wO 2008/109244 A1 |10 0000 0 0O 0

(19) World Intellectual Property Organization | ‘1”1‘

) IO O T O 0O

International Bureau

(43) International Publication Date
12 September 2008 (12.09.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/109244 Al

(51)

21

(22)

(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GOGF 21/20 (2006.01)

International Application Number:
PCT/US2008/054152

International Filing Date:
15 February 2008 (15.02.2008)

Filing Language: English
Publication Language: English
Priority Data:

11/682,093 5 March 2007 (05.03.2007) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: UNGUREANASU, Cezar; One Microsoft
Way, Redmond, Washington 98052-6399 (US). ZY-
BURA, John H.; One Microsoft Way, Redmond,
Washington 98052-6399 (US). LEIBMANN, Matthias;
One Microsoft Way, Redmond, Washington 98052-6399

(81)

(34)

(US). GAJULA, Pallavi; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DYNAMIC COMPUTATION OF IDENTITY-BASED ATTRIBUTES

(57) Abstract: Enterprise Identity Management systems control access to in-

formation derived from identity-related data stored in various data reposito-

ries. An identity-based management system can automatically and dynami-

cally compute derived data when the source data changes. Rule-base tools
can be used to compute derived data from arbitrary attribute-based datasets.
Dynamic computation of identity-based attributes within information system

servers allows data to be aggregated and normalized from multiple data sources

302 o l o
Monitor data store for
changes
304

\ Y

Calculate computed attribute

306

S

Provide information from
computed attribute

l

End

Fig. 3

deployed across an organization so that updated related information can be per-
sisted and pushed to various servers in the organization.

WO 2008/109244 A1 | NI DI 00 000001000 01000 0

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted a — with international search report

patent (Rule 4.17(ii)) — before the expiration of the time limit for amending the
— asto the applicant’s entitlement to claim the priority of the claims and to be republished in the event of receipt of

earlier application (Rule 4.17(iii)) amendments

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

DYNAMIC COMPUTATION OF IDENTITY-BASED ATTRIBUTES
Background
[0001] Enterprise Identity Management systems control access to information
derived from identity-related data stored in various data repositories. Examples of
the data include email distribution lists or system resource access rights based on
identity-based attributes such as job function, office location, department, and
reporting relationship. Maintaining such information often requires an
administrator’s direct input and a knowledge of the relationships of the data, which
can be quite complex.
[0002] As identity attributes (such as users, employees, contractors, customers,
and the like) join, leave, and change positions within the organization, their
attributes frequently change. This usually requires that relational data be updated
as needed to reflect these changed attributes. Conversely, derived data sets (such as
new lists or entitlements) are populated based on current user attributes. The
challenge of maintaining this derived data current becomes even more difficult as
the both the source and the derived datasets become larger and/or more volatile
and/or more distributed.
Summary

[0003] This summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the detailed description. This
summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended as an aid in determining the scope of the claimed
subject matter.
[0004] The present disclosure is directed to efficient means of computing derived
data for an identity-based management system automatically and dynamically, such
as when the source data changes. Computing derived data automatically and
dynamically reduces IT costs through automation and timeliness, and increases
security by ensuring entitlements are accurately assigned and reported.
Dynamically computing the derived data can be applied to identity-based
application domains such as attribute-based distribution list memberships

regardless where that data is natively accessed.

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

[0005] Dynamic computation of identity-based attributes can be implemented as a
general rule-based tool for computing data regardless of the types of attributes and
attribute relationships used by any specific organization. The rule-base tool can be
used to compute derived data from arbitrary attribute-based datasets.

[0006] The rule set can comprise rules that describe how disparate objects in an
identity-based application store are related to one another, and rules which describe
the actual computations over the attributes of related objects. The two types or
rules allow high-order business logic to be described in a more modular and
intuitive way. Productivity is typically improved through reuse of rules describing
similar attribute computations which share the same conditions for object
relationships.

[0007] Dynamic computation of identity-based attributes within information
system servers allows data to be aggregated and normalized from multiple data
sources deployed across the organization, so that not only is all the requisite data
for the computation is persisted, but the dynamically computed results can be
pushed to the system(s) to be updated with the result as the results are computed.
Accordingly, systems (to where the computed results are pushed) do not require
knowledge of the computation and necessary relationships of the data. The systems
(to where the data is pushed) typically works with its known data types and
attributes, while the computation, relationship building, and derivation are typically
performed by the information system server. Incorporation of computation of
identity-based attributes within an information system server can also be used to
leverage the efficient relational query capabilities within an SQL server.

[0008] These and other features and advantages will be apparent from a reading of
the following detailed description and a review of the associated drawings. It is to
be understood that both the foregoing general description and the following
detailed description are explanatory only and are not restrictive. Among other
things, the various embodiments described herein may be embodied as methods,
devices, or a combination thereof. Likewise, the various embodiments may take

the form of an entirely hardware embodiment, an entirely software embodiment or

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

an embodiment combining software and hardware aspects. The disclosure herein
1s, therefore, not to be taken in a limiting sense.

Brief Description of the Drawings

[0009] FIGURE 1 is an illustration of an example operating environment and
system for dynamic computation of identity-based attributes.

[0010] FIGURE 2 is an illustration of dynamically calculated, identity-based
attributes.

[0011] FIGURE 3 is a top-level illustration of a flow diagram for dynamic
computation of identity attributes.

Detailed Description

[0012] As brietly described above, embodiments are directed to dynamic
computation of identity-based attributes. With reference to FIGURE 1, one
example system for managed code assemblies includes a computing device, such as
computing device 100. Computing device 100 may be configured as a client, a
server, a mobile device, or any other computing device that interacts with data in a
network based collaboration system. In a very basic configuration, computing
device 100 typically includes at least one processing unit 102 and system memory
104. Depending on the exact configuration and type of computing device, system
memory 104 may be volatile (such as RAM), non-volatile (such as ROM, flash
memory, etc.) or some combination of the two. System memory 104 typically
includes an operating system 105, one or more applications 106, and may include
program data 107 such that data store monitor 120, attribute computer 122, and
cache 124 can be implemented (which are discussed below).

[0013] Computing device 100 may have additional features or functionality. For
example, computing device 100 may also include additional data storage devices
(removable and/or non-removable) such as, for example, magnetic disks, optical
disks, or tape. Such additional storage is illustrated in FIGURE 1 by removable
storage 109 and non-removable storage 110. Computer storage media may include
volatile and nonvolatile, removable and non-removable media implemented in any
method or technology for storage of information, such as computer readable

instructions, data structures, program modules, or other data. System memory 104,

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

removable storage 109 and non-removable storage 110 are all examples of
computer storage media. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can be accessed by
computing device 100. Any such computer storage media may be part of device
100. Computing device 100 may also have input device(s) 112 such as keyboard,
mouse, pen, voice input device, touch input device, etc. Output device(s) 114 such
as a display, speakers, printer, etc. may also be included.

[0014] Computing device 100 also contains communication connections 116 that
allow the device to communicate with other computing devices 118, such as over a
network. Networks include local area networks and wide area networks, as well as
other large scale networks including, but not limited to, intranets and extranets.
Communication connection 116 is one example of communication media.
Communication media may typically be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other wireless media. The
term computer readable media as used herein includes both storage media and
communication media.

[0015] In accordance with the discussion above, computing device 100 system
memory 104 (and processor 102, and related peripherals can be used to implement
data store monitor 120, attribute computer 122, and cache 124. Data store monitor
120, attribute computer 122, and cache 124 in an embodiment can be used to
implement dynamic computation of identity-based attributes (described below with

reference to Figures 2-3). Data store monitor 120 can be used for detecting

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

changes to identity-based attributes for structured data in a data store and changes
to relationships amongst the structured data. Attribute computer 122 can be used
for computing in response to a detected change a computed attribute for a query
(that can be an identity function, for example). Cache 124 can be used for
persisting the computed attribute and sending the computed attribute in response to
a query that be the same (or substantially similar to) or different from the query for
which the change was detected.

[0016] FIGURE 2 is an illustration of dynamically calculated, identity-based
attributes. In an embodiment, an identity-based attribute computation can be
directly associated with an attribute chosen to hold the result of the computation.
The chosen attribute thus becomes dedicated to the result of the computation, and
can be referred to as a “computed attribute.” The value of a computed attribute
typically only changes when the result of the computation itself changes.

[0017] A straightforward implementation could perform the actual computation
on-demand whenever the computed attribute is accessed. However, to improve
processing efficiency, another implementation can use a more sophisticated system
whereby the result of the computation is cached. While this approach typically
requires more physical storage, it typically reduces computational overhead since
identity-based attribute computations are normally only executed when the inputs
into the computation change.

[0018] In dynamic computation of identity-based attributes, the values of a
computed attribute on a specific object are calculated from the attribute values
present on a set of related objects (which may or may not include the object holding
the computed attribute). In a server implementation, the object holding the
computed attribute is called the “base object” (220), and the set of related objects
are called “match objects” (210, 230, and 240). The base object itself may also be
a match object.

[0019] After the base and match objects have been established, an arbitrary
operation over the set of values from all match objects can be performed to produce

a resultant set of values for the computed attribute. In general, any mathematical

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

operation can be used for the computation, depending on the amount of flexibility
desired for a given scenario.
[0020] In one embodiment, the operations can be restricted to only allow the
relocation of values to different operations. (In other embodiments operations can
be supported that modify the content of individual values, such as arithmetic or
string manipulation operators.) The feature of identity-based attribute
computations is typically implemented on top of “normalized” identity data store.
In the embodiment, any value-level transformations are performed before the data
enters the normalized identity store. (In other embodiments value-level
transformation operators can be provided.)
[0021] In the embodiment, the transformation from match object values into
computed attribute values is defined by listing the names of one or more attributes
from the match objects which thus forms the computed value set. These attributes
are called “value attributes.” Thus the result of the computation is the union of all
values from all value attributes from all match objects.
[0022] As illustrated in Figure 2, two relationships (250 and 260) and two value
attributes are used to compute five values from the three match objects. Thus
components used to define a computed attribute for the example comprises two
lists. The first is the list of relationships, and the second is the list of value
attributes. The definition of CA1 in this example can be given as follows in Table
I:

Table I

ICA1 Definition|

Relationships: “Relationship 17,
“Relationship 2”

Value Attributes: “VA1”, “VA2”

[0023] In the embodiment, the definitions are stored in the DSML schema of the
aggregate identity store, using custom XML elements to extend the DSML schema
description format. An example extended DSML definition for CA1 can be written

as:

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

<ms-dsml :computed-attribute-type id="CAl" ms-—
dsml :indexed="true"
ms—dsml:indexable="true">
<dsml:name>CAl</dsml : name>
<ms-dsml:value-attribute ref="#VAl" />
<ms-dsml:value-attribute ref="4VA2" />
<ms-dsml:relationship ref="#Relationshipl" />
<ms-dsml:relationship ref="#Relationship2" />
</ms-dsml:computed-attribute-type>
[0024] The example DSML definition does not describe how the relationships are
defined. Not defining the relationships in the DSML code illustrates an important
modularity in the definitions of identity-based attribute computations. The
conditions that define a relationship are normally established independently of the
computations which use those relationships. The modularity allows the logic for a
relationship to be reused in multiple computations. It also potentially allows
different parties, with different areas of expertise, to author relationships and
computations independently. The modularity of the code can thus offer a
significant improvement in system manageability.
[0025] A relationship can be defined as any set of conditions that can be evaluated
to determine the set of match objects for a given base object. In an embodiment, a
relationship can be defined by three optional components: a “filter” on the match
object, a “filter” on the base object, and a list of “search conditions.” A “filter” is
an arbitrary test that can be applied to a single object to determine if it is a
candidate for the relationship. A “search condition” is a test that can take as input
both the match object and the base object, and determine if the two objects are
related according to the specific attribute values on each. A relationship is
determined to exist between two objects when the match filter test passes, when the
base filter test passes, and when all search condition tests pass. If any of these tests

has not been defined for a given relationship, then that test is considered to always

pass. The definition of a relationship can be given as follows in Table II:

10

15

20

25

30

35

WO 2008/109244 PCT/US2008/054152

Table 11

Relationship Definition|

Match filter: <Arbitrary test on match object>
Base filter: <Arbitrary test on base object>
Search Condition 1: <Arbitrary condition
between both objects>

Search Condition 2: <Arbitrary condition
between both objects>

ééarch Condition N: <Arbitrary condition
between both objects>

[0026] In an embodiment, a “filter” is defined as a mathematical combination of
Boolean operators, conditional operators, constant values, and object attributes. A
typical example for a filter might be “title starts-with ‘VP’ and buildingNumber =
22.” This filter would only pass for objects whose “title” attribute has the string
prefix “VP” and whose “buildingNumber” attribute has the numeric value 22.
[0027] A “search condition” can be primarily defined by two listing attributes,
one called the “base attribute” and one called the “match attribute.” A simple
search condition 1s considered to “pass” for a given pair of base object and match
object when the match attribute on the match object and the base attribute on the
base object share at least one value in common.

[0028] However, there can be three additional options on a search condition that
influence the matching logic. The first is an “inversion” flag which negates the
result of the search condition. In other words, an inverted search condition passes
for a given pair of objects usually only if the match attribute on the match object
has no values in common with the base attribute on the base object. The second
and third options are “transitivity” flags which can be independently set on either
the match or the base object (discussed below). The definition of a search
condition can be given as follows in Table II1:

Table 111

Search Condition Definition|

Match attribute: <Name of attribute on match
object>

Base attribute: <Name of attribute on base
object>

10

15

20

25

30

35

WO 2008/109244 PCT/US2008/054152

Inverted: <True/False>
Match attribute transitive: <True/False>
Base attribute transitive: <True/False>

[0029] Normally, a search condition directly tests the immediate values of the
match attribute against the immediate values of the base attribute. However, if the
transitive tlag is turned on for either attribute, then the value set that will be tested
for that attribute will actually be the “transitive closure” of the immediate values of
the attribute. The transitive closure operation is usually only defined for attributes
of reference type, so it is normally invalid to set this flag for a match or base
attribute which is not of a reference type. The actual transitive closure operation
typically has the standard mathematical definition: the result is the set of all objects
reachable through the specitied reference attribute in any number of “hops.”

[0030] For example, the standard “manager” reference-type attribute can be used.
For a given user object, the immediate value of the attribute is a reference to the
one person who is that user’s manager. Additionally, the transitive closure of this
attribute is the entire set of the user’s manager, the user’s manager’s manager, and
the like, all the way up the management chain of the user in question.

[0031] Like the computed attribute definitions discussed above, relationship
definitions can be stored in an aggregated identity store schema using an extended
DSML grammar. An example of a relationship definition in using an extended
DSML grammar can be as follows:

<ms-dsml:relationship-type id="Relationshipl">
<dsml:name>Relationshipl</dsml :name>
<ms-dsml:match-filter>
<ms-dsml:or-condition>
<ms-dsml :and-condition>
<ms-dsml:relational-predicate
operator="not-contains">
<ms-dsml:left-operand>
<ms-dsml:mv-attribute
ref="department" />
</ms-dsml:left-operand>
<ms-dsml:right-operand>
<ms-dsml:constant-
value>Internal Affairs</ms-dsml:constant-value>
</ms-dsml:right-operand>

10

15

20

25

30

35

40

WO 2008/109244 PCT/US2008/054152

</ms-dsml:relational-predicate>
</ms-dsml:and-condition>
</ms-dsml:or-condition>
</ms-dsml:match-filter>
<ms-dsml :base-filter>
<ms-dsml:or-condition>
<ms-dsml :and-condition>
<ms-dsml:relational-predicate
operator="substring-any">
<ms-dsml:left-operand>
<ms-dsml:mv-attribute
ref="description" />
</ms-dsml:left-operand>
<ms-dsml:right-operand>
<ms-dsml:constant-
value>vendor</ms-dsml:constant-value>
</ms-dsml:right-operand>
</ms-dsml:relational-predicate>
</ms-dsml:and-condition>
</ms-dsml:or-condition>
</ms-dsml:base-filter>
<ms-dsml :search-condition ms-dsml:positive="false">
<ms-dsml :base-attribute ms-
dsml:transitive="false" ref="#company" />
<ms-dsml:match-attribute ms-
dsml:transitive="false" ref="#department" />
</ms-dsml:search-condition>
<ms-dsml:search-condition ms-dsml:positive="true">
<ms-dsml :base-attribute ms-
dsml:transitive="true" ref="#manager" />
<ms-dsml:match-attribute ms-
dsml:transitive="false" ref="#assistant" />
</ms-dsml:search-condition>
</ms-dsml:relationship-type>

[0032] As noted above, relationship and computed attribute definitions frequently
reference other attributes in the identity store schema. According to the given
schema, any of these referenced attributes can be themselves computed attributes.
Thus a computed attribute can be referenced as a value attribute in another
computed attribute. A computed attribute can also be used as a match attribute or
base attribute in a search condition. Additionally a computed attribute could be

referenced in the match or base filters of a relationship.

10

10

15

20

25

WO 2008/109244 PCT/US2008/054152

[0033] These types of nested definitions are allowed to any degree of depth or
complexity, such that typically none of the definitions are cyclically related. The
dependencies are calculated between the various nested definitions, and
calculations are performed in the proper order such that the dependencies are
obeyed and all computation results are kept current.

[0034] FIGURE 3 is a top-level illustration of a flow diagram for dynamic
computation of identity attributes. In operation 302, a data store is monitored for
changes to identity-based attributes for structured data and changes to relationships
amongst the structured data.

[0035] In operation 304, a computed attribute is dynamically computed for a first
query. The calculation is performed in response to the detected change as detected
by the data store monitoring above. The query can be persisted in a cache for
replying to queries that are the same or similar to (sharing some identical
components) the first query. The cache can be implemented in a server.

[0036] In operation 300, the information from the computed attribute is provided
in response to a second query. In various embodiments, the second query can be
the same as, a duplicate of, similar to, different from (and the like) as the first
query. The second query is received after the computed attribute has been
computed.

[0037] In various embodiments, the information from the computed attribute can
be published (either in conjunction with, or separately from operation 307) by
exporting the computed result to a connected system. The connected system can
then use the exported results to query against the connected systems querying
capabilities.

[0038] The above specification, examples and data provide a complete description
of the manufacture and use of embodiments of the invention. Since many
embodiments of the invention can be made without departing from the spirit and

scope of the invention, the invention resides in the claims hereinafter appended.

11

10

15

20

25

30

WO 2008/109244 PCT/US2008/054152

WE CLAIM:
1. A computer-implemented method for dynamic computation of identity-
based attributes, comprising:

[302] monitoring a data store for changes to identity-based attributes for
structured data and changes to relationships amongst the structured data;

[304] in response to a detected change, dynamically computing a computed
attribute for a first query; and

[306] in response to a second query, providing information from the

computed attribute.

2. The method of claim 1 wherein the first and second queries are the same
query.
3. The method of claim 1 wherein the second query is received after the

computed attribute has been computed.

4, The method of claim 1 wherein the computed attribute is persisted in a
cache.
S. The method of claim 4 wherein the computed attribute is distributed to

another system.

6. The method of claim 1 wherein the structured data relationship is defined
using a filter on a match object, a filter on an object, and a list of search conditions.
7. The method of claim 6 wherein one of the search conditions is an element of
a set comprising an inversion element and a transitivity element.

8. The method of claim 7 wherein the components used to define the computed
attribute are defined using a schema.

9. The method of claim 1 wherein the values of a computed attribute on a
specific object are calculated from the attribute values present on a set of related
objects.

10. The method of claim 1 wherein the operations used to compute a computed
attribute allows the relocation of values to different operations.

11. The method of claim 10 wherein the operations that modify the content of

individual values by using arithmetic and/or string manipulation operators.

12

10

15

20

25

WO 2008/109244 PCT/US2008/054152

12. The method of claim 1 wherein the components used to define the computed
attribute comprise a first list of relationships and a second list of value attributes

13. The method of claim 1 wherein the data store is a normalized identity data
store.

14. The method of claim 13 wherein value-level transformations are performed
before the data enters the normalized identity store.

15. The method of claim 13 wherein value-level transformations are performed
after the data enters the normalized identity store.

16. A system for event-based and/or state changes-based parsing of an input file,
comprising:

[220] a data store monitor for detecting changes to identity-based attributes
for structured data in a data store and changes to relationships amongst the
structured data;

[222] an attribute computer for computing in response to a detected change a
computed attribute for a first query that is an identity function; and

[224] a cache for persisting the computed attribute and sending the
computed attribute in response to a second query.

17. The system of claim 16 wherein a computed attribute is referenced as a

value attribute in another computed attribute.

18. A tangible medium comprising computer-executable instructions for:
monitoring a data store for changes to identity-based attributes for structured

data and changes to relationships amongst the structured data;

in response to a detected change, dynamically computing a computed
attribute for a first query that is an identity function; and

persisting the computed attribute.

19. The tangible medium of claim 18 further comprising providing information
from the computed attribute in response to a second query.
20. The tangible medium of claim 18 further comprising using computed

attribute as a match attribute or base attribute in a search condition.

13

WO 2008/109244

1/3

/’I 00

PCT/US2008/054152

COMPUTING DEVICE

SYSTEM MEMORY

ROM/RAM

OPERATING
SYSTEM

—

APPLICATION(S)

PROGRAM
DATA

DATA STORE
MONITOR

ATTRIBUTE
COMPUTER

™~

CACHE

104
f1 02
105 PROCESSING UNIT
106
107

REMOVABLE
STORAGE

NON-REMOVABLE
STORAGE

INPUT DEVICE(S)

OUTPUT DEVICE(S)

COMMUNICATION
CONNECTION(S)

ﬁ

118
\

Fig. 1

v

OTHER
COMPUTING
DEVICES

WO 2008/109244 PCT/US2008/054152

2/3

210 230

Match Object 3 Match Object 1

VAT VAT: valuef
value4
value5

VA2: value2

Match Object 2

Base Object

CA1:
valuel value2

Relationship 1
Relationship 2

Relationship 2

value3 value4
value5

CA: Computed Attribute
VA: Value Attribute

240

Fig. 2

WO 2008/109244

3/3

302

Monitor data store for
changes

304

Calculate computed attribute

306

Provide information from
computed attribute

Fig. 3

PCT/US2008/054152

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2008/054152

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 21/20(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F 11/30, 15/20, 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility Models and applications for utility model since 1975
Japanses Utility Models and applications for utility model since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKIPASS(KIPO internal) "identity", "attribute”, "update"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2002-0144142 A1 (SHOHAT DALIA) 3 October 2002 1-20
See abstract, claims

A US 6088679 A (BARKLEY JOHN) 11 July 2000 1-20
See abstract, claims

A US 6202066 B1 (BARKLY JOHN, et al.) 13 March 2001 1-20
See abstract, claims

A US 7171411 B1 (LEWIS NINA, et al.) 30 January 2007 1-20
See abstract, claims

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
23 JULY 2008 (23.07.2008) 24 JULY 2008 (24.07.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- LEE, Jong Ick
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8373

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2008/054152
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002-0144142 A1 03.10.2002 EP 1248178 B1 07.01.2004
US 6088679 A 11.07.2000 NONE
US 6202066 B1 13.03.2001 NONE
uUs 7171411 B1 30.01.2007 NONE

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - wo-search-report
	Page 20 - wo-search-report

