WO 02/059714 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 August 2002 (01.08.2002)

PCT

A 0 0 OO

(10) International Publication Number

WO 02/059714 A2

(51) International Patent Classification’: GO6F

(21) International Application Number: PCT/US01/48670

(22) International Filing Date:
14 December 2001 (14.12.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/255,853 Us

14 December 2000 (14.12.2000)
(71) Applicant and
(72) Inventor: WU, Yu-Liang [US/CN]; Department of Com-

puter Science & Engineering, The Chinese University of
Hong Kong Shatin, N.T., Hong Kong SAR (CN).

(72) Inventor: FAN, Hongbing; Departement of Computer
Science University of Vict, oria, P.O. Box 3055, Victoria,
British Columbia V8W 3P6 (CA).

(74) Agent: YU, Chiahua, George; Law Offices of C. George
Yu, 1250 Oakmead Parkway, Suite 210, Sunnyvale, CA
94085 (US).

(81) Designated States (national): AU, BR, CA, CN, DE, GB,
IL, IN, JP, KR, SG.

(84) Designated States (regional): Buropean patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ALTERNATIVE WIRING USING PRE-ANALYZED PATTERNS

622

LOGIC NETWORK
(OR SUB-NETWORK)

SPECIFICATION

/—612/

AW ENGINE BASED
ON PRE-ANALYZED

I
]
1
1
i
i
|
! 61
1}

[}

]

[}

]

]

]

i

]

]

]

]

: PATTERNS

]

]

]

]

]

1

I

[}

[}

]

]

)

)

)

|

i

!

]

]

ASSOCIATED
WITH PRE-
ANALYZED
PATTERNS

(REMAINDER
OF)

1
]
]
i
1
!
I
]
)
]
i
]
[}
I
1
]
[}
I
1
1
1
]
[}
]
[}
' EDA SYSTEM KEYS FOR
]

]

1

]

]

]

]

]

[}

[}

1

[}

[}

1

1

]

i

1

i

1

I

THE PRE-
ANALYZED
y PATTERNS

ALTERNATIVE
WIRE(S)

8

)

AW-RELEVANT
INFORMATION

(

MATCHING TO

620

(57) Abstract: An alternative wiring scheme uses infor-
mation about pre-analyzed logic patterns to determine al-
ternative wires for new logic networks. Preferably, no
Boolean implication is used.

w0 02/059714 A2 0RO 00 00O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/059714 PCT/US01/48670

System and Method for Alternative Wiring Using Pre-Analyzed Patterns
inventors: Yu-Liang WU and Hongbin FAN

CROSS REFERENCE TO RELATED APPLICATIONS
This claims the benefit of priority from commonly-owned U.S. Provisional Patent
Application No. 60/255,853, filed on December 14, 2000, entitled “System and Method
for Graph-based Alternative Wiring for Boolean Logic”, which are hereby incorporated

by reference in their entireties for all purposes.

BACKGROUND OF THE INVENTION

The present invention relates to Computer-Aided Design (CAD) for circuitry,
especially for Very Large Scale Integration (VLSI) circuitry. Such CAD is also referred
to as Electronic Design Automation (EDA). The present invention is especially relevant
to Alternative Wiring (AW) and to EDA that involves AW.

VLSI design is typically considered to include the stages of high-level design,
logic synthesis, and physical design. In high-level design, desired system behavior and
functions are specified and are embodied into a relatively high-level hardware
description using a relatively high-level description language. In logic synthesis, the
relatively high-level description is translated into a logic design, e.g., a set of technology-
specific gates and interconnects, or netlist. In physical design, the logic design is used to
generate an actual physical layout. Physical design typically includes circuit
partitioning, floorplanning, placement, and routing.

Recently, as the size scale of chip features continues to shrink and the overall size
and transistor count of VLSI chips continue to increase, the physical design problem is
becoming ever more difficult. The result is that logic designs verified in the logic
synthesis stage now much more frequently than ever cause physical design failures.
Such failures may include, for example, incomplete routing and/or timing violations.

When such failures occur, the logic design typically is altered in hopes of producing an

WO 02/059714 PCT/US01/48670

10

15

20

25

equivalent logic design that can be successfully laid out physically by the physical design
stage. One recently developed approach that is of use in such post-layout logic
restructuring is AW. More generally, AW is useful not only for post-layout logic
restructuring but also for a wide range of applications including, for example,
optimization of circuits, of circuit timing, of circuit partitioning, and of Field
Programmable Gate Array (FPGA) synthesis.

AW is an approach in which a redundant connection is added to a design so that
an existing target connection is made redundant and can therefore be removed from the
design without changing the functionality of the design. Choice of the target connection
is according to the demands and methodologies of the particular application. For
example, depending on the application, an existing un-routable connection, or an existing
connection along a too-long critical path, or connections that are cut by an existing
partitioning may be good target connections for attempted replacement.

Conventional AW methods use Boolean implication in their analyses. Boolean
implication refers to, for example, Boolean reasoning to determine signal value
assignments, or constraints on such assignments, based on other known or hypothesized
signal value assignments. Whatever terminology is used to describe the techniques
underlying conventional AW methods (e.g., recursive learning, Automatic Test Pattern
Generation (ATPG), mandatory assignment, logic implication, Fault-Independent
Combinational Redundancy Identification (FIRE), indirect Boolean implication, etc.),
the conventional AW methods use Boolean implication.

A popular and highly-regarded AW system is Redundancy Addition-and-removal
for Multilevel Boolean Optimization (RAMBO). (See, Kwang Ting Cheng and Luis A.
Entrena, “Multi-Level Logic Optimization By Redundancy Addition And Removal”, in
Proceedings of European Conference on Design Automation, with the European Event in
ASIC Design, pp. 373-377, Feb. 1993; and D.I. Cheng, C.C. Lin, and M. Marek-
Sadowska, “Circuit Partitioning With Logic Perturbation, in Proceedings of IEEE
International Conference on Computer-Aided Design, pp. 650-655, 1995.) Like other

conventional AW methods, RAMBO uses Boolean implication in determining

WO 02/059714 PCT/US01/48670

10

15

20

25

alternative wires.

A common and major problem with the conventional AW methods is that they
run slowly mainly due to the time-consuming nature of their underlying Boolean
implication techniques. For example, the RAMBO method typically considers a large
number of candidate wires for each farget wire that is sought to be replaced. Then, the
RAMBO method applies Boolean implication (in ATPG) in determining whether some
of the candidate wires actually succeed in making the target wire redundant. This
determining by the RAMBO method and similar determinings by other methods are
intrinsically computationally expensive. In particular, the size of the candidate wire set
contributes a polynomial factor to the run time. Furthermore, recursive learning is
exponential in nature. In fact, the existence problem of an alternative wire for a target
wire is intrinsically NP-complete, even for relatively small sub-circuits. Even though
RAMBO does achieve some level of useful efficiency by limiting the domain of its
implication processes, RAMBO and other conventional methods are still quite slow to

run.

SUMMARY OF THE INVENTION

What is needed is a system and a method for performing AW that is faster than
RAMBO or faster than other conventional AW systems and methods. For example, what
is needed is such a system and method that can propose a valid alternative redundant
wire for a given target wire and a given design without using Boolean reasoning. Such
system and method is especially suited to and preferred for EDA for sub-micron and
deep sub-micron circuit feature sizes.

According to one embodiment of the present invention, in an information
processing system, a method for alternative wiring for logic design includes: maintaining
information descriptive of alternative wiring for each of multiple predetermined logic
patterns; for a logic network, determining a portion of the logic network as
corresponding to one of the multiple predetermined logic patterns; and determining an

alternative wire for the logic network based on information maintained in the

WO 02/059714 PCT/US01/48670

10

15

20

25

maintaining step that is descriptive of alternative wiring for the one of the multiple
predetermined logic patterns.

According to another embodiment of the present invention, a system for
alternative wiring for logic design includes: means for maintaining information
descriptive of alternative wiring for each of multiple predetermined logic patterns; means
for determining, for a logic network, a portion of the logic network as corresponding to
one of the multiple predetermined logic patterns; and means for determining an
alternative wire for the logic network based on information maintained by the means for
maintaining that is descriptive of alternative wiring for the one of the multiple
predetermined logic patterns.

These and other embodiments of the present invention are further made apparent,

in the remainder of the present document, to those of ordinary skill in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to more fully describe embodiments of the present invention, reference is
made to the accompanying drawings. These drawings are not to be considered
limitations in the scope of the invention, but are merely illustrative

FIG. 1 is a schematic block diagram that illustrates a computer system that may
be used for implementing the present invention.

FIG. 2 is a schematic block diagram that illustrates a software system for
cbntrolling the computer system of FIG. 1.

FIGS. 3A-3C are a schematic logic diagrams that illustrate an example of an
alternative wiring logic transformation.

FIGS. 3D-3F are schematic block diagrams that illustrate example applications of
AW to achieve particular design and optimization goals. '

FIG. 4 is a schematic flow diagram that illustrates a method for determining an

alternative wire, according to some embodiments of the present invention.

FIG. 5 is a schematic flow diagram that illustrates a method for determining an

alternative wire, according to some embodiments of the present invention.

WO 02/059714 PCT/US01/48670

10

15

20

25

FIG. 6 is a schematic block diagram of an AW system according to the present
invention.

FIG. 7 is a schematic flow diagram that illustrates a method according to an
embodiment of the present invention, that maintains and uses AW-relevant knowledge of
logic building blocks in order to much more efficiently and quickly determine alternative
wires for the logic networks built from the logic building blocks.

FIG. 8 is a schematic block diagram that illustrates an example logic design built

using pre-analyzed logic building blocks with known AW propertieé.

FIG. 9 is a schematic logic diagram that illustrates a mapping of a sub-network of
a logic network to various configurations.

FIG. 10 is a schematic logic diagram that shows transformation by reduction
rules, in an embodiment of the present invention.

FIGS. 11-34 schematically illustrate an extensive set of useful pre-analyzed logic

patterns that indicate alternative wires and target wires.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The description above and below and the drawings of the present document focus
on one or more currently preferred embodiments of the present invention and also
describe some exemplary optional features and/or alternative embodiments. The
description and drawings are for the purpose of illustration and not limitation. Those of
ordinary skill in the art would recognize variations, modifications, and alternatives. Such
variations, modifications, and alternatives are also within the scope of the present

invention. Section titles below are terse and are for convenience only.

I. Computer-based Implementation

A. Basic System Hardware (e.g., for Server or Client Computers)

WO 02/059714 PCT/US01/48670

10

15

20

25

The present invention may be implemented using any competent computer
system(s), for example, a Personal Computer (PC). FIG. 1 is a schematic diagram for a
computer system 100. As shown, the computer system 100 comprises a central
processor unit(s) (CPU) 101 coupled to a random-access memory (RAM) 102, a read-
only memory (ROM) 103, a keyboard 106, a pointing device 108, a display or video
adapter 104 connected to a display device 105 (e.g., cathode-ray tube, liquid-crystal
display, and/or the like), a removable (mass) storage device 115 (e.g., floppy disk and/or
the like), a fixed (mass) storage device 116 (e.g., hard disk and/or the like), a
communication port(s) or interface(s) 110, a modem 112, and a network interface card
(NIC) or controller 111 (e.g., Ethernet and/or the like). Although not shown separately, a
real-time system clock is included with the computer system 100, in a conventional
manner. The shown components are merely typical components of a computer. Some
components may be omitted, and other components may be added, according to user
choice.

The computer system 100 is utilized to receive or contain input. The computer
system 100 then, under direction of software according to the present invention, operates
upon the input according to methodology of the present invention to produce desired
output, which are then displayed or otherwise output for use. The computer system 100,
as shown and discussed, corresponds to merely one suitable configuration. Any other
competent computer system and configuration is also acceptable.

The CPU 101 comprises a processor of the Pentium® family of microprocessors.
However, any other suitable microprocessor or microcomputer may be utilized for
implementing the present invention. The CPU 101 communicates with other
components of the system via a bi-directional system bus (including any necessary
input/output (I/O) controller circuitry and other “glue” logic). The bus, which includes
address lines for addressing system memory, provides data transfer between and among
the various components. Description of Pentium-class microprocessors and their
instruction set, bus architecture, and control lines is available from Intel Corporation of

Santa Clara, California. Random-access memory (RAM) 102 serves as the working

WO 02/059714 PCT/US01/48670

10

15

20

25

memory for the CPU 101. In a typical configuration, RAM of at least sixty-four
megabytes is employed. More or less memory may be used without departing from the
scope of the present invention. The read-only memory (ROM) 103 contains the basic
input output system code (BIOS) -- a set of low-level routines in the ROM 103 that
application programs and the operating systems can use to interact with the hardware,
including reading characters from the keyboard, outputting characters to printers, and so
forth.

Mass storage devices 115 and 116 provide persistent storage on fixed and
removable media, such as magnetic, optical or magnetic-optical storage systems, or flash
memory, or any other available mass storage technology. The mass storage may be
shared on a network, or it may be a dedicated mass storage. As shown in FIG. 1, fixed
storage 116 stores a body of programs and data for directing operation of the computer
system, including an operating system, user application programs, driver and other
support files, as well as other data files of all sorts. Typically, the fixed storage 116
comprises a main hard disk of the system.

In basic operation, program logic (including that which implements methodology
of the present invention described below) is loaded from the storage device or mass
storage 115 and 116 into the main memory (RAM) 102, for execution by the CPU 101.
During operation of the program logic, the computer system 100 accepts, as necessary,
user input from a keyboard 106, a pointing device 108, or any other input device or
interface. The user input may include speech-based input for or from a voice recognition
system (not specifically shown and indicated). The keyboard 106 permits selection of
application programs, entry of keyboard-based input or data, and selection and
manipulation of individual data objects displayed on the display device 105. Likewise,
the pointing device 108, such as a mouse, track ball, pen device, or the like, permits
selection and manipulation of objects on the display device 105. In this manner, the
input devices or interfaces support manual user input for any process running on the

computer system 100.

WO 02/059714 PCT/US01/48670

10

15

20

25

The computer system 100 displays text and/or graphic images and other data on
the display device 105. The display device 105 is driven by the video adapter 104,
which is interposed between the display 105 and the system. The video adapter 104,
which includes video memory accessible to the CPU, provides circuitry that converts
pixel data stored in the video memory to a raster signal suitable for use by a cathode ray
tube (CRT) raster or liquid crystal display (LCD) monitor. A hard copy of the displayed
information, or other information within the computer system 100, may be obtained from
the printer 107, or other output device. Printer 107 may include, for instance, a
Laserjet® printer (available from Hewlett-Packard of Palo Alto, California), for creating
hard copy images of output of the system.

The system itself communicates with other devices (e.g., other computers) via the
network interface card (NIC) 111 connected to a network (e.g., Ethernet network), and/or
modem 112 (e.g., 56K baud, ISDN, DSL, or cable moderﬁ), examples of which are
available from 3Com of Santa Clara, California. The computer system 100 may also
communicate with local occasionally-connected devices (e.g., serial cable-linked
devices) via the communication interface 110, which may include a RS-232 serial port, a
serial IEEE 1394 (formerly “firewire”) interface, a Universal Serial Bus (USB) interface,
or the like. Devices that will be commonly connected locally to the communication
interface 110 include other computers, handheld organizers, digital cameras, and the like.
The system may accept any manner of input from, and provide output for display to, the
devices with which it communicates.

The above-described computer system 100 is presented for purposes of
illustrating basic hardware that may be employed in the system of the present invention.
The present invention however, is not limited to any particular environment or device
configuration. Instead, the present invention may be implemented in any type of
computer system or processing environment capable of supporting the methodologies of

the present invention presented below.

B. Basic System Software

WO 02/059714 PCT/US01/48670

10

15

20

25

FIG. 2 is a schematic diagram for a computer software system 200 that is
provided for directing the operation of the computer system 100 of FIG. 1. The software
system 200, which is stored in the main memory (RAM) 102 and on the fixed storage
(e.g., hard disk) 116 of FIG. 1, includes a kernel or operating system (OS) 210. The OS
210 manages low-level aspects of computer operation, including managing execution of
processes, memory allocation, file input and output (I/0), and device I/0. One or more
application programs, such as client or server application software or “programs” 201
(e.g., 201a, 201D, 201c, 201d) may be “loaded” (i.e., transferred from the fixed storage
116 of FIG. 1 into the main memory 102 of FIG. 1) for execution by the computer
system 100 of FIG. 1.

The software system 200 preferably includes a graphical user interface (GUT)
215, for receiving user commands and data in a graphical (e.g., “point-and-click”)
fashion. These inputs, in turn, may be acted upon by the computer system 100 in
accordance with instructions from the operating system 210, and/or client application
programs 201. The GUI 215 also serves to display the results of operation from the OS
210 and application(s) 201, whereupon the user may supply additional inputs or
terminate the session. Typically, the OS 210 operates in conjunction with device drivers
220 (e.g., “Winsock” driver) and the system BIOS microcode 230 (i.e., ROM-based
microcode), particularly when interfacing with peripheral devices. The OS 210 can be
provided by a conventional operating system, such as a Unix operating system, such as
Red Hat Linux (available from Red Hat, Inc. of Durham, North Carolina, U.S.A.).
Alternatively, OS 210 can also be another conventional operating system, such as -
Microsoft® Windows (available from Microsoft Corporation of Redmond, Washington,
U.S.A.) or a Macintosh OS (available from Apple Computers of Cupertino, California,
U.S.A).

Of particular interest, the application program 201b of the software system 200
includes software code 205 according to the present invention for providing or using AW

using pre-determined patterns, as is further described. AW using pre-determined

WO 02/059714 PCT/US01/48670

10

15

20

25

{

!
|

patterns may be referred to as Graph-based AW (GBAW). For conveniénce, specific

|
embodiments of AW using pre-determined patterns are, and have been, sometimes
referred to as GBAW. However, the true scope of the present inventioniis greater than

|
merely the specific embodiments. '

!
|
II. Further Introduction and Itlustration of AW

A. Target Wires

|
I
In some AW methods, alternative wires are generated for a logic!design without

initially having a specific target wire that is sought to be replaced. However, AW has

much more usefulness when it can start with a given target wire and attempt to find an

alternative wire to replace the target wire. In particular, such AW fulfills the goal of
engineering change by minimizing the amount of logic design changes olnly toa
problematic local area (e.g., the target wire’s local area). Accordingly, t‘he preferred
embodiment of the present invention is preferably used in a manner thati:directs its

search, as will be discussed, to finding alternative wire(s) only for givenitarget wires.
|

. . . . I
However, in general, the present invention need not be limited so.

B. A Logic-Minimization Example

FIGS. 3A-3C are a schematic logic diagrams that illustrate an example of an
alternative wiring logic transformation. FIGS. 3A-3C show an example |of logic
minimization using AW. FIG. 3A shows an irredundant circuit. The ad!ditional
connection (g7, x) with an AND gate g8 in FIG. 3B is redundant, and thelnew connection

makes the originally irredundant wire (g2, g4) redundant. After removing the connection

(g2, g4), a new circuit with the same functionality but much simplified is obtained, as

shown in FIG. 3C. The connection (g7, g8) is referred to as the alternative wire of

I

connection (g2, g4).

10

WO 02/059714 PCT/US01/48670

10

15

20

25

|

C. An Example of Layout-Driven Logic Transformation I
|
|
|

FIGS. 3D-3F are schematic block diagrams that illustrate exampie applications of

i

AW to achieve particular design and optimization goals. FIG. 3D shows an example of
{

layout-driven logic transformation for improving or enabling routability.! In FIG. 3D, the

16,39

thick line t represents an un-routable and long wire. Its alternative wire “a” is routable

{1

and shorter. Accordingly, replacing the long wire t with its shorter alternative wire “a” is
likely to improve routability and reduce delay in the circuit. Such layout-driven logic
|

1
transformations are useful, for example, in the logic synthesis of, for example, FPGAs.

D. An Example of Timing-Driven Logic Transformation

FIG. 3E shows an example of timing-driven logic transformation. In FIG. 3E, a

connection t is on a critical path and connects two functional blocks, blo!ckl and block2.
The connection t has an alternative wire “a” that is shorter and that doesinot connect two

functional blocks. Accordingly, replacing the connection t with its alternative

|

I
|

FIG. 3F shows an example of partition-driven logic transformation. In FIG. 3F, a
|
wire t violates the pin constraints of chips chipl and chip2. The wire t has an alternative

connection “a” reduces the critical path delay.

E. An Example of Partition-Driven Logic Transformation

wire “a” that does not span the two chips. Accordingly, replacing the cannection t with

its alternative connection “a” reduces the number of chip-to-chip conneciions and

thereby increases the flexibility and perhaps the feasibility of partitioning.

F. AW Has a Large Number and Variety of Applications

11

WO 02/059714 PCT/US01/48670

10

15

20

25

i

|

As can be seen from the above-discussed examples, quite a num‘é)er and variety of
applications exist for AW. Most typically, the particular application identifies some
target connections for attempted replacement according to the particulad goals of the
application. For example, unroutable connections, critical-path connecti’ons, connections
spanning a cut, long connections, and the like might be chosen, depending on the
particular EDA application. Once a target connection is chosen, then any AW engine
might be called to attempt to determine alternative connections. Given a set of one or
more alternative wires, the particular EDA application would evaluate them at an
appropriate time according to criteria, e.g., a cost function evaluation, tl'J'at is appropriate
for the particular goal. For example, for timing-driven logic transforma%ion, a cost
function may be, or may prominently include, a path delay, especially aicritical—path
delay. For example, for partition-driven logic transformation, a cost furiction may be, or

may prominently include, the number of cut wires. Other cost functions would be

|

|
|
Embodiments of the present invention provide an AW method and engine that is

apparent, given the particular goal of the particular application.

|
faster than conventional Boolean implication-based AW methods and ergines by over an
1
order of magnitude while being capable of identifying comparably as m'!my alternative
wires as the conventional AW methods. Such advanced performance is%due, for

o DL |
example, to avoiding Boolean implication, which is slow.

I
III. Overview of AW Using Pre-Analyzed Logic Patterns

A. Topological Locality of, and Limited Patterns of, Alternative! Wires

It may be informative to discuss some of the motivations underlyling some
embodiments of the present invention. Some embodiments of the preseﬂlt invention take
advantage of an observations by the present inventors that the a very large proportion of
alternative wires are located quite near the preexisting wires that they make redundant--

e.g., within two edges of their target wires in a logic design in which gaJes are

12

WO 02/059714 PCT/US01/48670

10

15

20

25

represented ‘as nodes and wires are represented as edges. (Inverters are preferably not
considered to be gates/nodes in this scheme, but are considered to indicate polarities of
edges.) Motivated by this result, the present inventors determined that a relatively small
number of local sub-network patterns are repeatedly encountered in practice. These sub-
network patterns account for a remarkably large proportion of all alternative wires that
are typically found by conventional Boolean implication-based AW methods. Such local
patterns can even account for alternative wires that are not typically found by the faster
conventional AW methods. As an illustration of the power of such local patterns, some
embodiments of the present invention use only such local patterns (as will be further
discussed) without performing Boolean implication at all. Despite not performing
Boolean implication at all, these embodiments of the present invention can still find
about 96% of the alternative wires that can be found by the much slower RAMBO AW

method for the target wires of a standard database of test logic..
B. Pre-Analyzed Sub-Network Patterns Indicate Alternative Wires

The remarkably small number of local sub-network patterns necessarily indicate
the existence of an alternative wire at a specific place in the pattern and indicates the
specific preexisting wire(s) that is made redundant by the alternative wire. (As a matter
of terminology, to say that an alternative wire exists is to say that there is a place where
an alternative wire may be placed, if desired.) Thus, according to some embodiments of
the present invention, once such local sub-network patterns have been analyzed once, for
example, using any conventional Boolean implication-based AW method, then in the
future, a given arbitrary logic design is no longer analyzed using Boolean implication.
Instead, merely a graph of the given arbitrary logic design is searched, and preferably
mefely in a small area around a target wire, using ordinary graph searching techniques.
The search is for the occurrence of any of a set of pre-analyzed local sub-network
patterns. In this way, the computationally costly and slow Boolean implication can be

avoided altogether,

13

WO 02/059714 PCT/US01/48670

10

15

20

25

The just described functionality of some embodiments of the present invention is,
and has been, referred to as a form of Graph-Based Alternative Wiring (GBAW). If, for
some reason, a particular EDA application or AW implementation still wishes to perform
some Boolean implication, for example, in some special manner or for some special
purpose, then the GBAW results can still be used as a complement or as a starting point
so that whatever Boolean implication steps are still taken can be substantially reduced
relative to the conventional Boolean implication-based AW methods when GBAW is not
used at all. For example, even if some Boolean implication is desired to be used in
conjunction with GBAW, then still no more than 19/20, or no more than 9/10, or no
more than 1/2 of the time spent to find the alternative wire for a target wire is spent
performing steps for Boolean implication, on average for at least a logic design for a

user.

IV. Performing AW Without Using Boolean Implication

FIG. 4 is a schematic flow diagram that illustrates a method 410 for determining
an alternative wire, according to some embodiments of the present invention. As shown
in FIG. 4, in a step 412, there is received or possessed a specification that is indicative of
a Boolean network, or at least a portion of a Boolean network. In a step 414, an
alternative wire is determined substantially without performing Boolean implication.
Preferably, no Boolean implication is performed at all for determining the alternative
wire. Alternatively, however, as discussed above some amount of Boolean implication
may be performed, but preferably no more than 9/10, or no more than 1/2 of the time
spent to find the alternative wire for a target wire is spent performing steps for Boolean
implication, on average for at least a logic design for a user. Preferably, the step 414 is
undertaken for a particular specified target wire. The determined alternative wire is
capable of being inserted into the Boolean network to thereby make an existing wire of

the Boolean network redundant. Then, in a step 416, the determined alternative wire is

14

WO 02/059714 PCT/US01/48670

10

15

20

25

used, for example within an EDA system for an EDA application, for example, one or

more of the applications that are discussed above and below.

V. Using Pre-Analyzed Logic Patterns for AW

A. Methodology for Using Pre-Analyzed Logic Patterns for AW

FIG. 5 is a schematic flow diagram that illustrates a method 510 for determining
an alternative wire, according to some embodiments of the present invention. As shown,
in a step 510, AW-relevant information is maintained that is associated with each of

multiple predetermined design patterns. In a step 514, there is received or possessed a

. specification that is indicative of a Boolean network, or at least a portion of a Boolean

network. Preferably, there is also received or possessed one or more designated target
wire(s). In a step 516, it is determined whether one of the predetefmined design patterns
(call it pattern Z) corresponds to a sub-network of the Boolean network. If so, thenin a
step 516 an alternative wire(s) is determined, based on the maintained AW-relevant
information that is associated with the predetermined pattern Z.

The determination of correspondence between a sub-network of the Boolean
network and one of the predetermined design patterns may be done in any competent
manner. In some embodiments of the method 510, the determination of correspondence
is performed by performing graph pattern matching using conventional graph matching
techniques. (Graph pattern matching is a well-known conventional art.) Preferably
techniques for speeding up the graph pattern matching are used. For example, preferably

In one embodiment of the method 510, the predetermined design patterns are
stored as sub-graph configurations having nodes and edges with certain characteristics.
For example, the nodes may be characterized very simply by a triplet of information, as
will be further discussed in a later section. Preferably, the predetermined design patterns
are constrained in the maximum distance (e.g., 2 edges apart) between their alternative

nodes and the (target) nodes that are replaced by the alternative nodes. Preferably, then,

15

WO 02/059714 PCT/US01/48670

10

15

20

25

the search of the Boolean network, if a target node is given, only involves a sub-network
around the target node that is commensurate in size as compared to the maximum size of
the predetermined design patterns. Optionally, the sub-network around the target node is
first “reduced” and then an alternative wire is sought for the target wire using the
reduced Boolean sub-network for greater efficiency. Reduction of a network will be
further discussed.

The method 510 may be configured as an embodiment of the method 410 of FIG.
4, Ifso implemenfed, then preferably, no Boolean implication is performed at all for
determining the alternative wire for a target wire. Alternatively, however, as discussed
above, if someone chooses to additionally perform some amount of Boolean implication,
then preferably no more than 19/20, or no more than 9/10, or no more than 1/2 of the
time spent to find the alternative wire for a target wire is spent performing steps for

Boolean implication, on average for at least a logic design for a user.

B. System for Using Pre-Analyzed Logic Patterns for AW

FIG. 6 is a schematic block diagram of an AW system 610 according to the
present invention. The AW system 610 uses knowledge gained from pre-analyzed logic
patterns to determine alternative wires. The AW system 610 is capable of implementing
the method 510 of FIG. 5. As shown, the AW system 610 includes a core AW engine
612. The AW engine 612 accepts or possesses information 614 regarding a logic
network for which an alternative wire is sought. The information 614, for example, may
be a specification of the logic network using any competent representation format.
Preferably, the AW engine 612 also receives or possesses a designation of a target
wire(s) within the logic network. Based on the information 614 about the logic network,
and preferably also on the designation of the target wire(s), the AW engine 612
determines an alternative wire(s) 616.

In performing its analysis, the AW engine 612 uses pre-stored AW-relevant

information 318 that is associated with pre-analyzed logic patterns. The AW engine 612

16

WO 02/059714 PCT/US01/48670

10

15

20

25

identifies certain of the AW-relevant information 618 as describing or corresponding to
features of the logic network that is described by the information 614. For example, the
certain AW-relevant information 618 may correspond to a local sub-network that
includes one of the target wire(s). Based on the identified correspondence, the
corresponding AW-relevant information indicates alternative wire(s) for the one of the
target wire(s).

As has been mentioned in connection with FIG. 5, in some embodiments of the
present invention, pattern matching is used to match sub-networks in the logic network
described by the information 614 with pre-stored, pre-analyzed logic patterns 618. More
generally, the AW system 610 maintains keys 620 by which features or portions of the
logic network may be matched with information 618 that indicate position of alternative
wires for such features or portions of the logic network. In the pattern-matching
embodiments of the present invention and of the system 610, the keys 620 for the pre-
stored, pre-analyzed logic patterns are merely the graph representation of the logic
patterns themselves; the AW-relevant information 618 are information indicating
positions of alternative wires within each pre-stored, pre-analyzed logic pattern; and the
information 614 include the graph representation of the logic network or sub-nefwork.

As shown in dashed lines in FIG. 6, the inputs and outputs of the AW engine 612
are communicated with the (remainder) 622 of an EDA system for use for EDA

applications.
V1. Example Embodiment: Design Using Pre-Analyzed Building Blocks

In logic design, libraries of previously designed logic modules or building blocks
are frequently used. Such logic building blocks are sometimes referred to as macros or
macro-cells and typically include many gates and perform possibly complex functions.

FIG. 7 is a schematic flow diagram that illustrates a method 710 according to an
embodiment of the present invention, that maintains and uses AW-relevant knowledge of

logic building blocks in order to much more efficiently and quickly determine alternative

17

WO 02/059714 PCT/US01/48670

10

15

20

wires for the logic networks built from the logic building blocks. As shown, in a step
712, AW-relevant information is maintained for each of multiple logic building blocks of
a library. Such AW-relevant information may be obtained, for example, by pre-
analyzing the logic building blocks using any competent AW methods, for example,
RAMBO or the pattern-matching embodiment of method 510 of FIG. 5 or any other
suitable method. In a step 714, a logic network is built using such building blocks, and a
record is kept for the logic network that identifies which of its portions came from which
logic building block. Thereafter, in a step 716, if the logic network is in need of
alternative wire(s), then the alternative wire(s) for portions of the logic network can
simply be looked up. Not only is Boolean implication not needed for each alternative
wire determination, but even pattern matching is not initially needed for those target
wires that come from a logic building block. Instead, mere table look-up can be used.

For example, given a target wire, an AW engine according to the present
invention merely looks in a table for the logic design to learn that the target wire came
from a logic building block “Q”. Then, the AW engine looks in a table for the library of
logic building blocks to access the AW-relevant information for the logic building block
“Q”. If the AW-relevant information indicates that the target wire has an already-known
alternative wire, then that alternative wire can be considered for use. Optionally, if the
table lookup procedures produces an acceptable alternative wire, then no other AW
method is used, but only if the table lookup procedures fail to produce an acceptable
alternative wire then another, more slow method is used, for example the pattern-
matching embodiment of method 510 of FIG. 5.

FIG. 8 is a schematic block diagram that illustrates an example logic design built

using pre-analyzed logic building blocks with known AW properties.

18

WO 02/059714 PCT/US01/48670

10

15

20

25

VII. Embodiment Details: Using Pattern Matching To Handle Arbitrary Designs

A. Preliminary Remarks and Terminology

L]

The existence of alternative wires for any given 2-level Boolean network and a

target wire is NP-complete. Consider a Boolean function f{xy, ..., x) with SOP form ¢; +

..+ ¢, construct a 2-level Boolean network G as follows. Let each variable x;
corresponds to a node x;, plus an extra input node xp. For each product ¢; add a 1-level
node with operator AND, and add a 2-level node f'with operator OR; then join x; to ¢ if
(x:)'is a variable of x; and insert an INV node if the literal of x; in ¢; is (x;)', connect ¢; to f
fori =1,..., k-1, join xp to fand ¢; for i = 1,..., k. Finally set ¢; and f as output nodes.
Now choose w = (xy, F) as a target wire. Obviously the only possible alternative wire is
w'= (ci, F). w'is an alternative wire is equivalent to ¢; +...+ ¢; = 1. The latter problem is
known to be NP-complete.

A Boolean network is a directed acyclic graph, where each node #; is associated
with a Boolean function f; and a Boolean variable y;. An edge (or wire), denoted by (;,
1)), is said to have tail n; and head #; if the function f; depends on the variable y;, and the
node n; is called a fan-in of the node 7;; the number of fan-in of »; is called the in-degree
and written as d';). n; is called a fan-out of ;; the number of fan-out of #; is called the
out-degree and written as d"(n;). The level of a node is the maximum number of nodes
of in-degree at least two on the paths from that node to an input node. The level of a
network is defined to be the maximum of levels of all its nodes.

Vertices correspond to the primary inputs (PI), primary outputs (PO) and the
gates of the circuit. PI and PO are nodes which have only outgoing edges and incoming
edges respectively. An internal node has at least two incoming edges and one outgoing
edge and is associated with a Boolean function. Inverters are not considered as internal
nodes, but as polarity of edges. For simplicity, we can assume all the internal nodes to
be simple gates, that is AND, OR, NAND or NOR. A wire is replaceable if and only if it

has at least one alternative wire.

19

WO 02/059714 PCT/US01/48670

10

15

20

25

FIG. 9 is a schematic logic diagram that illustrates a mapping of a sub-network of
a logic network to various configurations. We use a graph configuration D to map the
logic function from a Boolean Network G. For each node ni in sub-network S in
network G, ni is mapped to a triplet (op, i1, i2) in D where op denotes the operator
representing the boolean function of ni and i1, i2 are non-negative integers. All edges
inside S are preserved, while the edges outside S are omitted in D. In most cases, il
equals d-(ni) and i2 equals d+(ni). The element of a triplet (op, d-(y), d+(y)) can also be
don't care, dc. For the first element, dc means any operator. For the other elements, dc
can be any positive integers. We use a configuration to denote a minimal pattern
containing both the target and its alternative wire. S is a sub-network of G. D1 and D2
are called two mappable configurations of S. A configuration denotes a minimal pattern
containing both the target and its alternative wire. The k-local pattern denotes the
alternative wire pair in the minimal graph with the distance between the alternative wire
and the target wire is k. The distance between two wires is defined as the difference of

maximum path length from any primary input to each of the wires.
B. Logic Patterns for Use in the Pattern-Matching

FIGS. 11-34 schematically illustrate an extensive set of useful pre-analyzed logic
patterns that indicate alternative wires and target wires. However, it must be understood
that any other logical patterns may also be used, and that the present invention is not
limited to these or to any particular logical patterns.

In FIGS. 11-34, minimal 0-local, 1-local, and 2-local patterns are presented.
Some 2-local patterns are organized into clusters for greater pattern-matching efficiency
by the AW method as well as for ease of presentation in the present document. As can
be seen, some logic patterns have at least four, or at least eight, gates. Some logic

patterns have at least two levels of gates.
We define the complete set of patterns as Pattern Family F and each of the

member in the pattern set as Pattern Member P. To systematically analyze the patterns,

20

WO 02/059714 PCT/US01/48670

10

15

20

25

we introduce another 2 terminologies: Pattern Cluster C and Specific Member S. Pattern
cluster C is defined as a subset of F which contains more than one P where the members
in the same pattern cluster has the same topological order but the op in each of the node
can be different. Specific member S is defined as an individual pattern which cannot

group with other pattern in the pattern family F.
C. Further Preliminary Remarks

A Boolean network is a graph presentation of a system of Boolean functions with
some specified variables as primary inputs and functions as primary outputs. The system

of Boolean functions can be expressed as follows:

Primary inputs: x;, i=1,..., k
Yi=J1 G x0)

Y2=J2 (K2se0s Xt Y1) (1)
Y3 =13 (%3500, Xk, Y1, ¥2)

V= Jon (1se s Xty V15 V250005 Yinel)
Primary outputs: yi,..., Vi

Function y=fix1,..., Xk, Y1, ¥2,..., yi.1) in (1) with respect to the variables xy,...,

Xk, Y1, Y25..., yi-1 1 called the local function of y;. f; is an operator function if it is obtained
by an operator which can have many operands and the order of operands does not matter.
For example, AND, OR, EOR are such operators. The function obtained from y; by

substitutions until all variables become primary inputs is called the global function of y;.
The functionality of a Boolean network is the set of the global functions of primary

outputs. Two Boolean networks are equivalent if they have the same functionality. Note
that this is a most general version of Boolean networks. Different Boolean networks can

be obtained from restriction of functions fis to some specific function library such as

21

WO 02/059714 PCT/US01/48670

10

15

20

25

{AND, OR, INV, NAND, NOR} in the case of combinatorial circuits, and functions with
at most k arguments in the case of circuit decomposition for FPGA.

Let e = (ny, nz) be a wire of a Boolean network G. An ordered pair of nodes e’ =
(n'}, n'y) is said to be an alternative wire of e if e’ is not a wire of G, e’ # e, the functions
at ny and n% are operator functions and G-e+e'has the same functionality as that of G,
where G-e+e' represents the Boolean network obtained by removing e and adding e'.

Here we would only consider Boolean networks with function library {AND, OR,
INV, NAND, NOR}. Such a Boolean network can be expressed by a directed graph with
an operator assigned to each node. The induced sub-network of G by a subset of nodes .S
is a directed sub-graph of G, with node set § and the wires that are in G and joining two
nodes in . We call the node with out-degree as a zero terminal node and node with in-
degree zero as input node. If a Boolean network has only one terminal node, it is called
single terminal network; otherwise it is called multiple terminal network. Each terminal
node y of Boolean network corresponds to a unique sub-network induced by all its fan-
ins, called the y oriented sub-network. Obviously, a multiple terminal Boolean network is
the union of all its terminal oriented sub-networks.

Given an wire w = (n,;, ng) of a Boolean network G. A sub-network containing w
and of level % is called a k-level sub-network. An induced sub-network is called AND
(OR) sub-network if it has only one primary output node and has the same operator AND
(OR) at all non-input nodes and each inner nodes has out-degree one.

From above arguments we can not expect any efficient algorithm to find any
existing alternative wire even for Boolean networks with small levels. However, if we
restrict both in-degrees and levels, then the number of Boolean functions is bounded and
so that alternative wires can be determined by examining each circuit individually. For
practical circuits, the in-degrees and levels must have some bounds, so that it is possible

to design efficient algorithms just for these circuits.

D. Reduction of Boolean Networks

22

WO 02/059714 PCT/US01/48670

10

15

20

25

RAMBO algorithm can find the existing alternative wire as long as there is
enough computing power. The disadvantage of the algorithm is that it is exponential in
terms of number of nodes, and the recursive learning of logic implication contributes to
the exponential factor.

As was mentioned above, according to an embodiment of the present invention,
first some reduction is performed to the network and then alternative wires are sought in
the reduced Boolean network by applying an AW method, for example, the pattern
recognition embodiment of method 510 of FIG. 5. In general, a reduction with respect
to a target wire is a transformation from one Boolean network and target wire (G, w) to
another (G', w') satisfying that each alternative wire in (G, w) corresponds to an
alternative wire in (G', w') or w’ when w = w', and all alternative wires of (G, w) can be
obtained from the alternative wires in (G', w'). For example, if a Boolean network G
with target wire w = (n, n3) contains an AND sub-network N rooted at z in which n, 18
not an inner node of N, then we can shrink N by deleting the inner nodes of NV and
redirecting the wires of N out of primary input nodes to n. Note that if n; is a primary
input node of N and 7 is an inner node of N, then we take (12;, n) as the target wire of the
obtained Boolean network. We will see that shrinking is a reduction. We can do the
shrinking to all AND (OR) sub-networks to reduce the number of nodes.

The followings are some simple reduction rules with respect to an alternative

wire. FIG. 10 is a schematic logic diagram that shows the transformation by reduction

rules:

(R1). Substitute two consecutive INV nodes by a new wire.

(R2). If a NAND (NOR) node n has out-degree one and with an OR (AND) node as
fan-out, then change 7 to an OR (AND) node and insert an INV node to each of
its input wires.

(R3). If an AND (OR) node n has out-degree one and with an INV node as fan-out,
then combine the AND (OR) and INV node to an NAND (NOR) node.

(R4). Shrink AND (OR) sub-network with respect to target wire.

23

WO 02/059714 PCT/US01/48670

10

15

20

25

(R5). If two nodes with the same function operator and the same neighbors, then delete

one of them which is not incident with the target wire.

We take the new wire as a target wire if the original target wire is changed in R1
though R2. Note that if the head or tail of the target wire is changed in the
transformation, then target wire in the new network corresponds to some alternative
wires in the original network. It can be proved that the rules R1 through RS are valid and

that R4 can be performed in linear time.
E. Another Application Illustration

Here, we give a logic minimization example to illustrate the usage of the GBAW
technique. By examining the pattern configurations in terms of wire addition and

removal, they can be further classified in Perturbation Phase and Simplification Phase.

The first phase is called the Perturbation Phase, mainly concentrate on searching
for candidate patterns for possible simplification result. Upon a match, alternative wires
would be added. As a result, circuit is said to be “perturbed”. This prepares the circuit for

the next phase on minimizing the logic design.

The next phase, called Simplification Phase, mainly serves on simplifying the
circuit to a more scaled-down version. The engine would remove target wires according
to configurations of those matched patterns. Circuit logic is minimized while maintaining

the same functionality.

By scparatiﬁg these two phases, the main engine can have the Perturbation Phase
focused on searching for any matched pattern for adding in alternative wires. The
perturbed circuit is very likely to have a corresponding pattern in the Simplification
Phase that can remove target wires according to perturbed configurations. Also, the
Simplification Phase hés the advantage of scanning through all possible candidates and

choosing appropriate simplification.

24

WO 02/059714 PCT/US01/48670

10

15

20

25

F. Partial Pattern Matching Technique

In local pattern matching, many would consider it as a straightforward process,
making the success rate depend heavily on the design of pattern confi gurations. For each
pattern, when applied on benchmark circuits, usually have very strict fan-in & fan-out

restrictions, e.g. 2 fan-in pattern in SIS software.

However, There are cases that the pattern can still be matched upon loosened

restrictions and subjected to both phase in engine run time.

The original GBAW searches by following the nodes in depth-first-search
manner. If one node does not match exactly (e.g. node type; fan-in/out limitation), the

function will return failure and proceed on next search on next node.

This restriction limits the number of patterns to be found. We suggest loosening
the restriction so we can find more candidates that can be simplified after Perturbation

Phase.

G. Reverse Matching

Alternative wires and target wires are always in pair. If we add wire a for
removing b, we should be able to add b for removing a. To implement reverse search, the
run down process of each pattern matching would be doubled, one for examining from

straight order, and the other in reverse order.

Throughout the description and drawings, example embodiments are given with
reference to specific configurations. It will be aﬁpreciated by those of ordinary skill in
the art that the present invention can be embodied in other specific forms. Those of
ordinary skill in the art would be able to practice such other embodiments without undue

experimentation. The scope of the present invention, for the purpose of the present

25

WO 02/059714 PCT/US01/48670

patent document, is not limited merely to the specific example embodiments of the
foregoing description, but rather is indicated by the appended claims. All changes that
come within the meaning and range of equivalents within the claims are intended to be

considered as being embraced within the spirit and scope of the claims.

26

WO 02/059714 PCT/US01/48670

10

15

20

25

What is claimed is:

1. In an information processing system, a method for alternative wiring for logic
design, the method comprising:

maintaining information descriptive of alternative wiring for each of multiple
predetermined logic patterns;

for a logic network, determining a portion of the logic network as corresponding
to one of the multiple predetermined logic patterns; and

determining an alternative wire for the logic network based on information
maintained in the maintaining step that is descriptive of alternative wiring for the one of

the multiple predetermined logic patterns.

2. The method according to claim 1, wherein the determining steps do not include

performing Boolean implication.

3. The method according to claim 1, wherein the determining steps include
performing Boolean implication, and the performing of steps for Boolean implication is
limited to an amount that takes no more than 19/20 of all time required by the method to

identify an alternative wire given a target wire, on average for a logic network for a user.

4, The method according to claim 3, wherein the amount is an amount that takes no
more than 9/10 of all time required by the method to identify an alternative wire given a

target wire, on average for a logic network for a user.

5. The method according to claim 1, wherein the step of determining a portion of
the logic network as corresponding to one of the multiple predetermined logic patterns
comprises pattern-matching a graph of the portion of the logic network to a graph of the

one of the multiple predetermined logic patterns.

27

WO 02/059714 PCT/US01/48670

10

15

20

25

6. The method according to claim 1, wherein:

the predetermined logic patterns include patterns associated with logic building
blocks used in logic design;

the logic network was designed using at least some of the logic building blocks;
and

the step of determining a portion of the logic network as corresponding to one of
the multiple predetermined logic patterns comprises realizing that the portion of the logic
network was designed using a logic building block with which the one of the multiple

predetermined logic patterns is associated.

7. A system for alternative wiring for logic design, the system comprising:

means for maintaining information descriptive of alternative wiring for each of
multiple predetermined logic patterns;

means for determining, for a logic network, a portion of the logic network as
corresponding to one of the multiple predetermined logic patterns; and

means for determining an alternative wire for the logic network based on
information maintained by the means for maintaining that is descriptive of alternative

wiring for the one of the multiple predetermined logic patterns.

8. The system according to claim 7, wherein the two means for determining do not

include means for performing Boolean implication.

9. The system according to claim 7, wherein the two means for determining include
means for performing Boolean implication that is configured to perform only so much
Boolean implication as to take no more than 19/20 of all time required by the system to

identify an alternative wire given a target wire, on average for a logic network for a user.

10. The system according to claim 7, wherein the means for performing Boolean

implication that is configured to perform only so much Boolean implication as to take no

28

WO 02/059714 PCT/US01/48670

10

15

20

25

more than 1/2 of all time required by the system to identify an alternative wire given a

target wire, on average for a logic network for a user.

11. The system according to claim 7, wherein the means for determining a portion of
the logic network as corresponding to one of the multiple predetermined logic patterns
comprises means for pattern-matching a graph of the portion of the logic network to a

graph of the one of the multiple predetermined logic patterns.

12. The system according to claim 7, wherein:

the predetermined logic patterns include patterns associated with logic building
blocks used in logic design; |

the logic network was designed using at least some of the logic building blocks;

the means for determining a portion of the logic network as corresponding to one
of the multiple predetermined logic patterns makes its determination based on realizing
that the portion of the logic network was designed using a logic building block with

which the one of the multiple predetermined logic patterns is associated.

13. A method for computer-aided design, comprising:

determining a logic design including selecting predetermined logic building
blocks for inclusion into the logic design, wherein the predetermined logic building
blocks have been pre-analyzed for alternative wiring, and alternative wiring information
is available for the predetermined logic building blocks;

recording retrieval information for a portion of the logic design that is from one
of the predetermined logic building blocks, wherein the retrieval information enables
later look-up of alternative wiring information for the portion of the logic design,
wherein the alternative wiring information for the portion of the logic design is from the
alternative wiring information that is available for the predetermined logic building

blocks.

29

PCT/US01/48670

WO 02/059714

1/23

(LYY ¥OI4d) | 914

L0 ~— HALINRd AVIdSId | go1
! '
AHONIN
80} 90l
A (03diA
J0IA3d Maldvay |
91} ONILNIO QHVOaAIA o3I pOL
\ H ! !
S3714 V1va
SNOILYOITddY 5 m_o_\dw,mmwz_ .
wmmzmmao 39YH01S < vo: l
a3axi4 >
(ndo) « o] FOVREN |
J9VH0LS (S)LINN ©ONISS3D0Hd TYHINID xwo\smz
m
Tavaonay | € >
WF <—>»| pagow —->»
G
wop — H 0 . >
0L ~ noy w701
001 €0l

PCT/US01/48670

WO 02/059714

2/23

d3LINIEd

SHSI ¢ 9ld
3snon.
WIAOW
aYVOgATN
140d IWNOD
JOVTLNI YMOMLAN (3aooo¥om) |
HOLINOW AV1dSIa Solg
H A
002
(MDOSNIMm “69)
0¢c 1 sy3amazoinaa
61z H
/\ Y
JOV-ALNI
H3SN WOIHAVYD
oz (SO OVIN "XNINIT ‘SI¥YIOS “XINA ‘LN/000Z/X6 SMOANIM “679)
W3LSAS ONILYEIO
502
IHYMLIOS |- 90
MY
N WYH90Yd .\\. .. \\ NYH90ud 2 NVHD0Yd | NYHO0Yd
NOJLYDITddY ¥ISMONE NOILYOddY NOILYOIddY
pLOZ ~ o0z " qi0z ez

WO 02/059714 PCT/US01/48670
3/23

a >

el

& — X

c =

r@:)_
l_
.

I Y

g

FIG. 3A

a > _g'g);
g 8 g
b Dm-[>c rf dundant -1 _g_s—’;—D X
2

g7y —

7Y

FIG. 3B

WO 02/059714 PCT/US01/48670
4/23

FIG. 3C

WO 02/059714

PCT/US01/48670

5/23
—
r}._ a___
: FIG. 3D
bleockl block2
I
itical
e s FIG. 3E
chipl chip?2
S
— v
—

“a FIG. 3F

WO 02/059714 PCT/US01/48670
6/23

410
BEGIN
—412
GIVEN A BOOLEAN NETWORK
Y ,—414

DETERMINE AN ALTERNATIVE WIRE FOR THE BOOLEAN
NETWORK SUBSTANTIALLY WITHOUT PERFORMING
BOOLEAN IMPLICATION

Y ,—416

USE THE ALTERNATIVE WIRE, e.g., FOR AN EDA PURPOSE

FIG. 4

WO 02/059714 PCT/US01/48670
7/23

,—512

MAINTAIN AW-RELEVANT INFORMATION ASSOCIATED WITH
EACH OF MULTIPLE PREDETERMINED PATTERNS

y . ,—514
GIVEN A BOOLEAN NETWORK
l ,—516
DETERMINE ONE OF THE MULTIPLE PREDETERMINED
PATTERNS (CALL IT "PATTERN Z") AS CORRESPONDING
TO A SUBNETWORK OF THE BOOLEAN NETWORK
Y ,—516

DETERMINE AN ALTERNATIVE WIRE FOR THE
SUBNETWORK BASED ON THE MAINTAINED
INFORMATION ASSOCIATED WITH THE PATTERN Z

FIG. 5

WO 02/059714

(REMAINDER
OF)
EDA SYSTEM

8/23

—614

LOGIC NETWORK
(OR SUB-NETWORK)
SPECIFICATION

l 612

AW ENGINE BASED
ON PRE-ANALYZED

l

ALTERNATIVE
WIRE(S)

|

I

]

|

!

|

i

|

|

|

|

|

!

|

)

I

|

1

[

|

]

: PATTERNS
|

|

|

|

|

|

|

I

|

1

|

i

|

! N—616
)
|
|
L

FIG. 6

PCT/US01/48670

5618

AW-RELEVANT
INFORMATION
ASSOCIATED

WITH PRE-
ANALYZED
PATTERNS

___/
KEYS FOR

MATCHING TO
THE PRE-
ANALYZED
PATTERNS

WO 02/059714 PCT/US01/48670
9/23

v —712

MAINTAIN AW-RELEVANT INFORMATION ASSOCIATED
WITH A LIBRARY OF LOGIC BUILDING BLOCKS

l T4
CREATE A DESIGN INCORPORATING LOGIC
BUILDING BLOCKS FROM THE LIBRARY AND

REMEMBER WHICH PORTION OF THE DESIGN IS
FROM WHICH LOGIC BUILDING BLOCK

Y ,— 716

IN CONDUCTING EDA FOR THE DESIGN, IF AW IS DESIRED FOR
AN INCORPORATED LOGIC BUILDING BLOCK, THEN LOOK UP THE
MAINTAINED INFORMATION FOR THE LOGIC BUILDING BLOCK
AND DETERMINE AN ALTERNATIVE WIRE FOR THE LOGIC
BUILDING BLOCK BASED ON THE LOOKED UP INFORMATION

FIG. 7

WO 02/059714 PCT/US01/48670

10/23
al?ernat ive wire
. " /
. :
Annn
eritiecal path

FIG. 8

WO 02/059714

11/23

[#43

L

9
v,

(AND,2,2)

&

(AND de, 1)

(AND,do,dc)

b//

PCT/US01/48670

WO 02/059714

O——+0-+0

12/23

Ow@"
O I

® §>@

RS

2 »—O
O/'

(® =k @ =nanD

FIG. 10

PCT/US01/48670

WO 02/059714 PCT/US01/48670
13/23

(dc,dc,dc)

-
3

A 94
(op,.k,dc) (de,dc,dc)
AND AND (or NAND)
(0,.de,1) (op;de,do)

{a} Case 1-1, op,=AND, op, =AND (;3? NANDY; or 0p,=OR, op,=OR({or NOR)

{op,k,dc

)
& \§.
8, ' “m\‘
S e
' ' " (opgk,de
a \@

(b} Case 1-2, ap,=AND, op, =AND (or NANDY); or op,=OR, 0p,=0R(or NOR)

AND AND (or NAND)

{07 .de,1) (op,dc.dc)

o ,or
~

Yool

{c) Case 1-3, op,=NOR, op, =NAND (or AND); or op ,=NAND, 0p,=0OR(or NOR)

FIG. 12

WO 02/059714 PCT/US01/48670
14/23
(NOR,de, 1) (NAND,de,1) (NOR dc,dc)
(o) (o——(a)
{a) ég;a 2-1
{ORdc, 1) (AND,dc,1)
a 91\1 J/;:" ’,ﬂ{: 92]
.+ (NORdc,de)
a? or
{OR,dc,d¢)
a‘.
{AND k,dc)
(b) Case 2-2
de {OR,de,h) (AND1,1) (OR,d¢,dc}

O A
: ’ I
. d"/ —
s-1 O"//
{¢) Case 2.3
P
< ~
/ ~
N

(opy,de,1)

(opsde,de)

(AND,s,d¢)

FIG. 13

FIG. 14

WO 02/059714 PCT/US01/48670
15/23

(dedede) (NANDde,I) (NANDX,1) (AND/NAND,de,dc)

FIG. 15

(de,de,de) (NAND,dc,1) (NAND,k,1) (AND/NAND,dc,dc)
&

o) FIG. 16

WO 02/059714 PCT/US01/48670
16/23

(de,de,dc) (NORdc,1) (NORK,L) (OR/NOR dc,dc)

oo ()

FIG. 17

(dc,dc,dc) (NORde,) (NORK,I) (OR/NOR,de,dc)
a oy 5oz
N ~ /
(de,de,dc) > /
by / 7 N 7
/ /
(de,de,dc) (NAND k,dc)
(de,de,dc)
by ¥

FIG. 18

WO 02/059714 PCT/US01/48670

17/23
(de,de,de) (Aili,dc,l) (NOR,k,1) (OR/NOR,dc,dc)
3 (&)
(de,de, i
(de,de,de)
(de,de,
(de,de,dc) (A&dc,l) ’(NOR,k,l) (OR/NOR dc,dc)

FIG. 20

WO 02/059714 PCT/US01/48670
18/23

(de,de,dc) (ORde,1) (NANDJK1) (AND/NAND,dc,dc)

FIG. 21

(dedede) (ORde,) (NANDK1D) (AND/NAND,dedo)
. : (&)
/
(NANDkdo)
dc,de,d ~
deded?) & - -m >

FIG. 22

WO 02/059714 PCT/US01/48670
19/23

FIG. 23

(NAND,dc, 1)

o FIG. 24

WO 02/059714 PCT/US01/48670
20/23

(dedede) (OR2,T) (NAND_2,1) (AND/NAND,dc,dc)

e

{OR,dc,1)

D
(NAND,2,dc) F IG 25

-
-
o

(@edede) - (OR2I) (NAND2,1) (AND/NAND,dc,dc)

) &>

(ORe, 1) /

(de,dc,de) o ,
Dt
P RIG. 26
(de,de,de) (OR2.1) (NAND,2,1) (AND/NAND,dc,dc)

& B3

(NAND,2,dc)

FIG. 27

WO 02/059714 PCT/US01/48670
21/23

(de,dc,de) (OR.2,1) (NAND,2,1) (AND/NAND,dc,dc)

(dc,de,dc) (NAND,de,1) , ~
-~

(OR,2,dc) F l G . 28

(de,de,de) (NOR,2,1) (AND,2,1) (AND/NAND,dc,dc)
g a—— g 83

Bs e ’
_ (AND,dc,1) 7
(de,de,dc) N o
w gy 7
(OR,2,dc})
(de,de,de) (AND,2,1) (AND,2,1) (AND/NAND dc,dc)
.
(s Ao
- ("g‘; y
(de,de,do), (ANDde,l) 7
)z >
(OR,2,dc)

FIG. 30

WO 02/059714 PCT/US01/48670
22/23

(de,de,dc) (OR.2,1) (NAND,2,1) (AND/NAND,dc,dc)

- ~
(dc,dc,dc. (ORdc,1) S -
A -
&)3'
(NAND,2,dc)
(de,de,de) (AND,2,1) (OR,2,1) (AND/NAND,dc,dc)
? & - &
it

& o o7

{NOR dc,1 -
(de.de,de) ¢ Y e

: u

(NAND,2,dc)

FIG. 32

WO 02/059714 PCT/US01/48670
23/23

(de,de,de) (NAND,2,dc) (NAND,dc,1) (NAND,2,1)

FIG. 33

(de,de,dc) (NAND,de,1) (NAND,2,1)

@ /{g/ & H@

{do,de,dc) (NOR,de,dc) ’ ‘ (AND/NAND,de,dc)
‘ ’

& , /
(NAND,dc,dc) s

(NA’@ZQ,dc) 7 ‘

&

FIG. 34

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

