
(12) STANDARD PATENT (11) Application No. AU 2010341690 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Extending view functionality of application

(51) International Patent Classification(s)
G06F3/14 (2006.01) G06F3/048 (2006.01)

(21) Application No: 2010341690 (22) Date of Filing: 2010.12.07

(87) WIPONo: WO11/087624

(30) Priority Data

(31) Number (32) Date (33) Country
12/687,123 2010.01.13 US

(43) Publication Date: 2011.07.21
(44) Accepted Journal Date: 2014.05.15

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Margarint, Radu C.;Cox, Andrew D.;Flake, Gary W.;Farouki, Karim T.;Wu, Alan K.

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 2006/0136836 A1 
US 2008/0222273 A1



PCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
21 July 2011 (21.07.2011)

(10) International Publication Number

WO 2011/087624 A3

(51) International Patent Classification:
G06F 3/14 (2006.01) G06F 3/048 (2006.01)

(21) International Application Number:
PCT/US2010/059282

(22) International Filing Date:
7 December 2010 (07.12.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/687,123 13 January 2010 (13.01.2010) US

(71) Applicant (for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft 
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: MARGARINT, Radu C.; c/o Microsoft Cor­
poration, LCA - International Patents, One Microsoft 
Way, Redmond, Washington 98052-6399 (US). COX, 
Andrew D.; c/o Microsoft Corporation, LCA - Interna­
tional Patents, One Microsoft Way, Redmond, Washing­
ton 98052-6399 (US). FLAKE, Gary W.; c/o Microsoft 
Corporation, LCA - International Patents, One Microsoft 
Way, Redmond, Washington 98052-6399 (US). FAROU- 
KI, Karim T.; c/o Microsoft Corporation, LCA - Interna­
tional Patents, One Microsoft Way, Redmond, Washing­
ton 98052-6399 (US). WU, Alan K.; c/o Microsoft Cor­
poration, LCA - International Patents, One Microsoft 
Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, 
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted 

a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of 
the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))

[Continued on next page]

(54) Title: EXTENDING VIEW FUNCTIONALITY OF APPLICATION

W
O

 20
11

/0
87

62
4 A

3

FIG. 2

(57) Abstract: The viewing functionality of an application may be extended by use of an adapter. An application is instantiated, 
and the application may provide a view box that contains a scrolling feature as part of its interface. The adapter uses the applica­
tion "behind the scenes" to collect information in a way that is not visible to the user. Mouse gestures may be defined to perform 
various viewing functions such as zooming. The adapter intercepts these gestures in the window that the user uses to interact with 
the application, and interprets the gestures as specific view commands (such as zoom). Based on the commands (or, possibly, in 
anticipation of commands that have not yet been issued), the adapter uses the application to collect content. The application then 
scales the content appropriately, puts the scaled content in a document, and overlays the document on top of the view box.



WO 2011/087624 A3 lllllllllllllllllllllllllllllllllllllllllllllllllll^
- before the expiration of the time limit for amending the <88> Date of Publication of the international searchreport: 

claims and to be republished in the event of receipt of P
amendments (Rule 48.2(h))



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

EXTENDING VIEW FUNCTIONALITY OF APPLICATION

BACKGROUND

[0001] As technology progresses, users of computers and other devices expect 

an increasing amount of flexibility in how they view documents. In early computer 

displays, information was presented as lines of text on a screen. When the screen filled 

with text, that text was scrolled up the screen to make way for new text. Eventually the 

top line would be scrolled off the top of the screen and would become irretrievable. Later 

developments allowed user-controlled vertical scrolling, which allowed a user to scroll 

text up and down to bring it in and out of view.

[0002] Presently, many user interfaces allow additional flexibility, such as 

horizontal scrolling and zooming. However, many existing applications do not support 

these additional forms of viewing flexibility. Moreover, some new applications (e.g., 

some Java-based web applications) provide viewing areas that have only simple vertical 

scrolling functionality. Users have become accustomed to increased viewing capabilities 

such as zooming and vertical and horizontal scrolling, and may want to use these 

capabilities even with applications that do not provide these capabilities natively.

SUMMARY

[0003] Various viewing capabilities, such as zooming, may be provided to an 

application through the use of an adapter. An application, such as a web application that 

is accessible through a browser, may display a view box that has scrolling capability. The 

view box may be used to show some underlying content (e.g., text, images, etc.), to a 

user. In order to add additional capabilities such as zooming to the user experience, a 

view adapter controls the application to collect pixels that are displayed through the view 

box. Once the adapter has these pixels, it can scale the pixels to any size, and can place 

these pixels in a document, which can be shown to the user as an overlay over the view 

box.

[0004] In order to provide the user with the impression that the additional 

capabilities, such as zooming, have been added to the user experience, the adapter 

intercepts the user's gestures (e.g., left and right movement of a mouse to indicate 

zooming), and uses these gestures to decide what content to show to the user. The 

adapter then uses the second instance of the application to collect the appropriate pixels 

from that content (or collects the pixels proactively in anticipation of user commands),

1



20
10

34
16

90
 

25
 M

ar
 2

01
4 and places the pixels in the document. The adapter substitutes the document that it has 

created in place of the underlying content that the application would otherwise display. 

So, for example, if the application would normally show the user a text document, the 

adapter overlays an image of the document that the adapter created over the original

5 view box, so that the user sees that document instead of the original text document. This 

document may contain enlarged or reduced views of various regions of the original

content.

[0005] Since the adapter collects pixels by "driving" the application as if the 

adapter were a read user, the adapter attempts to learn the location of the scroll bar in

fO the application so that it can issue appropriate scrolling commands to collect pixels. In 

one example, the adapter learns the location of the scroll bar through metadata exposed 

by the application. In another example, the application learns the location of the scroll 

bar by observation - e.g., by watching the user's interaction with the application to see 

which actions cause the view box to scroll.

f5 [0006] Additionally, the adapter can use the application to collect and store

pixels in a way that increases the user's perception of speed and reduces the use of 

memory. For example, if the user appears to be panning in a certain direction in the 

document, the adapter can proactively collect the appropriate pixels from further along 

in that direction in the underlying content, thereby anticipating commands that the user

20 has not yet issued. By having the appropriate pixels in advance, waiting time for the user 

is reduced, thereby increasing the user's perception of the application's response time. 

Additionally, once pixels have been placed in a document, the application may flush 

stored pixels to save space if it appears that the pixels represent regions of the document 

that are not likely to be requested by the user.

25 [0006A] In one aspect there is provided one or more computer-readable storage

media that store executable instructions to provide view functionality to an application, 

wherein the executable instructions, when executed by a computer, cause the computer 

to perform acts comprising:

detecting a first location of a first scroll bar in a view box of an application,

30 content being displayed through said view box;

using said first location of said first scroll bar to navigate said content without said

navigation being visible to a user of said application, and to collect pixels that represent

2



20
10

34
16

90
 

25
 M

ar
 2

01
4 said content; and

overlaying information based on said pixels on top of said view box such that said 

information fully covers said content in said view box when said information is displayed, 

said view box being filled with said content while said information is overlaid on top of

5 said view box so that said content is in said view box, but not visible, while said 

information is being overlaid on top of said view box.

[0006B] In another aspect there is provided a method of obtaining content 

requested by a user, wherein the method comprises:

using a processor to perform acts comprising:

fO detecting a first location of a scroll bar of a first view box in an application

that a user is using to view content;

using said first location of said scroll bar to navigate through said content 

said first view box, wherein navigation of said content is not made visible to said 

user on a display device;

f 5 storing pixels that represent said content; and

overlaying said pixels on top of said view box such that display of said

pixels fully occludes said content in said view box, said view box being filled with 

said content while said pixels are overlaid on top of said view box so that said 

content is in said view box, but not visible, while said pixels are being overlaid on

20 top of said view box.

[0006C] In another aspect there is provided a system for responding to 

commands from a user who operates an application, the system comprising:

a processor on which said application executes; 

a data remembrance component in which said application is stored;

25 a view adapter that is stored in said data remembrance component and that

executes on said processor, said view adapter intercepting commands issued by said user 

through a window on which said application executes, said view adapter issuing 

commands to obtain content through said application, said application being visible to 

said user on a display, but interactions between said view adapter and said application

30 not being visible to said user on said display; and

a document in which said view adapter stores pixels that represent content that

said view adapter obtains through said application, said view adapter causing said

2A



20
10

34
16

90
 

25
 M

ar
 2

01
4 document to be overlaid on top of a view box of said application so as to appear in place 

of said content, said document fully covering said content in said view box when said 

document is displayed, said view box being filled with said content while said document is 

overlaid on top of said view box so that said content is in said view box, but not visible,

5 while said document is being overlaid on top of said view box.

[0007] This Summary is provided to introduce a selection of concepts in a

simplified form that are further described below in the Detailed Description. This 

Summary is not intended to identify key features or essential features of the claimed 

subject matter, nor is it intended to be used to limit the scope of the claimed subject

10 matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a block diagram of an example application interface in which

scrolling is available.

2B



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

[0009] FIG. 2 is a block diagram of an example scenario in which support is 

provided for extending view functionality.

[0010] FIG. 3 is a block diagram of an example scenario in which original 

content is replaced with a substitute document.

[0011] FIG. 4 is a flow diagram of an example process in which certain viewing 

functionality may be provided to an application.

[0012] FIG. 5 is a flow diagram of an example process of observational 

detection.

[0013] FIG. 6 is a block diagram of example components that may be used in 

connection with implementations of the subject matter described herein.

DETAILED DESCRIPTION

[0014] Users often like to have flexibility in how they view documents. As 

technology progresses, user interfaces accommodate increasingly more flexibility. In the 

early days of computers, text was presented to the user on a screen in a sequence of 

lines. When the screen filled, older lines ran off the top of the page and were 

irretrievable. In subsequent innovations, vertical scrolling was introduced to allow a user 

to move up and down in a document. Horizontal scrolling was also introduced as an 

alternative to word wrapping, thereby providing a way to show a line that is too wide to 

fit on one screen.

[0015] Typically, an area that is scrollable provides an area in which the user 

can specify whether the user wants to move up or down in the document (or left or right, 

in the case of horizontal scrolling). That area typically includes a scrollbar or "thumb" that 

the user can move up or down (or left or right) to indicate where he or she wants to

move.

[0016] In addition to scrolling, users often like to be able to zoom in and out 

when viewing content. However, some applications provided scrolling capability but not 

zoom capability. The subject matter herein may be used to implement zoom functionality 

in an application that exposes scrolling functionality. In order to augment the viewing 

functionality of an existing application, a view adapter intercepts a user's gestures and 

other commands in order to determine what the user is trying to do. For example, the 

user might move a mouse right or left a view box, thereby indicating that the user wants 

to zoom in or out. Since the zoom functionality might not be implemented in the

3



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

application itself, the adapter intercepts these gestures, obtains the appropriately-scaled 

content, and responds to the commands by displaying the scaled content over the view 

box of the application.

[0017] In order to obtain the appropriately scaled content, and to provide that 

content to the application, the adapter may perform actions as follows. For any given 

application that provides a view of an underlying document, the adapter may "drive" the 

application by interacting with the application's scroll capability. The adapter's 

interactions with the application may not be directly visible to the user, but the 

application can use these interactions to obtain content to show to the user. For 

example, the adapter can use the application's scroll capabilities to scroll up and down 

(or, possibly, left and right) in a document. The reason the view adapter navigates the 

document in this manner is to collect various portions of the document. For example, 

suppose that only one-tenth of a document can fit in a view box at one time. If a user 

indicates (through an appropriate zoom gesture) that he wants to see a de-magnified 

view of the document that comprises five view-boxes-worth of the document, the 

adapter can use its control of the application to scroll through the document and collect 

the five view-boxes-worth of that document. The adapter can then de-magnify the 

information that it has collected, so that it fits in one view box. In order to make the de- 

magnified version visible to the user, the adapter can put the de-magnified version in a 

virtual document that the adapter manages. Thus, the adapter puts the de-magnified 

view of the underlying document into the virtual document, and then exposes that 

virtual document to the user. For example, the adapter may overlay a view of the virtual 

document over the view box of the application so that the user sees the virtual 

document in the view box.

[0018] The adapter may use certain techniques to collect and store 

information about the document. For example, the adapter may provide many different 

zoom levels at which to view the document, but might not want to store the entire 

document at all zoom levels. Therefore, the adapter may collect portions of the 

document in response to a user's request for specific zoom levels, or may attempt to 

anticipate what areas of the document the user will view next, in advance of the user's 

having actually issued commands to view that area of the document. For example, if the 

user is viewing a document at a particular zoom level and appears to be scrolling or

4



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

panning upward, the adapter may anticipate that the user will continue to scroll upward 

and will collect information higher up in the document before the user has actually 

requested it. Additionally, the adapter can conserve spaced by discarding portions of the 

document that the user has already viewed and has moved out of the viewing area.

[0019] In order to determine how to "drive" the application, the adapter may 

attempt to learn where the application's controls are. One way to learn where the 

application's controls are is to examine metadata exposed by the application. For 

example, the application may provide metadata that indicates where a scrollable viewing 

area and its scrollbar are located. Or, as another example, the adapter may infer the 

location of a scrollable viewing area and a scrollbar by observing user behavior and the 

actions taken by the application in response to that behavior. For example, the typical 

behavior that indicates the location of a scrollbar is: first the user clicks on the scroll 

thumb; then nothing happens; then the user starts to move the thumb up or down; and 

then the content in the viewing area moves up or down in the direction of the thumb. By 

observing this pattern, the adapter can detect the presence of a scrollable viewing area, 

and the location of the scrollbar. In another example, if the user clicks the mouse and 

then scrolling is observed, this pattern tends to indicate that the user has clicked the 

scroll bar somewhere other than the thumb. (The foregoing describes some techniques 

for detecting a vertical scroll bar, but analogous techniques could be used to detect a 

horizontal scroll bar.)

[0020] Turning now to the drawings, FIG. 1 shows an example application 

interface in which scrolling is available. Window 102 provides the user interface of 

program 104. For example, the program 104 whose interface is provided through 

window 102 may be a browser that processes information such as Hypertext Markup 

Language (HTML) and Java code to display some sort of content. Window 102 may have 

the normal controls that windows have, such as controls 106, which allow a user to hide, 

resize, and close window 102.

[0021] Within window 102, various types of content may be displayed by 

program 104. One example of such content is a view box 108, which allows some 

underlying content 110 to be displayed. In this example, the content 110 to be displayed 

is the familiar "Lorem ipsum" text content, although any type of content (e.g., text, 

images, etc.) could be displayed through view box 108. For example, when a browser is

5



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

used to access some type of content, the content that is accessed may be a server-side 

application that provides the HTML or Java code that causes browser to display view box 

108, and that also causes content 110 to be displayed through view box 108. Content 110 

might be composed of one or more components, such as a source text file 112, fonts 114, 

and images 116. For example, the content 110 shown in view box 108 might be a 

newspaper article that contains text and images. The content is shown through pixels 

displayed through view box 108. The particular pixels that are shown contain text and 

graphics. The pixels that represent the graphics are derived from images 116. The pixels 

that represent the text are derived from source text file 112 and fonts 114 - i.e., source 

text file 112 indicates which characters are to be drawn, and fonts 114 indicates how 

those characters will appear.

[0022] View box 108 provides controls through which the user may scroll 

through content 110 vertically and/or horizontally. For example, along the right and 

bottom edges of view box 108 are two rectangles 118 and 120 which are used to direct 

scrolling of content 110 in view box 108. Rectangles 118 and 120 contain scroll bars, or 

thumbs, 122 and 124, which allow the user to scroll up and down (thumb 122) and/or 

right and left (thumb 124). This scrolling functionality may be provided by the server-side 

application that provides view box 108. (In some examples, view box 108 might provide 

only vertical scrolling, or only horizontal scrolling. Techniques described herein may be 

used to extend viewing functionality to provide scrolling in a dimension that view box 

108 does not provide natively.)

[0023] One viewing function that a user might want to perform is zooming or 

scaling. While scrolling capability allows the user to move content 110 up or down within 

view box 108, scrolling does not allow a user to make the content bigger (to see a smaller 

amount of content at greater detail), or to make the content smaller (to see a larger 

amount of content with less detail). There are various ways that the user could indicates 

functions such as "zoom in" or "zoom out" using a mouse. For example, a user might 

drag the mouse pointer right to indicate zooming in, or left to indicate zooming out.

While such gestures could be made by a user, view box 108 might not provide native 

support for these gestures. Techniques provided herein could be used to provide such 

support, so that a user could zoom in and out on content (or perform any other

6



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

appropriate viewing manipulation) even if such support is not provided natively by the 

application through which the content is being viewed.

[0024] FIG. 2 shows an example way in which to provide support for extending 

view functionality. A server-side application provides a view box 108, which provides 

access to some underlying content (e.g., text, fonts, images, etc.), and a program (e.g., a 

browser) is opened in a window 102 that provides a view of this view box to a user. 

Additionally, view box 108 may provide thumbs 122 and 124 that allow vertical and/or 

horizontal scrolling (or, as noted above, view box 108 might provide scrolling only in one 

dimension.) These components are like those shown in FIG. 1. Application instance 202 is 

an instance of the application with which the user interacts. For example, the system 

may open a browser window to allow a user to interact with application instance 202. 

However, view adapter 206 may also interact with application instance 202 in a manner 

that is not visible to the user, as indicated by the dotted-line drawing of application 

instance 202's interface.

[0025] In particular, while the user interacts with application instance 202 

through window 102, view adapter 206 intercepts commands 208 issued by the user. For 

example, if the user makes gestures such as the left-and-right gestures described above 

(indicating zoom-in and zoom-out functions), these gestures may be interpreted as 

commands 208, and view adapter 206 may intercept these commands 208. One way that 

view adapter 206 may intercept these commands is to observe keyboard and mouse 

interactions in window 102 whenever window 102 has focus. ("Having focus" is generally 

understood to mean that the window is active - i.e., that keyboard and mouse input is 

understood, at that point in time, as being directed to the window that has focus, as 

opposed to some other window.)

[0026] Regardless of the manner in which view adapter 206 intercepts the 

commands, once view adapter 206 has the commands 208 it may interpret the 

commands to determine what the user is trying to view. For example, a leftward motion 

may be interpreted as the user wanting to zoom out, thereby seeing less content, but a 

larger image of that content. View adapter 206 may then attempt to obtain the content 

that the user wants to see. View adapter 206 obtains this content by manipulating view 

box 210 in the application. View box 210 may provide thumbs 212 and 214 which allow 

the view of content within view box 210 to be controlled. The content to be displayed in

7



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

view box 210 is the same content 110 that is displayed in view box 108 of FIG. 1. View 

adapter 206 controls the view of content 110 by controlling thumbs 212 and 214. It is 

noted that view adapter 206's manipulation of the view inside view box 210 may take 

place "behind the scenes", in the sense that this manipulation is not actually displayed 

directly to the user. For example, the motion of arrows and the scrolling of content in 

view box 210 may not appear in any desktop window of the application. Rather, view 

adapter 206 simply works the input buffer of the application in such a way that the 

application believes it is receiving the same kind of commands that a user might have 

provided through a keyboard or mouse.

[0027] By working the controls of the application, view adapter 206 is able to 

view different portions of the underlying content 110. View adapter collects the pixels 

216 that represent content 110. For example, if content 110 contains text, then pixels 

216 are the pixels that represent characters of that text drawn in some font. If content 

110 contains images, then pixels 216 are the pixels that represent those images.

[0028] When view adapter 206 has collected pixels 216, view adapter 206 uses 

the pixels to create a substitute document 218. Substitute document 218 is a "substitute" 

in the sense that it stands in for the original content 110 that a user is trying to view with 

application instance 202. It will be recalled that a user instantiated application instance 

202 in order to view the underlying content 110. As described above, view adapter 206 

interacts with application instance 202 in order to collect the pixels that represent 

content 110. View adapter 206 then arranges these pixels in ways that follow the user's 

commands. For example, if the user has indicated that he would like to zoom in on some 

portion of text (where the zoom feature is not natively supported by view box 108), then 

view adapter 206 creates an enlarged view of that text. In order to create this enlarged 

view, view adapter 206 uses application instance 202 to collect pixels that represent the 

portion of text on which the user would like to zoom, and then enlarges the view to an 

appropriate scale. This enlarged view is then placed in a document. View adapter 206 can 

then overlay an image of the document on top of the view box that otherwise would be 

visible to the user (i.e., on top of view box 108). Normally, application instance 202 would 

present content 110 through view box 108. However, since view adapter 206 overlays 

view box 108 with an image of substitute document 218, the user sees substitute 

document 218 in the place where the user is expecting to see content 110, thereby

8



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

creating the illusion that the user has zoomed on content 110 as if the mechanisms to do 

so existed in view box 108. As can be seen, the text of content 110 appears larger in view 

box 108 (or, more precisely, in the overlay on top of view box 108) than in view box 210, 

indicating that substitute document 218 represents a zoomed view of that text, which is 

shown to the user.

[0029] FIG. 3 shows how original content 110 is replaced with a substitute 

document 218. As discussed above, application instance 202 is normally instantiated to 

view content 110, which the application displays to a user through view box 108. 

However, when view adapter 206 is used, view adapter overlays an image of substitute 

document 218 on top of view box 108, thereby causing substitute document to be seen 

instead of content 110 (as indicated by the "XX" marks over the line between content 

110 and view box 108). The content of substitute document 218 is controlled by view 

adapter 206. View adapter 206 fills substitute document 218 with pixels 216that view 

adapter 206 has collected by controlling application instance 202 so as to collect those 

pixels from content 110. Thus, when a user sees content in view box 108, the user is 

seeing content that view adapter 206 has placed in substitute document 218, rather than 

the original content 110. In this way, view adapter 206 can enlarge, reduce, or otherwise 

transform the appearance of content 110 to show to a user in accordance with the user's 

commands - as long as view adapter 206 can collect this content in some manner. View 

adapter 206 collects the content, as described above, by "driving" the application in such 

a manner as to collect the pixels that it wants to place in substitute document 218.

[0030] FIG. 4 shows, in the form of a flow chart, an example process in which 

certain viewing functionality (e.g., zooming) may be provided to an application. Before 

turning to a description of FIG. 4, it is noted that the flow diagrams contained herein 

(both in FIG. 4 and in FIG. 5) are described, by way of example, with reference to 

components shown in FIGS. 1-3, although these processes may be carried out in any 

system and are not limited to the scenarios shown in FIGS. 1-3. Additionally, each of the 

flow diagrams in FIGS. 4 and 5 shows an example in which stages of a process are carried 

out in a particular order, as indicated by the lines connecting the blocks, but the various 

stages shown in these diagrams can be performed in any order, or in any combination or 

sub-combination.

9



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

[0031] At 402, an application is started. For example, a user may invoke the 

browser program described above, and may use the browser to access an application 

that provides a view box in the browser window. At 404, the scroll bar in the view box is 

detected. For example, the view box may provide only vertical scrolling, in which case the 

vertical scroll bar is detected. Or, as noted above, a view box might provide both vertical 

and horizontal scroll bars, and both of these may be detected.

[0032] Detection of the scroll bar(s) can be performed in various ways. In one 

example, the application that provides the view box may also provide metadata 406 

indicating the location of the view box and its scroll bar(s). In another example, 

observational detection 408 may be performed on the user interface in which the view 

box appears in order to detect the view box and/or its scroll bars. One way that this 

observational detection can be performed is as follows, and is shown in FIG. 5. First, it is 

detected (at 502) that the user has clicked a mouse button (or a button on some other 

type of pointing device, such as a touchpad). Then, it is detected (at 504) that, following 

the click of the mouse button, nothing has happened on the screen as a result of that 

click. Next, it is detected (at 506) that the user has started to move the mouse. Then, it is 

detected (at 508) that scrolling has occurred in response to the movement of the mouse 

- i.e., that something on the screen starts to scroll when the user moves the mouse. This 

sequence of actions tends to indicate that the user has used the mouse to operate the 

thumb of the scroll bar, since the observed actions are consistent with the user having 

operated the thumb. Using these observations, the location of the view box and the 

thumb are inferred.

[0033] Returning now to FIG. 4, at 412, the application consumes the original 

content that the user was using the application to view. For example, if the user is 

intending to use the application to view content 110 (shown in FIG. 1), then the 

application consumes content 110. The application may consume content 110 under the 

direction of view adapter 206 (shown in FIG. 2). While the view adapter is directing the 

view of content 110, the view adapter collects pixels from the document (at 414). At 416, 

the view adapter puts the pixels in a substitute document. At 418, content from the 

substitute document is overlaid on top of the application's view box, so as to make it 

appear that the application is showing the user content from the substitute document. 

For example, the view adapter may create an overlay on top of the location of the view

10



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

box in the application, and may display content from the substitute document in that 

overlay.

[0034] It is noted that, when the view adapter uses the application to collect 

pixels, it may do so in various ways, and in response to various cues. For example, the 

view adapter may collect pixels from the underlying content in response to specific 

actions by the user. That is, if the user requests to zoom out, the view adapter may use 

the application to manipulate the underlying content and to collect several view boxes- 

worth of pixels, so that a zoomed-out view of several boxes worth of content can be 

shown to the user. However, in another example, the view adapter attempts to 

anticipate what the user will ask for. For example, if the user is panning through content 

in a certain direction (e.g., to the right), the view adapter may assume that the user will 

continue to pan through the content in that direction and therefore may attempt to 

collect portions of the content further in that direction before the user actual pans that 

far, based on a prediction that the user will pan further in that direction sometime in the 

near future. Additionally, the view adapter may store pixels from the underlying content 

at varying levels of detail, in anticipation of the user zooming in or out on the same 

location of content. For example, if the user pans to a specific location in a document and 

then stops panning, the user might zoom in or out at that location so the view adapter 

might construct images of the document at several different zoom levels in anticipation 

that the user will actually zoom in or out at that location. The system may store various 

different views of the content at different zoom levels for some time, and may also flush 

the stored views when it is anticipated that the stored views are not likely to be used in 

the near future. By pre-calculating views of the content in anticipation of user commands 

that have not yet been issued, it is possible to increase the perception of performance by 

being able to provide views quickly after they are requested. Additionally, by flushing 

views that the view adapter believes are not likely to be used in the near future, the 

amount of space used to store the views is reduced.

[0035] FIG. 6 shows an example environment in which aspects of the subject 

matter described herein may be deployed.

[0036] Computer 600 includes one or more processors 602 and one or more 

data remembrance components 604. Processor(s) 602 are typically microprocessors, 

such as those found in a personal desktop or laptop computer, a server, a handheld

11



WO 2011/087624 PCT/US2010/059282

5

10

15

20

25

30

computer, or another kind of computing device. Data remembrance component(s) 604 

are components that are capable of storing data for either the short or long term. 

Examples of data remembrance component(s) 604 include hard disks, removable disks 

(including optical and magnetic disks), volatile and non-volatile random-access memory 

(RAM), read-only memory (ROM), flash memory, magnetic tape, etc. Data remembrance 

component(s) are examples of computer-readable storage media. Computer 600 may 

comprise, or be associated with, display 612, which may be a cathode ray tube (CRT) 

monitor, a liquid crystal display (LCD) monitor, or any other type of monitor.

[0037] Software may be stored in the data remembrance component(s) 604, 

and may execute on the one or more processor(s) 602. An example of such software is 

view adaptation software 606, which may implement some or all of the functionality 

described above in connection with FIGS. 1-5, although any type of software could be 

used. Software 606 may be implemented, for example, through one or more 

components, which may be components in a distributed system, separate files, separate 

functions, separate objects, separate lines of code, etc. A personal computer in which a 

program is stored on hard disk, loaded into RAM, and executed on the computer's 

processor(s) typifies the scenario depicted in FIG. 6, although the subject matter 

described herein is not limited to this example.

[0038] The subject matter described herein can be implemented as software 

that is stored in one or more of the data remembrance component(s) 604 and that 

executes on one or more of the processor(s) 602. As another example, the subject matter 

can be implemented as instructions that are stored on one or more computer-readable 

storage media. (Tangible media, such as an optical disks or magnetic disks, are examples 

of storage media.) Such instructions, when executed by a computer or other machine, 

may cause the computer or other machine to perform one or more acts of a method. The 

instructions to perform the acts could be stored on one medium, or could be spread out 

across plural media, so that the instructions might appear collectively on the one or more 

computer-readable storage media, regardless of whether all of the instructions happen 

to be on the same medium.

[0039] Additionally, any acts described herein (whether or not shown in a 

diagram) may be performed by a processor (e.g., one or more of processors 602) as part 

of a method. Thus, if the acts A, B, and C are described herein, then a method may be

12



20
10

34
16

90
 

25
 M

ar
 2

01
4 performed that comprises the acts of A, B, and C. Moreover, if the acts of A, B, and C are 

described herein, then a method may be performed that comprises using a processor to 

perform the acts of A, B, and C.

[0040] In one example environment, computer 600 may be communicatively 

5 connected to one or more other devices through network 608. Computer 610, which

may be similar in structure to computer 600, is an example of a device that can be 

connected to computer 600, although other types of devices may also be so connected.

[0041] Although the subject matter has been described in language specific to 

structural features and/or methodological acts, it is to be understood that the subject

fO matter defined in the appended claims is not necessarily limited to the specific features 

or acts described above. Rather, the specific features and acts described above are 

disclosed as example forms of implementing the claims.

[0042] Throughout this specification and the claims which follow, unless the 

context requires otherwise, the word "comprise", and variations such as "comprises" or

f 5 "comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or group of 

integers or steps.

[0043] The reference in this specification to any prior publication (or information 

derived from it), or to any matter which is known, is not, and should not be taken as, an

20 acknowledgement or admission or any form of suggestion that that prior publication (or 

information derived from it) or known matter forms part of the common general 

knowledge in the field of endeavour to which this specification relates.

13



20
10

34
16

90
 

25
 M

ar
 2

01
4 The claims defining the invention are as follows:

1. One or more computer-readable storage media that store executable instructions 

to provide view functionality to an application, wherein the executable instructions, when

5 executed by a computer, cause the computer to perform acts comprising:

detecting a first location of a first scroll bar in a view box of an application,

content being displayed through said view box;

using said first location of said first scroll bar to navigate said content without said

navigation being visible to a user of said application, and to collect pixels that represent 

fO said content; and

overlaying information based on said pixels on top of said view box such that said 

information fully covers said content in said view box when said information is displayed, 

said view box being filled with said content while said information is overlaid on top of 

said view box so that said content is in said view box, but not visible, while said

f 5 information is being overlaid on top of said view box.

2. The one or more computer-readable storage media of claim 1, wherein said 

detecting of said first location comprises using metadata, provided by said application, 

which specifies said first location of said first scroll bar.

20

3. The one or more computer-readable storage media of claim 1, wherein said 

detecting of said first location comprises:

observing that a user of said application has used a pointing device to click on a 

second location in an interface of said application;

25 observing that said user has indicated, with said pointing device, a move from said

second location to a third location, said second location and said third location being 

within said first location; and

observing that, following said move, scrolling of content in said view box has 

occurred.

30

4. The one or more computer-readable storage media of claim 1, wherein said acts 

further comprise:

14



20
10

34
16

90
 

25
 M

ar
 2

01
4 detecting a fourth location at which said view box is located.

5. The one or more computer-readable storage media of claim 1, wherein said view 

box comprises a second scroll bar, said first scroll bar being a vertical scroll bar, said

5 second scroll bar being a horizontal scroll bar, and wherein said acts further comprise: 

using said horizontal scroll bar in said application to navigate said content.

6. The one or more computer-readable storage media of claim 1, wherein said 

application is run in a computer system that displays, to a user, windows of at least some

fO application instances, wherein said using of said first location of said first scroll bar to 

navigate said content is not displayed in a window.

7. The one or more computer-readable storage media of claim 1, wherein said 

overlaying of said information based on said pixels on top of said view box comprises:

f5 putting said pixels in a document;

displaying said document as an overlay on top of said view box.

8. The one or more computer-readable storage media of claim 7, wherein said acts 

further comprise:

20 removing said pixels from said document based on a prediction that said pixels are

not likely to be requested by a user.

9. The one or more computer-readable storage media of claim 1, wherein said acts 

further comprise:

25 intercepting commands that a user issues through a window of said application;

and

determining which portions of said content to navigate to, and to collect pixels 

from, based on said commands.

30 10. The one or more computer-readable storage media of claim 9, wherein one of

said commands indicates a zoom level, and wherein said acts further comprise:

scaling said content based on said zoom level.

15



20
10

34
16

90
 

25
 M

ar
 2

01
4

11. The one or more computer-readable storage media of claim 1, wherein said acts 

further comprise:

anticipating, based on portions of said content that have been requested by a 

5 user, a portion of said content to be requested by said user in advance of said user's

having issued a command to obtain said portion; and

obtaining said portion of said content using said application.

12. The one or more computer-readable storage media of claim 1, wherein said acts 

fO further comprise:

anticipating, based on zoom levels of said content that have been requested by 

said user, a zoom level at which to show said content in advance of said user's having 

issued a command to view said content at said zoom level; and

scaling said content to said zoom level.

15

13. A method of obtaining content requested by a user, wherein the method 

comprises:

using a processor to perform acts comprising:

detecting a first location of a scroll bar of a first view box in an application

20 that a user is using to view content;

using said first location of said scroll bar to navigate through said content

said first view box, wherein navigation of said content is not made visible to said 

user on a display device;

storing pixels that represent said content; and 

25 overlaying said pixels on top of said view box such that display of said

pixels fully occludes said content in said view box, said view box being filled with 

said content while said pixels are overlaid on top of said view box so that said 

content is in said view box, but not visible, while said pixels are being overlaid on 

top of said view box.

30

14. The method of claim 13, wherein said acts further comprise:

receiving commands from said user through a window of said application; and

16



20
10

34
16

90
 

25
 M

ar
 2

01
4 using said commands to determine where to navigate in said content in said 

application.

15. The method of claim 13, wherein said acts further comprise:

5 anticipating which portions of said content said user is likely to want to view, and

a zoom level at which said user is likely to want to view said portions;

navigating to said portions in advance of said user's having issued commands 

requesting said portions; and

storing pixels that represent said portions at said zoom level. 

fO

16. The method of claim 13, wherein said detecting of said first location comprises: 

using metadata provided by said application to determine where said scroll bar is

located.

f 5 17. The method of claim 13, wherein said detecting of said first location comprises:

observing input issued by said user to said application, and actions taken by said

application following said input; and

determining, based on said input and said actions, where said scroll bar is located.

20 18. The method of claim 17, wherein said determining comprises:

observing that said user has used a pointing device to click on a second location in

a window of said application;

observing that said user has indicated, with said pointing device, a move from said 

second location to a third location, said second location and said third location being

25 within said first location; and

observing that, following said move, scrolling of content in said view box has 

occurred.

19. A system for responding to commands from a user who operates an application, 

30 the system comprising:

a processor on which said application executes; 

a data remembrance component in which said application is stored;

17



20
10

34
16

90
 

25
 M

ar
 2

01
4 a view adapter that is stored in said data remembrance component and that 

executes on said processor, said view adapter intercepting commands issued by said user 

through a window on which said application executes, said view adapter issuing 

commands to obtain content through said application, said application being visible to

5 said user on a display, but interactions between said view adapter and said application 

not being visible to said user on said display; and

a document in which said view adapter stores pixels that represent content that 

said view adapter obtains through said application, said view adapter causing said 

document to be overlaid on top of a view box of said application so as to appear in place

fO of said content, said document fully covering said content in said view box when said

document is displayed, said view box being filled with said content while said document is 

overlaid on top of said view box so that said content is in said view box, but not visible, 

while said document is being overlaid on top of said view box.

f 5 20. The system of claim 19, wherein said view adapter detects a location of said view

box and of a scroll bar in said view box either by:

receiving metadata from said application; or

observing motions of a pointing device in said window and actions of said 

application that follow said motions, and determining that said motions and said actions

20 are consistent with said view box and a scroll bar of said view box being in said location; 

wherein said view adapter uses said location to navigate said content in said

application.

21. One or more computer-readable storage media that store executable instructions

25 to provide new functionality to an application, substantially as hereinbefore described

with reference to the accompanying figures.

22. A method of obtaining content requested by a user, substantially as hereinbefore 

described with reference to the accompanying figures.

30

23. A system for responding to commands from a user who operates an application, 

substantially as hereinbefore described with reference to the accompanying figures.

18



WO 2011/087624 PCT/US2010/059282

1/6
10

6



WO 2011/087624 PCT/US2010/059282

2/6

F
IG

. 2



WO 2011/087624 PCT/US2010/059282

3/6



WO 2011/087624 PCT/US2010/059282

4/6

404

412

414

416

418

FIG. 4

402



WO 2011/087624 PCT/US2010/059282

5/6

504

506

508

502

FIG. 5



WO 2011/087624 PCT/US2010/059282

6/6

F
IG

. 6


