发明名称
平面光学元件、传感器元件及其制造方法

摘要
本发明涉及一种具有至少一个光子组件（4）的平面光学元件（1），该光子组件（4）排列在一个基质（2）上。该基质（2）包含至少一个聚合物或者由至少一个聚合物构成，其中基质（2）包括至少一个第一薄膜层（21）和第二薄膜层（22）。该第一薄膜层（21）具有第一侧（211）以及相对第二侧（212），而第二薄膜层（22）具有第一侧（221）以及相对第二侧（222），其中第二薄膜层（22）的第一侧（221）排列在第一薄膜层（21）的第二侧（212），并且至少第二薄膜层（22）至少在子区域（225）含有纳米线（3）。本发明还涉及相应的传感器及其制造方法。
1. 一种平面光学元件，具有至少一个光子组件，该光子组件排列在至少一个基质，所述基质含有至少一种聚合物或者由至少一种聚合物构成，其特征在于：该基质包括至少一个第一薄膜层和第二薄膜层，该第一薄膜层具有第一侧以及相对第二侧，该第二薄膜层具有第一侧以及相对第二侧，其中第二薄膜层的第一侧排列在第一薄膜层的第二侧之上，并且至少第二薄膜层至少在子区域（225）内含有纳米线（3）。

2. 根据权利要求1所述的平面光学元件，其特征在于：纳米线（3）包含或者由氧化锌和/或碳纳米管组成。

3. 根据权利要求1或2所述的平面光学元件，其特征在于：该纳米线（3）直径为约100nm到约1000nm。

4. 根据权利要求1-3中任一项所述的平面光学元件，其特征在于：该纳米线的长度为约1μm到约10μm。

5. 根据权利要求1-4中任一项所述的平面光学元件，其特征在于：该第一薄膜层还包括纳米颗粒。

6. 根据权利要求5所述的平面光学元件，其特征在于：该纳米颗粒包含或者由TiO₂和/或ZnO和/或SiO₂构成。

7. 根据权利要求1-6中任一项所述的平面光学元件，其特征在于：第一薄膜层的光子组件，从至少一个波导和/或至少一个耦合器和/或至少一个阵列波导光栅和/或至少一个光纤维布拉格光栅和/或至少一个光纤维传感器中选择。

8. 根据权利要求1-7中任一项所述的平面光学元件，还包括第三薄膜层，该第三薄膜层具有第一侧以及相对第二侧，其中该第三薄膜层至少在子区域（225）内含有纳米线（3）。

9. 根据权利要求1-8中任一项所述的平面光学元件，其特征在于：该纳米线（3）具有预置方向。

10. 一种传感器元件，包含至少一个波导，该波导包括至少一个由第一材料构成的芯，该芯具有第一折射率，而该芯环绕该芯，并由具有第二折射率的第二材料制成，其中芯中嵌入至少一个光纤维布拉格光栅，其特征在于：传感器元件排列在基质，该基质包括或者由至少一个聚合物构成，并且该基质具有至少一个第一薄膜层和第二薄膜层，该第一薄膜层具有第一侧以及相对第二侧，而该第二薄膜层具有第一侧以及相对第二侧，其中该第二薄膜层的第一侧排列在第一薄膜层的第二侧之上，该芯插入到第一薄膜层的一部，而芯插入到第一薄膜层（21），其中至少第二薄膜层至少在子区域（225）内含有纳米线（3）。

11. 根据权利要求10所述的传感器元件，其特征在于：此外至少一个其他波导和/或至少一个耦合器和/或至少一个阵列波导光栅和/或至少一个光纤维布拉格光栅排列在第一薄膜层（21）。

12. 根据权利要求10或11所述的传感器元件，其特征在于：该纳米线（3）包含或者由氧化锌和/或碳纳米管组成。

13. 根据权利要求10-12中任一项所述的传感器元件，其特征在于：该纳米线（3）直径
为约100nm到约1000nm。

14. 根据权利要求10-13中任一项所述的传感器元件，其特征在于该纳米线的长度为约1μm到约10μm。

15. 根据权利要求10-14中任一项所述的传感器元件，其特征在于该第一薄膜层(21)还包括纳米颗粒。

16. 根据权利要求15所述的传感器元件，其特征在于该纳米颗粒包含或由TiO₂和/或ZnO和/或SiO₂构成。

17. 根据权利要求10-16中任一项所述的传感器元件，还包括第三薄膜层(23)。该第三薄膜层(23)具有第一侧(231)及相对第二侧(232)，其中该第三薄膜层(23)至少在子区域(225)内含有纳米线(3)。

18. 根据权利要求10-17中任一项所述的传感器元件，其特征在于该纳米线(3)具有预置方向。

19. 一种制造平面光学元件(1)或传感器元件的方法，包括以下步骤：

 提供具有第一侧(211)和相对第二侧(212)的第一薄膜层(21)；

 提供具有第一侧(221)和相对第二侧(222)的第二薄膜层(22)，其中该第二薄膜层(22)至少在子区域(225)内含有纳米线(3)；

 第二薄膜层(22)的第一侧(221)连接第一薄膜层(21)的第二侧(212)；

 使用激光辐射和/或纳米印制和/或光刻法修改材料，以在第一薄膜层(21)生产至少一个光子组件(4)。

20. 根据权利要求19所述的方法，还包括以下步骤：

 提供具有第一侧(231)和相对第二侧(232)的第三薄膜层(23)，其中第三薄膜层(23)至少在子区域(225)内具有纳米线(3)；

 将第三薄膜层(23)的第一侧(231)层压到第二薄膜层(22)的第二侧(222)。

21. 根据权利要求19或20所述的方法，其特征在于第一薄膜层(21)的光子组件(4)从至少一个波导(41)和/或至少一个耦合器(42)和/或至少一个阵列波导光栅(43)和/或至少一个光纤布拉格光栅(44)和/或至少一个光纤传感器(45)中选择。

22. 根据权利要求19-21中任一项所述的方法，其特征在于第二薄膜层(22)的第一侧(221)与第一薄膜层(21)的第二侧(212)的结合由粘着、焊接或层压实现。
平面光学元件、传感器元件及其制造方法

[0001] 本发明涉及一种包括至少一个光子组件的平面光学元件。该光子组件排列在至少一个基质上，该基质包含至少一种聚合物或者由至少一种聚合物组成。此外，本发明涉及一种含有至少一个光导的传感器元件，该光导具有至少一个芯以及镀层，该芯由具有第一折射率的第一材料制成，而该镀层环绕该芯，并由具有第二折射率的第二材料制成，其中在该芯中嵌入至少一个光纤布拉格光栅。最后，本发明涉及一种制造该平面光学元件或第二元件的方法。

[0002] 从WO 2011/089244 A2中已知，使用具有多个光纤布拉格光栅（fiber Bragg gratings）的光纤传感器，用于探测温度和/或机械应力。通过分光仪识别由光纤布拉格光栅反射的光，其中该分光仪可以是位于硅基质上的平面光学过滤元件。然而，缺陷在于生产平面光学过滤元件需要的开销较大。

[0003] 因此，在现有技术的基础上，本发明旨在提供一种可以大量生产、节约成本、形式简单并且可容易地整合到其他组件和/或组件中的传感器元件和/或平面光学过滤元件。

[0004] 根据本发明，此目的是通过权利要求1所述的平面光学元件、权利要求10所述的传感器元件以及权利要求19所述的方法实现的。

[0005] 本发明提出在支撑物或基质上结合至少一个光子组件。该光子组件例如可以是无源光学组件。在本发明的一些实施例中，可以从波导、光纤布拉格光栅、耦合器或者阵列波导光栅中选择无源光学组件。该平面光学元件以及/或者该提出的传感器元件包含至少一个该光子组件。在本发明的一些实施例中，还可能在基质上整合多个光子组件，从而产生集成光子组件，该集成光子组件可实现多个功能或者至少一个复杂功能。在本发明的一些实施例中，光子组件可以是多个通道的分光仪，从而入射光的强度可以确定在可预调整的光谱范围。该分光仪例如可用于选择光纤传感器系统或者用于信号选择，或者用于光学通信工程中的信号生成。

[0006] 本发明提出使用多层聚合物材料作为基质。该聚合物材料可包括或者由聚甲基丙烯酸甲酯、聚碳酸酯以及/或者聚酰亚胺构成。该基质包括具有第一侧及相对第二侧的第一层，以及至少具有第一侧及相对第二侧的第二层。两层以坚固的粘合方式连接在一起，如压焊（bonding）、焊接（welding）或层压（laminating），从而使第二层的第一侧位于第一层的第二侧之上。该光子元件排列在第一层，并例如可通过印刷方法、微影图案或者使用激光辐射改型材料。在后一种情况下，材料改进可有益地被飞秒激光脉冲使用。为了最小化导致较大的热膨胀系数，从而温度的变化就改变了光子组件的尺寸。这会导致至少一个光子组件的光学属性。

[0007] 本发明还提出利用纳米线弥补热相关膨胀，以固化基质的第二层。可通过共挤压、层压、熔胶-凝胶方法或其他在此处不再详述的方法将纳米线引入到第二层。该纳米线可以吸收和抵消材料的抗张强度，因此第二层的热膨胀要远小于第一层的热膨胀。在本发明的一些实施例中，第二层在一些温度范围内具有负的热膨胀系数，例如不会热膨胀，第二层会随着温度的升高而收缩。
由于第一层和第二层间的结合，第二层可以弥补或者至少减少第一层的热膨胀，从而至少在预先调整温度范围内，即使在温度变化时基质上的光子组件也可正确发挥作用。

应该注意的是，尽管本说明仅描述了基质由三层组成，在本发明一些实施例中，层的个数可以更多。例如，可以提供多个第一层，从而使更多数量的层上下排列在基质上。在本发明其他实施例中，一层可以由多层组成，从而形成多层系统。因此该层的材料属性可以以更好的方式适应到预先调整的标称值。

在本发明的一些实施例中，第二薄膜层可以在整个表面上具有纳米线，从而基质在整体表面上具有所需的较小的湿度系数。

在本发明的其他实施例中，仅第二薄膜层的子区域可提供纳米线，从而生成光子组件不受未被许可的大热膨胀影响的表面区域，而基质的其他表面区域具有不同的，通常为更大的，热系数。

在本发明的一些实施例中，可通过湿化学工艺生产纳米线。这使得低成本、大批量生产纳米线成为可能。

在本发明其他实施例中，可从等离子体中产出纳米线。由于出现非均衡情况，因此还可能从热力学不稳定的材料中生产纳米线。

在本发明一些实施例中，纳米线的直径为约 100nm 到约 1000nm。在本发明一些实施中，纳米线的长度为约 1μm 到约 10μm。这些尺寸的价值已经得到证明，即足够降低了基质的热膨胀，并同时可非常容易地生产和处理纳米线。

在本发明一些实施例中，第一薄膜层可包含纳米颗粒以及或掺杂物。该纳米颗粒可附加或替换掺杂物，以实现第一薄膜层的预先调整光学属性。在本发明的一些实施例中，纳米颗粒以及或掺杂物可用于将第一薄膜层的折射率修改为预先调整值。

在本发明一些实施例中，仅第一薄膜层的子区域以及或该薄膜层的部分体积具有纳米颗粒。这可改变某些部分区域以及或某些光子组件的材料的光学属性。然而，其他光学组件可排列在其他具有不同光学属性的表面区域。

在本发明一些实施例中，第一薄膜层可包括纳米颗粒，该纳米颗粒包含或者由二氧化钛以及或氧化锌以及或氧化硅构成。这些材料可能容易生产，在第一薄膜层的聚合物材料中可较好地分散，并且在预先调整波长和或波长范围的光学属性具有良好的影响。

在本发明一些实施例中，第一薄膜层可包含纳米颗粒，该纳米颗粒直径为约 10nm 到约 500nm，或者为约 100nm 到约 800nm。

在本发明一些实施例中，平面光学元件可包含第一侧和相对第二侧的第三薄膜层，其中第三薄膜层至少在子区域内包含纳米颗粒。该第三薄膜层的第一侧可在整个区域与第二薄膜层的第二侧连接，即通过粘着、焊接或层压。在本发明的一些实施例中，这进一步提高了稳定性，并减少了热膨胀的影响力以及或基质机械应力的影响。

在本发明一些实施例中，纳米线具有预置方向（presettable orientation）。该方向例如可通过采用电和或磁场实现，因此纳米线在聚合物材料固化之前沿理想方向定向。在本发明一些实施例中，纳米线的方向可以与理想方向相差小于 20°、小于 15°、小于 5° 或小于 3°。因此，可提供具有热膨胀性质的基质。
在本发明一些实施例中，第三薄膜层的纳米线的方向与第二薄膜层的纳米线的方向不同。在本发明一些实施例中，第三薄膜层和第二薄膜层的纳米线可近似正交排列。这使得以层压木或夹板方式的层的不同膨胀性质互锁，使特别稳定的基质成为可能。

在一些实施例中，平面光学元件包括含有至少一个光导的光纤传感器。该光导具有至少一个芯以及镀层，该芯由具有第一折射率的第一材料制成，而该镀层环绕该芯，并由具有第二折射率的第二材料制成。这样，光波可以在第一材料和第二材料之间在界面上完全反射，因此光波被引入芯内。至少一个光纤布拉格光栅可插入至芯内。该光纤布拉格光栅反射部分耦合光能，并传送其他部分光能。反射光的波长以及 / 或者波长分布依光纤布拉格光栅的光栅常量而定。光栅常量由生产光纤布拉格光栅最初预期的光栅常量以及由于热膨胀和 / 或机械应力导致的光栅常量的改变确定。因此，可通过分析反射光的光谱分布从光纤布拉格光栅中选择一个，并确定光纤布拉格光栅位置处有效的温度和 / 或力。

通过在基质上引入该传感器元件，有可能提供整合传感器元件和所需分光仪的部件，以供选择。一个或多个传感器可覆盖相对大的区域，从而实现力或温度的区域检测。为了使用目的，基质必须仅粘着在待监测部分或者层压到待监测部分。

在本发明一些实施例中，提供传感器的部件可以是电池或者电池筒。在本发明其他实施例中，待监测部分可以是机械组件，例如风力涡轮机的叶片、翅、发动机短管或者飞机的机身、轮胎或者此处纤维增强塑料材料、热塑性树脂、热固塑料或橡胶中未提及的其他部件。提出的传感器元件可在初始成形期间以特别简单的方式嵌入到这些材料系统中。

下面结合附图对本发明的进行更详细的解释，其中该附图并不作为本发明思想的一般限制，其中：

图 1 所示为根据本发明一实施例的平面光学元件；
图 2 所示为根据本发明一实施例的传感器元件；
图 3 所示为具有传感器元件的电池筒。

图 1 所示为根据本发明一实施例的平面光学元件 1。在所述的示例性实施例中，平面光学元件具有基质 2、基质 2 由第一层 21、第二层 22 和第三层 23 组成。第一层 21、第二层 22 和第三层 23 均包含作为基本材料的聚合物。例如在第一层 21 中，至少子区域和 / 或部分体积内提供有具有 TiO₂的纳米颗粒。因此第一层 21 的光学属性会受到影响。

第二层 22 和第三层 23 除基本材料外还包括纳米线 3。纳米线 3 可以优选的方向引入到每一层，即每个纳米线 3 以基本互相平行并基本平行于预先调整预方向的方式纵向延伸。

通过基质 2 的截面可以看到，第一层 21 的第一侧 211 形成了基质 2 的表面。第一层 21 的第二侧 212 位于第二层 22 的第一侧 221 之上。该交界面可以通过整个区域利用焊接、粘着或者层压连接。同样的，第二层 22 的第二侧 222 位于第三层 23 的第一侧 232 之上。还可以沿界面在多个区域内提供坚固的粘着连接。第三层 23 的第二侧 233 形成基质 2 的底侧。从截面图中还可以看出，纳米线 3 在第二层 22 延伸的纵向方向基本正交于第三层 23 的纳米管 3 的纵向延伸。这样，在两个空间方向上可以获得机械稳定性和 / 或者抑制热膨胀的稳定性，从而热膨胀或者应力对基质 2 上的光子组件 14 的影响几乎不存在。

纳米线 3 可以在基质 2 的整个区域上排列。因此整个基质 2 对热膨胀并不敏感，即随着温度变化在长度和 / 或宽度上仅有微小变化。第一层 21、第二层 22 和第三层 23 的厚
度为约 25 μm 到约 250 μm，或者约 50 μm 到约 125 μm。层 21, 22, 23 中的至少一层是通过挤压、滚压或湿化学工艺制成。

[0033] 如图所示，阵列波导光栅 43 作为气动组件 4 的示例。该阵列波导光栅可以作为光显微分光计，即不同波长的输入信号在输出的不同位置显示。

[0034] 光轴输入信号通过光导波 50 提供到平面光学元件 1，该光导波 50 可选地具有插入式连接器 51。该输入信号通过光导 50 传送入集成波导 41。该波导 41 引导输入信号到阵列波导光栅 43 的自由传播区域 431。该自由传播区域 431 具有倾斜三角的基本区域。

[0035] 多个波导 432 连接到自由传播区域 431 的端部。该波导 432 具有不同的波长，并引导来自传播区域 431 的光输入信号到干涉区域 433，不同的波长被带到该干涉区域 433 用于干涉。干涉图样形成干涉区域 431 的输出。不同的波长显示在不同位置。

[0036] 将输出信号传输到平面光学元件的输出的其他波导位于每个干涉最大值。

[0037] 阵列波导光栅 43 的单个组件例如可通过纳米印刷的方法引入到第一层 21。在本发明其他实施例中，可以在第一层 21 通过使用激光修改材料或者通过传统的光刻法生产该组件。

[0038] 当温度发生变化时，传统的聚合物基质会膨胀或收缩，以至于改变了阵列波导光栅 43 的几何尺寸。这会降低阵列波导光栅 43 的效率。可以通过本具创造性的通过纳米线 3 对基质的加固实现基质 2 的机械稳定性。该纳米线 3 排列在第二层 22 以及可选的第三层 23，因此该阵列波导光栅 43 一直表现出最好的效率，并且即使在温度发生变化时，也比已知的聚合物材料具有更好的效率。同时，由聚合物材料制成的基质 2 相对于已知的硅基质的优势在于即使是非常大的基质，也可以通过节约的方式生产，因此大光子组件或许多光子组件可以以节约的方式生产。具有相对较大尺寸的阵列波导光栅可具有改进的信道间隔，该间隔例如大于 400GΩ、大于 600GΩ 或者甚至大于 1TΩ。

[0039] 如图 1 所示，同样地，对于阵列波导光栅 43，可附加地或替换性地在基质 2 上排列有其他光子组件。例如可在第一层 21 上生产耦合器、光纤布拉格光栅、光纤传感器或及其衍生的波导和元件。

[0040] 图 2 所示为排列在基质 2 上的传感器元件的示例性实施例。如图 1 中已解释的，该基质 2 可至少由两层组成。在根据图 2 的示例性实施例中，基质 2 具有子区域 225，该子区域 225 由纳米线 3 加固。由于图 2 为概览，因此只显示了很少的纳米线 3 和它们的方向。然而，纳米线 3 可以占据整个子区域 225，并且可以在一层或多层中以不同的方向排列。必要因素仅在于纳米线 3 可实现至少在一个温度范围内的足够小的膨胀，因此排列在表面区域 225 上的组件不会被力和 / 或者温度变化产生不被许可的影响。

[0041] 基质 2 的剩余表面区域具有光纤传感器 45a, 45b 和 45c。本发明并没有确切指出使用三个光纤传感器 45。分别选择的数量可以更多或更少，例如可以是 1 到约 50 个。

[0042] 每个光纤传感器 45 具有芯 411，该芯 411 的折射率要大于基质 2 的第一层 21 的折射率。因此，光被引导入芯 411，从而获得光导 41。在所述示例性实施例中，波导直线排列。当然还可以使至少一个波导 41 蜿蜒排列或螺旋排列。

[0043] 至少一个光纤布格拉格光栅 44 排列在波导 41 的芯 411 内。在所述示例性实施例中，每个芯 41 具有 7 个光纤布格拉格光栅 44。在本发明其他实施例中，数量可多可少。此外，不同数量的光纤布格拉格光栅 44 可以排列在不同的波导 41 中。
可在基质 2 上通过激光材料处理以及 / 或者纳米印制生产光学波导 41 以及 / 或者光纤布拉格光栅 44。

既然基质 2 在光纤传感器 45 区域不含有稳定纳米线, 一旦应电力和 / 或温度, 光纤布拉格光栅 44 的光栅常量就会改变。因此, 由各个光栅 40 反射的光谱发生变化。

排列在表面区域 225 的分光仪来分别从光纤布拉格光栅 44 反射的光进行分析。具有可选插入式连接器 51 的终端波导 50 用于产生光信号 45。可通过所述插入式连接器进给 (feed) 超发光二极管或可调谐半导体激光器的光。光通过两个耦合器 42a 和 42b 被分割成三个光学路径，每一个所述路径连接到光纤传感器 45。

通过其他耦合器 42c, 42d 和 42e 将光纤布拉格光栅 44 反射的光引导到三个阵列波导光栅 43a, 43b 和 43c。它们在输出波导 435 提供光信号。所述信号可以转化为电信号，如通过线阵 CCD 或光电二极管阵列。光信号的大小因此为各个光纤布拉格光栅 44 反射的光强度的标准，因此也是在各个光栅 44 位置存在的温度和 / 或力的标准。如果同样的温度应用到区域 225, 由于纳米线 3 可机械稳定基质 2 的子区域，分光仪依然保持基本不受影响。

因此，本发明首次公开了在基质 2 上集成光纤传感器和相关信号选择。

图 3 所示为图 2 中传感器元件和 / 或图 1 中平面光学元件的可能应用。图 3 所示为电池筒 6, 该电池筒具有多个电池单元，用于提供具有预先调整电压和 / 或预调整电流供给能力。电池筒 6 的外侧具有至少两个前端触点 61 和 62, 通过该前端触点可以取电，或者向电池充电。

为了监测筒 6 内电池单元的温度，可能提供一种在不同情况下含有多个光纤布拉格光栅 44 的光纤传感器 45, 如上文中图 2 所述。该电池筒 6 可在这方面分别设计，因此在光栅布拉格光栅 44 的不同位置可确定电池单元的温度。该光纤传感器 45 可形成于粘着于电池筒 6 或者嵌入到电池筒 6 材料的载体 2 上。

如上所述，基质 2 具有由纳米线稳定的表面区域 225。该区域包括阵列波导光栅 43 形式的平面光学分光仪。如上所述，阵列波导光栅 44 的各个光栅常量所需的光由波导 41 和耦合器 42 进给。因此，提出的传感器元件仅需要光源与电子测定的连接，以监测多个电池单元的温度。选择所需的传感器元件和分光仪可嵌入到基质 2 上筒 6 的材料中。这提供了一种机械稳健设计，即使在机动车中发生恶劣的操作环境也可幸免，受到任何损坏。此外，可以以节约成本的方式生产采用的材料，从而不需要任何问题，就可以在大众市场上使用。

当然本发明不限于上述所述的实施例。上述描述并不作为限制，而只作解释目的。不同实施例的特征可以相互组合。权利要求书应该理解为其中的特征在本发明至少一个实施例出现过。这并不表示排除存在其他特征。如果权利要求书和说明书定义“第一”和“第二”特征，则该指定目的在于区别两个相似的特征，而不是构成顺序。