop is to be taken 
(0=X, 1=y, or 2=Z). The direction of this hop is determined 
by the preferred direction field. The fourth encoding of the 
two-bit hop field (3) is used as an escape code. When a hop 
field contains an escape code, the next hop field is used to 
determine the route. If this Second hop field contains a 
dimension specifier (0-2), the hop is taken in the specified 
dimension in the direction opposite to the preferred direction 
and the preferred direction is reversed. If the Second hop 
field contains a Second escape code, the packet is forwarded 
to the exit port of the fabric router. With this encoding, as 
packets arrive at a fabric node, the local forwarding vector 
entry for that packet is computed from the preferred direc 
tion field and the leftmost hop field. The hop fields are then 
shifted left two bits to discard this field and to present the 
next field to the next router. During this shift, the two-bit 
escape code is shifted into the rightmost hop field. For 
packets that travel primarily in the preferred direction, this 
encoding results in a more compact fabric route as only two 
bits, rather than three, are needed to encode each hop of the 
rOute. 

0057. A fabric router used to forward a packet over the 
Switch fabric from the module associated with its input link 
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to the module associated with its output link is illustrated in 
FIG. 9. The router has seven input links 58 and seven output 
links 60. Six of the links connect to adjacent nodes in the 
3-D torus network of FIG. 7. The seventh input link accepts 
packets from the forwarding engine 50 and the seventh 
output link sends packets to the packet output buffer 52 in 
this router's line interface module. Each input link 58 is 
associated with an input buffer 62 and each output link 60 is 
asSociated with an output register 64. The input buffers and 
output registers are connected together by a 7x7 crossbar 
Switch 66. 

0058. One skilled in the art will understand that the 
present invention can be practiced in fabric networks with 
different topologies and different numbers of dimensions. 
Also, more than one link may be provided to and from the 
line interface. In an alternative embodiment two output links 
are provided from the fabric to the line interface bringing the 
total number of output links, and hence output registers, to 
eight. In this case, the input buffers and output registers are 
connected by a 7x8 crossbar Switch. The second output link 
provides additional bandwidth to drain packets from the 
fabric network when a Single node receives traffic Simulta 
neously from many directions. 
0059) A virtual network is provided for each pair of 
output nodes. Each of the Seven input bufferS 62 contains a 
buffer, of for example one flit, for each virtual network in the 
machine. In one embodiment, a 6x10x10 torus fabric pro 
vides 600 nodes. A Single virtual network is assigned to a 
pair of maximally distant output nodes in the network as 
minimal routes between these two nodes are guaranteed not 
to share any links and thus are guaranteed not to interfere 
with one another. Further, two virtual networks are provided 
for each pair of nodes to allow for two priorities in Serving 
different classes of traffic. Thus, in the router, there are 600 
virtual networks: two virtual networks for each of 300 pairs 
of nodes. Each input buffer 62 contains space for 600 
36-byte flits (21,600 bytes total). 
0060. As an improvement, each input buffer has storage 
for two flits for each virtual channel. The size of a flit 
determines the maximum duty factor of a Single virtual 
channel and the fragmentation loSS associated with rounding 
up packets to a whole number of flits. The maximum 
bandwidth on a Single fabric link that can be used by a single 
Virtual channel can be no more than the flit size times the 
number of flits per virtual channel buffer divided by the time 
for a header flit to propagate through a router. For example, 
if a flit is 36 Bytes, there is a single flit per buffer, and it takes 
ten 10 ns clocks for a header flit to propagate through a 
router, the maximum bandwidth per virtual channel is 360 
MBytes/s. If the link bandwidth is 1200 MBytes/s, a single 
virtual channel can use at most 30% of the link bandwidth. 
If the flit buffer capacity is at least as large as the link 
bandwidth divided by the router latency (120 Bytes in this 
case), a single virtual channel can use all of the link capacity. 
0061. One would like to make the flit size as large as 
possible both to maximize the link bandwidth that a single 
Virtual channel can use and also to amortize the Overhead of 
flit processing over a larger payload. On the other hand, a 
large flit reduces efficiency by causing internal fragmenta 
tion when Small packets must be rounded up to a multiple of 
the flitsize. For example, if the flit size is 64 Bytes, a 65 Byte 
packet must be rounded up to 128 Bytes, incurring nearly 
50% fragmentation overhead. 
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0062 One method for gaining the advantages of a large 
flit size without incurring the fragmentation overhead is to 
group adjacent flits into pairs that are handled as if they were 
a single double-sized flit. For all but the last flit of an 
odd-length message, all flit processing is done once for each 
flit pair, halving the flit processing overhead. The last odd flit 
is handled by itself. However, these odd single-flits are rare 
and So their increased processing overhead is averaged out. 
In effect, flit pairing is equivalent to having two sizes of 
flits-regular sized and double sized. The result is that long 
messages See the low processing overhead of double-sized 
flits and Short messages See the low fragmentation overhead 
of regular sized flits. In the preferred embodiment, flits are 
36 Bytes in length and are grouped into pairs of 72 Bytes 
total length. 
0063. If a virtual channel of a fabric router destined for an 
output node is free when the head flit of a packet arrives for 
that Virtual channel, the channel is assigned to that packet for 
the duration of the packet, that is, until the worm passes. 
However, multiple packets may be received at a router for 
the same virtual channel through multiple inputs. If a virtual 
channel is already assigned, the new head flit must wait in 
its flit buffer. If the channel is not assigned, but two head flits 
for that channel arrive together, a fair arbitration must take 
place. With limited buffer space assigned to each virtual 
channel, a block at an output node from the fabric is 
promptly Seen through backpressure to the input line inter 
face for each packet on that Virtual network. The input line 
interface can then take appropriate action to reroute Subse 
quent packets. With assignment of different destinations to 
different virtual networks, interference between destinations 
is avoided. Traffic is isolated. 

0064. Once assigned an output virtual channel, a flit is not 
enabled for transfer acroSS a link until a signal is received 
from the downstream node that an input buffer at that node 
is available for the virtual channel. 

0065. An elementary flow control process is illustrated in 
FIGS. 9, 10A and 10B. Each cycle, a number M of the 
enabled flits in each input buffer are selected by a fair 
arbitration proceSS 68 to compete for access to their 
requested output links. The selected flits forward their output 
link requests to a second arbiter 70 associated with the 
requested output link. This arbiter Selects at most one flit to 
be forwarded to each output link. The winning flits are then 
forwarded over the crossbar Switch to the output register and 
then transmitted over the output link to the next router in the 
Switch fabric. Until selected in this two-step arbitration 
process, flits remain in the input buffer, backpressure being 
applied upstream. 

0066. The fabric router at each line-interface module uses 
credit-based flow-control to regulate the flow of flits through 
the fabric network. Associated with each set of input buffers 
62 are two V-bit vectors; a presence vector, P, and an enabled 
vector, E. V., as illustrated in FIG. 10A, is the number of 
virtual networks and hence the number of entries in the 
buffer. A bit of the presence vector, Pv,i), is set if the input 
bufferi contains a flit from virtual network v. Bit Ev,i) is set 
if this flit is enabled to take the next hop of the route to its 
destination link. 

0067. As illustrated in FIG. 10B, associated with each 
output register is a V-bit credit vector, C, that mirrors the 
complement of the presence vector on the opposite end of 



US 2004/O160970 A1 

the fabric link at the receiving node. That is, CV, is set at 
a given output if PIV,i is clear at the input port on the 
opposite side of the link. If CV, is set, then the output 
register has a credit for the empty buffer at the opposite end 
of the link. 

0068 Flits in an input buffer are enabled to take their next 
hop when their requested output link has a credit for their 
Virtual network. For example, Suppose the packet in Virtual 
network V of input buffer i has selected output link for the 
next hop of its route. We denote this as Fv,i)=j, where F is 
the forwarding vector. The flit in this input buffer is enabled 
to take its next hop when two conditions are met. First, it 
must be present, Pv,i)=1, and Second, there must be a credit 
for buffer space at the next hop, CV.j=1. 
0069. The input buffer storage is allocated separately to 
each virtual network while the output registers and asSoci 
ated physical channels are shared by the Virtual networkS. 
The credit-based flow control method guarantees that a 
virtual network that is blocked or congested will not indefi 
nitely tie up the physical channels since only enabled flits 
can compete in the arbitration for output linkS. Further, 
because only one or two flits per virtual network are Stored 
in each input buffer, Stiff backpressure is applied from any 
blocked output node to the forwarding engine of the input 
node. 

0070 Allocation 
0071 Arbitration and flow control can be seen as an 
allocation problem which involves assigning virtual chan 
nels to packets, arriving from different input nodes and 
destined to common output nodes, and assigning physical 
channel bandwidth to flits destined to the same next node in 
the fabric path. 
0.072 In a multistage Switching fabric, packets composed 
of one or more flits advance from their source to their 
destination through one or more fabric routers. At each hop, 
the head flit of a message arrives at a node on an input virtual 
channel. It can advance no further until it is assigned an 
output virtual channel. In the Switch fabric of the preferred 
embodiment each packet may route on only one virtual 
channel. If the virtual channel is free when the packet 
arrives, it is assigned to the arriving packet. If, however, the 
Virtual channel is occupied when the packet arrives, the 
packet must wait until the output virtual channel becomes 
free. If one or more packets are waiting on a virtual channel 
when it is released, an arbitration is performed and the 
channel is assigned to one of the waiting packets. 

0073. Once a packet succeeds in acquiring the virtual 
channel it must compete for physical channel bandwidth to 
advance its flits to the next node of its route. A packet can 
only compete for bandwidth when two conditions hold. 
First, at least one flit of the packet must be present in the 
node. Second, there must be at least one flit of buffer space 
available on the next node. If these two conditions do not 
hold, there is either no flit to forward or no space in which 
to put the flit at the next hop. If both conditions hold for a 
given packet, then that packet is enabled to transmit a flit. 
However, before a flit can be sent, the packet must win two 
arbitrations. Among all the enabled packets, for a flit of the 
packet to advance to the next node of the route, a packet 
must be granted both an output port from the input flit buffer 
and the output physical channel. 
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0074 For small numbers of virtual channels, the alloca 
tion problem can be Solved in parallel for the elementary 
case of FIGS. 9, 10a and 10B using combinational logic. 

0075 Consider first the virtual channel allocation prob 
lem. A bit of state, H, is associated with each of V input 
virtual channels on each of Kinput controllers. This bit is set 
if the input virtual channel contains a head flit that has not 
yet been assigned an output virtual channel. The bit array H 
1:V, 1:K determines the demand for virtual channels. A bit 
of state, B, is associated with each of V output virtual 
channels in each of Koutput controllers. This bit is set if the 
output virtual channel is busy. The bit array B1:V,1:K 
determines the allocation Status of the Virtual channels. 

0076) To allocate a virtual channel, V, in output controller, 
k, an arbitration must first be performed acroSS Virtual 
channel V in each of the k input controllers with input 
controller i only competing if (1) HIV,ii is set and (2) the 
destination of the channel, Fv,i)=k. The input that wins the 
arbitration is granted the virtual channel only if BV.k=0. 

0077. The situation is similar for allocation of physical 
channel bandwidth to flits. The buffer status of each input 
Virtual channel is indicated by a presence bit, P, that is Set 
when one or more flits are in the present node. Each output 
Virtual channel looks ahead and keeps a credit bit, C, that is 
Set when one or more empty buffers are available in the next 
node. Suppose we choose to do the allocation serially (which 
is Sub-optimal); first arbitrating for an output port of the 
input controller and then arbitrating for an output channel. 
Suppose each input buffer has Moutput ports. Then for input 
buffer i, we first determine which virtual channels are 
enabled. An enabled vector, EV,i is calculated as 
Ev,i)= HIV,iAPV,iACV, where denotes logical nega 
tion, A denotes a logical AND operation, and j is the 
destination of the packet on Virtual channel V of input 
controller i. Thus, a packet is enabled to forward a flit when 
it is not waiting for a virtual channel, when there is at least 
one flit present in its buffer, and when there is at least one 
flit of storage available at the next hop. Next, all of the 
enabled channels in the input buffer arbitrate for the M 
output ports of the input buffer. This requires a V-input 
M-output arbiter. Finally, the winners of each local arbitra 
tion arbitrate for the output virtual channels, this takes K, 
MK-input arbiters. 

0078. With large numbers of virtual channels a combi 
national realization of the allocation logic requires a pro 
hibitive number of gates. The preferred Switch fabric has 
V=600 virtual channels and K=7 ports. To implement this 
allocation method having combinational logic thus requires 
4200 elements of vectors H and B, 42003:8 decoders to 
qualify the arbitrations, and 4200 7-input arbiters to select 
the winners. Between the flip-flops to hold the state, the 
decoders, and the arbiters, about 50 2-input gates are 
required for each of the 4200 virtual channels for a total of 
over 200,000 logic gates, a prohibitive number. 

007.9 For the preferred router, the Pand Carrays are also 
4200 elements each. Between the C-multiplexers and the 
arbiters, each element requires about 40 gates. Thus the 
bandwidth allocation requires an additional 160,000 logic 
gateS. 
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0080 While quite reasonable for routers with small num 
bers of virtual channels, V less than or equal to 8, combi 
national allocation is clearly not feasible for the router with 
V=600. 

0081) Event-Driven Allocation 
0082 The logic required to perform allocation can be 
greatly reduced by observing that for large numbers of 
Virtual channels, the State of most Virtual channels is 
unchanged from one cycle to the next. During a given flit 
interval, at most one virtual channel of a given input 
controller can have a flit arrive, and at most M virtual 
channels can have a flit depart. The remaining V-M-1 virtual 
channels are unchanged. 

0.083. The sparse nature of changes to the virtual channel 
State can be exploited to advantage through the use of 
event-driven allocation logic. With this approach, a single 
copy (or a small number of copies) of the virtual channel 
State update, and allocation logic is multiplexed acroSS a 
large number of Virtual channels. Only active Virtual chan 
nels, as identified by the occurrence of events, have their 
State examined and updated and participate in arbitration. 

0084. Two types of events, arrival events and credit 
events, activate the virtual channel State update logic. A third 
type of event, a transport event, determines which Virtual 
channels participate in arbitration for physical channel band 
width. Each time a flit arrives at a node, an arrival event is 
queued to check the state of the virtual channel associated 
with that flit. A similar check is made in response to a credit 
event which is enqueued each time the downstream buffer 
State of a virtual channel is changed. Examining the State of 
a virtual channel may lead to allocation of the channel to a 
packet and/or Scheduling a flit for transport to the down 
Stream node. In the latter case, a transport event is generated 
and enqueued. Only virtual channels with pending transport 
events participate in the arbitration for input buffer output 
ports and output physical channels. Once a flit wins both 
arbitrations and is in fact transported, the corresponding 
transport event is dequeued. 

0085 Logic to implement event-driven channel alloca 
tion is illustrated in FIGS. 11A and 11B. F.G. 11A shows 
one of seven input controllers while FIG. 11B shows one of 
Seven output controllers. Each input controller is connected 
to each output controller at the three points shown. Each 
input controller includes a destination table 72, an arrival 
queue 74, a credit queue 76 and a flit buffer 62. A virtual 
channel state table 80 and a transport queue 82 are included 
in each output controller. The Figures show an event-driven 
arrangement where the virtual channel State is associated 
with each output controller. It is also possible to associate 
the state with the input controllers. Placing the state table in 
the output controller has the advantage that Virtual channel 
allocation (which must be performed at the output control 
ler) and bandwidth allocation (which can be performed at 
either end) can be performed using the same mechanism. 
0.086 The destination tables, flit buffers, and virtual 
channel State tables have entries for each virtual channel, 
while the three queues require only a Small number of 
entries. For each Virtual channel, the destination table 
records the output port required by the current packet on that 
input channel, if any, (i.e., F), the flit buffer 62 provides 
Storage for one or more flits of the packet, and the State of 
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the output virtual channel is recorded in the state table. The 
arrival, credit, and transport queues contain entries for each 
event that has occurred but has not yet been processed. 

0087. On the input side, the dual-ported arrival queue, 
credit queue, and flit buffer also Serve as a Synchronization 
point as illustrated by the dashed line in FIG. 11A. The left 
port of these three Structures, and all logic to the left of the 
dotted line (including the destination table), operates in the 
clock domain of the input channel. The right port of these 
three Structures, and all logic to the right of the dotted line, 
including FIG. 11B, operate in the internal clock domain of 
the router. 

0088. In an alternative embodiment arriving flits are 
Synchronized to the local clock domain before accessing the 
arrival queue or destination table. 

0089. With the arrangement shown in FIGS. 11A and 
11B, an allocation of a virtual channel or a physical channel 
flit cycle is performed through a three-event Sequence of 
arrival, transport, and credit. An arriving flit arbitrates for 
access to the state table for its output virtual channel. When 
granted, the table is updated to account for the arriving flit 
and, if the channel is allocated to its input controller and a 
credit is available, a transport request is queued to move the 
flit. The transport request arbitrates for access to the input flit 
buffer. When access is granted the flit is removed from the 
buffer and forwarded to the next node. Whenever a flit is 
removed from the flit buffer a credit is queued to be 
transmitted to the previous node. When credits arrive at a 
node, they update the Virtual channel State table and enable 
any flits that are waiting on Zero credits. Finally, the arrival 
of a tail flit at a node updates the virtual channel State to free 
the channel. 

0090. Each time a flit arrives at an input controller, the 
contents of the flit are stored in the flit buffer 62. At the same 
time, the destination table 72 is accessed, and an arrival 
event, tagged with the required output port number, is 
enqueued at 74. The destination table is updated by the head 
flit of each packet to record the packets output port and then 
consulted by the remaining flits of a packet to retrieve the 
Stored port number. An arrival event includes a virtual 
channel identifier (10 bits), a head bit, and an output port 
identifier (3 bits). The arrival events at the heads of each of 
the Kinput controller's arrival queues (along with input port 
identifiers (3 bits)) are distributed to arbiters 84 at each 
output controller. At each output controller the arrival 
events, that require that output port, arbitrate for access to 
the state table 80. Each cycle, the winning arrival events are 
dequeued and processed. The losing events remain queued 
and compete again for access to the State table on the 
Subsequent cycle. 

0091. As shown in FIG. 12, for each output virtual 
channel, V, on output k, the virtual channel state table 80 
maintains a State vector, SV,k) containing: 

0092] 1. The allocation status of the channel, B, idle 
(0), busy (1) or tail pending (2). 

0093 2. The input controller assigned to this channel 
(if B is set), I, (3 bits). 

0094) 3. Abit vector of input controllers waiting on this 
channel, W., (7 bits). 
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0.095 4. The number of credits (empty buffers on the 
next node), C, (1 bit). 

0096) 5. The number of flits present on this node, P, (1 
bit). 

0097. The first three of these (B.I.W) are associated with 
the allocation of output virtual channels to input virtual 
channels while the last two (C.P) are associated with the 
allocation of physical channel bandwidth to flits. The num 
ber of flits in each element of the state vector may be varied 
as appropriate. For example, if more flit buffers are available 
on each node, then more bits would be allocated to the C and 
P field. Much of the state here corresponds directly to the 
State bits in the combinational logic approach. The B, C, and 
P bits are identical. The W bits correspond to the H bits, 
qualified by required output channel. 

0098. The number of bits in the waiting vector, W, can be 
increased to provide improved fairness of arbitration. With 
just a single bit, a random or round-robin arbitration can be 
performed. If 3-bits are Stored for each entry, a queuing 
arbitration can be performed with the input virtual channels 
Serviced in the order that their requests arrived. Each Virtual 
channel in effect “takes a number' when it arrives at the state 
table, and this number is stored in its entry of the W vector. 
When the channel becomes free, the “next number is 
Served. 

0099 When an arrival event associated with virtual chan 
nel V, from input controller I, arrives at the state table for 
output k, it reads SV.k and performs one of the following 
actions depending on the type of event (heads vs. body) and 
the State of the channel. 

0100) 1. If the flit is a head, the channel is idle, B=0, 
and there are downstream credits, Cz0, (a) the channel 
is assigned to the input by Setting B=1, 1=i, (b) a 
downstream buffer is allocated by decrementing C, and 
(c) a transport request is queued for (v,i,k) at 82. 

0.101) 2. If the flit is a head, the channel is idle, but 
there are no downstream credits, the channel is 
assigned to the input, and the presence count, P, is 
incremented. No downstream buffer is allocated and no 
transport request is queued. 

0102) 3. If the flit is a head and the channel is busy, 
B=1, the Virtual channel request is queued by Setting 
the ith bit of the wait vector, W. 

0103 4. If the flit is a body flit, and there are down 
Stream credits, a downstream buffer is allocated and a 
transport request is queued. 

0104 5. If the flit is a body flit, and there are no 
downstream credits, the presence count is incremented. 

0105 6. If the flit is a tail and W=0, no waiting heads, 
then, if there is a credit available the tail flit is queued 
for transport and the channel is marked idle, B=0. 
Otherwise, if no credit is available, the channel is 
marked tail pending, B=2, So the arrival of a credit will 
transmit the tail and free the channel. 

0106 7. If the flit is a tail, a credit is available (Cz0), 
and there are packets waiting (Wz0), the tail flit is 
queued for transport as in cases 1 and 4 above. An 
arbitration is performed to Select one of the waiting 
inputs, j. The channel is assigned to that input (B=1, 
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I=i), and, if there is an additional credit available, this 
new head flit is queued for transport; otherwise it is 
marked present. 

0107 8. If the flit is a tail and a credit is not available, 
(C=O), the presence count is incremented and the status 
of the channel is marked “tail pending.” (B=2). 

0108). If there is just a single flit buffer per virtual 
channel, when a body flit arrives there is no need to check 
the virtual channel allocation status (B, I and W) as the flit 
could only arrive if the channel were already allocated to its 
packet (B=1, I=i). If there is more than one flit buffer per 
virtual channel, the virtual channel of each body flit arrival 
must be checked. Flits arriving for channels that are waiting 
for an output virtual channel will generate events that must 
be ignored. Also, the number of flits buffered in a waiting 
virtual channel must be communicated to the state table 80 
when the output channel is allocated to the waiting channel. 
This can be accomplished, for example, by updating the flit 
count in the state table from the count in the flit buffer 
whenever a head flit is transported. Note that in case 1 
above, we both allocate the virtual channel and allocate the 
channel bandwidth for the head flit in a single operation on 
the state table. Tail flits here result in a pair of actions: the 
tail flit is first processed as a body flit to allocate the 
bandwidth to move the tail flit, the tail flit is then processed 
as a tail flit to free the channel and possibly move a pending 
head flit. Unless the transport queue can accept two inputs 
Simultaneously, this must be done Sequentially as a tail flit 
arrival may enqueue two flits for transport: the tail flit itself, 
and the head flit of a waiting packet. 
0109) Each entry in the transport queue (v,i,k) is a request 
to move the contents of flit buffer v on input controller i to 
output k. Before the request can be honored, it must first 
arbitrate at 86 for access to flit buffer i. On each cycle, the 
transport requests at the head of the queues in each of the K 
output controllers are presented to their requested input 
buffers where they arbitrate for access to the M ports. The 
winning transport requests are dequeued and their flits 
forwarded to the appropriate output multiplexer 88. The 
other requests remain in the transport queues. There is no 
need to arbitrate for a fabric link here, as the output 
controller associated with each of the outgoing fabric links 
makes at most one request per cycle. 
0110. Each time a transport request successfully forwards 
a flit to an output, a credit is generated to reflect the Space 
vacated in the input flit buffer. This credit is enqueued in a 
credit queue 76 for transmission to the output controller of 
the previous node. When a credit for virtual channel V 
arrives at output controller k of a node, it reads the State 
vector, SV,k), to check if any flits are waiting on credits. It 
proceeds as follows depending on the State of the presence 
COunt. 

0111 1. If there are no flits waiting, P=0, the credit 
count is incremented, C=C+1. 

0112 2. If there are flits waiting, Pz0, the number of 
waiting flits is decremented, P=P-1, and a transport 
request for the first waiting flit is enqueued. 

0113 3. If there is a tail flit pending (B=2), a transport 
request for the tail flit is queued. 

0114) If no head flits are waiting on the channel (W=0), 
the channel is set idle (B=0). Otherwise, if there are head 
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flits waiting (Wz0), an arbitration is performed to select a 
waiting channel, Say from input controller j, the channel is 
allocated to this channel (B=1, I=j), and the head flit is 
marked present (P=1) So the next arriving credit will cause 
the head flit to be transmitted. 

0115) In the above-described event-driven embodiment, 
the output controller processes body flits and tail flits 
differently. In particular, the output controller processes 
body flits according to techniques 4 and 5, and processes tail 
flits according to techniqueS 6, 7 and 8, described above. 
0116. As described in technique 7, a head flit of a data 
packet can follow directly on the heels of a tail flit of a 
previous data packet. For example, a data packet can occupy 
a virtual channel while one or more data packets (i.e., one or 
more head flits) wait for that virtual channel. When an 
arrival event for a tail flit of the occupying data packet 
reaches the output controller, the output controller queues 
the tail flit for transmission to the next fabric router down 
Stream, and allocates the Virtual channel to one of the 
waiting data packets (i.e., one of the waiting head flits). 
Accordingly, the output controller grants the virtual channel 
to a new data packet as Soon as the fabric router queues the 
tail flit for transmission. 

0117. In an alternative event-driven embodiment, the 
output controller processes body flits and tail flits similarly. 
In particular, the output controller processes both body and 
tail flits according to techniques 4 and 5, as described above. 
AS Such, when an arrival event for a tail flit reaches the 
output controller, and when a credit is available, the output 
controller queues the tail flit for transmission without freeing 
the virtual channel or allocating the Virtual channel to a 
waiting data packet. When a fabric router that is downstream 
from the present fabric router receives, processes and for 
wards the tail flit, the downstream fabric router generates a 
Special tail credit in place of the normal credit. The down 
Stream fabric router Sends this tail credit upstream to the 
present fabric router. When the output controller of the 
present fabric router receives the tail credit, the output 
controller increments the credit count of the Virtual channel 
in a manner Similar to that for normal credits, and frees the 
Virtual channel. At this point, if there are data packets 
waiting for the virtual channel, the output controller per 
forms an arbitration procedure to assign the virtual channel 
to one of the waiting data packets. 
0118. The fabric router according to the alternative event 
driven embodiment has slower performance than the fabric 
router of the event-driven embodiment that processes body 
and tail flits differently. In particular, after the fabric router 
of the alternative embodiment queues a transport request for 
transmission of a tail flit to a downstream router, the Virtual 
channel assigned to the data packet of that tail flit becomes 
idle. The virtual channel is not available for use by another 
data packet until the fabric router receives a tail credit from 
the downstream fabric router. 

0119) However, the alternative event-driven embodiment 
results in considerably simpler logic for Several reasons. 
First, it simplifies the handling of events by reducing the 
complexity of handling a tail-flit arrival event. The work is 
instead spread between the tail-flit arrival and the tail-credit 
events. Furthermore, it simplifies the logic by ensuring that 
only a Single packet is in a given virtual channel's flit buffer 
at any point in time. This is guaranteed by not granting the 
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Virtual channel to a new packet until the tail of the previous 
packet has cleared the flit buffer-as signaled by the tail 
credit. In contrast, in the event-driven embodiment that 
processes body flits and tail flits differently, a head flit of a 
next packet can follow directly on the heels of the tail flit of 
a present packet, and two or more packets may be queued in 
a single virtual channel's flit buffer at the same time. 
0120 Each event-driven method of allocation described 
here reduces the Size and complexity of the logic required 
for allocation in two ways. First, the state information for the 
virtual channels can be stored in a RAM array with over 10x 
the density of the flip-flop Storage required by the combi 
national logic approach. Second, the Selection and arbitra 
tion logic is reduced by a factor of V. Arbitration for access 
to the virtual channel buffers is only performed on the 
channels for which changes have occurred (flit or credit 
arrival), rather than on all V channels. 
0121 Only the flit buffer, the state table, and the desti 
nation table in FIGS. 11A and 11B need to have V entries. 
A modest number of entries in the bid, transport, and credit 
queues will Suffice to Smooth out the Speed mismatches 
between the various components of the System. If a queue 
fills, operation of the unit filling the queue is simply SuS 
pended until an entry is removed from the queue. Deadlock 
can be avoided by breaking the cycle between event queues. 
For example, by dropping transport events when the trans 
port queue fills, the State table is able to continue to consume 
credit and arrival events. Lost events can be regenerated by 
periodically Scanning the State table. Alternately, one of the 
N queues, e.g., the transport queue, can be made large 
enough to handle all possible Simultaneous events, usually V 
times N (where N is the number of flits in each channel's 
input buffer). 
0.122 Dispersion 
0123. While assigning a separate virtual channel to each 
Virtual network is a Simple Solution, it is costly and has 
limited scalability. The number of buffers required in each 
interconnection network router increases linearly with the 
number of nodes in the system. With 512 virtual networks 
the number of flit bufferS required is pushing the physical 
limits of what can be economically constructed on the 
integrated circuits making up the router's Switch fabric. 
0.124. To reduce the number of buffers, and hence the 
cost, of the Switch fabric and to provide for greater Scal 
ability, Virtual networks may be constructed with overlap 
ping buffer assignments by using dispersion codes. Consider 
for example a network with N nodes (and hence N virtual 
networks) and V virtual channels (flit buffers) on each node. 
Each node, j, is assigned a dispersion code, a V-bit bit vector 
that specifies which of the V virtual channels this virtual 
network is permitted to use. That is, the vector contains a 1 
in each bit position that corresponds to a permitted Virtual 
channel and OS in all other positions. The dispersion codes 
must be assigned So that for every pair of virtual networks, 
A and B, the bit vector corresponding to A contains a 1 in a 
position at which the bit vector corresponding to B contains 
ZCO. 

0.125 Care must be taken in assigning dispersion codes to 
avoid channel-dependence deadlocks between Virtual net 
WorkS. An assignment of dispersion codes for a 3-D torus 
network that is guaranteed to be deadlock-free may be made 
as follows: 
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0.126 Consider a 1-D bidirectional ring network. Asso 
ciated with each destination is a virtual network (VN) that is 
permitted to use C virtual channels with a maximum overlap 
of S virtual channels between any pair of VNs. 
0127. In each direction around the loop, the span of a 
virtual network is the set of channels used by the virtual 
network. With minimal routing, the span of each VN covers 
half of the channels in the cycle. In FIG. 13, for example, 
the span of the VN rooted at the shaded node in the 
clockwise direction consists of the three heavily shaded 
channels. Its span in the other direction consists of the 
channels that run in the opposite direction to the three lightly 
shaded channels. 

0128. In networks having a radix, k, of 5 or more, and 
unrestricted assignment of Virtual channels, a dependent 
cycle of three VNS with overlapping spans on the ring can 
cause deadlock. With dispersion routing, 3N VNs (where 
N=floor(C/S)) are required to generate a deadlocked con 
figuration as a packet must block on N Separate blocked VNS 
to deadlock. 

0129. A sufficient condition to avoid deadlock is for each 
VN to have at least one VC that it shares only with VNs that 
overlap either entirely or not at all. With this approach, each 
VC is always able to make progress (within one dimension). 
It is possible to avoid deadlock with a less restrictive 
assignment of VCs to VNs since it is only necessary to break 
the deadlock at one point in the cycle. 

0.130. In a multidimension network it is possible to dead 
lock even if all dimensions are individually deadlock free. 
Consider the two-dimensional case which is easily extended 
to three dimensions. A deadlock can form if a packet making 
a NW turn blocks on a packet making a WS turn which in 
turn blocks on a packet making a SE turn, which in turn 
blocks on a packet making an EN turn, which in turn blockS 
on the original packet. This forms a cycle (NW.WS.SE.EN); 
C. J. Glass and L. M. Ni, “The Turn Model for Adaptive 
Routing.” Proceedings of the 19th International Symposium 
on Computer Architecture, May 1992, pp. 278-287. 

0131) If minimal routing is used, each VN is itself 
deadlock-free as in each quadrant about the destination 
node, only two directions, and hence only two (of eight 
possible) turns, are used. In the region NE of the destination 
node, for example, packets only travel S and W and hence 
only SW and WS turns are allowed. This is one turn from the 
clockwise cycle and one turn from the counterclockwise 
cycle. If VNs share VCs, however, deadlock can occur as the 
turns missing from one VN may be present in other VNs 
Sharing the same VCs. 

0132 A Sufficient method for preventing inter-dimension 
deadlock is to (1) make the dimensions individually dead 
lock free and (2) to require that each VN (a) disallow one of 
the four turns in both the CW and CCW directions, and (b) 
have at least one VC that is shared only with VNs disal 
lowing the same turn. This is quite restrictive as it forces two 
of the four quadrants about the destination node to route in 
dimension order. 

0133) A strategy that permits more flexible routing, but a 
more costly one in terms of VCs, is to associate two VNs 
with each destination node, one for all quadrants but the NW 
that disallows the SE and ES turns and one for all quadrants 
but the SE that disallows the NW and WN turns. VNS from 
each class can then share VCs without restriction as long as 
they remain deadlock free in each dimension independently. 
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0.134 One workable method for assigning VCs in two 
dimensions is as follows: 

0135 1. Each destination is assigned a VC pair (one 
VC that disallows SE/ES and one that disallows 
NW/WN) associated with its x-coordinate (mod k/2), 
where k is the number of nodes in the X-dimension. 
ASSigning this VC pair guarantees non-overlap and 
hence Single-dimension deadlock freedom in the X-di 
mension. 

0.136 2. Each destination is assigned a VC pair asso 
ciated with its y-coordinate (modk/2). This guarantees 
Single-dimension deadlock freedom in the y-dimen 
Sion. 

0.137 3. Any additional VC pairs are assigned arbi 
trarily subject to the restriction that no more than SVCs 
are shared between any two destinations. 

0.138 4. The routing tables are built so that nodes in the 
NW quadrant of a destination are restricted to the VN 
containing the VCs that disallow NW/WN and nodes in 
the SE quadrant are restricted to the other VN. Nodes 
in the NE and SW quadrants may use either VN. 

0.139. As an example, for a 2-D network of 64-nodes 
(8x8) this assignment requires a minimum of 8VC pairs 
(16VCs). 
0140. To extend this approach to three dimensions we 
need to exclude additional turns to avoid 3-D inter-dimen 
Sion cycles. However, we can accomplish this with just two 
VNs per destination as above. One VN excludes the turns 
associated with the NWU (North, West, Up) octant (SE.ES, 
SD.DS.E.D.DE) while the other excludes the turns associ 
ated with the SED (South.East,Down) octant. 
0.141. An example 1024-node network organized as 8x8x 
16 needs a minimum of 16VC pairs (32VCs) to assign one 
VC pair to each Symmetric pair of planes in the network. 
0142. When a single destination receives an excessive 
amount of traffic, all VCs associated with its two VNs will 
quickly Saturate and back up to the Source. To first approxi 
mation it is as if these VCs were removed from the network. 
With the channel assignment Suggested above, where each 
destination node has two VNs with three VCs each, this 
leaves four VCs to route on. 

0143 Deflection Routing 
0144. Deflection routing is another method for making 
traffic destined for different fabric outputs substantially 
non-blocking. With deflection routing all of the packets are 
allowed to share virtual channels without restriction. When 
a packet blocks, however, rather than waiting for the 
required virtual channel to become available, it is misrouted 
or “deflected” to the packet memory of the present fabric 
router's line interface. It is reinjected into the fabric at a later 
time. Because a packet destined for fabric output A is never 
allowed to block, it cannot indefinitely delay a packet 
destined for fabric output B. 
0.145) Deflection routing has several properties that make 

it less desirable than using virtual networks to achieve 
isolation between packets destined for different outputs. 
First, deflection routing provides no backpressure. When an 
output becomes congested, packets destined for that output 
are simply deflected and the fabric inputs Sending packets to 
the congested output remain unaware of any problem. Sec 
ond, while there is no blocking, there is significant interfer 
ence between packets destined for different outputs. If an 
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output, A, is congested, the links adjacent to A will be 
heavily utilized and a packet destined for output B that 
traverses one of these links will have a very high probability 
of being deflected. Third, the use of deflection routing 
greatly increases the bandwidth requirements of the packet 
memory as this memory must have sufficient bandwidth to 
handle deflected packets and their reinjection in addition to 
their normal input and output. Finally, deflection routing is 
limited by the finite size of the packet memory on each line 
interface. Under very high congestion, as often occurs in IP 
routers, the packet memory may be completely filled with 
deflected packets. When this occurs, packets must be 
dropped to avoid interference and possibly deadlock. 
0146 While this invention has been particularly shown 
and described with references to preferred embodiments 
thereof, it will be understood by those skilled in the art that 
various changes in form and details may be made therein 
without departing from the Spirit and Scope of the invention 
as defined by the appended claims. Those skilled in the art 
will recognize or be able to ascertain using no more than 
routine experimentation, many equivalents to the Specific 
embodiments of the invention described specifically herein. 
Such equivalents are intended to be encompassed in the 
Scope of the claims. 
0147 For example, the event-driven allocation logic 
described in connection with FIGS. 11A, 11B and 12 is 
Suitable for use in an internet Switch fabric router Such as 
that shown in FIG. 8. It should be understood that the 
event-driven allocation logic is also Suitable for use in a 
multicomputer router. For example, with reference to FIG. 
8, using a multicomputer interface as the line interface 
circuit 48 in combination with the event-driven allocation 
logic forms a multicomputer router for a multicomputer 
system such as that shown in FIG. 4. 
0.148. Furthermore, it should be understood that the 
event-driven allocation logic is Suitable for assigning input 
physical channels to output physical channels directly. Pref 
erably, a Single copy of the allocation logic is used. The logic 
is activated by the occurrence of an event. 
0149 Additionally, it should be understood that portions 
of the state vectors for the virtual channel state table 80 (see 
FIG. 12) have been described as including individual bits 
for indicating particular information Such as busy or wait 
information. Other Structures can be used in place of Such 
bits Such as Scalar State fields that encode the information. 

0150. In connection with the event-driven allocation 
logic described in FIGS. 11A, 11B and 12, it should be 
understood that each input physical channel is shared by 
multiple input virtual channels, and each output physical 
channel is shared by multiple output virtual channels. The 
allocation logic is Suitable for providing a single virtual 
channel for each physical channel. In Such a case, each input 
physical channel is used by only one input Virtual channel, 
and each output physical channel is used by only one output 
Virtual channel. AS Such, the State table logic essentially 
generates assignments that associate input physical channels 
with output physical channels. 

What is claimed is: 
1. A router for routing data packets comprising: 
input physical channels for receiving at least portions of 

the data packets, 
output physical channels, 
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data buffers, coupled with the input and output physical 
channels, for Storing the portions of the data packets, 
and 

control circuitry, coupled with the input and output physi 
cal channels and the data buffers, for generating chan 
nel assignments in response to queued events, and 
outputting the portions of the data packets through the 
output physical channels according to the generated 
channel assignments. 

2. The router of claim 1 wherein the control circuitry 
assigns virtual channels to the data packets in response to the 
queued events. 

3. The router of claim 2 wherein the control circuitry is 
shared by multiple virtual channels and activated to handle 
a particular virtual channel in response to an event. 

4. The router of claim 2 wherein the control circuitry 
further assigns the output physical channels to the Virtual 
channels in response to the queued events. 

5. The router of claim 4 wherein the control circuitry is 
shared by multiple virtual channels and activated to handle 
a particular virtual channel in response to an event. 

6. The router of claim 1 wherein the control circuitry is 
adapted to generate physical channel assignments in 
response to the queued events. 

7. The router of claim 6 wherein the control circuitry is 
shared by multiple virtual channels and activated to handle 
a particular virtual channel in response to an event. 

8. The router of claim 1 further comprising: 
a multicomputer interface coupled with an input physical 

channel and an output physical channel Such that the 
router forms a multicomputer router for a multicom 
puter System. 

9. The router of claim 1 further comprising: 
a line interface coupled with an input physical channel 

and an output physical channel Such that the router 
forms an internet Switch fabric router. 

10. The router of claim 2 wherein the data buffers corre 
spond to input virtual channels which share the input physi 
cal channels, wherein output virtual channels share the 
output physical channels, and wherein the control circuitry 
generates virtual channel assignments, each virtual channel 
assignment associating an input virtual channel with an 
output virtual channel. 

11. The router of claim 2 wherein the control circuitry 
includes: 

a State table that associates the output physical channels 
with input channels. 

12. The router of claim 11 wherein the input channels are 
input virtual channels that share the input physical channels. 

13. A method for routing data packets from input physical 
channels to output physical channels, the method compris 
ing the Steps of: 

receiving at least portions of the data packets over the 
input physical channels, 

generating channel assignments in response to queued 
events, and 

outputting the portions of the data packets through the 
output physical channels according to the generated 
channel assignments. 
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