
(19) United States
US 2004O16097OA1

(12) Patent Application Publication (10) Pub. No.: US 2004/0160970 A1
Dally et al. (43) Pub. Date: Aug. 19, 2004

(54) METHODS AND APPARATUS FOR
EVENT DRIVEN ROUTING

(75) Inventors: William J. Dally, Stanford, CA (US);
Philip P. Carvey, Bedford, MA (US);
Larry R. Dennison, Norwood, MA
(US); P. Allen King, Needham, MA
(US)

Correspondence Address:
HAMILTON, BROOK, SMITH & REYNOLDS,
P.C.
530 VIRGINA ROAD
P.O. BOX 91.33
CONCORD, MA 01742-9133 (US)

(73) Assignee: Avici Systems, Inc., N. Billerica, MA

(21) Appl. No.: 10/673,912

(22) Filed: Sep. 29, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/887,960, filed on
Jun. 22, 2001, now Pat. No. 6,654,381, which is a
continuation of application No. 09/084,636, filed on

Input
58 Buffers

May 26, 1998, now Pat. No. 6,285,679, which is a
continuation-in-part of application No. 08/918,556,
filed on Aug. 22, 1997, now Pat. No. 6,370,145.

Publication Classification

(51) Int. Cl. ... H04L 12/56
(52) U.S. Cl. .. 370/412; 370/389

(57) ABSTRACT

A router routes data packets. The router includes input
physical channels for incrementally receiving portions of the
data packets, and output physical channels. The router
further includes data buffers, coupled with the input and
output physical channels, for Storing the portions of the data
packets. The router further includes control circuitry,
coupled with the input and output physical channels and the
data buffers, for generating virtual channel assignments that
assign virtual channels to the data packets, and generating
physical channel assignments that assign the output physical
channels to the virtual channels. Each of the assignments is
generated in response to queued arrival and credit events.
The portions of the data packets are forwarded from the data
buffers to the output physical channels according to the
generate Virtual and physical channel assignments.

66 Output
Register 6O

Crossbor
From Switch O TO
Other Other
NOOes Nodes
(6) (6)

From 58 o
Forwording POCket

Engine Buffer

54

Patent Application Publication Aug. 19, 2004 Sheet 1 of 10 US 2004/0160970 A1

BOCK bone Network

28

Other Regiono
Networks

22 Other
ANS

LAN

26
User's Regional

WorkSt Otions

F. G.
PRIOR ART

Patent Application Publication Aug. 19, 2004 Sheet 2 of 10 US 2004/0160970 A1

COmmOn
32 buS

Line
InterfoCe

Line
Interface

30 34.

Line
Interface

3O
32

FIG. 2
PROR ART

PRIOR ART

Patent Application Publication Aug. 19, 2004 Sheet 3 of 10 US 2004/0160970 A1

q 5.

Patent Application Publication Aug. 19, 2004 Sheet 4 of 10 US 2004/0160970 A1

1,5

Patent Application Publication Aug. 19, 2004 Sheets of 10 US 2004/0160970 A1

48 5O 54

46

Line
InterfoCe
Circuit

Patent Application Publication Aug. 19, 2004 Sheet 7 of 10 US 2004/0160970 A1

FinO
Destinotion | NPUT PORT

NOCe
- N Fit Buffers 62

c- 36 Byte Fit -->

FIG. OA

OUTPUT PORT
C OUTPUT REGISTER 6

36 Byte Fit

4.

2

3

V

FG, OB

Patent Application Publication Aug. 19, 2004 Sheet 8 of 10 US 2004/0160970 A1

ArrivO Queue
TO OC

TO OC 7
input

From OC

From OC 7

Be TO OC

TO OC 7

credit
Credit Queue

input intern C
COCK COCK
dOmO in dOmo in

Input Controller

FG. A

Patent Application Publication Aug. 19, 2004 Sheet 9 of 10 US 2004/0160970 A1

VC
State Toble

From IC
- Credit

From IC 7

TOIC

TOIC 7 as Transport
QUEUE

From IC
Output

From IC 7

Output Controller

FG. B

Patent Application Publication Aug. 19, 2004 Sheet 10 of 10 US 2004/0160970 A1

Waiting Input
FOr Input Controllers (W)

Output Allocation Status Controller 7 Credits Ph
K (I - to 7) i? Y-N (C) (P)

2

3.

W

US 2004/O160970 A1

METHODS AND APPARATUS FOR
EVENT DRIVEN ROUTING

RELATED APPLICATIONS

0001. This application is a continuation of application
Ser. No. 09/887,960, filed Jun. 22, 2001, which is a con
tinuation of application Ser. No. 09/084,636, filed May 26,
1998, which is a continuation-in-part of application Ser. No.
08/918,556 filed Aug. 22, 1997. The entire teachings of the
above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002 Data communication between computer systems
for applications Such as web browsing, electronic mail, file
transfer, and electronic commerce is often performed using
a family of protocols known as IP (internet protocol) or
sometimes TCP/IP. As applications that use extensive data
communication become more popular, the traffic demands
on the backbone IP network are increasing exponentially. It
is expected that IP routers with several hundred ports
operating with aggregate bandwidth of Terabits per Second
will be needed over the next few years to Sustain growth in
backbone demand.

0003. As illustrated in FIG. 1, the Internet is arranged as
a hierarchy of networks. A typical end-user has a WorkSta
tion 22 connected to a local-area network or LAN 24. To
allow users on the LAN to access the rest of the internet, the
LAN is connected via a router R to a regional network 26
that is maintained and operated by a Regional Network
Provider or RNP. The connection is often made through an
Internet Service Provider or ISP. To access other regions, the
regional network connects to the backbone network 28 at a
Network Access Point (NAP). The NAPs are usually located
only in major cities.
0004. The network is made up of links and routers. In the
network backbone, the links are usually fiber optic commu
nication channels operating using the SONET (synchronous
optical network) protocol. SONET links operate at a variety
of data rates ranging from OC-3 (155 Mb/s) to OC-192 (9.9
Gb/s). These links, Sometimes called trunks, move data from
one point to another, often over considerable distances.
0005 Routers connect a group of links together and
perform two functions: forwarding and routing. A data
packet arriving on one link of a router is forwarded by
Sending it out on a different link depending on its eventual
destination and the State of the output linkS. To compute the
output link for a given packet, the router participates in a
routing protocol where all of the routers on the Internet
eXchange information about the connectivity of the network
and compute routing tables based on this information.
0006 Most prior art Internet routers are based on a
common bus (FIG. 2) or a crossbar switch (FIG. 3). In the
bus-based Switch of FIG. 2, for example, a given SONET
link 30 is connected to a line-interface module 32. This
module extracts the packets from the incoming SONET
Stream. For each incoming packet, the line interface reads
the packet header, and using this information, determines the
output port (or ports) to which the packet is to be forwarded.
To forward the packet, the line interface module arbitrates
for the common bus 34. When the bus is granted, the packet
is transmitted over the bus to the output line interface

Aug. 19, 2004

module. The module Subsequently transmits the packet on
an outgoing SONET link 30 to the next hop on the route to
its destination.

0007 Bus-based routers have limited bandwidth and
scalability. The central bus becomes a bottleneck through
which all traffic must flow. A very fast bus, for example,
operates a 128-bit wide datapath at 50 MHz giving an
aggregate bandwidth of 6.4 Gb/s, far short of the Terabits per
Second needed by a backbone Switch. Also, the fan-out
limitations of the bus interfaces limit the number of ports on
a bus-based switch to typically no more than 32.
0008. The bandwidth limitation of a bus may be over
come by using a crossbar switch as illustrated in FIG. 3. For
N line interfaces 36, the Switch contains N(N-1) crosspoints,
each denoted by a circle. Each line interface can Select any
of the other line interfaces as its input by connecting the two
lines that meet at the appropriate crosspoint 38. To forward
a packet with this organization, a line interface arbitrates for
the required output line interface. When the request is
granted, the appropriate croSSpoint is closed and data is
transmitted from the input module to the output module.
Because the crossbar can simultaneously connect many
inputs to many outputs, this organization provides many
times the bandwidth of a bus-based Switch.

0009. Despite their increased bandwidth, crossbar-based
routers still lack the scalability and bandwidth needed for an
IP backbone router. The fan-out and fan-in required by the
crossbar connection, where every input is connected to every
output, limits the number of ports to typically no more than
32. This limited scalability also results in limited bandwidth.
For example, a State-of-the-art crossbar might operate 32
32-bit channels simultaneously at 200 MHz giving a peak
bandwidth of 200 Gb/s. This is still short of the bandwidth
demanded by a backbone IP router.

SUMMARY OF THE INVENTION

0010. In a previous related application (application Ser.
No. 08/918,556, filed Aug. 22, 1997) which has been incor
porated by reference, a novel Internet Switch Router was
presented. The internet router receives data packets from a
plurality of internet links and analyzes header information in
the data packets to route the data packets to output internet
links. The internet router comprises a fabric of fabric links
joined by fabric routers, the number of fabric links to each
fabric router being substantially less than the number of
internet links served by the internet router. The fabric links
and fabric routers provide data communication between
internet links through one or more hops through the fabric.
0011 A preferred embodiment of the present invention
relates to an event-driven technique for handling virtual
channels in a router that routes data packets. The router
includes input physical channels that receive portions of the
data packets, output physical channels, and data buffers that
are coupled with the input and output physical channels. The
data bufferS Store the portions of the data packets. The router
further includes control circuitry that is coupled with the
input and output physical channels and the data buffers. The
control circuitry generates channel assignments in response
to queued events, and outputs the portions of the data
packets through the output physical channels according to
the generated channel assignments. Preferably, the control
circuitry assigns virtual channels to the data packets, assigns

US 2004/O160970 A1

the output physical channels to the Virtual channels in
response to the queued events. In one embodiment, the
router further includes a line interface coupled with an input
physical channel and an output physical channel Such that
the router forms an internet Switch fabric router. In another
embodiment, the router further includes a multicomputer
interface coupled with an input physical channel and an
output physical channel Such that the router forms a multi
computer router for a multicomputer System.
0012. According to the preferred embodiment, the con
trol circuitry includes output controllers that correspond to
the output physical channels. Each output controller has a
State table that records States of output virtual channels, and
identifies input virtual channels connected with the output
virtual channels. The input virtual channels hold the portions
of the data packets.
0013 Each output controller further includes an arbiter
that is adapted to Select arrival events from multiple arrival
queues, and State table logic that accesses that output con
troller's State table to assign output virtual channels in
response to the Selected arrival events. Each State table
includes State vectors that correspond to output virtual
channels.

0.014. Each state vector includes a busy indication that
indicates whether that State vector's corresponding output
Virtual channel is assigned to a data packet. Additionally,
each State vector includes a wait field that indicates which of
the input physical channels have received at least portions of
data packets awaiting assignment to that State vector's
corresponding output Virtual channel. Each wait field further
indicates an order in which the input physical channels
received the data packet portions. Each State vector further
includes a present field that indicates a number of portions
of a data packet present for transferring through that State
vector's output virtual channel to a downstream router.
Furthermore, each State vector includes a credit field that
indicates an amount of buffer Space available in a down
Stream router coupled to that State vector's corresponding
output virtual channel.
0.015 Each output controller further includes a transport
circuit that queues transport requests when that output
controller's State table is accessed in response to the queued
events, and forwards data packets through that output con
troller's output physical channel according to the queued
transport requests. The portions of the data packets are flits
of the data packets. Each transport circuit transmits a flit in
response to a queued transport request.

0016 Each output controller receives credit events from
a downstream router and, in response to the received credit
events, queues a transport request to transport a portion of a
data packet over the corresponding output physical channel.
In one embodiment, the queued events include tail credit
events, and the output controllers free virtual channels only
in response to the tail credit events.
0.017. The control circuitry can be shared by multiple
Virtual channels and activated to handle a particular virtual
channel in response to an event.
0.018 Preferably, the control circuitry is adapted to gen
erate virtual channel assignments that assign virtual chan
nels to the data packets, and generate physical channel
assignments that assign the output physical channels to the

Aug. 19, 2004

Virtual channels. Each of the assignments can be generated
in response to queued arrival and credit events. The portions
of the data packets are forwarded from the data buffers to the
output physical channels according to the generated Virtual
and physical channel assignments.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. The foregoing and other objects, features and
advantages of the invention will be apparent from the
following more particular description of preferred embodi
ments of the invention, as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to Scale, emphasis instead being placed upon
illustrating the principles of the invention.
0020 FIG. 1 illustrates an internet configuration of rout
ers to which the present invention may be applied.
0021)
0022 FIG. 3 is a prior art crossbar Switch internet router.
0023 FIG. 4 illustrates a two-dimensional torus array
previously used in direct multiprocessor networkS.
0024
0025 FIG. 6 illustrates tree saturation of a network.
0026 FIG. 7 illustrates a three-dimensional fabric
embodying the present invention.
0027 FIG. 8 illustrates the line interface module of a
node in the array of FIG. 7.
0028 FIG. 9 illustrates a fabric router used in the
embodiment of FIGS. 7 and 8.

0029 FIGS. 10A and 10B illustrate buffers, registers and
control vectors used in the router of FIG. 9.

0030 FIGS. 11A and 11B illustrate alternative allocation
control logic provided in input and output controllers,
respectively, of the router of FIG. 9.
0031 FIG. 12 illustrates a virtual channel state table used
in the router of FIG. 9.

0032 FIG. 13 illustrates a loop used to demonstrate
dispersion routing.

FIG. 2 is a prior art bus-based internet router.

FIG. 5 illustrates an indirect network.

DETAILED DESCRIPTION OF THE
INVENTION

0033. A description of preferred embodiments of the
invention follows.

0034. In implementing an internet router, the present
invention borrows from multiprocessor technology and
modifies that technology to meet the unique characteristics
and requirements of internet routers. In particular, each
internet router is itself configured as either a direct or
indirect network.

0035) Multicomputers and multiprocessors have for
many years used direct and indirect interconnection net
Works to Send addresses and data for memory accesses
between processors and memory banks or to Send messages
between processors. Early multicomputers were constructed
using the bus and crossbar interconnects shown in FIGS. 2
and 3. However, to permit these machines to Scale to larger

US 2004/O160970 A1

numbers of processors they Switched to the use of direct and
indirect interconnection networkS.

0036) A direct network, as illustrated in FIG. 4, is com
prised of a Set of processing nodes 40, each of which
includes a router, R, along with a processor, P, and Some
memory, M. These multicomputer routers should not be
confused with the IP routers described above. They perform
only forwarding functions and only in the very constrained
environment of a multicomputer interconnection network.
Each multicomputer router has Some number, four in the
example, of connections to other routers in the network. A
processing node may send a message or make a memory
access to any other node in the System. It is not limited to
communicating only with the immediately adjacent nodes.
Messages to nodes that are further away are forwarded by
the routerS along the path between the Source and destination
nodes.

0037. The network shown in FIG. 4 is said to be direct
Since the channels are made directly between the processing
nodes of the system. In contrast, FIG. 5 shows an indirect
network in which the connections between proceSS nodes 42
are made indirectly, via a set of router-only Switch nodes 44.
Direct networks are generally preferred for large machines
because of the scalability. While an indirect network is
usually built for a fixed number of nodes, a direct network
grows with the nodes. AS more nodes are added, more
network is added as well Since a Small piece of the network,
one router, is included within each node.

0.038 Multicomputer networks are described in detail in
Dally, W.J., “Network and Processor Architectures for Mes
sage-Driven Computing,” VLSI and PARALLEL COMPUTA
TION, Edited by Suaya and Birtwistle, Morgan Kaufmann
Publishers, Inc., 1990, pp. 140-218. It should be stressed that
multicomputer networks are local to a single cabinet or room
as opposed to the Internet backbone network which spans
the continent.

0.039 Direct and indirect multicomputer networks are
Scalable. For most common topologies the fan-in and fan
out of each node is constant, independent of the size of the
machine. Also, the traffic load on each link is either constant
or a very slowly increasing function of machine size.
Because of this Scalability, these networks have been Suc
cessfully used to construct parallel computers with thou
Sands of processing nodes.
0040. Unfortunately, while multicomputer networks are
Scalable, they give up the two properties of crossbar net
Works that were crucial to IP Switching: non-blocking
behavior and stiff backpressure. Most economical direct and
indirect networks are blocking. Because links are shared
between multiple Source-destination pairs, a busy connec
tion between a pair of nodes can block the establishment of
a new connection between a completely separate pair of
nodes. Because packets in multicomputer networks are
forwarded over multiple links with considerable queuing at
each link, the backpressure, if any, from an overloaded
destination node to a transmitting Source node is late and Soft
if present at all.

0041. The blocking nature of these switches and the soft
nature of this backpressure is not a problem for a multicom
puter because multicomputer traffic is Self-throttling. After a
processor has sent a Small number of messages or memory

Aug. 19, 2004

requests (typically 1-8), it cannot send any further messages
until it receives one or more replies. Thus, when the network
Slows down because of blocking or congestion, the traffic
offered to the network is automatically reduced as the
processors Stall awaiting replies.

0042 An IP switch, on the other hand, is not self
throttling. If some channels in the network become blocked
or congested, the offered traffic is not reduced. Packets
continue to arrive over the input links to the Switch regard
less of the state of the network. Because of this, an IPSwitch
or router built from an unmodified multicomputer network is
likely to become tree-Saturated, and deny Service to many
nodes not involved in the original blockage. Moreover
transient conditions often exist in IP routers where, due to an
error in computing routing tables, a single output node can
be overloaded for a Sustained period of time. This causes no
problems with a crossbar router as other nodes are unaf
fected. With a multicomputer network, however, this causes
tree Saturation.

0043 Consider the situation illustrated in FIG. 6. A
Single node in a 2-dimensional mesh network, node (3.3)
labeled a, is overloaded with arriving messages. AS it is
unable to accept messages off the channels at the rate they
are arriving, all four input channels to the node (b,a),(c,a),
(d,a), (e.,a), become congested and are blocked. Traffic
arriving at nodes b-e that must be forwarded acroSS these
blocked linkScannot make progreSS and will back up along
the edges into nodes b-e. For example, traffic into node b
backs up along (f,b), (g,b), and (h,b). If the blockage
persists, the channels into f-h and related nodes become
blocked as well and So on. If the overload on node a persists,
eventually most of the channels in the network will become
blocked as a tree of Saturation expands outward from node
a.

0044) The major problem with tree saturation is that it
affects traffic that is not destined for node a. A packet from
(1,4) to (5.3) for example may be routed along a path (dotted
line) that includes (fb) and (b,a) for example. Since these
links are blocked, traffic from node (1,4) to node (5.3) is
blocked even though neither of these nodes is overloaded.
004.5 The router of the present invention overcomes the
bandwidth and scalability limitations of prior-art bus- and
crossbar-based routers by using a multi-hop interconnection
network, in particular a 3-dimensional torus network, as a
router. With this arrangement, each router in the wide-area
backbone network in effect contains a Small in-cabinet
network. To avoid confusion we will refer to the Small
network internal to each router as the Switching fabric and
the routers and links within this network as the fabric routers
and fabric links.

0046. Unlike multicomputer networks, the Switching fab
ric network is non-blocking and provides Stiff backpressure.
These crossbar-like attributes are achieved by providing a
Separate Virtual network for each destination node in the
network.

0047 Typical packets forwarded through the internet
range from 50 bytes to 1.5 Kbytes. For transfer through the
fabric network of the internet router of the present invention,
the packets are divided into Segments, or flits, each of 36
bytes. At least the header included in the first flit of a packet
is modified for control of data transfer through the fabric of

US 2004/O160970 A1

the router. In the preferred router, the data is transferred
through the fabric in accordance with a wormhole routing
protocol.

0.048. Each virtual network comprises a set of buffers.
One or more buffers for each virtual network are provided on
each node in the fabric. Each buffer is sized to hold at least
one flow-control digit or flit of a message. The Virtual
networks all share the Single set of physical channels
between the nodes of the real fabric network. A fair arbi
tration policy is used to multiplex the use of the physical
channels over the competing virtual networks. Each Virtual
network has a different set of buffers available for holding
the flits of its messages.
0049. For each pair of virtual networks A and B, the set
of buffers assigned to Acontains at least one buffer that is not
assigned to B. Thus if network B is blocked, A is able to
make progreSS by forwarding messages using this buffer that
is not shared with Balthough it may be shared with some
other virtual network.

0050. One simple method for constructing virtual net
WorkS is to provide a separate flit buffer, a virtual channel,
on each node for each virtual network and thus for each
destination. For example, in a machine with N=512 nodes
and hence 512 destinations, each node would contain 512
distinct flit buffers. Bufferion each node is used only to hold
flits of messages destined for node i. This assignment clearly
Satisfies the constraints above as each virtual network is
associated with a singleton set of buffers on each node with
no sharing of any buffers between virtual networks. If a
Single virtual network becomes congested, only its buffers
are affected, and traffic continues on the other virtual net
Works without interference. An alternative dispersive
approach is discussed below.
0051. The preferred router is a 3-dimensional torus net
work of nodes as illustrated in FIG. 7. Each node N
comprises a line interface module that connects to incoming
and outgoing SONET internet links. Each of these line
interface nodes contains a Switch-fabric router that includes
fabric links to its six neighboring nodes in the torus. IP
packets that arrive over one SONET link, say on node A, are
examined to determine the SONET link on which they
should leave the internet router, Say node B, and are then
forwarded from A to B via the 3-D torus Switch fabric.

0.052 The organization of each node or line-interface
module is illustrated in FIG. 8. Packets arrive over the
incoming SONET link 46, and the line interface circuit 48
converts the optical input to electrical signals and extracts
the packets and their headers from the incoming Stream.
Arriving packets are then passed to the forwarding engine
hardware 50 and are stored in the packet memory 52. The
forwarding engine uses the header of each packet to look up
the required output link for that packet. In conventional IP
router fashion, this lookup is performed by traversing a tree
indexed by the header fields. The leaves of the tree contain
the required output link, as in a conventional IP router, and
additionally include the route through the Switch fabric to
the output link. Finally, the packet along with its destination
and route are passed to the fabric router 54 of the node for
forwarding through the fabric to the output node. From the
fabric router 54 of the output node, the packet is delivered
through the packet buffer 52 of that node and through the
line interface circuit 48 to the output link 56.

Aug. 19, 2004

0053 Packets in the internet router are forwarded from
the line-interface module associated with the input trunk to
the line-interface module associated with the output trunk
using Source routing. With Source routing, the route of linkS
through intermediate fabric routerS is determined by a table
lookup in the input module. This lookup is performed by the
forwarding engine before presenting the packet to the fabric
router. Alternative paths allow for fault tolerance and load
balancing.

0054 The source route is a 10-element vector where each
element is a 3-bit hop field. Each hop field encodes the
output link to be taken by the packet for one Step of its route,
one of the six inter-node links or the seventh link to the
packet buffer of the present node. The eighth encoding is
unused. This 10-element vector can be used to encode all
routes of up to 10 hops which is sufficient to route between
any pair of nodes in a 6x10x10 torus. Note that all 10
elements need not be used for shorter routes. The last used
element selects the link to the packet buffer 52 or may be
implied for a 10-hop route.

0055 As the packet arrives at each fabric node along the
route, the local forwarding vector entry for that packet is Set
equal to the leftmost element of the Source route. The Source
route is then shifted left three bits to discard this element and
to present the next element of the route to the next router.
During this shift, the 3-bit code corresponding to the packet
buffer of the present node is shifted in from the right.
Subsequent flits in that packet follow the routing Stored for
that packet in the router.

0056. One skilled in the art will understand that there are
many possible encodings of the fabric route. In an alterna
tive embodiment, the fact that packets tend to travel in a
preferred direction in each dimension may be exploited to
give a more compact encoding of the fabric route. In this
embodiment, the route is encoded as a three-bit preferred
direction followed by a multiplicity of two-bit hop fields.
The three-bit field encodes the preferred direction (either
positive or negative) for each dimension of the network (X,
y, and Z). For each Step or hop of the route, a two-bit field
Selects the dimension over which the next hop is to be taken
(0=X, 1=y, or 2=Z). The direction of this hop is determined
by the preferred direction field. The fourth encoding of the
two-bit hop field (3) is used as an escape code. When a hop
field contains an escape code, the next hop field is used to
determine the route. If this Second hop field contains a
dimension specifier (0-2), the hop is taken in the specified
dimension in the direction opposite to the preferred direction
and the preferred direction is reversed. If the Second hop
field contains a Second escape code, the packet is forwarded
to the exit port of the fabric router. With this encoding, as
packets arrive at a fabric node, the local forwarding vector
entry for that packet is computed from the preferred direc
tion field and the leftmost hop field. The hop fields are then
shifted left two bits to discard this field and to present the
next field to the next router. During this shift, the two-bit
escape code is shifted into the rightmost hop field. For
packets that travel primarily in the preferred direction, this
encoding results in a more compact fabric route as only two
bits, rather than three, are needed to encode each hop of the
rOute.

0057. A fabric router used to forward a packet over the
Switch fabric from the module associated with its input link

US 2004/O160970 A1

to the module associated with its output link is illustrated in
FIG. 9. The router has seven input links 58 and seven output
links 60. Six of the links connect to adjacent nodes in the
3-D torus network of FIG. 7. The seventh input link accepts
packets from the forwarding engine 50 and the seventh
output link sends packets to the packet output buffer 52 in
this router's line interface module. Each input link 58 is
associated with an input buffer 62 and each output link 60 is
asSociated with an output register 64. The input buffers and
output registers are connected together by a 7x7 crossbar
Switch 66.

0058. One skilled in the art will understand that the
present invention can be practiced in fabric networks with
different topologies and different numbers of dimensions.
Also, more than one link may be provided to and from the
line interface. In an alternative embodiment two output links
are provided from the fabric to the line interface bringing the
total number of output links, and hence output registers, to
eight. In this case, the input buffers and output registers are
connected by a 7x8 crossbar Switch. The second output link
provides additional bandwidth to drain packets from the
fabric network when a Single node receives traffic Simulta
neously from many directions.
0059) A virtual network is provided for each pair of
output nodes. Each of the Seven input bufferS 62 contains a
buffer, of for example one flit, for each virtual network in the
machine. In one embodiment, a 6x10x10 torus fabric pro
vides 600 nodes. A Single virtual network is assigned to a
pair of maximally distant output nodes in the network as
minimal routes between these two nodes are guaranteed not
to share any links and thus are guaranteed not to interfere
with one another. Further, two virtual networks are provided
for each pair of nodes to allow for two priorities in Serving
different classes of traffic. Thus, in the router, there are 600
virtual networks: two virtual networks for each of 300 pairs
of nodes. Each input buffer 62 contains space for 600
36-byte flits (21,600 bytes total).
0060. As an improvement, each input buffer has storage
for two flits for each virtual channel. The size of a flit
determines the maximum duty factor of a Single virtual
channel and the fragmentation loSS associated with rounding
up packets to a whole number of flits. The maximum
bandwidth on a Single fabric link that can be used by a single
Virtual channel can be no more than the flit size times the
number of flits per virtual channel buffer divided by the time
for a header flit to propagate through a router. For example,
if a flit is 36 Bytes, there is a single flit per buffer, and it takes
ten 10 ns clocks for a header flit to propagate through a
router, the maximum bandwidth per virtual channel is 360
MBytes/s. If the link bandwidth is 1200 MBytes/s, a single
virtual channel can use at most 30% of the link bandwidth.
If the flit buffer capacity is at least as large as the link
bandwidth divided by the router latency (120 Bytes in this
case), a single virtual channel can use all of the link capacity.
0061. One would like to make the flit size as large as
possible both to maximize the link bandwidth that a single
Virtual channel can use and also to amortize the Overhead of
flit processing over a larger payload. On the other hand, a
large flit reduces efficiency by causing internal fragmenta
tion when Small packets must be rounded up to a multiple of
the flitsize. For example, if the flit size is 64 Bytes, a 65 Byte
packet must be rounded up to 128 Bytes, incurring nearly
50% fragmentation overhead.

Aug. 19, 2004

0062 One method for gaining the advantages of a large
flit size without incurring the fragmentation overhead is to
group adjacent flits into pairs that are handled as if they were
a single double-sized flit. For all but the last flit of an
odd-length message, all flit processing is done once for each
flit pair, halving the flit processing overhead. The last odd flit
is handled by itself. However, these odd single-flits are rare
and So their increased processing overhead is averaged out.
In effect, flit pairing is equivalent to having two sizes of
flits-regular sized and double sized. The result is that long
messages See the low processing overhead of double-sized
flits and Short messages See the low fragmentation overhead
of regular sized flits. In the preferred embodiment, flits are
36 Bytes in length and are grouped into pairs of 72 Bytes
total length.
0063. If a virtual channel of a fabric router destined for an
output node is free when the head flit of a packet arrives for
that Virtual channel, the channel is assigned to that packet for
the duration of the packet, that is, until the worm passes.
However, multiple packets may be received at a router for
the same virtual channel through multiple inputs. If a virtual
channel is already assigned, the new head flit must wait in
its flit buffer. If the channel is not assigned, but two head flits
for that channel arrive together, a fair arbitration must take
place. With limited buffer space assigned to each virtual
channel, a block at an output node from the fabric is
promptly Seen through backpressure to the input line inter
face for each packet on that Virtual network. The input line
interface can then take appropriate action to reroute Subse
quent packets. With assignment of different destinations to
different virtual networks, interference between destinations
is avoided. Traffic is isolated.

0064. Once assigned an output virtual channel, a flit is not
enabled for transfer acroSS a link until a signal is received
from the downstream node that an input buffer at that node
is available for the virtual channel.

0065. An elementary flow control process is illustrated in
FIGS. 9, 10A and 10B. Each cycle, a number M of the
enabled flits in each input buffer are selected by a fair
arbitration proceSS 68 to compete for access to their
requested output links. The selected flits forward their output
link requests to a second arbiter 70 associated with the
requested output link. This arbiter Selects at most one flit to
be forwarded to each output link. The winning flits are then
forwarded over the crossbar Switch to the output register and
then transmitted over the output link to the next router in the
Switch fabric. Until selected in this two-step arbitration
process, flits remain in the input buffer, backpressure being
applied upstream.

0066. The fabric router at each line-interface module uses
credit-based flow-control to regulate the flow of flits through
the fabric network. Associated with each set of input buffers
62 are two V-bit vectors; a presence vector, P, and an enabled
vector, E. V., as illustrated in FIG. 10A, is the number of
virtual networks and hence the number of entries in the
buffer. A bit of the presence vector, Pv,i), is set if the input
bufferi contains a flit from virtual network v. Bit Ev,i) is set
if this flit is enabled to take the next hop of the route to its
destination link.

0067. As illustrated in FIG. 10B, associated with each
output register is a V-bit credit vector, C, that mirrors the
complement of the presence vector on the opposite end of

US 2004/O160970 A1

the fabric link at the receiving node. That is, CV, is set at
a given output if PIV,i is clear at the input port on the
opposite side of the link. If CV, is set, then the output
register has a credit for the empty buffer at the opposite end
of the link.

0068 Flits in an input buffer are enabled to take their next
hop when their requested output link has a credit for their
Virtual network. For example, Suppose the packet in Virtual
network V of input buffer i has selected output link for the
next hop of its route. We denote this as Fv,i)=j, where F is
the forwarding vector. The flit in this input buffer is enabled
to take its next hop when two conditions are met. First, it
must be present, Pv,i)=1, and Second, there must be a credit
for buffer space at the next hop, CV.j=1.
0069. The input buffer storage is allocated separately to
each virtual network while the output registers and asSoci
ated physical channels are shared by the Virtual networkS.
The credit-based flow control method guarantees that a
virtual network that is blocked or congested will not indefi
nitely tie up the physical channels since only enabled flits
can compete in the arbitration for output linkS. Further,
because only one or two flits per virtual network are Stored
in each input buffer, Stiff backpressure is applied from any
blocked output node to the forwarding engine of the input
node.

0070 Allocation
0071 Arbitration and flow control can be seen as an
allocation problem which involves assigning virtual chan
nels to packets, arriving from different input nodes and
destined to common output nodes, and assigning physical
channel bandwidth to flits destined to the same next node in
the fabric path.
0.072 In a multistage Switching fabric, packets composed
of one or more flits advance from their source to their
destination through one or more fabric routers. At each hop,
the head flit of a message arrives at a node on an input virtual
channel. It can advance no further until it is assigned an
output virtual channel. In the Switch fabric of the preferred
embodiment each packet may route on only one virtual
channel. If the virtual channel is free when the packet
arrives, it is assigned to the arriving packet. If, however, the
Virtual channel is occupied when the packet arrives, the
packet must wait until the output virtual channel becomes
free. If one or more packets are waiting on a virtual channel
when it is released, an arbitration is performed and the
channel is assigned to one of the waiting packets.

0073. Once a packet succeeds in acquiring the virtual
channel it must compete for physical channel bandwidth to
advance its flits to the next node of its route. A packet can
only compete for bandwidth when two conditions hold.
First, at least one flit of the packet must be present in the
node. Second, there must be at least one flit of buffer space
available on the next node. If these two conditions do not
hold, there is either no flit to forward or no space in which
to put the flit at the next hop. If both conditions hold for a
given packet, then that packet is enabled to transmit a flit.
However, before a flit can be sent, the packet must win two
arbitrations. Among all the enabled packets, for a flit of the
packet to advance to the next node of the route, a packet
must be granted both an output port from the input flit buffer
and the output physical channel.

Aug. 19, 2004

0074 For small numbers of virtual channels, the alloca
tion problem can be Solved in parallel for the elementary
case of FIGS. 9, 10a and 10B using combinational logic.

0075 Consider first the virtual channel allocation prob
lem. A bit of state, H, is associated with each of V input
virtual channels on each of Kinput controllers. This bit is set
if the input virtual channel contains a head flit that has not
yet been assigned an output virtual channel. The bit array H
1:V, 1:K determines the demand for virtual channels. A bit
of state, B, is associated with each of V output virtual
channels in each of Koutput controllers. This bit is set if the
output virtual channel is busy. The bit array B1:V,1:K
determines the allocation Status of the Virtual channels.

0076) To allocate a virtual channel, V, in output controller,
k, an arbitration must first be performed acroSS Virtual
channel V in each of the k input controllers with input
controller i only competing if (1) HIV,ii is set and (2) the
destination of the channel, Fv,i)=k. The input that wins the
arbitration is granted the virtual channel only if BV.k=0.

0077. The situation is similar for allocation of physical
channel bandwidth to flits. The buffer status of each input
Virtual channel is indicated by a presence bit, P, that is Set
when one or more flits are in the present node. Each output
Virtual channel looks ahead and keeps a credit bit, C, that is
Set when one or more empty buffers are available in the next
node. Suppose we choose to do the allocation serially (which
is Sub-optimal); first arbitrating for an output port of the
input controller and then arbitrating for an output channel.
Suppose each input buffer has Moutput ports. Then for input
buffer i, we first determine which virtual channels are
enabled. An enabled vector, EV,i is calculated as
Ev,i)= HIV,iAPV,iACV, where denotes logical nega
tion, A denotes a logical AND operation, and j is the
destination of the packet on Virtual channel V of input
controller i. Thus, a packet is enabled to forward a flit when
it is not waiting for a virtual channel, when there is at least
one flit present in its buffer, and when there is at least one
flit of storage available at the next hop. Next, all of the
enabled channels in the input buffer arbitrate for the M
output ports of the input buffer. This requires a V-input
M-output arbiter. Finally, the winners of each local arbitra
tion arbitrate for the output virtual channels, this takes K,
MK-input arbiters.

0078. With large numbers of virtual channels a combi
national realization of the allocation logic requires a pro
hibitive number of gates. The preferred Switch fabric has
V=600 virtual channels and K=7 ports. To implement this
allocation method having combinational logic thus requires
4200 elements of vectors H and B, 42003:8 decoders to
qualify the arbitrations, and 4200 7-input arbiters to select
the winners. Between the flip-flops to hold the state, the
decoders, and the arbiters, about 50 2-input gates are
required for each of the 4200 virtual channels for a total of
over 200,000 logic gates, a prohibitive number.

007.9 For the preferred router, the Pand Carrays are also
4200 elements each. Between the C-multiplexers and the
arbiters, each element requires about 40 gates. Thus the
bandwidth allocation requires an additional 160,000 logic
gateS.

US 2004/O160970 A1

0080 While quite reasonable for routers with small num
bers of virtual channels, V less than or equal to 8, combi
national allocation is clearly not feasible for the router with
V=600.

0081) Event-Driven Allocation
0082 The logic required to perform allocation can be
greatly reduced by observing that for large numbers of
Virtual channels, the State of most Virtual channels is
unchanged from one cycle to the next. During a given flit
interval, at most one virtual channel of a given input
controller can have a flit arrive, and at most M virtual
channels can have a flit depart. The remaining V-M-1 virtual
channels are unchanged.

0.083. The sparse nature of changes to the virtual channel
State can be exploited to advantage through the use of
event-driven allocation logic. With this approach, a single
copy (or a small number of copies) of the virtual channel
State update, and allocation logic is multiplexed acroSS a
large number of Virtual channels. Only active Virtual chan
nels, as identified by the occurrence of events, have their
State examined and updated and participate in arbitration.

0084. Two types of events, arrival events and credit
events, activate the virtual channel State update logic. A third
type of event, a transport event, determines which Virtual
channels participate in arbitration for physical channel band
width. Each time a flit arrives at a node, an arrival event is
queued to check the state of the virtual channel associated
with that flit. A similar check is made in response to a credit
event which is enqueued each time the downstream buffer
State of a virtual channel is changed. Examining the State of
a virtual channel may lead to allocation of the channel to a
packet and/or Scheduling a flit for transport to the down
Stream node. In the latter case, a transport event is generated
and enqueued. Only virtual channels with pending transport
events participate in the arbitration for input buffer output
ports and output physical channels. Once a flit wins both
arbitrations and is in fact transported, the corresponding
transport event is dequeued.

0085 Logic to implement event-driven channel alloca
tion is illustrated in FIGS. 11A and 11B. F.G. 11A shows
one of seven input controllers while FIG. 11B shows one of
Seven output controllers. Each input controller is connected
to each output controller at the three points shown. Each
input controller includes a destination table 72, an arrival
queue 74, a credit queue 76 and a flit buffer 62. A virtual
channel state table 80 and a transport queue 82 are included
in each output controller. The Figures show an event-driven
arrangement where the virtual channel State is associated
with each output controller. It is also possible to associate
the state with the input controllers. Placing the state table in
the output controller has the advantage that Virtual channel
allocation (which must be performed at the output control
ler) and bandwidth allocation (which can be performed at
either end) can be performed using the same mechanism.
0.086 The destination tables, flit buffers, and virtual
channel State tables have entries for each virtual channel,
while the three queues require only a Small number of
entries. For each Virtual channel, the destination table
records the output port required by the current packet on that
input channel, if any, (i.e., F), the flit buffer 62 provides
Storage for one or more flits of the packet, and the State of

Aug. 19, 2004

the output virtual channel is recorded in the state table. The
arrival, credit, and transport queues contain entries for each
event that has occurred but has not yet been processed.

0087. On the input side, the dual-ported arrival queue,
credit queue, and flit buffer also Serve as a Synchronization
point as illustrated by the dashed line in FIG. 11A. The left
port of these three Structures, and all logic to the left of the
dotted line (including the destination table), operates in the
clock domain of the input channel. The right port of these
three Structures, and all logic to the right of the dotted line,
including FIG. 11B, operate in the internal clock domain of
the router.

0088. In an alternative embodiment arriving flits are
Synchronized to the local clock domain before accessing the
arrival queue or destination table.

0089. With the arrangement shown in FIGS. 11A and
11B, an allocation of a virtual channel or a physical channel
flit cycle is performed through a three-event Sequence of
arrival, transport, and credit. An arriving flit arbitrates for
access to the state table for its output virtual channel. When
granted, the table is updated to account for the arriving flit
and, if the channel is allocated to its input controller and a
credit is available, a transport request is queued to move the
flit. The transport request arbitrates for access to the input flit
buffer. When access is granted the flit is removed from the
buffer and forwarded to the next node. Whenever a flit is
removed from the flit buffer a credit is queued to be
transmitted to the previous node. When credits arrive at a
node, they update the Virtual channel State table and enable
any flits that are waiting on Zero credits. Finally, the arrival
of a tail flit at a node updates the virtual channel State to free
the channel.

0090. Each time a flit arrives at an input controller, the
contents of the flit are stored in the flit buffer 62. At the same
time, the destination table 72 is accessed, and an arrival
event, tagged with the required output port number, is
enqueued at 74. The destination table is updated by the head
flit of each packet to record the packets output port and then
consulted by the remaining flits of a packet to retrieve the
Stored port number. An arrival event includes a virtual
channel identifier (10 bits), a head bit, and an output port
identifier (3 bits). The arrival events at the heads of each of
the Kinput controller's arrival queues (along with input port
identifiers (3 bits)) are distributed to arbiters 84 at each
output controller. At each output controller the arrival
events, that require that output port, arbitrate for access to
the state table 80. Each cycle, the winning arrival events are
dequeued and processed. The losing events remain queued
and compete again for access to the State table on the
Subsequent cycle.

0091. As shown in FIG. 12, for each output virtual
channel, V, on output k, the virtual channel state table 80
maintains a State vector, SV,k) containing:

0092] 1. The allocation status of the channel, B, idle
(0), busy (1) or tail pending (2).

0093 2. The input controller assigned to this channel
(if B is set), I, (3 bits).

0094) 3. Abit vector of input controllers waiting on this
channel, W., (7 bits).

US 2004/O160970 A1

0.095 4. The number of credits (empty buffers on the
next node), C, (1 bit).

0096) 5. The number of flits present on this node, P, (1
bit).

0097. The first three of these (B.I.W) are associated with
the allocation of output virtual channels to input virtual
channels while the last two (C.P) are associated with the
allocation of physical channel bandwidth to flits. The num
ber of flits in each element of the state vector may be varied
as appropriate. For example, if more flit buffers are available
on each node, then more bits would be allocated to the C and
P field. Much of the state here corresponds directly to the
State bits in the combinational logic approach. The B, C, and
P bits are identical. The W bits correspond to the H bits,
qualified by required output channel.

0098. The number of bits in the waiting vector, W, can be
increased to provide improved fairness of arbitration. With
just a single bit, a random or round-robin arbitration can be
performed. If 3-bits are Stored for each entry, a queuing
arbitration can be performed with the input virtual channels
Serviced in the order that their requests arrived. Each Virtual
channel in effect “takes a number' when it arrives at the state
table, and this number is stored in its entry of the W vector.
When the channel becomes free, the “next number is
Served.

0099 When an arrival event associated with virtual chan
nel V, from input controller I, arrives at the state table for
output k, it reads SV.k and performs one of the following
actions depending on the type of event (heads vs. body) and
the State of the channel.

0100) 1. If the flit is a head, the channel is idle, B=0,
and there are downstream credits, Cz0, (a) the channel
is assigned to the input by Setting B=1, 1=i, (b) a
downstream buffer is allocated by decrementing C, and
(c) a transport request is queued for (v,i,k) at 82.

0.101) 2. If the flit is a head, the channel is idle, but
there are no downstream credits, the channel is
assigned to the input, and the presence count, P, is
incremented. No downstream buffer is allocated and no
transport request is queued.

0102) 3. If the flit is a head and the channel is busy,
B=1, the Virtual channel request is queued by Setting
the ith bit of the wait vector, W.

0103 4. If the flit is a body flit, and there are down
Stream credits, a downstream buffer is allocated and a
transport request is queued.

0104 5. If the flit is a body flit, and there are no
downstream credits, the presence count is incremented.

0105 6. If the flit is a tail and W=0, no waiting heads,
then, if there is a credit available the tail flit is queued
for transport and the channel is marked idle, B=0.
Otherwise, if no credit is available, the channel is
marked tail pending, B=2, So the arrival of a credit will
transmit the tail and free the channel.

0106 7. If the flit is a tail, a credit is available (Cz0),
and there are packets waiting (Wz0), the tail flit is
queued for transport as in cases 1 and 4 above. An
arbitration is performed to Select one of the waiting
inputs, j. The channel is assigned to that input (B=1,

Aug. 19, 2004

I=i), and, if there is an additional credit available, this
new head flit is queued for transport; otherwise it is
marked present.

0107 8. If the flit is a tail and a credit is not available,
(C=O), the presence count is incremented and the status
of the channel is marked “tail pending.” (B=2).

0108). If there is just a single flit buffer per virtual
channel, when a body flit arrives there is no need to check
the virtual channel allocation status (B, I and W) as the flit
could only arrive if the channel were already allocated to its
packet (B=1, I=i). If there is more than one flit buffer per
virtual channel, the virtual channel of each body flit arrival
must be checked. Flits arriving for channels that are waiting
for an output virtual channel will generate events that must
be ignored. Also, the number of flits buffered in a waiting
virtual channel must be communicated to the state table 80
when the output channel is allocated to the waiting channel.
This can be accomplished, for example, by updating the flit
count in the state table from the count in the flit buffer
whenever a head flit is transported. Note that in case 1
above, we both allocate the virtual channel and allocate the
channel bandwidth for the head flit in a single operation on
the state table. Tail flits here result in a pair of actions: the
tail flit is first processed as a body flit to allocate the
bandwidth to move the tail flit, the tail flit is then processed
as a tail flit to free the channel and possibly move a pending
head flit. Unless the transport queue can accept two inputs
Simultaneously, this must be done Sequentially as a tail flit
arrival may enqueue two flits for transport: the tail flit itself,
and the head flit of a waiting packet.
0109) Each entry in the transport queue (v,i,k) is a request
to move the contents of flit buffer v on input controller i to
output k. Before the request can be honored, it must first
arbitrate at 86 for access to flit buffer i. On each cycle, the
transport requests at the head of the queues in each of the K
output controllers are presented to their requested input
buffers where they arbitrate for access to the M ports. The
winning transport requests are dequeued and their flits
forwarded to the appropriate output multiplexer 88. The
other requests remain in the transport queues. There is no
need to arbitrate for a fabric link here, as the output
controller associated with each of the outgoing fabric links
makes at most one request per cycle.
0110. Each time a transport request successfully forwards
a flit to an output, a credit is generated to reflect the Space
vacated in the input flit buffer. This credit is enqueued in a
credit queue 76 for transmission to the output controller of
the previous node. When a credit for virtual channel V
arrives at output controller k of a node, it reads the State
vector, SV,k), to check if any flits are waiting on credits. It
proceeds as follows depending on the State of the presence
COunt.

0111 1. If there are no flits waiting, P=0, the credit
count is incremented, C=C+1.

0112 2. If there are flits waiting, Pz0, the number of
waiting flits is decremented, P=P-1, and a transport
request for the first waiting flit is enqueued.

0113 3. If there is a tail flit pending (B=2), a transport
request for the tail flit is queued.

0114) If no head flits are waiting on the channel (W=0),
the channel is set idle (B=0). Otherwise, if there are head

US 2004/O160970 A1

flits waiting (Wz0), an arbitration is performed to select a
waiting channel, Say from input controller j, the channel is
allocated to this channel (B=1, I=j), and the head flit is
marked present (P=1) So the next arriving credit will cause
the head flit to be transmitted.

0115) In the above-described event-driven embodiment,
the output controller processes body flits and tail flits
differently. In particular, the output controller processes
body flits according to techniques 4 and 5, and processes tail
flits according to techniqueS 6, 7 and 8, described above.
0116. As described in technique 7, a head flit of a data
packet can follow directly on the heels of a tail flit of a
previous data packet. For example, a data packet can occupy
a virtual channel while one or more data packets (i.e., one or
more head flits) wait for that virtual channel. When an
arrival event for a tail flit of the occupying data packet
reaches the output controller, the output controller queues
the tail flit for transmission to the next fabric router down
Stream, and allocates the Virtual channel to one of the
waiting data packets (i.e., one of the waiting head flits).
Accordingly, the output controller grants the virtual channel
to a new data packet as Soon as the fabric router queues the
tail flit for transmission.

0117. In an alternative event-driven embodiment, the
output controller processes body flits and tail flits similarly.
In particular, the output controller processes both body and
tail flits according to techniques 4 and 5, as described above.
AS Such, when an arrival event for a tail flit reaches the
output controller, and when a credit is available, the output
controller queues the tail flit for transmission without freeing
the virtual channel or allocating the Virtual channel to a
waiting data packet. When a fabric router that is downstream
from the present fabric router receives, processes and for
wards the tail flit, the downstream fabric router generates a
Special tail credit in place of the normal credit. The down
Stream fabric router Sends this tail credit upstream to the
present fabric router. When the output controller of the
present fabric router receives the tail credit, the output
controller increments the credit count of the Virtual channel
in a manner Similar to that for normal credits, and frees the
Virtual channel. At this point, if there are data packets
waiting for the virtual channel, the output controller per
forms an arbitration procedure to assign the virtual channel
to one of the waiting data packets.
0118. The fabric router according to the alternative event
driven embodiment has slower performance than the fabric
router of the event-driven embodiment that processes body
and tail flits differently. In particular, after the fabric router
of the alternative embodiment queues a transport request for
transmission of a tail flit to a downstream router, the Virtual
channel assigned to the data packet of that tail flit becomes
idle. The virtual channel is not available for use by another
data packet until the fabric router receives a tail credit from
the downstream fabric router.

0119) However, the alternative event-driven embodiment
results in considerably simpler logic for Several reasons.
First, it simplifies the handling of events by reducing the
complexity of handling a tail-flit arrival event. The work is
instead spread between the tail-flit arrival and the tail-credit
events. Furthermore, it simplifies the logic by ensuring that
only a Single packet is in a given virtual channel's flit buffer
at any point in time. This is guaranteed by not granting the

Aug. 19, 2004

Virtual channel to a new packet until the tail of the previous
packet has cleared the flit buffer-as signaled by the tail
credit. In contrast, in the event-driven embodiment that
processes body flits and tail flits differently, a head flit of a
next packet can follow directly on the heels of the tail flit of
a present packet, and two or more packets may be queued in
a single virtual channel's flit buffer at the same time.
0120 Each event-driven method of allocation described
here reduces the Size and complexity of the logic required
for allocation in two ways. First, the state information for the
virtual channels can be stored in a RAM array with over 10x
the density of the flip-flop Storage required by the combi
national logic approach. Second, the Selection and arbitra
tion logic is reduced by a factor of V. Arbitration for access
to the virtual channel buffers is only performed on the
channels for which changes have occurred (flit or credit
arrival), rather than on all V channels.
0121 Only the flit buffer, the state table, and the desti
nation table in FIGS. 11A and 11B need to have V entries.
A modest number of entries in the bid, transport, and credit
queues will Suffice to Smooth out the Speed mismatches
between the various components of the System. If a queue
fills, operation of the unit filling the queue is simply SuS
pended until an entry is removed from the queue. Deadlock
can be avoided by breaking the cycle between event queues.
For example, by dropping transport events when the trans
port queue fills, the State table is able to continue to consume
credit and arrival events. Lost events can be regenerated by
periodically Scanning the State table. Alternately, one of the
N queues, e.g., the transport queue, can be made large
enough to handle all possible Simultaneous events, usually V
times N (where N is the number of flits in each channel's
input buffer).
0.122 Dispersion
0123. While assigning a separate virtual channel to each
Virtual network is a Simple Solution, it is costly and has
limited scalability. The number of buffers required in each
interconnection network router increases linearly with the
number of nodes in the system. With 512 virtual networks
the number of flit bufferS required is pushing the physical
limits of what can be economically constructed on the
integrated circuits making up the router's Switch fabric.
0.124. To reduce the number of buffers, and hence the
cost, of the Switch fabric and to provide for greater Scal
ability, Virtual networks may be constructed with overlap
ping buffer assignments by using dispersion codes. Consider
for example a network with N nodes (and hence N virtual
networks) and V virtual channels (flit buffers) on each node.
Each node, j, is assigned a dispersion code, a V-bit bit vector
that specifies which of the V virtual channels this virtual
network is permitted to use. That is, the vector contains a 1
in each bit position that corresponds to a permitted Virtual
channel and OS in all other positions. The dispersion codes
must be assigned So that for every pair of virtual networks,
A and B, the bit vector corresponding to A contains a 1 in a
position at which the bit vector corresponding to B contains
ZCO.

0.125 Care must be taken in assigning dispersion codes to
avoid channel-dependence deadlocks between Virtual net
WorkS. An assignment of dispersion codes for a 3-D torus
network that is guaranteed to be deadlock-free may be made
as follows:

US 2004/O160970 A1

0.126 Consider a 1-D bidirectional ring network. Asso
ciated with each destination is a virtual network (VN) that is
permitted to use C virtual channels with a maximum overlap
of S virtual channels between any pair of VNs.
0127. In each direction around the loop, the span of a
virtual network is the set of channels used by the virtual
network. With minimal routing, the span of each VN covers
half of the channels in the cycle. In FIG. 13, for example,
the span of the VN rooted at the shaded node in the
clockwise direction consists of the three heavily shaded
channels. Its span in the other direction consists of the
channels that run in the opposite direction to the three lightly
shaded channels.

0128. In networks having a radix, k, of 5 or more, and
unrestricted assignment of Virtual channels, a dependent
cycle of three VNS with overlapping spans on the ring can
cause deadlock. With dispersion routing, 3N VNs (where
N=floor(C/S)) are required to generate a deadlocked con
figuration as a packet must block on N Separate blocked VNS
to deadlock.

0129. A sufficient condition to avoid deadlock is for each
VN to have at least one VC that it shares only with VNs that
overlap either entirely or not at all. With this approach, each
VC is always able to make progress (within one dimension).
It is possible to avoid deadlock with a less restrictive
assignment of VCs to VNs since it is only necessary to break
the deadlock at one point in the cycle.

0.130. In a multidimension network it is possible to dead
lock even if all dimensions are individually deadlock free.
Consider the two-dimensional case which is easily extended
to three dimensions. A deadlock can form if a packet making
a NW turn blocks on a packet making a WS turn which in
turn blocks on a packet making a SE turn, which in turn
blocks on a packet making an EN turn, which in turn blockS
on the original packet. This forms a cycle (NW.WS.SE.EN);
C. J. Glass and L. M. Ni, “The Turn Model for Adaptive
Routing.” Proceedings of the 19th International Symposium
on Computer Architecture, May 1992, pp. 278-287.

0131) If minimal routing is used, each VN is itself
deadlock-free as in each quadrant about the destination
node, only two directions, and hence only two (of eight
possible) turns, are used. In the region NE of the destination
node, for example, packets only travel S and W and hence
only SW and WS turns are allowed. This is one turn from the
clockwise cycle and one turn from the counterclockwise
cycle. If VNs share VCs, however, deadlock can occur as the
turns missing from one VN may be present in other VNs
Sharing the same VCs.

0132 A Sufficient method for preventing inter-dimension
deadlock is to (1) make the dimensions individually dead
lock free and (2) to require that each VN (a) disallow one of
the four turns in both the CW and CCW directions, and (b)
have at least one VC that is shared only with VNs disal
lowing the same turn. This is quite restrictive as it forces two
of the four quadrants about the destination node to route in
dimension order.

0133) A strategy that permits more flexible routing, but a
more costly one in terms of VCs, is to associate two VNs
with each destination node, one for all quadrants but the NW
that disallows the SE and ES turns and one for all quadrants
but the SE that disallows the NW and WN turns. VNS from
each class can then share VCs without restriction as long as
they remain deadlock free in each dimension independently.

Aug. 19, 2004

0.134 One workable method for assigning VCs in two
dimensions is as follows:

0135 1. Each destination is assigned a VC pair (one
VC that disallows SE/ES and one that disallows
NW/WN) associated with its x-coordinate (mod k/2),
where k is the number of nodes in the X-dimension.
ASSigning this VC pair guarantees non-overlap and
hence Single-dimension deadlock freedom in the X-di
mension.

0.136 2. Each destination is assigned a VC pair asso
ciated with its y-coordinate (modk/2). This guarantees
Single-dimension deadlock freedom in the y-dimen
Sion.

0.137 3. Any additional VC pairs are assigned arbi
trarily subject to the restriction that no more than SVCs
are shared between any two destinations.

0.138 4. The routing tables are built so that nodes in the
NW quadrant of a destination are restricted to the VN
containing the VCs that disallow NW/WN and nodes in
the SE quadrant are restricted to the other VN. Nodes
in the NE and SW quadrants may use either VN.

0.139. As an example, for a 2-D network of 64-nodes
(8x8) this assignment requires a minimum of 8VC pairs
(16VCs).
0140. To extend this approach to three dimensions we
need to exclude additional turns to avoid 3-D inter-dimen
Sion cycles. However, we can accomplish this with just two
VNs per destination as above. One VN excludes the turns
associated with the NWU (North, West, Up) octant (SE.ES,
SD.DS.E.D.DE) while the other excludes the turns associ
ated with the SED (South.East,Down) octant.
0.141. An example 1024-node network organized as 8x8x
16 needs a minimum of 16VC pairs (32VCs) to assign one
VC pair to each Symmetric pair of planes in the network.
0142. When a single destination receives an excessive
amount of traffic, all VCs associated with its two VNs will
quickly Saturate and back up to the Source. To first approxi
mation it is as if these VCs were removed from the network.
With the channel assignment Suggested above, where each
destination node has two VNs with three VCs each, this
leaves four VCs to route on.

0143 Deflection Routing
0144. Deflection routing is another method for making
traffic destined for different fabric outputs substantially
non-blocking. With deflection routing all of the packets are
allowed to share virtual channels without restriction. When
a packet blocks, however, rather than waiting for the
required virtual channel to become available, it is misrouted
or “deflected” to the packet memory of the present fabric
router's line interface. It is reinjected into the fabric at a later
time. Because a packet destined for fabric output A is never
allowed to block, it cannot indefinitely delay a packet
destined for fabric output B.
0.145) Deflection routing has several properties that make

it less desirable than using virtual networks to achieve
isolation between packets destined for different outputs.
First, deflection routing provides no backpressure. When an
output becomes congested, packets destined for that output
are simply deflected and the fabric inputs Sending packets to
the congested output remain unaware of any problem. Sec
ond, while there is no blocking, there is significant interfer
ence between packets destined for different outputs. If an

US 2004/O160970 A1

output, A, is congested, the links adjacent to A will be
heavily utilized and a packet destined for output B that
traverses one of these links will have a very high probability
of being deflected. Third, the use of deflection routing
greatly increases the bandwidth requirements of the packet
memory as this memory must have sufficient bandwidth to
handle deflected packets and their reinjection in addition to
their normal input and output. Finally, deflection routing is
limited by the finite size of the packet memory on each line
interface. Under very high congestion, as often occurs in IP
routers, the packet memory may be completely filled with
deflected packets. When this occurs, packets must be
dropped to avoid interference and possibly deadlock.
0146 While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the Spirit and Scope of the invention
as defined by the appended claims. Those skilled in the art
will recognize or be able to ascertain using no more than
routine experimentation, many equivalents to the Specific
embodiments of the invention described specifically herein.
Such equivalents are intended to be encompassed in the
Scope of the claims.
0147 For example, the event-driven allocation logic
described in connection with FIGS. 11A, 11B and 12 is
Suitable for use in an internet Switch fabric router Such as
that shown in FIG. 8. It should be understood that the
event-driven allocation logic is also Suitable for use in a
multicomputer router. For example, with reference to FIG.
8, using a multicomputer interface as the line interface
circuit 48 in combination with the event-driven allocation
logic forms a multicomputer router for a multicomputer
system such as that shown in FIG. 4.
0.148. Furthermore, it should be understood that the
event-driven allocation logic is Suitable for assigning input
physical channels to output physical channels directly. Pref
erably, a Single copy of the allocation logic is used. The logic
is activated by the occurrence of an event.
0149 Additionally, it should be understood that portions
of the state vectors for the virtual channel state table 80 (see
FIG. 12) have been described as including individual bits
for indicating particular information Such as busy or wait
information. Other Structures can be used in place of Such
bits Such as Scalar State fields that encode the information.

0150. In connection with the event-driven allocation
logic described in FIGS. 11A, 11B and 12, it should be
understood that each input physical channel is shared by
multiple input virtual channels, and each output physical
channel is shared by multiple output virtual channels. The
allocation logic is Suitable for providing a single virtual
channel for each physical channel. In Such a case, each input
physical channel is used by only one input Virtual channel,
and each output physical channel is used by only one output
Virtual channel. AS Such, the State table logic essentially
generates assignments that associate input physical channels
with output physical channels.

What is claimed is:
1. A router for routing data packets comprising:
input physical channels for receiving at least portions of

the data packets,
output physical channels,

Aug. 19, 2004

data buffers, coupled with the input and output physical
channels, for Storing the portions of the data packets,
and

control circuitry, coupled with the input and output physi
cal channels and the data buffers, for generating chan
nel assignments in response to queued events, and
outputting the portions of the data packets through the
output physical channels according to the generated
channel assignments.

2. The router of claim 1 wherein the control circuitry
assigns virtual channels to the data packets in response to the
queued events.

3. The router of claim 2 wherein the control circuitry is
shared by multiple virtual channels and activated to handle
a particular virtual channel in response to an event.

4. The router of claim 2 wherein the control circuitry
further assigns the output physical channels to the Virtual
channels in response to the queued events.

5. The router of claim 4 wherein the control circuitry is
shared by multiple virtual channels and activated to handle
a particular virtual channel in response to an event.

6. The router of claim 1 wherein the control circuitry is
adapted to generate physical channel assignments in
response to the queued events.

7. The router of claim 6 wherein the control circuitry is
shared by multiple virtual channels and activated to handle
a particular virtual channel in response to an event.

8. The router of claim 1 further comprising:
a multicomputer interface coupled with an input physical

channel and an output physical channel Such that the
router forms a multicomputer router for a multicom
puter System.

9. The router of claim 1 further comprising:
a line interface coupled with an input physical channel

and an output physical channel Such that the router
forms an internet Switch fabric router.

10. The router of claim 2 wherein the data buffers corre
spond to input virtual channels which share the input physi
cal channels, wherein output virtual channels share the
output physical channels, and wherein the control circuitry
generates virtual channel assignments, each virtual channel
assignment associating an input virtual channel with an
output virtual channel.

11. The router of claim 2 wherein the control circuitry
includes:

a State table that associates the output physical channels
with input channels.

12. The router of claim 11 wherein the input channels are
input virtual channels that share the input physical channels.

13. A method for routing data packets from input physical
channels to output physical channels, the method compris
ing the Steps of:

receiving at least portions of the data packets over the
input physical channels,

generating channel assignments in response to queued
events, and

outputting the portions of the data packets through the
output physical channels according to the generated
channel assignments.

k k k k k

