(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
22. Februar 2001 (22.02.2001)

(10) Internationale Veröffentlichungsnummer
WO 01/12587 A1

(PCT)

(51) Internationale Patentschriftkennung: C07C 235/64,
237/44, 231/02, C07D 209/04, C07C 233/77, 233/81,
A01N 37/24

Karl-Heinz [DE/DE]; Pastor-Lüb-Str. 30 a, 40764 Langenfeld (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGESELLSCHAFT; 51368 Leverkusen (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU,
CZ, DE, DK, DM, EZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, I.K,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): A IPO-Büro (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW),
europäisches Patentamt (AM, AZ, BY, KF, KZ, MD, RJ, Rf, TM),
europäisches Patentamt (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent
(BF, RJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

(21) Internationales Aktenzeichen: PCT/EP00/07523

(22) Internationales Anmeldedatum:
3. August 2000 (03.08.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 38 737.0 16. August 1999 (16.08.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
der der USA): BAYER AKTIENGESELLSCHAFT [DE/DE];
51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BOIE, Christiane
[DE/DE]; Landrat-Trimborn-Str. 47, 42799 Leichlingen
(DE). BACKHAUS, Dirk [DE/DE]; Friesenwall 130,
50672 Köln (DE). GAVER, Herbert [AT/DE]; Sandstr.
66, 40789 Monheim (DE). JORDAN, Stephan [DE/DE];
Morgengraben 14, 51061 Köln (DE). VAUPEL, Martin
[DE/DE]; Landrat-Trimborn-Str. 47, 42799 Leichlingen
(DE). WACHENDORFF-NEUMANN, Ulrike [DE/DE];
Oberer Markenweg 85, 56566 Neuwied (DE). KUCK,

Veröffentlicht:
— Mit internationalem Rechenericht.
— Vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen.

Zur Erklärung der Zweischabten-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

(54) Titel: AMINOSALICYLCLIC ACID AMIDES AND THEIR USE FOR COMBATING ORGANISMS THAT ARE HARMFUL TO PLANTS

(54) Bezeichnung: AMINOSALICYLSÄUREAMIDE UND IHRE VERWENDUNG ZUR BEKämpfung VON PFLANZEN-
SCHÄDIGENDEM ORGANISMEN

(57) Abstract:
The invention relates to known and novel acylaminosalicylic acid amides, to several methods for producing them and to their use for combating organisms that are harmful to plants, and to novel intermediate products and methods for producing the same.

(57) Zusammenfassung: Die Erfindung betrifft bekannte und neue Acylaminosalicylsäureamide, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von pflanzenschädigenden Organismen, sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.
Die Erfindung betrifft bekannte und neue Acylaminosalicylsäureamide, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von pflanzenschädigenden Organismen, sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.

Es wurde nun gefunden, daß die Acylaminosalicylsäureamide der allgemeinen Formel (I),

\[\text{R}^1 \text{H} \text{N} \text{O} \text{N} \text{R}^2 \text{R}^3 \text{O} \text{R}^1 \text{OH} \]

(I)

in welcher

\[\text{R}^1 \text{ für Wasserstoff oder Alkyl steht,} \]

\[\text{R}^2 \text{ für Wasserstoff oder Alkyl steht, oder} \]
Für eine Gruppierung

\[
\text{R}^3 \quad \text{oder} \quad \text{R}^8 \quad \text{oder} \quad \text{R}^5
\]

steht, worin

\[
A \quad \text{für Sauerstoff, Schwefel oder } -(N-R^9) - \text{ steht, worin}
\]

\[
\text{R}^9 \quad \text{für Wasserstoff oder Alkyl steht oder gemeinsam mit } \text{R}^6 \text{ und dem}
\]

Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Ring bildet,

\[
\text{R}^4 \quad \text{für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl steht oder}
\]

\[
\text{R}^2 \text{ und } \text{R}^4 \quad \text{gemeinsam mit den Atomen, an die sie gebunden sind, einen}
\]

heterocyclischen Ring bilden,

\[
\text{R}^5 \quad \text{für Wasserstoff oder Alkyl steht oder}
\]

\[
\text{R}^4 \text{ und } \text{R}^5 \quad \text{gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden,}
\]

\[
\text{R}^6 \quad \text{für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Cyclo-alkyl, Aryl oder Heterocyclyl steht,}
\]

\[
\text{R}^7 \quad \text{für Wasserstoff oder Alkyl steht,}
\]

\[
\text{R}^8 \quad \text{für Wasserstoff oder Alkyl steht und}
\]
Für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Alkylcarbonyl, Cycloalkyl, Cycloalkylcarbonyl, Aryl, Arylcarbonyl, Heterocyclyl oder Heterocyclycarbonyl steht,

sich zur Bekämpfung von Organismen, die Pflanzenschäden und Schäden an technischen Materialien verursachen, eignen. Unter diesem Organismen werden insbesondere Mikroorganismen verstanden.

Halogen steht im allgemeinen für Fluor, Chlor, Brom oder Iod, vorzugsweise für Fluor, Chlor oder Brom, insbesondere für Fluor oder Chlor.

Aryl steht für aromatische, mono oder polycyclische Kohlenwasserstoffringe, wie z.B. Phenyl, Naphthyl, Anthranyl, Phenanthryl, vorzugsweise für Phenyl oder Naphthyl, insbesondere für Phenyl.

Cycloalkyl steht für gesättigte, carbocyclische, ringförmige Verbindungen, die gegebenenfalls mit weiteren carbocyclischen, ankondensierten oder überbrückten Ringen ein polycyclisches Ringsystem bilden.

Cycloalkenyln steht für carbocyclische, ringförmige Verbindungen, die mindestens eine Doppelbindung enthalten und gegebenenfalls mit weiteren carbocyclischen, ankondensierten oder überbrückten Ringen ein polycyclisches Ringsystem bilden.

Bevorzugt ist die Verwendung von Verbindungen der Formel (I), in welcher

\[R^1 \] für Wasserstoff oder Methyl steht,
R^2 für Wasserstoff oder C$_1$-C$_4$-Alkyl steht und

R^3 für eine Gruppierung stehen, worin

A für Sauerstoff, Schwefel oder –(N-R9)– steht, worin

R^9 für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen steht
oder gemeinsam mit R^6 und dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls durch C$_1$-C$_4$-Alkyl substituierten heterocyclischen Ring mit 3 bis 7 Ringgliedern bildet,

R^4 für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Aryleist substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleist substituiertes Alkyl oder jeweils gegebenenfalls im Aryleist, bzw. Heterocycyleist substituiertes Aryl, Heterocycl, Arylalkyl oder Heterocyclalkyl mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleist steht oder

R^2 und R^4 gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R^5 für Wasserstoff oder C$_1$-C$_4$-Alkyl steht oder
R⁴ und R⁵ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R⁶ für Wasserstoff oder C₁-C₁₂-Alkyl, gegebenenfalls durch C₁-C₄-Alkyl substituieretes C₃-C₇-Cycloalkyl, jeweils gegebenenfalls im Aryl- bzw. Heterocycliteil substituieretes Aryl, Arylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleteil, Heterocyclyl oder Heterocyclylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleteil steht,

R⁷ für Wasserstoff oder C₁-C₄-Alkyl steht,

R⁸ für Wasserstoff oder C₁-C₄-Alkyl steht und

Bevorzugte Substituenten für Aryl oder Arylalkyl sind in der nachstehenden Aufzählung aufgeführt:

25 Halogen, Cyano, Amino, Hydroxy, Formyl, Carboxyl, Carbamoyl, Thiocarbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;
jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxy carbonyl, Alkylsulfonyloxy, Hydroxyiminoalkyl oder Alkoxyiminoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen und/oder geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen substituiertes, jeweils zweifach verknüpftes Alkylen oder Dioxyalkylen mit jeweils 1 bis 6 Kohlenstoffatomen; sowie

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Aryl und Aryloxy.

Bevorzugte Substituenten für Heterocyclyl oder Heterocyclylalkyl sind in der nachstehenden Aufzählung aufgeführt:

Halogen, Amino, Hydroxy, Oxo,

Alkyl, Alkoxy, Alkylthio, Alkylamino, Dialkylamino mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen.
Besonders bevorzugt ist die Verwendung von Verbindungen der Formel (I), in welcher

\[R^1 \] für Wasserstoff oder Methyl steht,

\[R^2 \] für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

\[R^3 \] für eine Gruppierung

steht, worin

\[A \] für Sauerstoff, Schwefel oder \(-(N-R^9)\)– steht, worin

\[R^9 \] für Wasserstoff oder Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder gemeinsam mit \(R^6 \) und dem Stickstoffatom, an das sie gebunden sind, für gegebenenfalls durch Methyl oder Ethyl substituiertes Pyrrolidinyl, Morpholinyl, Piperidinyl, Piperazinyl oder Hexahydroazepinyl steht,

\[R^4 \] für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Phenylein substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylcarbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylein oder Heterocyclenteil substituiertes Phenyl, Benzyl, 1-Phenylethyl, 2-Phenethyl oder Indolylmethyl steht oder
R² und R⁴ gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,

R⁵ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

R⁴ und R⁵ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropanring, Cyclopentan- oder Cyclohexanring stehen,

R⁶ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl oder Cyclohexyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclenteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl, Morpholinylbutyl oder durch Pyrrolidonyl substituiertes Methyl, Ethyl oder Propyl steht,

R⁷ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht,

R⁸ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

Z. für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Methylcarbonyl, Ethylcarbonyl, n- oder i-Propylcarbonyl, n-, i-, s- oder t-Butylcarbonyl, Pentylcarbonyl, Hexylcarbonyl, Heptylcarbonyl, Octylcarbonyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl,
Cyclohexyl, Cyclopentylcarbonyl oder Cyclohexylcarbonyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclyteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl, Morpholinylbutyl, Phenylcarbonyl, Benzylcarbonyl, 1-Phenethylcarbonyl, 2-Phenethylcarbonyl, Phenylcarbonylpropylcarbonyl, Phenylcarbonylbuty1carbonyl, Phenylcarbonylpentylcarbonyl oder Phenylcarbonylhexylcarbonyl, Pyrrolidinylcarbonyl, Morpholinylcarbonyl, Pyrrolidinylcarbonylbuty1carbonyl oder Morpholinylcarbonylbuty1carbonyl steht.

Besonders bevorzugte Substituenten für Phenyl sind in der nachstehenden Auflistung aufgeführt:

Fluor, Chlor, Brom, Cyano, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thio-carbamoyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Proxoy, Methythio, Ethyllthio, n- oder i-Propyllthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Acetylamino, Formylamino, N-Formyl-N-methylamino, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetoxy, Methoxycarbonyl, Ethoxycarbonyl, Methylsulfonyloxy, Ethylsulfonyloxy, Hydroxyiminomethyl, Hydroxyiminooethyl, Methoxyiminomethyl, Ethoxyiminomethyl, Methoxyiminooethyl oder Ethoxyiminooethyl,

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n- oder i-Propyl substituiertes, jeweils zweifach verknüpftes Trimethylen (Propan-1,3-diyl), Tetramethylen (Butan-1,4-diyl), Methylenedioxy oder Ethylenedioxy,
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Phenyl oder Phenoxy.

Besonders bevorzugte Substituenten für Heterocyclyl oder Heterocyclylalkyl sind in der nachstehenden Aufzählung aufgeführt:

5

Halogen, Amino, Hydroxy, Oxo, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino oder Diethylamino.

10

Die vorliegende Anmeldung betrifft ferner neue substituierte Acylaminosalicylsäureamide der allgemeinen Formel (I-a),

![Chemical Structure](I-a)

in welcher

15

R^{11} für Wasserstoff oder Alkyl steht,

R^{12} für Wasserstoff oder Alkyl steht, oder
R$_{13}$ für eine Gruppierung oder oder

\[\text{R}^{18} \text{Z}^{1} \text{R}^{17} \text{R}^{16} \text{R}^{15} \text{R}^{14} \]

steht, worin

A für Sauerstoff, Schwefel oder -(N-R$_{19}$)– steht, worin

R$_{19}$ für Wasserstoff oder Alkyl steht oder gemeinsam mit R$_{16}$ und dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Ring bildet,

R$_{14}$ für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl steht oder

R$_{12}$ und R$_{14}$ gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

R$_{15}$ für Wasserstoff oder Alkyl steht oder

R$_{14}$ und R$_{15}$ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden,

R$_{16}$ für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aryl oder Heterocyclyl steht,

R$_{17}$ für Wasserstoff oder Alkyl steht und
R^{18} für Wasserstoff oder Alkyl steht,

Z^{1} für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Alkyl-carbonyl, Cycloalkyl, Cycloalkylcarbonyl, Aryl, Arylcarbonyl, Heterocyclyl oder Heterocyclylcarbonyl steht,

R^{20} für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl oder Hetaryl steht oder

R^{12} und R^{20} gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

R^{21} für Wasserstoff oder Alkyl steht oder

R^{20} und R^{21} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden.

Weiterhin wurde gefunden, daß man die neuen substituierten Acylaminosalicylsäureamide der allgemeinen Formel (I-a) erhält, wenn man

a) Aminosalicylsäureamide der allgemeinen Formel (II),

\[
\text{H}_2\text{N} - \text{OH} - \text{CON} - \text{NR}^{12} \text{R}^{13}
\]

in welcher

R^{12} und R^{13} die oben angegebenen Bedeutungen haben,
mit einem Acylierungsmittel der allgemeinen Formel (III),

\[
\begin{align*}
&\text{R}^{11}, \text{X}^1 \\
&\text{(III)}
\end{align*}
\]

in welcher

5

\text{R}^{11} \quad \text{die oben angegebene Bedeutung hat und}

\text{X}^1 \quad \text{für Halogen, Hydroxy, Alkoxy oder Alkylcarbonyloxy steht,}

10

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säureakzeptors, und gegebenenfalls in Gegenwart eines weiteren Reaktionshilfsmittels, umsetzt, oder wenn man

b) Nitrosalicylsäureamide der allgemeinen Formel (IV)

15

\[
\begin{align*}
&\text{O}_2\text{N} - \text{OH} - \text{CO} - \text{N}^+ - \text{R}^{12} \\
&\quad \text{R}^{13} \\
&\text{(IV)}
\end{align*}
\]

in welcher

\text{R}^{12} \quad \text{und} \quad \text{R}^{13} \quad \text{die oben angegebenen Bedeutungen haben,}

20

mit Ameisensäure, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines weiteren Reaktionshilfsmittels, umsetzt.

Schließlich wurde gefunden, dass die neuen Acylaminosalicylsäureamide der allgemeinen Formel (Ia) eine starke Wirkung gegen pflanzen- und materialschädigende Organismen, insbesondere eine sehr starke fungizide Wirkung zeigen.
Die erfindungsgemäßen Wirkstoffe zeigen gegebenenfalls in bestimmter Konzentrationen und Anforderungen auch eine Wirkung gegen pflanzliche und tierische Schädlinge.

Unter schädlichen Organismen werden insbesondere Mikroorganismen verstanden.

Bevorzugt sind die neuen Verbindungen der Formel (I-a), in welcher

$$R_{11}^{11} \text{ für Wasserstoff oder Methyl steht,}$$

$$R_{12}^{12} \text{ für Wasserstoff oder C}_1\text{-C}_4\text{-Alkyl steht und}$$

$$R_{13}^{13} \text{ für eine Gruppierung steht, worin}$$

$$A \text{ für Sauerstoff, Schwefel oder } -(N-R_{19}^{19}) \text{– steht, worin}$$
R^{19} für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen steht
oder gemeinsam mit R^{16} und dem Stickstoffatom, an das sie ge-
bunden sind, einen gegebenenfalls durch C_{1}-C_{4}-Alkyl substituier-
ten heterocyclischen Ring mit 3 bis 7 Ringgliedern bildet,

R^{14} für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gege-
benenfalls im Arylteil substituiertes Arylcarbonyloxy oder Alkoxy,
Alkylthio, Alkoxy carbonyl oder Alkyl carbonyloxy mit jeweils 1 bis 6
Kohlenstoffatomen im Alkyleil substituiertes Alkyl oder jeweils gege-
benenfalls im Arylteil, bzw. Heterocyclyleil substituiertes Aryl,
Heterocycl, Arylalkyl oder Heterocyclylalkyl mit jeweils 1 bis 6 Koh-
lenstoffatomen im Alkyleil steht oder

R^{12} und R^{14} gemeinsam mit den Atomen, an die sie gebunden sind, einen
heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R^{15} für Wasserstoff oder C_{1}-C_{4}-Alkyl steht oder

R^{14} und R^{15} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden
sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R^{16} für Wasserstoff oder C_{1}-C_{12}-Alkyl, gegebenenfalls durch C_{1}-C_{4}-Alkyl
substituiertes C_{3}-C_{7}-Cycloalkyl, jeweils gegebenenfalls im Aryl- bzw.
Heterocyclyleil substituiertes Aryl, Arylalkyl mit 1 bis 6 Kohlenstoff-
atomen im Alkyleil, Heterocycl, Heterocyclylalkyl mit 1 bis 6
Kohlenstoffatomen im Alkyleil, oder durch Pyrroolidonyl substituiertes
C_{1}-C_{4}-Alkyl steht,

R^{17} für Wasserstoff oder C_{1}-C_{4}-Alkyl steht und

R^{18} für Wasserstoff oder C_{1}-C_{4}-Alkyl steht,
für Wasserstoff oder C₁-C₁₂-Alkyl oder Alkylcarbonyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₇-Cycloalkyl oder Cycloalkylcarbonyl, jeweils gegebenenfalls im Aryl- bzw. Heterocyclylteil substituiertes Aryl, Arylcarbonyl, Arylalkyl, Arylalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Heterocycl, Heterocyclcarbonyl, Heterocyclalkyl oder Heterocyclalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil steht,

R²⁰ für Wasserstoff oder gegebenenfalls durch Formyloxy, gegebenenfalls im Arylteil substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil substituiertes C₁-C₄-Alkyl oder jeweils gegebenenfalls im Arylteil, bzw. Heterocyclylteil substituiertes Aryl, Heterocycl, Arylalkyl mit 2 bis 6 Kohlenstoffatomen im Alkylteil oder Heterocyclalkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil oder substituiertes Benzyl steht oder

R¹² und R²⁰ gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R²¹ für Wasserstoff oder C₁-C₄-Alkyl steht oder

R²⁰ und R²¹ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden.

Bevorzugte Substituenten für Aryl oder Arylalkyl sind in der nachstehenden Aufzählung aufgeführt:

Halogen, Cyano, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;
jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxy carbonyl, Alkylsulfonyloxy, Hydroxyiminoalkyl oder Alkoxyiminoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkytleilen;

jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen und/oder geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen substituiertes, jeweils zweifach verknüpftes Alkylen oder Dioxalkylen mit jeweils 1 bis 6 Kohlenstoffatomen; sowie

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Aryl und Aryloxy.

Bevorzugte Substituenten für Heterocyclyl oder Heterocyclylalkyl sind in der nachstehenden Aufzählung aufgeführt:
Halogen, Amino, Hydroxy, Oxo,

Alkyl, Alkoxy, Alkylthio, Alkylaminio, Dialkylaminio mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen.

Die Erfindung betrifft insbesondere die neuen Verbindungen der Formel (f), in welcher

\[\text{R}^{11} \] für Wasserstoff oder Methyl steht,

\[\text{R}^{12} \] für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

\[\text{R}^{13} \] für eine Gruppierung

\[\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{A} \\
\text{R}^{16}
\end{array} \\
&\begin{array}{c}
\text{R}^{20}
\end{array}
\end{align*} \]

oder

\[\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{A} \\
\text{R}^{16}
\end{array} \\
&\begin{array}{c}
\text{R}^{18} \\
\text{R}^{17}
\end{array}
\end{align*} \]

oder

\[\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{Z}^{1} \\
\text{R}^{18} \\
\text{R}^{17} \\
\text{R}^{15} \\
\text{R}^{14}
\end{array}
\end{align*} \]

steht, worin

\[\text{A} \] für Sauerstoff, Schwefel oder \(-(N\text{-R}^{19})-\) steht, worin

\[\text{R}^{19} \] für Wasserstoff oder Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder gemeinsam mit \text{R}^{16} und dem Stickstoffatom, an das sie gebunden sind, für gegebenenfalls durch Methyl oder Ethyl substituiertes Pyrrolidinyl, Morpholinyl, Piperidinyl, Piperazinyl oder Hexahydroazepinyl steht,
für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Phenylteil substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylcarbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylteil oder Heterocyclenteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl steht oder

und R^{14} gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

und R^{14} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropan-, Cyclopentan- oder Cyclohexanring stehen,

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Penty1, Hexyl, Hepty1, Octyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl oder Cyclohexyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclenteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrroldinyl, Morphinyl, Pyrrolidinylbutyl, Morpholinylbutyl oder durch Pyrrolidon substituiertes Methyl, Ethyl oder Propyl steht,

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und
R$_{18}$ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht,

Z$_1$ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Methylcarbonyl, Ethylcarbonyl, n- oder i-Propylcarbonyl, n-, i-, s- oder t-Butylcarbonyl, Penty1carbonyl, Hexylcarbonyl, Heptylcarbonyl, Octylcarbonyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl, Cyclohexyl, Cyclopentylcarbonyl oder Cyclohexylcarbonyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclus teil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl, Morpholinylbutyl, Phenylcarbonyl, Benzylcarbonyl, 1-Phenethylcarbonyl, 2-Phenethylcarbonyl, Phenylcarbonylpropylcarbonyl, Phenylcarbonylbutylcarbonyl, Phenylcarbonylpentylcarbonyl oder Phenylcarbonylhexylcarbonyl, Pyrrolidinylcarbonyl, Morpholinylcarbonyl, Pyrrolidinylcarbonylbutylcarbonyl oder Morpholinylcarbonylbutylcarbonyl steht,

R$_{20}$ für Wasserstoff oder gegebenenfalls durch Formyloxy, gegebenenfalls im Phenylteil substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Penty1carbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylteil oder Heterocyclus teil substituiertes Phenyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl oder substituiertes Benzyl steht oder

R$_{12}^2$ und R$_{20}^2$ gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,
R²₁ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

R²₀ und R²₁ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropanring, Cyclopentan- oder Cyclohexanring stehen.

Besonders bevorzugte Substituenten für Phenyl sind in der nachstehenden Aufzählung aufgeführt:

Fluor, Chlor, Brom, Cyano, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propanoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methy1sulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difuormethoxy, Trifluormethoxy, Difluorchlorormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlorormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Acetylamino, Formylamino, N-Formyl-N-methylamino, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetoxy, Methoxycarbonyl, Ethoxycarbonyl, Methylsulfonylxy, Ethylsulfonylxy, Hydroxyiminomethyl, Hydroxyiminonethyl, Methoxyiminomethyl, Ethoxyiminomethyl, Methoxyiminonethyl oder Ethoxyiminonethyl,

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n- oder i-Propyl substituiertes, jeweils zweifach verknüpftes Trimethylen (Propan-1,3-diyl), Tetramethylen (Butan-1,4-diyl), Methylendioxy oder Ethyldioxy,

Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Phenyl oder Phenoxy.

Besonders bevorzugte Substituenten für Heterocyclus oder Heterocyclalkyl sind in der nachstehenden Aufzählung aufgeführt:
Halogen, Amino, Hydroxy, Oxo, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Proproxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylamino, Ethlamino, n- oder i-Proplamino, Dimethylamino oder Diethylamino.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen angegebenen Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.

Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen für die angegebenen Restedefinitionen werden unabhängig voneinander von den jeweils angegebenen Kombinationen der Reste, beliebig auch durch Restedefinitionen anderer ersetzt.

Die zur Durchführung des erfindungsgemäßen Verfahrens a) als Ausgangsstoffe benötigten Aminosalicylsäureamide sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben R^{12} und R^{13} vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^{12} und R^{13} angegeben wurden.

Neu und ebenfalls Gegenstand der vorliegenden Anmeldung sind Aminosalicylsäureamide der Formel (II-a),
in welcher

\[R_{12} \] die oben angegebene Bedeutung hat, und

\[R_{13} \] für eine Gruppierung steht, worin

\[A, R_{14}, R_{15}, R_{16}, R_{17}, R_{18}, Z^1 \text{ und } R_{21} \] die oben angegebenen Bedeutungen haben,

\[R_{22} \] für durch Formyloxy, gegebenenfalls im Aryleist substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxykarbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyteil substituiertes C\textsubscript{1-4}-Alkyl oder unsubstituiertes C\textsubscript{2-4}-Alkyl, jeweils gegebenenfalls im Aryleist, bzw. Heterocyclleist substituiertes Aryl, Heterocycl, Arylalkyl mit 2 bis 6 Kohlenstoffatomen im Alkyteil oder Heterocyclalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyteil oder substituiertes Benzyl steht oder
R^{22} und R^{12} gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

R^{22} und R^{21} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden.

Bevorzugt sind Aminosalicylsäureamide der Formel (II-a), in welcher

R^{12} die oben angegebene Bedeutung hat, und

R^{13} für eine Gruppierung H_2C und R^{21} oder R^{18} und R^{17} oder

R^{18} steht, worin

A, R^{14}, R^{15}, R^{16}, R^{17}, R^{18}, Z_1 und R^{21} die oben angegebenen Bedeutungen haben,

R^{22} für durch Formyloxy, gegebenenfalls im Aryleil substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleil substituiertes C_1-C_4-Alkyl oder unsubstituiertes C_2-C_4-Alkyl, jeweils gegebenenfalls im Aryleil, bzw. Heterocyclleil substituiertes Aryl, Heterocycl, Arylalkyl mit 2 bis 6 Kohlenstoffatomen im Alkyleil oder Heterocyclalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleil oder substituiertes Benzyl steht oder
R^{22} und R^{12} gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen oder

R^{22} und R^{21} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopentan- oder Cyclohexanring stehen.

Besonders bevorzugt sind Aminosalicylsäureamide der Formel (II-a), in welcher

R^{12} die oben angegebene Bedeutung hat, und

R^{13} für eine Gruppierung steht, worin

A, R^{14}, R^{15}, R^{16}, R^{17}, R^{18}, Z^{1} und R^{21} die oben angegebenen Bedeutungen haben,

R^{22} für jeweils durch Formyloxy, gegebenenfalls im Phenylteil substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Penty1carbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder unsubstituiertes Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, jeweils gegebenenfalls im Phenyleteil oder Heterocyclyleith substituiertes
Phenyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl oder substituierter Benzyl steht oder

\[R^{22} \text{ und } R^{12} \text{ gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinnring stehen oder} \]

\[R^{22} \text{ und } R^{21} \text{ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopentan- oder Cyclohexanring stehen.} \]

Die Aminosalicylsäureamide der Formel (II-a) werden erhalten, wenn man (Verfahren c) Nitrosalicylsäureamide der allgemeinen Formel (IV-a),

\[
\begin{align*}
\text{O}_2\text{N} & \text{OH} & \text{O} \\
& & \text{N} \text{R}^{12} \\
& & \text{R}^{13}
\end{align*}
\]
(IV-a)

in welcher

\[R^{12} \text{ und } R^{13} \text{ die oben angegebenen Bedeutungen haben,} \]

Die zur Durchführung des erfindungsgemäßen Verfahrens c) als Ausgangsstoffe benötigten Nitrosalicylsäureamide sind durch die Formel (IV-a) allgemein definiert. In dieser Formel (IV-a) haben R12 und R13 vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (II-a) als bevorzugt bzw. als insbesondere bevorzugt für R12 und R13 angegeben wurden.

Die Nitrosalicylsäureamide der Formel (IV-a) sind neu und ebenfalls Gegenstand der vorliegenden Anmeldung.

Sie werden erhalten, wenn man (Verfahren d) 2-Hydroxy-3-nitrobenzosäure oder 2-Hydroxy-3-nitrobenzylichlorid mit einem Amin der Formel (V),

\[
\text{H} \quad \text{N} \quad \text{R}^{12} \\
\text{R}^{13}
\]

(V)

in welcher

R12 und R13 die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, beispielhaft und vorzugsweise eines aliphatischen, alicyclischen oder aromatischen Kohlenwasserstoffs, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; eines halogenierten Kohlenwasserstoffs, wie beispielsweise Chlorbenzol, Dibrombenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; eines Ethers, wie beispielsweise Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; eines Ketons, wie beispielsweise Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; eines Nitrils, wie beispielsweise Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; eines Amids, wie beispielsweise N,N-Dimethylformamid, N,N-Dimethyl-
acetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäure-triamid; eines Esters wie beispielsweise Essigsäuremethylester oder Essigsäureethyl ester; eines Sulfloxids, wie beispielsweise Dimethylsulfoxid; oder eines Sulfons, wie beispielsweise Sulfolan, gegebenenfalls in Gegenwart eines Kondensationsmittel, beispielsweise eines Säurehalogenidbildners wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid; eines Anhydridbildners wie beispielsweise Chlorameisensäureethylester, Chlorameisensäuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansulfonylechlorid; eines Carbodiimides, wie beispielsweise N,N'-Dicyclohexylcarbodiimid (DCC) oder eines anderen üblichen Kondensationsmittels, wie beispielsweise Phosphortrioxid, Polychlorophosphate, N,N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-1,2-dihydrochinolin (EEDQ) oder Triphenylphosphin/Tetrachlorkohlenstoff und gegebenenfalls in Gegenwart eines Säureakzeptors, beispielsweise und vorzugsweise eines Erdalkalimetall- oder Alkalimetallhydriden, -hydroxides, -amids, -alkoholates, -acetates, -carbonates oder -hydrogencarbonates, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumphosphid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumphosphid oder Ammoniumcarbonat, oder eines tertiären Amines, wie beispielsweise Tri methylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU), umgesetzt.

Die zur Durchführung des erfindungsgemäßen Verfahrens d) weiterhin als Ausgangsstoffe benötigten Amine sind durch die Formel (V) allgemein definiert. In dieser Formel (V) haben R^{12} und R^{13} beispielhaft und vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^{12} und R^{13} angegeben wurden.

Die Amine der Formel (VII) sind bekannte Reagentien in der organischen Chemie.

Die zur Durchführung des erfindungsgemäßen Verfahrens a) weiterhin als Ausgangsstoffe benötigten Acylierungsmittel sind durch die Formel (III), allgemein definiert. In dieser Formel (III) hat R^{11} vorzugsweise bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^{11} angegeben wurde. X^{1} steht für Halogen, Hydroxy, Alkoxy oder Alkylcarbonyloxy, vorzugsweise für Chlor, Hydroxy, Methoxy, Ethoxy oder Acetoxy.

Die Acylierungsmittel der allgemeinen Formel (III) sind bekannte Reagenzien in der organischen Chemie.

Die zur Durchführung des erfindungsgemäßen Verfahrens b) als Ausgangsstoffe benötigten Nitrosalicylsäureamide sind durch die Formel (IV) allgemein definiert. In dieser Formel (IV) haben R^{12} und R^{13} vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^{12} und R^{13} angegeben wurden.

Neu sind die Nitrosalicylsäureamide der Formel (IV-a) die bereits weiter oben im Zusammenhang mit der Beschreibung des erfindungsgemäßen Verfahrens c) beschrieben worden sind.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens a) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören beispielhaft und vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie beispielsweise Diethyl ether, Diisopropylether, Methyl-t-butylether, Methyl-t-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie beispielsweise Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie beispielsweise Acetonitril, Propionitril, n- oder i-Butyonitril oder Benzonitril; Amide, wie beispielsweise N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie beispielsweise Essigsäuremethylster oder Essigsäureethylester; Sulfoxide, wie beispielsweise Dimethylsulfoxid oder Sulfone, wie Sulfolan.

Das erfindungsgemäße Verfahren a) wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydroxide, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat oder Natriumhydrogencarbonat sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-
Methylmorpholin, N,N-Dimethyaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahren a) und b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 180°C, vorzugsweise bei Temperaturen von 0°C bis 130°C.

Zur Durchführung des erfindungsgemäßen Verfahrens a) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Aminosalicylsäureamids der Formel (II) im allgemeinen 1 bis 2000 Mol, vorzugsweise 1 bis 800 Mol Acylierungsmittel der Formel (III) ein.

Zur Durchführung der erfindungsgemäßen Verfahren b) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Nitrosalicylsäureamides der Formel (IV-a) im allgemeinen 100 bis 2000 Mol, vorzugsweise 200 bis 1000 Mol Ameisensäure ein.

Die erfindungsgemäßen Verfahren werden im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck - im allgemeinen zwischen 0,1 bar und 10 bar - zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoramycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

5 Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

10 Beispielsweise aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
15 Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;
20 Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
25 Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium);
30 Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
5
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;
10
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzen-
krankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen
Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur
Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispiels-
weise gegen Botrytis-, Phytophthora- und Plasmopara-Arten, oder von Reiskrank-
heit, wie beispielsweise gegen Pyricularia-Arten, einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter
Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie
erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich
natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die
durch konventionelle Züchtungs- und Optimierungsmethoden oder durch
biotechnologische gute gentechnologische Methoden oder Kombinationen dieser
Methoden erhalten werden können, einschließlich der transgenen Pflanzen und
einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren

Mit gutem Erfolg werden auch Getreidekrankheiten bekämpft.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteartrages. Sie sind außerdem minderstoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumverzweigenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Leicithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-
farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90%.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiliziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide:

Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox,

Guazatin,

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadín, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxochlorid, Kupfersulfat, Kuperoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,

Mildiomycin, Metylobutanil, Myclozolin,

Nickel-dimethyl-dithiocarbamat, Nitrothial-isopropyl, Nuarimol,

Oflurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthioin,

Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb,

Propanosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifos, Pirimethanil, Pyroquilon, Pyroxyfur, Quinoxyfen,

Quinconazol, Quintozen (PCNB), Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloflalam, Tencazen, Tetcyclacis, Tetraconazol, Thiabendazol,

Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolyflufluannid, Triadimefon, Triadimenol, Triazbutil, Triazoxxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,

Uniconazol,

Validamycin A, Vinclozolin, Viniconazol,

Zarilamid, Zineb, Ziram sowie

Dagger G,
OK-8705,
OK-8801,
\alpha-\text{(1,1-Dimethylethyl)}-\beta-(2-phenoxethyl)-1H-1,2,4-triazol-1-ethanol,
\alpha-\text{(2,4-Dichlorphenyl)}-\beta-fluor-\beta-propyl-1H-1,2,4-triazol-1-ethanol,
5 \alpha-\text{(2,4-Dichlorphenyl)}-\beta-methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,
\alpha-\text{(5-Methyl-1,3-dioxan-5-yl)}-\beta-\text{[(4-(trifluormethyl)-phenyl)-methyl]}-1H-1,2,4-triazol-1-ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,
(E)-a-\text{(Methoxyimino)-N-methyl-2-phenoxy-phenylacetimid},
10 \{2-Methyl-1-\text{[1-(4-methylphenyl)-ethyl]-amino-carbonyl-propyl]-carbaminsäure-1-isopropylester}
1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
15 1-\text{[(Diiodmethyl)-sulfonyl]-4-methyl-benzol},
1-\text{[(2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl)-methyl]-1H-imidazol},
1-\text{[(2-(4-Chlorphenyl)-3-phenyloxiranyl)-methyl]-1H-1,2,4-triazol},
1-\text{[1-\text{[2-(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol},
1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
20 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5-carboxanilid,
2,2-Dichlor-N-\text{[(4-chlorphenyl)-ethyl]-1-ethyl-3-methyl-cyclopropancarboxamid},
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
2,6-Dichlor-N-\text{[(4-trifluormethyl)-phenyl]-methyl]-benzamid},
25 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-\text{[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol},
2-\text{[6-Deoxy-4-O-(4-O-methyl-\beta-D-glucopyranosyl)-\beta-D-glucopyranosyl]-amino]-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril},
2-Aminobutan,
30 2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol((OPP),
3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro[4,5]decan-2-methanamin,
8-Hydroxychinolininsulfat,
9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
cis-4-[3-(4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-
hydrochlorid,
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat,
Methantetrathiol-Natriumsalz,
Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid.
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl-cyclopropancarboxamid,
N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinoxy)-phenyl]-N'-methoxy-methanimidamid,
N-Formyl-N-hydroxy-DL-alanin-Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylproplylphosphoramidothioate,
S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,

Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyl-dithiocarbamat, Kasugamycin,
Ochlinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam,
Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:
Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb,
Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,
Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis,
Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb,
Bensultap, Benoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin,
Biopermethrin, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos,
Butocarboxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbophuran, Carbophenothion, Carbosulfan, Cartap,
Chloethocarb, Chlorothoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Cis-Resmethrin,
Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Cyanophos, Cycloprene,
Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Difenthion, Diazinon,
Dichlorvos, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton,
Docusat-sodium, Dofenapyn,
Eflusilanate, Emergectin, Empenthrin, Endosulfan, Entomopthora spp.,
Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
5 Furibenprox, Furathiocarb,
Granuloseviren
Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydronprene,
Imidacloprid, Isazofos, Isofenphos, Isoxathan, Ivermectin,
Kernpolyedereviren
10 Lambda-cyhalothrin, Lufenuron
Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae,
Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoxyfenozide,
Metolcarb, Metoxadiazone, Mevinphos, Milbufenctin, Monocrotophos,
Naled, Nitenpyram, Nithiazine, Novaluron
15 Omethoat, Oxamyl, Oxydemethon M
Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenhoat,
Phroto, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
Pirimiphos M, Profenofos, Promecarb, Propoxur, Prothiofos, Prohoat, Pymetrozine,
Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridithion, Pyrimidifen,
20 Pyriproxifen,
Quinalphos,
Ribavirin
Salithion, Sebufos, Silafluorfen, Spinosad, Sulcotep, Sulprofos,
25 Tau-fluvinate, Tebufenozide, Tebufenpyrad, Tebuirimiphos, Teflubenzuron,
Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Thetacypermethrin, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocysthrin, Tralomethrin,
Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon,
Triflumuron, Trimethacarb,
30 Vamidothion, Vanilprolec, Verticillium lecanii
Y1 5302
Zeta-cypermethrin, Zolaprofos
(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-furanylidene)-methyl]-2,2-dimethylcyclopropylcarboxylat
(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropylcarboxylat
1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-imin
2-(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-imin
5
2-(2-Chlor-6-fluorophenyl)-4-[4-(1,1-dimethylphenyl)phenyl]-4,5-dihydro-oxazol
2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion
2-Chlor-N-[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid
10
2-Chlor-N-[[4-(2,2-dichlor-1,1-difluoroethoxy)-phenyl]-amino]-carbonyl]-benzamid
3-Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol
4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxypyenoxy)ethyl]thio]-3(2H)-pyridazinon
15
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[[6-iod-3-pyridinyl]methoxy]-3(2H)-pyridazinon
4-Chlor-5-[[6-chlor-3-pyridinyl]methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon
Bacillus thuringiensis strain EG-2348
Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid
10
Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4,5]dec-3-en-4-yl-ester
3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethenyl)-2H-1,3-thiazone-3(4H)-carboxaldehyd
Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
20
N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin
N-(4-Chlorphenyl)-3-[[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid
N-[2-Chlor-5-thiazolyl)methyl]-N'-methyl-N''-nitro-guanidin
25
N-Methyl-N'-1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutführung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Auf-
wandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.
Herstellungsbeispiele

Beispiel 1:

2-[[3-(Formylamino)-2-hydroxybenzoylamino]-3-(4-hydroxyphenyl)propan säureethylester

Verfahren b)

2.0 g (5.1 mmol) 2-[(2-Hydroxy-3-nitrobenzoyl)amino]-3-(4-hydroxyphenyl)propan säureethylester wurden in 60 mL Ameisensäure suspendiert und mit 2.0 g Raney Nickel versetzt. Das Gemisch wurde 1 Stunde bei 90°C gerührt und anschließend filtriert. Das Filtrat wurde eingedampft, der Rückstand in Dichlormethan aufge nommen und mit dest. Wasser gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und anschließend zur Trockne eingeengt. Die Reinigung erfolgte an Kieselgel mit dem Laufmittelgemisch Ethylacetat/Cyclohexan im Ver hältnis 6:1. Man erhält 1.34 g (70 % der Theorie) 2-[[3-(Formylamino)-2 hydroxybenzoylamino]-3-(4-hydroxyphenyl)propansäureethylester.

HPLC: logP = 1,83

Analog Beispiel 1 sowie entsprechend der allgemeinen Beschreibung der erfindungsgemäßen Verfahren werden die in der nachstehenden Tabelle 1 aufgeführten Verbindungen der allgemeinen Formel (I-a) erhalten:

\[
R^{11} \quad H \quad OH \quad O \quad N \quad R^{12} \\
\text{N} \quad R^{13}
\]

(I-a)
<table>
<thead>
<tr>
<th>Bsp.</th>
<th>R^{11}</th>
<th>R^{13}</th>
<th>R^{12}</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>3,7</td>
</tr>
<tr>
<td>3</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,72</td>
</tr>
<tr>
<td>4</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>3,46</td>
</tr>
<tr>
<td>5</td>
<td>-CH$_3$</td>
<td></td>
<td>-H</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,21</td>
</tr>
<tr>
<td>7</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,73</td>
</tr>
<tr>
<td>8</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,26</td>
</tr>
<tr>
<td>Bsp.</td>
<td>R¹¹</td>
<td>R¹²</td>
<td>logP</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-H</td>
<td>-H</td>
<td>1,64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-H</td>
<td>-H</td>
<td>2,41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-H</td>
<td>-H</td>
<td>2,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-H</td>
<td>-H</td>
<td>2,61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-H</td>
<td>-H</td>
<td>1,73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-H</td>
<td>-H</td>
<td>2,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-H</td>
<td>-H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bsp.</td>
<td>R^{11}</td>
<td>R^{13}</td>
<td>R^{12}</td>
<td>logP</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>16</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,56</td>
</tr>
<tr>
<td>17</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>4,71</td>
</tr>
<tr>
<td>18</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,27</td>
</tr>
<tr>
<td>19</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,52</td>
</tr>
<tr>
<td>20</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,93</td>
</tr>
<tr>
<td>21</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,36</td>
</tr>
<tr>
<td>22</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>4,03</td>
</tr>
</tbody>
</table>
Tabelle 1:

<table>
<thead>
<tr>
<th>Bsp.</th>
<th>R^{11}</th>
<th>R^{13}</th>
<th>R^{12}</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>-H</td>
<td></td>
<td></td>
<td>1,55</td>
</tr>
<tr>
<td>24</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,29</td>
</tr>
<tr>
<td>25</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,71</td>
</tr>
<tr>
<td>26</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,26</td>
</tr>
<tr>
<td>27</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,61</td>
</tr>
<tr>
<td>28</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>2,65</td>
</tr>
<tr>
<td>29</td>
<td>-H</td>
<td></td>
<td>-H</td>
<td>1,58</td>
</tr>
<tr>
<td>Bsp.</td>
<td>R11</td>
<td>R13</td>
<td>R12</td>
<td>logP</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>30</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>2.65</td>
</tr>
<tr>
<td>31</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>2.45</td>
</tr>
<tr>
<td>32</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>3.39</td>
</tr>
<tr>
<td>33</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>3.11</td>
</tr>
<tr>
<td>34</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>2.57</td>
</tr>
<tr>
<td>35</td>
<td>-H</td>
<td>[\text{structure image}]</td>
<td>-H</td>
<td>1.60</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>[\text{structure image}]</td>
<td></td>
<td>3.58</td>
</tr>
</tbody>
</table>
Tabelle 1:

<table>
<thead>
<tr>
<th>Bsp.</th>
<th>R^{11}</th>
<th>R^{13}</th>
<th>R^{12}</th>
<th>logP</th>
</tr>
</thead>
</table>
| 37 | H | \[
\begin{array}{c}
\text{H}_2\text{C} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{CH}_3 \\
\text{O} \\
\text{O} \\
\end{array}
\] | H | 2,10 |

* bezeichnet die Anknüpfungsstelle an das Stickstoffatom.

Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wäßrige Phosphorsäure)
Herstellung von Vorprodukten der Formel (IV)

Beispiel (IV-1)

5 2-[(2-Hydroxy-3-nitrobenzoyl)amino]-3-(4-hydroxyphenyl)-propansäureethylester.

Verfahren d)

10 1.78 g (8.0 mmol) D,L-Tyrosinethylester Hydrochlorid werden in 20 mL Tetrahydrofuran gelöst und mit 1.1 mL (8 mmol) Triethylamin versetzt. Zu dem Reaktionsgemisch werden unter Rühren bei 0°C 1.61 g (8.0 mmol) 3-Nitrosalicylsäurechlorid, gelöst in 25 mL Tetrahydrofuran, zugetropft. Man läßt das Reaktionsgemisch innerhalb von 16 Stunden auf Raumtemperatur erwärmen. Das ausgefallene Triethylammoniumchlorid wird abfiltriert und die zurückbleibende Lösung am Rotationsverdampfer eingeengt. Der Rückstand wird in 200 mL Ethylacetat aufgenommen und mit 200 mL dest. Wasser extrahiert. Anschließend erfolgt die Trocknung der organischen Phase über Natriumsulfat. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Die Reinigung erfolgt an Kieselgel mit dem Laufmittelgemisch Ethylacetat/Cyclohexan im Verhältnis 10:1.

20 Man erhält 2.14 g (69 % der Theorie) 2-[(2-Hydroxy-3-nitrobenzoyl)amino]-3-(4-hydroxyphenyl)propansäureethylester.

HPLC: $\log P = 2.28$
Analog Beispiel (IV-1) sowie entsprechend der allgemeinen Beschreibung der erfundungsgemäßen Verfahren werden die in der nachstehenden Tabelle 2 aufgeführten Verbindungen der allgemeinen Formel (IV) erhalten:

![Chemical Structure](image)

(IV-a)

Tabelle 2:

<table>
<thead>
<tr>
<th>Bsp.-Nr.</th>
<th>R^{12}</th>
<th>R^{13}</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-2</td>
<td>-H</td>
<td>-CH$_2$-COOCH$_3$</td>
<td>1,47</td>
</tr>
<tr>
<td>IV-3</td>
<td>-H</td>
<td></td>
<td>2,79</td>
</tr>
<tr>
<td>IV-4</td>
<td>-H</td>
<td></td>
<td>2,16</td>
</tr>
<tr>
<td>IV-5</td>
<td>-H</td>
<td></td>
<td>2,82</td>
</tr>
<tr>
<td>IV-6</td>
<td>-H</td>
<td></td>
<td>2,68</td>
</tr>
<tr>
<td>Bsp.-Nr.</td>
<td>(R^{12})</td>
<td>(R^{13})</td>
<td>(\log P)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>IV-7</td>
<td>-H</td>
<td></td>
<td>3.23</td>
</tr>
<tr>
<td>IV-8</td>
<td>-H</td>
<td></td>
<td>2.93</td>
</tr>
<tr>
<td>IV-9</td>
<td>-H</td>
<td></td>
<td>2.25</td>
</tr>
<tr>
<td>IV-10</td>
<td>-H</td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>IV-11</td>
<td>-H</td>
<td></td>
<td>2.85</td>
</tr>
<tr>
<td>IV-12</td>
<td>-H</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>Bsp.-Nr.</td>
<td>R12</td>
<td>R13</td>
<td>logP</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>IV-13</td>
<td>-H</td>
<td></td>
<td>5,28</td>
</tr>
<tr>
<td>IV-14</td>
<td>-H</td>
<td></td>
<td>2,78</td>
</tr>
<tr>
<td>IV-15</td>
<td>-H</td>
<td></td>
<td>3,48</td>
</tr>
<tr>
<td>IV-16</td>
<td>-H</td>
<td></td>
<td>3,99</td>
</tr>
<tr>
<td>IV-17</td>
<td>-H</td>
<td></td>
<td>3,53</td>
</tr>
<tr>
<td>IV-18</td>
<td>-H</td>
<td></td>
<td>3,1</td>
</tr>
</tbody>
</table>
Tabelle 2:

<table>
<thead>
<tr>
<th>Bsp.-Nr.</th>
<th>R^{12}</th>
<th>R^{13}</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-19</td>
<td>-H</td>
<td></td>
<td>3,09</td>
</tr>
<tr>
<td>IV-20</td>
<td>-H</td>
<td></td>
<td>4,4</td>
</tr>
<tr>
<td>IV-21</td>
<td>-H</td>
<td></td>
<td>2,91</td>
</tr>
<tr>
<td>IV-22</td>
<td>-H</td>
<td></td>
<td>4,63</td>
</tr>
<tr>
<td>IV-23</td>
<td>-H</td>
<td></td>
<td>2,83</td>
</tr>
<tr>
<td>IV-24</td>
<td></td>
<td></td>
<td>1,86</td>
</tr>
<tr>
<td>Bsp.-Nr.</td>
<td>R^{12}</td>
<td>R^{13}</td>
<td>logP</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>IV-25</td>
<td>-H</td>
<td>$\text{H}_3\text{C} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>2,19</td>
</tr>
<tr>
<td>IV-26</td>
<td>-H</td>
<td>$\text{O} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>2,73</td>
</tr>
<tr>
<td>IV-27</td>
<td>-H</td>
<td>$\text{H}_3\text{C} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>2,05</td>
</tr>
<tr>
<td>IV-28</td>
<td>-H</td>
<td>$\text{Cl} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>3,14</td>
</tr>
<tr>
<td>IV-29</td>
<td>-H</td>
<td>$\text{H}_3\text{C} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>2,89</td>
</tr>
<tr>
<td>IV-30</td>
<td>-H</td>
<td>$\text{H}_3\text{C} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{OH} \end{array}$</td>
<td>1,44</td>
</tr>
<tr>
<td>IV-31</td>
<td>-H</td>
<td>MPLC: m/e = 390,9</td>
<td></td>
</tr>
<tr>
<td>IV-32</td>
<td>-H</td>
<td>$\text{H}_3\text{C} \begin{array}{c} \cdot \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{CH}_3 \end{array}$</td>
<td>3,51</td>
</tr>
</tbody>
</table>
Tabelle 2:

<table>
<thead>
<tr>
<th>Bsp.-Nr.</th>
<th>R(^{12})</th>
<th>R(^{13})</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-33</td>
<td>-H</td>
<td>(\cdot) O(\cdot)CH(_3)</td>
<td>2,01</td>
</tr>
<tr>
<td>IV-34</td>
<td>-H</td>
<td>HS(\cdot)O(\cdot)CH(_3)</td>
<td>3,35</td>
</tr>
<tr>
<td>IV-35</td>
<td>-H</td>
<td>CH(_3)(\cdot)O(\cdot)O(\cdot)CH(_3)</td>
<td>1,99</td>
</tr>
<tr>
<td>IV-36</td>
<td>-H</td>
<td>(\cdot)O(\cdot)O(\cdot)CH(_3)</td>
<td>2,98</td>
</tr>
<tr>
<td>IV-37</td>
<td>-H</td>
<td>(\cdot)NH(\cdot)O(\cdot)O(\cdot)CH(_3)</td>
<td></td>
</tr>
</tbody>
</table>

* bezeichnet die Anknüpfungsstelle an das Stickstoffatom.

Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wäßrige Phosphorsäure)
Anwendungsbeispiele:

Beispiel A

Phytophthora-Test (Tomate) / protektiv

Lösungsmittel: 24,5 Gewichtsteile Aceton
 24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (2), (4), (8) und (12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 92 % oder mehr.
Beispiel B

Plasmopara-Test (Rebe) / protektiv

Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 5 Tage im Gewächshaus bei ca. 21°C und ca. 90 % Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt.

6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (2), (4), (6), (8) und (12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 97 % oder mehr.
Beispiel C

Botrytis-Test (Bohne) / protektiv

Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykeleuther

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermisch man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (2), (4), (6), (8) und (12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 500 g/ha einen Wirkungsgrad von 90 % oder mehr.
Beispiel D

Pyricularia-Test (Reis) / protektiv

Lösungsmittel: 48,8 Gewichtsteile Aceton
Emulgator: 1,2 Gewichtsteile Alkylarylpoliglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (1), (8), (9), (10) und (12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von 89% oder mehr.
Patentansprüche

1. Verwendung von Verbindungen der Formel (I),

\[
\begin{align*}
\text{R}^1 & \quad \text{für Wasserstoff oder Alkyl steht,} \\
\text{R}^2 & \quad \text{für Wasserstoff oder Alkyl steht, oder} \\
\text{R}^3 & \quad \text{für eine Gruppierung steht, worin} \\
\text{R}^4 & \quad \text{für Wasserstoff oder Alkyl steht oder gemeinsam mit R}^6 \\
\text{R}^5 & \quad \text{und dem Stickstoffatom, an das sie gebunden sind, einen}
\text{gegebenenfalls substituierten heterocyclischen Ring bildet,}
\end{align*}
\]

\[
\begin{align*}
\text{A} & \quad \text{für Sauerstoff, Schwefel oder } -(\text{N-R}^9)- \text{ steht, worin} \\
\text{R}^9 & \quad \text{für Wasserstoff oder Alkyl steht oder gegebenenfalls substituiertes Aryl steht oder}
\end{align*}
\]
R² und R⁴ gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

R⁵ für Wasserstoff oder Alkyl steht oder

R⁴ und R⁵ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden,

R⁶ für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aryl oder Heterocyclyl steht,

R⁷ für Wasserstoff oder Alkyl steht,

R⁸ für Wasserstoff oder Alkyl steht und

Z für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Alkylcarbonyl, Cycloalkyl, Cycloalkylcarbonyl, Aryl, Arylcarbonyl, Heterocyclyl oder Heterocyclylcarbonyl steht,

zur Bekämpfung von Organismen, die Pflanzenschäden und Schäden an technischen Materialien verursachen.

2. Verwendung von Verbindungen der Formel (I), gemäß Anspruch 1, dadurch gekennzeichnet, daß

R¹ für Wasserstoff oder Methyl steht,

R² für Wasserstoff oder C₁-C₄-Alkyl steht und

30
R³ für eine Gruppierung oder oder

R⁴
R⁵
R⁶

oder

R⁷
R⁸
R⁹

steht, worin

A für Sauerstoff, Schwefel oder -(N-R⁹)- steht, worin

R⁹ für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen steht oder gemeinsam mit R⁶ und dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls durch C₁-C₄-Alkyl substituierten heterocyclischen Ring mit 3 bis 7 Ringgliedern bildet,

R⁴ für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Aryleit substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxyancarbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleit substituiertes Alkyl oder jeweils gegebenenfalls im Aryleit, bzw. Heterocycliteil substituiertes Aryl, Heterocyclyl, Arylalkyl oder Heterocyclylalkyl mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleit steht oder

R² und R⁴ gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R⁵ für Wasserstoff oder C₁-C₄-Alkyl steht oder
R\(^4\) und R\(^5\) gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

\(\text{R}^6\) für Wasserstoff oder C\(_1\)-C\(_{12}\)-Alkyl, gegebenenfalls durch C\(_1\)-C\(_4\)-Alkyl substituiertes C\(_3\)-C\(_7\)- Cycloalkyl, jeweils gegebenenfalls im Aryl- bzw. Heterocycliteil substituiertes Aryl, Arylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleil, Heterocyclyl oder Heterocyclylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleil steht,

\(\text{R}^7\) für Wasserstoff oder C\(_1\)-C\(_4\)-Alkyl steht,

\(\text{R}^8\) für Wasserstoff oder C\(_1\)-C\(_4\)-Alkyl steht und

\(\text{Z}\) für Wasserstoff oder C\(_1\)-C\(_{12}\)-Alkyl oder Alkylcarbonyl, gegebenenfalls durch C\(_1\)-C\(_4\)-Alkyl substituiertes C\(_3\)-C\(_7\)- Cycloalkyl oder Cycloalkylcarbonyl, jeweils gegebenenfalls im Aryl- bzw. Heterocycliteil substituiertes Aryl, Arylcarbonyl, Arylalkyl, Arylalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkyleil, Heterocyclyl, Heterocyclylcarbonyl, Heterocyclylalkyl oder Heterocyclylalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkyleil steht,

zur Bekämpfung von Organismen, die Pflanzenschäden und Schäden an technischen Materialien verursachen.

3. Verwendung von Verbindungen der Formel (1) gemäß Anspruch 1, dadurch gekennzeichnet, daß

\(\text{R}^1\) für Wasserstoff oder Methyl steht,
\[R^2 \] für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

\[
\begin{align*}
\text{R}^3 & \text{ für eine Gruppierung} \\
\text{R}^4 & \text{ oder} \\
\text{R}^5 & \text{ oder} \\
\text{R}^7 & \text{ steht, worin}
\end{align*}
\]

\[A \] für Sauerstoff, Schwefel oder \(-(N-R^9)\)– steht, worin

\[R^9 \] für Wasserstoff oder Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder gemeinsam mit \(R^6 \) und dem Stickstoffatom, an das sie gebunden sind, für gegebenenfalls durch Methyl oder Ethyl substituiertes Pyrrolidinyl, Morpholinyl, Piperidinyl, Piperazinyl oder Hexahydro-azepinyl steht,

\[R^4 \] für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Phenylei substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylicarbonyloxy oder Hexylicarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylei oder Heterocyclusen substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethy steht oder
R² und R⁴ gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,

5 R⁵ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

R⁴ und R⁵ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropanring, Cyclopentan- oder Cyclohexanring stehen,

10 R⁶ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl oder Cyclohexyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclylteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl oder Morpholinybutyl, durch Pyrrolidonyl substituiertes Methyl, Ethyl oder Propyl steht,

15 R⁷ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht,

20 R⁸ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

25 Z für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Methylcarbonyl, Ethylcarbonyl, n- oder i-Propylcarbonyl, n-, i-, s- oder t-Butylcarbonyl, Pentylcarbonyl, Hexylcarbonyl, Heptylcarbonyl, Octylcarbonyl, gegebenenfalls durch
Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Cyclopentyl, Cyclohexyl, Cyclopentylcarbonyl oder Cyclohexylcarbonyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocyclerteil substituiertes Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholiny1, Pyrrolidinylbutyl, Morpholiny1butyl, Phenylcarbonyl, Benzylcarbonyl, 1-Phenethylcarbonyl, 2-Phenethylcarbonyl, Phenylcarbonylpropylcarbonyl, Phenylcarbonylbutylcarbonyl, Phenylcarbonylpentylcarbonyl oder Phenylcarbonylhexylcarbonyl, Pyrrolidinylcarbonyl, Morpholiny1carbonyl, Pyrrolidinylcarbonylbutylcarbonyl oder Morpholiny1carbonylbutylcarbonyl steht, zur Bekämpfung von Organismen, die Pflanzenschäden und Schäden an technischen Materialien verursachen.

4. Verbindungen der Formel (I-a),

![Structural formula]

(I-a)

in welcher

R^{11} für Wasserstoff oder Alkyl steht,

R^{12} für Wasserstoff oder Alkyl steht, oder
\[R^{13} \text{ für eine Gruppierung} \]

\[\text{oder} \]

\[R^{18} \]

\[R^{17} \]

\[R^{15} \]

\[\text{steht, worin} \]

\[A \text{ für Sauerstoff, Schwefel oder } -(N-R^{19})- \text{ steht, worin} \]

\[R^{19} \text{ für Wasserstoff oder Alkyl steht oder gemeinsam mit } R^{16} \]

\[\text{und dem Stickstoffatom, an das sie gebunden sind, einen} \]

\[\text{gegebenenfalls substituierten heterocyclischen Ring bildet,} \]

\[R^{14} \text{ für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl steht oder} \]

\[R^{12} \text{ und } R^{14} \text{ gemeinsam mit den Atomen, an die sie gebunden sind,} \]

\[\text{einen heterocyclischen Ring bilden,} \]

\[R^{15} \text{ für Wasserstoff oder Alkyl steht oder} \]

\[R^{14} \text{ und } R^{15} \text{ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden,} \]

\[R^{16} \text{ für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl,} \]

\[\text{Cycloalkyl, Aryl oder Heterocyclen steht,} \]

\[R^{17} \text{ für Wasserstoff oder Alkyl steht und} \]
R^{18} für Wasserstoff oder Alkyl steht,

Z^1 für Wasserstoff oder jeweils gegebenenfalls substituiertes Alkyl, Alkylcarbonyl, Cycloalkyl, Cycloalkylcarbonyl, Aryl, Aryl-carbonyl, Heterocyclyl oder Heterocyclylcarbonyl steht,

R^{20} für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl oder Hetaryl steht oder

R^{12} und R^{20} gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

R^{21} für Wasserstoff oder Alkyl steht oder

R^{20} und R^{21} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden.

5. Verbindungen der Formel (I-a), gemäß Anspruch 4, dadurch gekennzeichnet, daß

R^{11} für Wasserstoff oder Methyl steht,

R^{12} für Wasserstoff oder C_1-C_4-Alkyl steht und
R^{13} für eine Gruppierung oder oder

steht, worin

A für Sauerstoff, Schwefel oder –(N-R^{19})– steht, worin

R^{19} für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen steht oder gemeinsam mit R^{16} und dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls durch C_{1}-C_{4}-Alkyl substituierten heterocyclischen Ring mit 3 bis 7 Ringgliedern bildet,

R^{14} für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Aryleit substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleit substituiertes Alkyl oder jeweils gegebenenfalls im Aryleit, bzw. Heterocyclyleit substituiertes Aryl, Heterocycl, Arylalkyl oder Heterocyclalkyl mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleit steht oder

R^{12} und R^{14} gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

R^{15} für Wasserstoff oder C_{1}-C_{4}-Alkyl steht oder
R^{14} und R^{15} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

für Wasserstoff oder C_1-C_{12}-Alkyl, gegebenenfalls durch C_1-C_4-Alkyl substituiertes C_3-C_7-Cycloalkyl, jeweils gegebenenfalls im Aryl- bzw. Heterocyclitteil substituiertes Aryl, Arylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Heterocyclylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil oder durch Pyrrolidonyl substituiertes C_1-C_4-Alkyl steht,

R^{17} für Wasserstoff oder C_1-C_4-Alkyl steht und

R^{18} für Wasserstoff oder C_1-C_4-Alkyl steht,

Z^1 für Wasserstoff oder C_1-C_{12}-Alkyl oder Alkylcarbonyl, gegebenenfalls durch C_1-C_4-Alkyl substituiertes C_3-C_7-Cycloalkyl oder Cycloalkylcarbonyl, jeweils gegebenenfalls im Aryl- bzw. Heterocyclitteil substituiertes Aryl, Arylcarbonyl, Arylalkyl, Arylalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Heterocyclyl, Heterocyclylcarbonyl, Heterocyclylalkyl oder Heterocyclylalkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil steht,

R^{20} für Wasserstoff oder gegebenenfalls durch Formyloxy, gegebenenfalls im Arylteil substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkylteil substituiertes C_1-C_4-Alkyl oder jeweils gegebenenfalls im Arylteil, bzw. Heterocyclitteil substituiertes Aryl, Heterocyclyl, Arylalkyl mit 2 bis 6
Kohlenstoffatomen im Alkyteil oder Heterocyclalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyteil oder substituiertes Benzyl steht oder

\[R^{12} \text{ und } R^{20} \] gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring mit 3 bis 6 Ringgliedern bilden,

\[R^{21} \] für Wasserstoff oder C\textsubscript{1}-C\textsubscript{4}-Alkyl steht oder

\[R^{20} \text{ und } R^{21} \] gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring mit 3 bis 6 Ringgliedern bilden.

6. Verbindungen der Formel (I-a), gemäß Anspruch 4, dadurch gekennzeichnet, daß

\[R^{11} \] für Wasserstoff oder Methyl steht,

\[R^{12} \] für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

\[R^{13} \] für eine Gruppierung steht, worin
für Sauerstoff, Schwefel oder –(N-R\(^{19}\))– steht, worin

\(R^{19}\) für Wasserstoff oder Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder gemeinsam mit \(R^{16}\) und dem Stickstoffatom, an das sie gebunden sind, für gegebenenfalls durch Methyl oder Ethyl substituiertes Pyrrolidinyl, Morpholinyl, Piperidinyl, Piperazinyl oder Hexahydropyridinyl steht,

\(R^{14}\) für Wasserstoff oder gegebenenfalls durch Hydroxy, Formyloxy, gegebenenfalls im Phenylein substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylcarbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylein oder Heterocyclus substituierter Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl steht oder

\(R^{12}\) und \(R^{14}\) gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,

\(R^{15}\) für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

\(R^{14}\) und \(R^{15}\) gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropan-, Cyclopantan- oder Cyclohexanring stehen,

\(R^{16}\) für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentiyl, Hexyl, Heptyl, Octyl, gegebenenfalls durch
Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituierter Cyclopentyl oder Cyclohexyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocycliteil substituierter Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl, Morpholinylbutyl oder durch Pyrrolidonyl substituierter Methyl, Ethyl oder Propyl steht,

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht,

für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Methylcarbonyl, Ethylcarbonyl, n- oder i-Propylcarbonyl, n-, i-, s- oder t-Butylcarbonyl, Pentylcarbonyl, Hexylcarbonyl, Heptylcarbonyl, Octylcarbonyl, gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituierter Cyclopentyl, Cyclohexyl, Cyclopentylcarbonyl oder Cyclohexylcarbonyl, jeweils gegebenenfalls im Phenyl- bzw. Heterocycliteil substituierter Phenyl, Benzyl, 1-Phenethyl, 2-Phenethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, Pyrrolidinyl, Morpholinyl, Pyrrolidinylbutyl, Morpholinylbutyl, Phenylcarbonyl, Benzylcarbonyl, 1-Phenethylcarbonyl, 2-Phenethylcarbonyl, Phenylcarbonylpropylcarbonyl, Phenylcarbonylbutylcarbonyl, Phenylcarbonylpentylcarbonyl oder Phenylcarbonylhexylcarbonyl, Pyrrolidinylcarbonyl, Morpholinylcarbonyl, Pyrrolidinylcarbonylbutylcarbonyl oder Morpholinylcarbonylbutylcarbonyl steht,
Für Wasserstoff oder gegebenenfalls durch Formyloxy, gegebenenfalls im Phenylteil substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylcarbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl oder jeweils gegebenenfalls im Phenylteil oder Heterocyclenteil substituiertes Phenyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl oder substituiertes Benzyl steht oder

\[R^{12} \text{ und } R^{20} \] gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen,

\[R^{21} \] für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht oder

\[R^{20} \text{ und } R^{21} \] gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopropanring, Cyclopentan- oder Cyclohexanring stehen.

7. Verbindungen der Formel (II-a),

\[\text{H}_2\text{N} \quad \text{OH} \quad \text{O} \quad \text{N}^{12} \quad \text{R}^{13} \] (II-a)

in welcher

\[R^{12} \] die oben angegebene Bedeutung hat, und
\[\text{R}^{13} \text{ für eine Gruppierung} \quad \text{oder} \quad \text{oder} \]

\[\text{Z}^1 \]

\[\text{R}^{18} \quad \text{R}^{17} \quad \text{R}^{15} \]

steht, worin

A, \(\text{R}^{14} \), \(\text{R}^{15} \), \(\text{R}^{16} \), \(\text{R}^{17} \), \(\text{R}^{18} \), \(\text{Z}^1 \) und \(\text{R}^{21} \) die oben angegebenen Bedeutungen haben,

\(\text{R}^{22} \) für durch Formyloxy, gegebenenfalls im Aryleteil substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkyl carbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyteil substituiertes C\(_1\)-C\(_4\)-Alkyl oder unsubstituiertes C\(_2\)-C\(_4\)-Alkyl, jeweils gegebenenfalls im Aryle teil, bzw. Heterocyclenteil substituiertes Aryl, Heterocycl, Arylalkyl mit 2 bis 6 Kohlenstoffatomen im Alkyteil oder Heterocyclalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyteil oder substituiertes Benzyl steht oder

\(\text{R}^{22} \) und \(\text{R}^{12} \) gemeinsam mit den Atomen, an die sie gebunden sind, einen heterocyclischen Ring bilden,

\(\text{R}^{22} \) und \(\text{R}^{21} \) gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen carbocyclischen Ring bilden.

8. Verbindungen der Formel (II-a), gemäß Anspruch 7, dadurch gekennzeichnet, daß
R^{12} die oben angegebene Bedeutung hat, und

R^{13} für eine Gruppierung oder

5 steht, worin

A, R^{14}, R^{15}, R^{16}, R^{17}, R^{18}, Z^{1} und R^{21} die oben angegebenen Bedeutungen haben,

R^{22} für durch Formyloxy, gegebenenfalls im Aryleit substituiertes Arylcarbonyloxy oder Alkoxy, Alkylthio, Alkoxy carbonyl oder Alkylcarbonyloxy mit jeweils 1 bis 6 Kohlenstoffatomen im Alkyleit substituiertes C_{1}-C_{4}-Alkyl oder unsubstituiertes C_{2}-C_{4}-Alkyl, jeweils gegebenenfalls im Aryleit, bzw. Heterocyclyleit substituiertes Aryl, Heterocyclyl, Arylalkyl mit 2 bis 6 Kohlenstoffatomen im Alkyleit oder Heterocyclylalkyl mit 1 bis 6 Kohlenstoffatomen im Alkyleit oder substituiertes Benzyl steht oder

20 R^{22} und R^{12} gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen oder
R^{22} \text{ und } R^{21} \text{ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopentan- oder Cyclohexanring stehen.}

9. Verbindungen der Formel (II-a), gemäß Anspruch 7, dadurch gekennzeichnet, daß

\(R^{12} \) die oben angegebene Bedeutung hat, und

\(R^{13} \) für eine Gruppierung

\[
\begin{align*}
\text{für } & R^{15} \\
\hline
A & H_3C \\
R^{22} & R^{21} \\
\end{align*}
\]

oder

\[
\begin{align*}
\text{für } & R^{15} \\
\hline
A & \text{A} \\
R^{18} & R^{17} \\
\end{align*}
\]

oder

\[
\begin{align*}
\text{für } & R^{15} \\
\hline
A & \text{A} \\
R^{18} & R^{17} \\
\end{align*}
\]

steht, worin

\(A, R^{14}, R^{15}, R^{16}, R^{17}, R^{18}, Z^1 \) und \(R^{21} \) die oben angegebenen Bedeutungen haben,

15. \(R^{22} \) für jeweils durch Formyloxyl, gegebenenfalls im Phenylteil substituiertes Phenylcarbonyloxy, Methoxy, Ethoxy, Methylthio, Ethylthio, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, Pentylcarbonyloxy oder Hexylcarbonyloxy substituiertes Methyl, Ethyl, \(n \)- oder \(i \)-Propyl, \(n \)-, \(i \)-, \(s \)- oder \(t \)-Butyl oder unsubstituiertes Ethyl, \(n \)- oder \(i \)-Propyl, \(n \)-, \(i \)-, \(s \)- oder \(t \)-Butyl, jeweils gegebenenfalls im Phenylteil oder Heterocyclenteil substituiertes
Phenyl, 1-Phenethyl, 2-Phenethyl oder Indolylmethyl oder substituiertes Benzyl steht oder

\[R^{22} \text{ und } R^{12} \] gemeinsam mit den Atomen, an die sie gebunden sind, für einen Pyrrolidin- oder Piperidinring stehen oder

\[R^{22} \text{ und } R^{21} \] gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cyclopentan- oder Cyclohexanring stehen.

10. Verbindungen der Formel (IVa),

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{OH} \\
\text{O} \\
\text{N} \\
\text{R}^{12} \\
\text{R}^{13}
\end{array}
\]

in welcher

\[R^{12} \text{ und } R^{13} \] die in Anspruch 4 angegebene Bedeutung haben.

15. Verfahren zur Herstellung von Verbindungen der Formel (I-a) wie in Anspruch 4 definiert, dadurch gekennzeichnet, daß man

a) Aminosalicylsäureamide der allgemeinen Formel (II),

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \\
\quad & \quad \text{N} \quad \text{R}^{12} \\
\quad & \quad \text{R}^{13}
\end{align*}
\]

in welcher

\[\text{R}^{12} \text{ und R}^{13} \text{ die oben angegebenen Bedeutungen haben,}\]

mit einem Acylierungsmittel der allgemeinen Formel (III),

\[
\begin{align*}
\text{O} & \\
\text{R}^{11} & \\
\text{X}^{1}
\end{align*}
\]

in welcher

\[\text{R}^{11} \text{ die oben angegebene Bedeutung hat und}\]

\[\text{X}^{1} \text{ für Halogen, Hydroxy, Alkoxy oder Alkylcarbonyloxy steht,}\]

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säureakzeptors, und gegebenenfalls in Gegenwart eines weiteren Reaktionshilfsmittels, umsetzt, oder wenn man
b) Nitrosalicylsäureamide der allgemeinen Formel (IV)

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{OH} \\
\text{C} \\
\text{N} \\
\text{R}^{12} \\
\text{N} \\
\text{R}^{13}
\end{array}
\]

(IV)

in welcher

\[R^{12} \text{ und } R^{13} \text{ die oben angegebenen Bedeutungen haben,} \]

mit Ameisensäure, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines weiteren Reaktionshilfsmittels, umsetzt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C235/64 C07C237/44 C07C231/02 C07D209/04 C07C233/77 C07C233/81 A01N37/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C A01N C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Further documents are listed in the continuation of box C. * Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

* Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* Document member of the same patent family

Date of the actual completion of the international search
13 December 2000

Date of mailing of the international search report
08/01/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epi nl, Fax: (+31-70) 340-3016

Authorized officer
O'Sullivan, P

Form PCT/ISA/210 (second sheet) (July 1992)
<p>| X | F. SHIGEO OKUMURA ET AL: "The chemistry of antimycin A. V. Synthesis of antimycic acid methyl ester methyl ether and its analogues." JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 81, 1959, pages 3753-56, X002155385 AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863 Figure 1, IIIa, Va, Xa |
| A | DE 197 10 609 A (BAYER AG) 17 September 1998 (1998-09-17) cited in the application page 2, line 1 - page 3, line 45 |
| A | WO 97 08135 A (BAYER AG; SEITZ THOMAS (DE); NAUMANN KLAUS (DE); TIEMANN RALF (DE)) 6 March 1997 (1997-03-06) cited in the application column 2, line 1 - line 62 examples |
| A | WO 99 27783 A (DOW AGROSCIENCES LLC) 10 June 1999 (1999-06-10) cited in the application claims 1,72 |
| A | US 3 527 865 A (TABORSKY ROBERT G) 8 September 1970 (1970-09-08) cited in the application column 1, line 26 - line 59 |
| A | & J. ANTIBIOT., vol. 29, no. 8, 1976, pages 804-8, |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19710609 A</td>
<td>17-09-1998</td>
<td>AU 6825698 A</td>
<td>12-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9808255 A</td>
<td>16-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1250444 T</td>
<td>12-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9841513 A</td>
<td>24-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0970057 A</td>
<td>12-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 335842 A</td>
<td>22-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6874096 A</td>
<td>19-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9610048 A</td>
<td>06-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1200725 A</td>
<td>02-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9800610 A</td>
<td>17-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0848700 A</td>
<td>24-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9802859 A</td>
<td>29-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511442 T</td>
<td>05-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 325277 A</td>
<td>20-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 27198 A</td>
<td>09-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6001879 A</td>
<td>14-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1035772 A</td>
<td>20-09-2000</td>
</tr>
<tr>
<td>US 3527865 A</td>
<td>08-09-1970</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFZIERUNG DES ANMELDUNGSGEGENSTANDES

<table>
<thead>
<tr>
<th>IPK 7</th>
<th>C07C235/64</th>
<th>C07C237/44</th>
<th>C07C231/02</th>
<th>C07D209/04</th>
<th>C07C233/77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C07C233/81</td>
<td>A01N37/24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol)

<table>
<thead>
<tr>
<th>IPK 7</th>
<th>C07C</th>
<th>A01N</th>
<th>C07D</th>
</tr>
</thead>
</table>

Recherchierte aber nicht Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen.

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>E. E. VAN TAMELEN ET AL: "The Chemistry of antimycin A. X. Structure of the antimycins."</td>
<td>4-9,11</td>
</tr>
<tr>
<td></td>
<td>JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., Bd. 83, 1961, Seiten 1639-46, XP002155384</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSN: 0002-7863</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Struktur II, IV</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen.

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als bedeutend anzusehen ist.
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist.
 L Veröffentlichung, die geeignet ist, einen Vorhaltsanspruch zweifelsfrei erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung beeinflusst werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt).
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht.
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist.

Datum des Abschlusses der internationalen Recherche:

13. Dezember 2000

Abschließendes Datum des internationalen Recherchenberichts:

08/01/2001

Name und Postanschrift der internationalen Recherchenbehörde:

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL. - 2330 HV Ripweik
Tel. (+31-70) 340-2040, TX. 31 651 epl nL.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter:

O'Sullivan, P.
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Btr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>F. SHIGEO OKUMURA ET AL: "The chemistry of antimycin A. V. Synthesis of antimycin acid methyl ester methyl ether and its analogues." JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Bd. 81, 1959, Seiten 3753-56, XP002155385 AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863 Figure 1, IIIa, Va, Xa</td>
<td>1-11,15</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 08135 A (BAYER AG ; SEITZ THOMAS (DE); NAUMANN KLAUS (DE); TIEBMANN RALF (DE)) 6. März 1997 (1997-03-06) in der Anmeldung erwähnt Spalte 2, Zeile 1 - Zeile 62 Beispiele</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Formblatt PCT/FA/210 (Fortsetzung von Blatt 2) Juli 1999
<table>
<thead>
<tr>
<th>Im Rechenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19710609 A</td>
<td>17-09-1998</td>
<td>AU 6825698 A</td>
<td>12-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9808255 A</td>
<td>16-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1250442 T</td>
<td>12-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9841513 A</td>
<td>24-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0970057 A</td>
<td>12-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 335842 A</td>
<td>22-05-2000</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6874096 A</td>
<td>19-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9610048 A</td>
<td>06-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1200725 A</td>
<td>02-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9800610 A</td>
<td>17-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0848700 A</td>
<td>24-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9802859 A</td>
<td>29-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511442 T</td>
<td>05-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 325277 A</td>
<td>20-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 27198 A</td>
<td>09-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6001879 A</td>
<td>14-12-1999</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1035772 A</td>
<td>20-09-2000</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 3527865 A</td>
<td>08-09-1970</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>