PREPAID SHORT MESSAGING

Inventors: Mark Titus, Arnold, MD (US); Dara Ung, Odenton, MD (US); Carle S. Johnson, Jr., Annapolis, MD (US); Erik Wallace, Annapolis, MD (US); Phillip Geil, Clarksville, MD (US); Daniel Hroncek, Annapolis, MD (US)

Assignee: TeleCommunication Systems, Inc., Annapolis, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 13/373,193
Filed: Nov. 8, 2011

Related U.S. Application Data
Continuation of application No. 12/292,606, filed on Nov. 21, 2008, now Pat. No. 8,060,429, which is a continuation of application No. 12/222,861, filed on Aug. 18, 2008, now Pat. No. 7,853,511, which is a continuation of application No. 09/790,979, filed on Feb. 23, 2001, now Pat. No. 7,428,510.

Provisional Application No. 60/185,053, filed on Feb. 25, 2000.

Int. Cl. G06Q 40/00 (2006.01)

U.S. Cl. 705/36 R; 705/39; 705/42; 705/35; 235/380; 340/527; 455/408

Field of Classification Search 235/380; 705/35, 39, 42, 36 R; 340/5.27; 455/408; 379/120

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
1,103,073 A 7/1914 O'Connell
3,400,222 A 9/1968 Nightingale et al. ... 379/120

FOREIGN PATENT DOCUMENTS
GB 2308528 12/1995

OTHER PUBLICATIONS

Primary Examiner — Haris T Dass
Attorney, Agent, or Firm — William H. Bollman

ABSTRACT
A prepaid messaging solution using open networking standards (e.g., TCP/IP) to support pre-payment of Internet messaging services. The disclosed prepaid architectures/methods determine if a subscriber has sufficient account balance to deliver a short message, prior to message delivery. A message may be prevented from being delivered (at the source end or destination end) if a subscriber account has insufficient funds. A prepaid tariff engine supports remote interaction with the SMSC and web chat servers to apply real-time billing for each message. A service provider may define subscriber rates and/or tariffing plans to apply real-time billing for sending/receiving messages. Message billing may be based upon, e.g., rate per message, message count, character count, Time of Day, Day of Week, message type, and/or mobile location. The prepaid short messaging service preferably supports internet access to subscriber's account balances and status maintained in the prepaid short messaging database of the prepaid messaging server.

17 Claims, 4 Drawing Sheets
FOREIGN PATENT DOCUMENTS

WO PCT/NO99/00178 6/1997
WO PCT/SE99/00875 5/1999

OTHER PUBLICATIONS

* cited by examiner
FIG. 2
Start

1. Receive short message for delivery
2. Perform message tariffing
3. Determine account balance for short messaging

If insufficient balance:
- Prevent delivery of short message
- Notify user of non-delivery of short message for insufficient balance

If sufficient balance:
- Deliver short message

End

FIG. 3
PREPAID SHORT MESSAGING

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to short messaging systems. More particularly, it relates to prepaid billing of short message services.

2. Background of Related Art

Prepaid voice services exist. In a prepaid voice scenario, as part of the establishment of a telephone call, a service queries a database for a particular subscriber to determine if there is at least a given amount of funds available to pay for a call about to be made. In such a prepaid voice scenario, the ultimate cost of the desired telephone call is not known at that time, because the caller may not know the exact length of time that they would like to speak. Thus, a ‘minimum’ cost of the telephone call given the location of the called party (e.g., for a 3 minute call) may be determined, and compared to the remaining balance in the caller’s service account. If there is sufficient money remaining to pay for at least the minimum cost of the telephone call (e.g., to pay for a minimum 3 minute call), then the call is allowed to go through and be established.

In the conventional prepaid voice system, when the subscriber’s account has been exhausted or nearly exhausted, the subscriber is initially warned about the dwindling account balance. Ultimately, if the account balance is not replenished in time, the telephone call will be terminated due to lack of funds.

Conventionally, when a called party does not answer a telephone call, a voice message may be left in a voice mailbox. However, since the telephone call was not answered, there typically is no tariffing or cost applied to the subscriber’s account. While this may be advantageous to the subscriber, the wireless carrier service does not recover costs with respect to that voice message.

Nevertheless, while prepayment for voice telephone calls has been accomplished, existing technologies have not applied the concepts of pre-payment to the world of short messaging (e.g., Internet messaging delivery services) as have prepaid wireless voice & calling cards. The lack of pre-payment service for messaging increases the possibility for fraudulent billing with respect to payment collections, particularly with respect to the high demand for wireless information services.

There is a need for an architecture and method for providing prepaid messaging services.

SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a method and apparatus for handling a prepaid messaging service comprises tariffing a short message before transmission. An account database is queried to determine if an account corresponding to an addressed party of the short message has sufficient funds to pay for transmission of the short message. If the account has sufficient funds, the short message is transmitted.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:

FIG. 1 shows an exemplary prepaid SMSC mobile originated mobile chat scenario in an implementation including a prepaid messaging system controller (SMSC) mobile originated (MO) chat, in accordance with the principles of the present invention.

FIG. 2 shows a block diagram of exemplary modules in a prepaid messaging system providing a prepaid messaging services, in accordance with the principles of the present invention.

FIG. 3 shows an exemplary process of implementing prepaid messaging services, in accordance with the principles of the present invention.

FIG. 4 shows the step of performing message tariffing shown in FIG. 3 in more detail.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention provides a prepaid messaging solution which uses open networking standards (e.g., TCP/IP) and which supports pre-payment of enhanced Internet messaging services. The disclosed prepaid architectures and methods accurately determine if a subscriber has sufficient account balance to deliver a complete short message, prior to delivery of the message. The short message may be prevented from being delivered (either at the source end or at the destination end) if insufficient funds are in the subscriber’s account.

Short messaging architectures are significantly different from mere telephone systems, and thus prepaid short messaging is quite different from prepaid voice telephone calls. Accordingly, the implementation of prepaid accounting for short messaging encounters different issues than does prepaid accounting for voice telephone calls.

For instance, voice telephone calls are conventionally billed or tariffed based on a length of the telephone call. However, such billing or tariffing is not useful for short message cost recovery because most short messages can be transmitted in a blink of an eye, or at the most just a few seconds. Thus, prepaid voice telephone techniques and apparatus provide no workable solution to tariffing for short messages.

In a short messaging system, the length of the short message is known at the time of transmission (unlike voice telephone calls which are indefinite in nature, and must be “cut off” when account balances dwindle). For instance, the approximate total number of ASCII type characters will be known, or the approximate total size of a transferred file may be known. Thus, in accordance with the principles of the present invention, short messages may be tariffed based on the substance of the short message being transferred.

This is significantly different from that encountered in conventional prepaid voice telephone systems, where the costing of a particular voice telephone call can be finalized only after completion of the voice telephone call. It is only after someone in the voice telephone call has hung up that the final length of the telephone call (and thus the final total cost of the telephone call) can be known. Thus, either prepaid
Voice telephone call accounts run the risk of being overdrawn to a negative balance, and/or the subscriber (and their called party) may be subject to embarrassing and inconvenient disconnects in an ongoing telephone call corresponding to the point at which the account balance becomes drawn down to $0.00.

Conventionally, wireless & Internet Messaging services have been capable of billing only on a postpaid basis. The present invention enables a wireless carrier or Internet service provider to accept pre-payment of enhanced short messaging services, including but not limited to short messages originated by a wireless device (e.g., Short Message Service Mobile Originated (SMSC MO)), short messages terminated by a wireless device, i.e., sent to a wireless device (SMSC Mobile Terminated (SMSC MT)), and IRC and other chat messages. In addition, Internet Push information service short messages may be prepaid (e.g., stock quotes, e-mail, weather, sports scores, etc.), as can individual & network game cards, and/or Wireless Application Protocol (WAP) services.

A U.S. Patent Application disclosing an architecture and method for providing prepaid voice call management in an intelligent network is disclosed in a co-owned application, U.S. application Ser. No. 09/533,805, entitled “PREPAID CALL MANAGEMENT IN INTELLIGENT NETWORK”, by Elizabeth Crotch, Timothy J. Loretto, Mark Titus, and Dana Ung, the entirety of which is expressly incorporated herein by reference. Conventionally, wireless and Internet short messaging services have been capable of billing, if at all, only on a postpaid basis. A prepaid short messaging service in accordance with the principles of the present invention enables a wireless carrier or Internet service provider to accept pre-payment of both simple (i.e., short text messages) as well as enhanced (e.g., WAP applications, HTML documents, etc.) short messaging services.

In accordance with the principles of the present invention, real-time billing can be implemented for the delivery of short messages, allowing the prepayment of short messaging services. The real-time billing can debit subscriber balances for service usage, and can suspend short messaging services for a particular subscriber when the subscriber’s account balance is depleted. Preferably, the subscriber can continue their short messaging service by depositing additional funds into their account via a suitable replenishment method.

For instance, a user may access a direct interface to a credit card authorization center to debit funds from a credit card and apply the same to their short messaging account. Replenishment may alternatively be accomplished over the Internet or via a suitable SMSC mobile originated message. Voice recognition techniques may be implemented to facilitate easy fund transfers into a user’s short messaging account.

A prepaid short messaging service in accordance with the principles of the present invention can be implemented as a standalone service, or may be bundled with other applications, e.g., with a prepaid voice telephone call wireless application.

FIG. 1 shows an exemplary prepaid SMSC mobile originated mobile chat scenario in an implementation including a prepaid messaging system controller (SMSC) mobile originated (MO) chat, in accordance with the principles of the present invention. While **FIG. 1** shows the particular example of a mobile originated chat message, it is to be understood that the prepaid messaging system and methods in accordance with the principles of the present invention are also applicable to many other message types.

A U.S. Patent Application disclosing an architecture and method for providing Internet chat capability to mobile units is described in a co-owned application, U.S. application Ser. No. 09/525,926, entitled “MOBILE ORIGINATED INTERNET RELAY CHAT”, by Richard A. Smith, Orville A. Pike, and Johanna Wilson, the entirety of which is expressly incorporated herein by reference.

As shown in **FIG. 1**, a prepaid short messaging server **200**, in communication with a short messaging service center (**SMSC**) **120**. The SMSC **120** includes, e.g., an SMSC database **130**, and accesses the Internet **195** via an appropriate wireless Internet gateway **140**. A suitable wireless Internet gateway **140** is shown and described in co-pending U.S. application Ser. No. 09/630,762 to Richard Smith, filed Aug. 2, 2000, entitled “Wireless Internet Gateway”, the entirety of which is explicitly incorporated herein by reference.

By way of example, short messages may be passed between, e.g., Apple’s/Intelgent agents **160**, personal digital assistants (PDAs) such as a PalmPilot™ Internet Push or Gaming card device **185**, and Desktop chat clients **190**.

In the given example, a chat server and/or messaging server **170** is shown within the network of the prepaid service provider. Of course, the chat server **170** may be external to the service provider’s network and accessible via the Internet **195**.

The prepaid short messaging server **200** comprises a prepaid short messaging account database **110**, a prepaid short messaging service application **100**, and a prepaid short messaging service rating engine (i.e., prepaid tariff engine) **150**.

The prepaid tariff engine **150** preferably supports data driven rating structures that can be modified at run time.

The prepaid tariff engine **150** is preferably extensible over a TCP/IP network (e.g., the Internet **195**), and supports remote interaction with the Short Message Service Center (**SMSC**) **120** & web chat servers (e.g., **170**) for the purpose of applying a real-time billing charge for each message.

The prepaid tariff engine **150** preferably supports tariffing based on the following message types: Short Message Service Mobile Originated (SMSC MO), SMSC Mobile Terminated (SMSC MT), Prepaid Internet Chat Rooms/Messages, Prepaid Internet Push Information service messages (e.g., stock quotes, e-mail, weather, sports scores, etc.), Prepaid Individual & Network Game cards/applications, and Wireless Application Protocol (WAP) services.

A prepaid short messaging service in accordance with the principles of the present invention preferably supports service provider creation of subscriber classes of service that define and uniquely identify subscriber rate and/or tariffing plans used to apply real-time billing charges for sending or receiving of messages. Moreover, the prepaid short messaging service preferably supports Internet web page access to subscriber’s relating to their short messaging account balances and status maintained in the prepaid short messaging database **110** of the prepaid messaging server **200**.

While the prepaid messaging server **200** is shown comprising the prepaid tariff engine **150**, prepaid messaging service application **100** and prepaid short messaging account database **110**, each of these elements may be external to the prepaid messaging server **200**, or combined with another element of the service provider’s network, in accordance with the principles of the present invention.

Prepaid delivery of a chat message is shown in sequential steps in **FIG. 1**.

In particular, in step 1, using a wireless handset device (i.e., mobile phone, palm pilot, etc.) Mobile A **102**, provisioned with prepaid chat service, registers into a chat session & composes a short message service mobile originated (SMSC MO) message targeted for all chat room participants. In this example chat room participants are Mobile B **104**, Mobile C **106**, Mobile D **108**...
and the Desktop Chat Client 190 as indicated in FIG. 1. Note in this example Mobiles B & C (104, 106), and the Desktop Chat client 190 are non-prepaid accounts.

In step 2, the SMSC application 120 receives an SMSC mobile originated message from Mobile A 102, validates the identity of Mobile A 102, then queries the prepaid short messaging account database 110 to determine if sufficient balance exists to deliver the message originated by Mobile A 102. If the Mobile A 102 account balance is not sufficient, then proceed to step 10, otherwise if sufficient balance exists in Mobile A’s prepaid account, the SMSC 120 forwards Mobile A’s message to the chat server 170 (step 8), and notifies the prepaid short messaging service application 100 with a delivery receipt message (step 3).

In step 3, the prepaid messaging service 100 receives an interservice message from the SMSC application 120.

In step 4, the prepaid messaging service application 100 processes the delivery receipt message received from SMSC 120. The message contents may include, e.g., Mobile A’s mobile identification number (MIN), Time of delivery, Time of Arrival, Message Status, and/or Message Type.

In step 5, the prepaid messaging service 100 invokes the prepaid tariff engine 150 to determine the appropriate message billing based upon, including but not limited to, the following exemplary criteria: Flat rate per message, message count (e.g., 10 messages @ $5.00), character count (e.g., $0.01/char.), Time of Day, Day of Week (i.e., peak & non-peak hours), and/or mobile location (i.e., network point code).

In step 6, the prepaid messaging service 100 debits the account of Mobile A 102 based upon the billing rate as computed by the prepaid tariff engine 150.

In step 7, the chat server 170 processes Mobile A’s message, determines group members in the current chat session, then forwards a “broadcast mobile terminated message” request to the SMSC 120 for delivery to Mobile B 104 & Mobile C 106. The chat server 170 delivers the message to the desktop chat client 190.

In step 8, the SMSC 120 stores and forwards the broadcast message for delivery to Mobile B 104 & Mobile C 106 (step 5).

In step 9, Mobiles B & C (104, 106) receive the message originated from Mobile A 102.

In step 10, Mobiles 102 has determined that Mobile A’s account balance is insufficient to deliver the originated message. The SMSC 120 then discards the originated message and launches an SMSC mobile terminated message for Mobile A 102. The message contents inform Mobile A 102 that his/her prepaid account balance is too low and that Mobile A 102 needs to recharge the account in order to continue service.

In step 11, the same process would apply for the SMSC mobile terminated message delivery scenario where Mobiles B & C (104, 106) are prepaid subscribers.

The prepaid short messaging service 100 preferably interfaces with a Short Message Service Center 120 and/or Web servers (e.g., 140, 170) to provide real-time message billing based on pre-payment. The prepaid short messaging service 100 prevents delivery of messages for conditions where the subscriber balance is insufficient.

The prepaid short messaging service 100 preferably interfaces with a Short Message Service Center 120 and/or Web servers (140, 170) to provide real-time and/or periodic notifications to subscribers of insufficient balance conditions.

The prepaid short messaging service 100 preferably interfaces with a Short Message Service Center 120 and/or Web servers 140, 170 to buffer subscriber messages for a variable period of time and inform subscribers of pending messages. The application preferably suspends subscriber service until their account balance has been sufficiently replenished.

The prepaid short messaging account database 110 may be managed by the relevant service provider, e.g., by a wireless service or an Internet Service Provider (ISP).

FIG. 2 shows in more detail the prepaid server shown in FIG. 1.

In particular, as shown in FIG. 2, the prepaid service architecture is distributed and extensible over a local or wide area network. The prepaid short messaging server 200 contains the subscriber data and server processing logic required for basic call processing, communication with the Web & SMSC servers, message tariffing (i.e., rating engine) and subscriber balance updates. The Intelligent Peripheral 250 contains service logic responsible for providing replenishment functions via the Integrated Voice Response system 254.

The present invention relates to use by, e.g., wireless carriers, Internet service providers (ISPs), information content delivery services/providers, portal sites for mobile-terminated hosting of chat groups, Internet chat session hosts, and/or Internet gaming hosts. The principles of the invention may be used in intelligent networks including, e.g., short message servicing centers, prepaid and web gateway applications, prepaid paging systems, prepaid Internet access, prepaid gaming cards, and/or prepaid Internet chat sessions.

The prepaid tariff engine 150 preferably supports tariffing based on message-based (and not time based) criteria.

For example, the prepaid tariff engine 150 may base the fee charged to the subscriber based on, e.g., a flat rate per message, message count (e.g., 10 messages @ $5.00), character count (e.g., $0.01/char.), Time of Day, Day of Week (i.e., peak & non-peak hours), mobile location (i.e., network point code).

In addition, or alternatively, the rates for delivery of the short message may be based on its type, e.g., distinguishing rates between Short Message Service Mobile Originated (SMSC MO) messages, SMSC Mobile Terminated (SMSC MT) messages, Internet chat room messages, and/or information service messages (e.g., stock quotes, e-mail, weather, sports scores, gaming, Wireless Application Protocol (WAP) messages, etc.).

Preferably, delivery of short messages is prevented if the prepaid short messaging service application 100 determines, from query of the prepaid short messaging database 110, that insufficient funds remain for delivery of a given short message. In such a case, a real-time short message notification may be provided to the subscriber indicating the non-delivery of the short message the insufficiency of an account balance in a suitable short message format. Additionally, or alternatively, the short message notifications may be delivered periodically and/or upon demand.

FIG. 3 shows an exemplary process of implementing prepaid messaging services, in accordance with the principles of the present invention.

In particular, as shown in step 302 of FIG. 3, a short message is received for delivery.

In step 304, tariffing of the short message is performed in the prepaid tariff engine 150.

In step 306, the balance of the sender’s account is determined, e.g., from query of a subscriber short messaging account database 110. Note that in short messaging, the exact cost of transmitting the message is known up front, and thus the risk of over-drawing a particular account balance is reduced or eliminated.

In step 308, if a sufficient subscriber account balance remains, the short message is delivered as depicted in step
If sufficient subscriber account balance does not remain, the delivery of the short message may be prevented, as depicted in step 312. It is preferred that in this case the subscriber be notified, e.g., by short messaging such as a text message, that the particular short message was not delivered due to a determination of an insufficient subscriber account balance.

FIG. 4 shows the step of performing message tariffing 304 shown in FIG. 3 in more detail.

In particular, as shown in FIG. 4, tariffing may be based, e.g., on flat rate message billing (step 402), a particular rate given per character in a text file or for a particular length of a given file (step 404), and/or based on a particular message type (step 406). The particular tariffing technique may be configurable by the service provider and/or selectable by the subscriber, e.g., by choice of a particular service plan.

If flat rate message billing 402 is enabled, a subject short message is logged and the subscriber’s account in the prepaid account database 110 is appropriately debited a fixed amount per message, as shown in step 408.

If, on the other hand, a rate is affixed in accordance with the number of text characters and/or the length of a particular file (e.g., a binary file), then a particular cost is associated with the subject short message, as depicted in step 410.

If a rate is applied based on a particular type of short message, then the message type is determined in step 412, and a cost associated with that particular message type (e.g., as determined from a look-up file) as shown in step 414.

Step 415 ensures billing is performed by providing a default billing mechanism.

As shown in optional step 416, adjustments may be made to the costing assigned in prior steps due to peak hour usage. For instance, a 20% premium may be added to the costs associated with the transmission of a particular short message based on the time of submission for transmission.

The prepaid short messaging system preferably supports direct interface to a credit card authorization center associated with the service provider’s merchant identification number, and allows replenishment over the Internet. The direct interface may be implemented via a secure socket connection over the Internet 195 to an authorized Internet server.

The prepaid short messaging service application 100 preferably supports indirect interface to a credit card authorization center associated with the service provider’s merchant identification number, and allows replenishment via an SMSC mobile originated message. For instance, in such a scenario, a mobile subscriber typically has a signature on file with the service provider, as well as authorized spending limits for mobile replenishment transactions. The direct interface may be implemented via a secure socket connection over the Internet 195 to an authorized Internet server.

The prepaid short messaging service application 100 preferably supports a prepaid subscriber replenishing their account via credit card at their discretion, e.g., by dialing an Interactive Voice Response Unit (IVRU 254 shown in FIG. 2). Using this technique, a subscriber is prompted to either speak or manually enter their credit card information (e.g., number and expiration date), and the transaction is then processed automatically.

Of course, the principles of the present invention may encourage and/or implement transmission of short messages during non-peak or otherwise desirable times to reduce costs.

While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

What is claimed is:

1. A method of tariffing a text message, comprising:
 providing a text message for tariff after transmission completion from a mobile device and before receipt by a recipient mobile device associated with said text message;
 querying a physical account database to determine that an account corresponding to said recipient mobile device has prepaid for delivery of said text message;
 permitting debit of a prepaid parameter of said account prior to delivery of said text message;
 if said account is determined to be sufficiently prepaid, routing said text message to said recipient mobile device;
 and
 if said account is determined to be insufficiently prepaid, preventing delivery of said text message to said recipient mobile device until said account is sufficient.

2. The method of tariffing a text message according to claim 1, wherein:
 said debit parameter is a number of prepaid messages.

3. The method of tariffing a text message according to claim 1, wherein:
 said debit parameter is a prepaid monetary value.

4. The method of tariffing a text message according to claim 1, further comprising:
 sending an unsuccessful message to said addressed party device when said delivery of said text message was prevented.

5. The method of tariffing a text message according to claim 1, wherein:
 said account is tariffed on a tariff platform external to a routing platform routing said text message to said recipient.

6. The method of tariffing a text message according to claim 1, wherein:
 said account corresponding to said addressed party corresponds to a sender of said text message.

7. The method of tariffing a text message according to claim 1, wherein:
 said account corresponding to said recipient mobile device corresponds to a recipient device of said text message.

8. The method of tariffing a text message according to claim 1, further comprising:
 receiving said text message from a subscriber device.

9. The method of tariffing a text message according to claim 1, further comprising:
 receiving said text message from a physical mobile servicing center (MSC).

10. The method of tariffing a text message according to claim 1, wherein:
 said tariffing is different for peak and non-peak times.

11. The method of tariffing a text message according to claim 1, wherein:
 said tariffing is different for different message types.

12. The method of tariffing a text message according to claim 1, wherein:
 said tariffing is different based on a location of said mobile device.

13. The method of tariffing a text message according to claim 12, wherein:
 a location of said mobile device is determined based on a network point code.

14. The method of tariffing a text message according to claim 1, wherein:
 said tariffing is different based on a location of said recipient mobile device.
15. The method of tariffing a text message according to claim 14, wherein:
 a location of said recipient mobile device is determined based on a network point code.
16. The method of tariffing a text message according to claim 15, wherein said different message types include at least one:
 mobile terminated messages;
mobile originated messages; and
Internet Relay Chat (IRC) messages.
17. The method of tariffing a text message according to claim 1, further comprising:
 automatically transmitting said text message.