
USOO802691 OB2

(12) United States Patent (10) Patent No.: US 8,026,910 B2
Elmieh et al. (45) Date of Patent: Sep. 27, 2011

(54) OFFLINE OPTIMIZATION PIPELINE FOR 3D (56) References Cited
CONTENT IN EMBEDDED DEVICES

(75) Inventors: Baback Elmieh, Carlsbad, CA (US);
James Ritts, San Diego, CA (US);
David L. Durnil, San Diego, CA (US);
Maurya Shah, Gujarat (IN)

(73) Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1153 days.

(21) Appl. No.: 11/478,864

(22) Filed: Jun. 29, 2006

(65) Prior Publication Data

US 2007/O109298 A1 May 17, 2007

Related U.S. Application Data
(60) Provisional application No. 60/696.347, filed on Jun.

29, 2005, provisional application No. 60/696,185,
filed on Jun. 29, 2005, provisional application No.
60/696,488, filed on Jun. 29, 2005, provisional
application No. 60/696,346, filed on Jun. 29, 2005,
provisional application No. 60/696,186, filed on Jun.
29, 2005.

(51) Int. Cl.
G06T I5/00 (2006.01)

(52) U.S. Cl. 345/419; 34.5/519; 345/613: 345/473;
345/503; 34.5/522; 710/15; 710/18; 715/717;

715/735: 715/771; 715/966
(58) Field of Classification Search 345/419,

345/519, 613, 473, 503, 522; 710/15, 18;
715/717, 735,771,966

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,263.496 B1* 7/2001 Meyer et al. T17,114
6,272,650 B1* 8/2001 Meyer et al. T14? 38
6,477.563 B1 * 1 1/2002 Kawamura et al. TO9,202
6,842,178 B2 * 1/2005 Simons 345/473
6,987,516 B2 * 1/2006 Dery 345,582
7,027,056 B2 * 4/2006 Koseljet al. ... 345,519
7,251.506 B2 * 7/2007 Yasutake 455/567
7.388,579 B2 * 6/2008 O'Gorman et al. 345,211

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2004.199142 T 2004

OTHER PUBLICATIONS

Masatoshi Ketal, 3D Graphics LSI Core for Mobile Phone “Z3D”.
Proceedings of the ACM Siggraph/Eurographics Conference on
Graphics Hardware, Jul. 2003, p. 61, col. 1, lines 1-16, pp. 65,66.

(Continued)

Primary Examiner — Phu Nguyen
(74) Attorney, Agent, or Firm — Timothy F. Loomis; James
R. Gambale, Jr.

(57) ABSTRACT

Apparatus are provided including assets defining 3D models,
including 3D icons and Scenes, and animations of the 3D
models. An offline optimization engine is provided to process
data to be acted upon by a graphics engine of a target embed
ded device. A graphics engine simulator is provided to simu
late, on a computer platform other than a target embedded
device, select functions of a target embedded device running
a graphics engine including API calls that directly calls API
functions of a hardware level API of the target embedded
device.

60 Claims, 10 Drawing Sheets

120

TARGETDEVICE

BREADTHFIRST
HIERARCHY

UPDATE

MEMORY
AOCATION
AND COPY

ALLOCATION
PROCESS

META DATA
AND PACK
TOTAL

FRAME
BAKEDANIMATON OFFSET

NODE LUT WALUE

126

DECODING MECHANISM

CONTIGUOUSBUFFER
WITHANIMATIONWALU

is TREEDATABUFFER

RENDER MECHANISM

22

CODE ANDATA
124

128

ES

29

US 8,026,910 B2
Page 2

U.S. PATENT DOCUMENTS

7.406,329 B2 * 7/2008 Khurana et al. 455,552.1
7,577,911 B2* 8/2009 Oswalt T15,744
7.593,015 B2* 9/2009 Rao 345/473
7.719,532 B2 * 5/2010 Schardt et al. 345,420

OTHER PUBLICATIONS

Leavitt N. Will Wireless gaming be a winner?, Computer IEEE
Comput. Soc USA. vol. 36, No. 1, Jan. 2003, pp. 24-27.
Bing-Yu Chen et al. JavaGL-A 3D graphics library in Java for
Internet browsers, IEEE Transactions on Consumer Electronics IEEE
USA, vol.43, No. 3, Aug. 1997, pp. 271-278.
Lawton G. Moving Java into mobile phones, Computer IEEE
Comput. Soc USA. vol. 35. No. 6, Jun. 2002, pp. 17-20.
Paltashev Tetal, Simulation of hardware support for OpenGL graph
ics architecture, Proceedings International Conference on Informa

tion Technology: Coding and Computing (Cat. No. PRO0540) IEEE
Comput. Soc Los Alamitos, CA, USA, 2000, pp. 295-300.
Crisu D et al. Graal–A development framework for embedded
graphics accelerators, Design, Automation and Test in Europe Con
ference and Exhibition, 2004. Proceedings Feb. 16-20, 2004,
Piscataway, NJ,USA, IEEE, vol. 2, pp. 1366-1367.
Chehimi Fetal, Evolution of 3D games on mobile phones, Interna
tional Conference on Mobile Business IEEE Computer Society Los
Alamitos, CA, USA, 2005, pp. 173-179.
Pulli Ketal. Designing graphics programming interfaces for mobile
devices, IEEE Computer Graphics and Applications IEEEUSA, vol.
25, No. 6, Nov. 2005, pp. 66-75.
International Search Report and Written Opinion—PCT/US2006/
025954. International Search Authority—European Patent Office—
Jan. 22, 2007.

* cited by examiner

U.S. Patent Sep. 27, 2011 Sheet 1 of 10 US 8,026,910 B2

9 41 MOBILE
N DEVICE DEVICE

EXPORT

14a 14b

SCRIPTING WINDOW - - - - - - - SCRIPTING I/F

16a 16b

SOURCE CODE WINDOW - - - - - - SOURCE CODE I/F

18

19 TARGET SCRIPT SOURCE
SIMULATOR FILES CODE

OFFLINE OPTIMIZATION

COMPILED SCRIPT
AND/OR SOURCE CODE

24

3D MODELS
32

ANIMATIONS 3D MODEL
EXPORTER SYSTEM

TEXTURES

UILAYOUTS

FIG. 1

U.S. Patent Sep. 27, 2011 Sheet 2 of 10 US 8,026,910 B2

COMPILED SCRIPT AND/OR SOURCE CODE
(INCL.API CALLS)

48 MANAGED

RENDERING APIS

50

RESOURCE MANAGEMENT

52

CAMERAMANAGEMENT

42

BASE STRUCTURES AND APIS
54 56 58

TEXTURES MESHES ANIMATIONS

60 62

CAMERAS MATH AND UTILITIES

HARDWARE LEVEL API
(e.g., OPENGL-ES)

FIG. 2

US 8,026,910 B2 Sheet 3 of 10 2011 Sep. 27 U.S. Patent

AHORIWRIGHIH @HALVOId?[] 0
L

9/

Sc{[\ORIO RIFICINETRI SÄVYTYIV {{JLVNICIRIOOO EIRI[.] LXH L

08 8L

HSCHW (H@HOINCHYH
B?7/

TVIRIHALVVN
TI@HOTOWN

?L

FITIH TIGHCIOWN CIS

US 8,026,910 B2 Sheet 4 of 10 Sep. 27, 2011 U.S. Patent

‘O HINI EIGION ?HNGHOS CIN V HOION XINITI

SLNEHAH [[] (S)NOILISNVRIL ALVLS NIVALRIGHO HO HONGHORTRITOOO NOd[[T] SCINVVNINOO JLN@HWN@HOVNVIWN OEHALVLS S@HALVALS [[] + ‘O HNI XINITI JLEISSV

{{TIH HNHOS CIN V FITIH NOIALINIH?HCI [[]}
No.zó

{{TIH LÍTIO XVI [[] \!06

U.S. Patent

100

START

Sep. 27, 2011 Sheet 5 of 10 US 8,026,910 B2

99

OFFLINE OPTIMIZATION PIPELINE

102 104 106

EXTRACT BAKE OFFLINE
SCENE ANIMATIONS SETUP

108 110

HIERARCHY
UPDATE PREALLOCATION

PRE-PROCESSING

FIG. 5

U.S. Patent Sep. 27, 2011 Sheet 6 of 10 US 8,026,910 B2

TARGET DEVICE

CODE AND DATA

BAKED ANIMATION
LUT

126

DECODING MECHANISM

BREADTH FIRST
HIERARCHY
UPDATE

128

CONTIGUOUS BUFFER
WITH ANIMATION VALUES

129
MEMORY

ALLOCATION TREE DATABUFFER

AND COPY
MEMORY

135

ALLOCATION ISM PROCESS RENDER MECHANIS

META DATA
AND PACK
TOTAL

FIG. 6

U.S. Patent Sep. 27, 2011 Sheet 7 of 10 US 8,026,910 B2

200

EXTRACT ANIMATION
HIERARCHY

202

CREATE ANIMATION STREAM
FOREACH NODE

204

DETERMINE SAMPLING RATE
FOR ALL ANIMATION STREAMS

206

EVALUATE ALL ANIMATION
CURVES AT SAMPLE RATE

RAN ANIMATION
DATA STREAM
BAKEDAT
SAMPLE RATE

FIG. 7

U.S. Patent Sep. 27, 2011 Sheet 8 of 10 US 8,026,910 B2

208

CONVERT ROTATIONS AND
ORIENTATIONS TO QUATERNIONS

210

CREATE CLUSTER FOREACH

UNIQUE VALUE

NO PAIR OF CLUSTERS,
ERROR < THRESHOLD

216

PACK QUATERNION
VALUES INTO SINGLE

MERGE CLUSTERS
COMPUTE NEW

N BIT VALUE LEASTERROR VALUE

END COMPRESSION

FIG. 8

U.S. Patent Sep. 27, 2011 Sheet 9 of 10 US 8,026,910 B2

220 CONTIGUOUS HEAP MEMORY

N - 1 2 3 4 5678
1 91011

2

CACHE LINE
5 BOUNDARY

6

3

7

8

4

9

10

11

FIG. 9

U.S. Patent Sep. 27, 2011 Sheet 10 of 10 US 8,026,910 B2

250

ALLOCATE MEMORY FOR
EACH ASSET

252

BUILD ENGINE DATA
STRUCTURES

254

RUN SIMULATED ENGINE

256

PACK ACCESSED,
PRODUCED DATA IN ORDER

258

CREATE META DATA

STRUCTURES(S) AND STORE
ALLOCATION DATA

FIG 10

US 8,026,910 B2
1.

OFFLINE OPTIMIZATION PIPELINE FOR 3D
CONTENT IN EMBEDDED DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

Priority is hereby claimed to U.S. Provisional Patent Appli
cation Nos. 60/696,347, 60/696,185, 60/696,488, 60/696,
346, and 60/696, 186 each filed Jun. 29, 2005.

COPYRIGHT NOTICE

This patent document contains information Subject to
copyright protection. The copyright owner has no objection to
the facsimile reproduction by anyone of the patent document
or the patent, as it appears in the US Patent and Trademark
Office files or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE DISCLOSURE

Aspects of the disclosure relate to tools to facilitate the
development and implementation of 3D content used in
embedded devices. Other aspects of the disclosure relate to
tools to optimize such 3D content. The embedded devices
may be mobile devices that capture, receive, and/or transmit
Voice, data, text, and/or images.

BACKGROUND OF THE DISCLOSURE

Various systems exists which facilitate the development
and implementation of 3D content used in embedded devices.
Such embedded devices generally included displays to dis
play the 3D content. In this regard, Qualcomm Corporation
sells many software products under the trade name BREWTM,
which include, for example, SDKs which can be run on a
given computer platform to develop programs for providing
3D content in embedded devices, just as mobile phones.

SUMMARY OF THE DISCLOSURE

In accordance with one embodiment, apparatus are pro
vided which include assets defining 3D models, including 3D
icons and scenes, and animations of the 3D models. An offline
optimization engine is provided to process data to be acted
upon by a graphics engine of a target embedded device. A
graphics engine simulator is provided to simulate, on a com
puter platform other than a target embedded device, select
functions of a target embedded device that runs a graphics
engine including API calls that directly call API functions of
a hardware level API of the target embedded device.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting example embodiments of the disclosure are
further described in the detailed description, which follows,
by reference to the noted drawings, in which like reference
numerals represents similar parts throughout the several
views of the drawings, and wherein:

FIG. 1 is a block diagram of one or more device content
development platforms;

FIG. 2 is a block diagram illustrating an embodiment of the
software architecture in a target embedded device;

FIG.3 is a schematic diagram of an example data structure
of a 3D model file;

FIG. 4 is a schematic diagram of an example data structure
of a user interface (UI) layout file;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 5 is a block diagram of an offline optimization pipe

line;
FIG. 6 is a schematic diagram of select code and data in a

target embedded device:
FIGS. 7 and 8 illustrate a flow chart of a process for baking

animations;
FIG.9 is a diagram that illustrates a process for performing

hierarchy update pre-processing on 3D model and animation
data; and

FIG. 10 is a flow chart of a pre-allocation process for
determining, among other things, the memory space that will
be required in the embedded device.

DETAILED DESCRIPTION

Referring now to the drawings in greater detail, FIG. 1
illustrates a 3D content development system 9. The illustrated
system 9 includes one or more device content development
platforms 10, and a mobile device 11. The illustrated mobile
device 11 includes a display 12 and keys 13. The illustrated
display 12 may be caused to display a 3D graphical virtual
interface which includes 3D icons and scenes. In this regard,
a 3D icon application may be developed which include icon
association mechanisms to associate a given 3D object in a
scene with a mobile device interface tool to cause, by manipu
lation of the given 3D object, at least one of an input and
output of a signal or information regarding the mobile device.
The mobile device may be, for example, a mobile phone. The
input may involve a controlling function of the mobile device,
a switch state change of the mobile device, or text input of the
mobile device. An output may involve information display, a
state of the device, or a status indication regarding the mobile
device. The information that is input or output via use of such
a 3D graphical virtual interface, including 3D icons, may be
regarding operations, settings, events, states, and/or statuses
of mobile device 11.
The illustrated mobile device 11 is one type of embedded

device, which captures, receives, and/or transmits Voice, data,
text, and/or images. The illustrated mobile device 11 includes
a display 12 and keys 13, to allow the control of mobile device
11 and the input of information into mobile device 11.
The illustrated device content development platform(s) 10

may be a single or a distributed platform, or may include
multiple platforms. The illustrated platform set includes a
number of software interfaces which interact with and pro
vide corresponding windows or screens on a computer plat
form. These include a scripting window 14a and a corre
sponding scripting language interface 14b. A source code
window 16a is provided which corresponds to a source code
interface 16b. Each of the interfaces 14b and 16b is operable
through the use of its corresponding window, 14a and 16a, for
receiving controls and information via a computer screen and
for displaying information to the user.
The illustrated platform set 10 is further provided with an

offline optimization engine 18, which may include a target
simulator 19.

Scripting language interface 14b is coupled to, and gener
ates, one or more script files 20, which cater to the building of
3D user interfaces on a target embedded device. Those script
files 20 provide information for 3D icon and scene definition
as well as for programming the animation of the defined 3D
icons and Scenes.

Source code interface 16b, in connection with source code
window 16a, allows for the creation of a program using
Source code, typically using commands provided in code
provided for original equipment manufacturers (OEMs).

US 8,026,910 B2
3

A 3D model system 32 may be provided for allowing an
artist to perform 3D modeling and/or image processing to
create 3D user interface assets, and to define user interface
layouts, to each form and ultimately define a 3D user inter
face. An exporter 30 may be provided to export files, i.e.,
convert such files, from 3D model system 32 into certain
types of files that can be useable by the compiled script and/or
Source code 24 to cause a particular type of 3D user interface
which can be exported to a target embedded device. The
“exporting performed by exporter 30 is distinct from the
exporting performed by device export interface 41, which is
provided to export resulting code and data to a target embed
ded device, such as mobile device 11. Exporter 30 converts
information into files that are compatible with the compiled
Script and/or source code 24 (and also useable by a graphics
engine that operates in accordance with the compiled code),
while device export interface 41 facilitates the physical
exporting of Such compiled Script and/or source code and
associated user interface assets and user interface layout files,
into mobile device 11.

In the illustrated embodiment, exporter 30 exports infor
mation from 3D modeling system 32 into a set of files defin
ing user interface assets 25, 26, and 27, and a set of files
defining user interface layouts 28. Specifically, the user inter
face assets include 3D models 25, animations 26, and textures
27.

Offline optimization engine 18 may include a target simu
lator 19 that simulates a graphics engine to simulate, on a
computer platform other than a target embedded device (i.e.,
platform(s) 10) select functions of a target embedded device
running a graphics engine, for example, the graphics engine
illustrated in FIG. 2.

FIG. 2 provides an architectural diagram of software as it
exists once exported into a target embedded device. Such as
mobile device 11. The architecture includes compiled script
and/or source code 40 (which includes API calls), managed
APIs 44, base structures and APIs 46, and a hardware level
API 64. The compiled script and/or source code communi
cates directly with, i.e., performs API calls to API functions
within, each of managed APIs 44 and base structures APIs 46.
The managed APIs 44 include a rendering API 48, a resource
management API 50, and a camera management API 52.
Rendering API 48 takes care of memory management, render
states, and other bookkeeping tasks.
The base structures and APIs 46 include textures 54,

meshes 56, animations 58, cameras 60, and math and utilities
62. These structures and APIs provide full access to all geom
etry, animation streams, and other underlying engine data
types. In addition, fixed point math and container structures
may be provided that can be used independently of the rest of
the engine. Applications may be implemented, embodied
within compiled script and/or source code 40. So as to inter
face through managed APIs 44 for some or all functions. They
may implement their own resource management and memory
instantiation techniques, and, accordingly, interface directly
with base structures and APIs 46. Moreover, completely
bypassing managed APIs 44 is possible in the event an OEM
developer wishes to write source code that takes advantage of
exporter and mesh optimization tools or otherwise retain
control over how higher-level functionality is implemented.
Managed APIs 44 together with base structures and APIs

46 comprise an optimization engine layer 42. The hardware
level API 64, may include, for example, OpenGL-ES soft
ware, Direct3D mobile software, or SKT GIGA software.

FIG. 3 schematically shows one embodiment of the data
structure of a 3D model file 70. A given 3 model file 70
includes an identifier 72 identifying the model 72 and sets of

10

15

25

30

35

40

45

50

55

60

65

4
material parameters 74a, 74b, ... 74c, defining the manner in
which geometry for that model can be drawn. A particular
material 74a, for example, may have a particular texture and
mapping color of the mesh, a particular transparency value,
and a particular incandescence value. Material information
74a includes these rendering parameters. A render mesh 76 is
provided that corresponds to a given set of material param
eters 74a. In the illustrated structure, render mesh 76 includes
vertex arrays 78, texture coordinate arrays 80, and render
groups 82. The render groups 82 include groups of render
primitives (triangle-strips, triangle-lists, and so on). One or
more update hierarchies 84 may be provided, which are used
for animations and for transforming rendergroups from local
space to world space.

FIG. 4 schematically depicts a data structure of a user
interface layout file 90. A UI layout file 90 includes a UI
definition file 92 and a scene file 94. UI definition file 92
includes asset link information and other information includ
ing UI states; state management; commands upon occurrence
of certain state transitions; and UI events. Scene file 94
includes link node information and scene node information.

Scene nodes are all those nodes that are not linked to a 3D
model. Link nodes have 3D models associated therewith. The
models associated with link nodes are exported to their own
files, and their link node association is specified in the UI
definition file 92. Scripting language may be used to provide
a set of tags that could be used in connection with externally
created 3D assets, otherwise referred to as user interface
assets, and produced by another set of software, 3D model
system 32 as shown in FIG. 1. These files produced by this
external software are exported by exporter 30, and thereby
converted into formats compatible with the 3D user interface
development code 24 as compiled from script files 20 and/or
Source code 22.

FIG. 5 is a block diagram of an example offline optimiza
tion pipeline 99 which can be used to implement the offline
optimization engine 18 shown in FIG.1. The offline optimi
zation pipeline 99 shown in FIG. 5 starts with a start stage
100. In the start stage, data validation and general setup are
carried out to facilitate the remainder of the optimization
process. After the start stage 100, the pipeline proceeds to an
extract scene stage 102. In the extract scene stage 102, the
pipeline extracts the data that will be processed in the pipeline
for a particular scene in the 3D user interface. Subsequent
stages, consecutively, include a bake animations stage 104, an
offline setup stage 106, a hierarchy update pre-processing
stage 108, and a pre-allocation stage 110.

In the bake animations stage 104, animations for the
extracted Scene are baked to reduce processing time in per
forming 3D animation updates in the target embedded device,
and the baked animations are compressed to reduce the space
occupied by animation data in the target embedded device. In
the offline setup stage 106, various processing steps are per
formed, including, e.g., bookkeeping, index structuring, data
preparation, and memory allocation.

In the Subsequent hierarchy update pre-processing stage
108, each of the hierarchies for the extracted scene are (for 3D
models and for animations) rearranged so that a hierarchy
update, including a conversion from local coordinates to
world coordinates, in the target embedded device, will
involve a non-recursive tree traversal by performing a breadth
first traversal of the hierarchy tree. In addition, in this stage,
the nodes of the tree are compressed, and the hierarchy is
packed into a single contiguous buffer, including the nodes
that need to be present in order to allow the target embedded
device to perform the hierarchy update on the fly. In the

US 8,026,910 B2
5

illustrated embodiment, this buffer will take the form of tree
data buffer 129 (as shown in FIG. 6), once it is exported to the
target device.

In the pre-allocation stage 110, every data structure that
will be required for the extracted scene will be identified and
a memory allocation required in the target embedded device
will be determined. This results in a total memory allocation
figure (otherwise sometimes referred to hereinas a pack total)
that can be utilized in the target embedded device to perform
a single memory allocation call (using the MALLOC call of
ANSI C, for example), in comparison to the numerous
memory allocation calls that might be necessary otherwise.

FIGS. 7 and 8 depict a flow chart of a process for baking
animations and for compressing the baked animations.
The illustrated flow chart shown in FIGS. 7 and 8 is pro

vided to optimize animation updates on the target embedded
device by pre-evaluating animation curves in an offline step.
The illustrated embodiment shown in FIGS. 7 and 8 produces
(as shown in FIG. 6) a baked animation lookup table (LUT)
124, which will be part of code and data 122 ultimately in
target embedded device 120.

In the illustrating baking process shown in FIGS. 7 and 8.
in an initial act 200, animation hierarchy is extracted from the
extracted Scene. In a next act 202, an animation stream is
created for each node of the extracted hierarchy. In act 204,
the sampling rate is determined for all animation streams that
have been created. In this regard, a user may choose a par
ticular sampling rate. Generally, the sampling rate is much
higher than the standard rate of frames in which the frames of
an animation are stored in the animation file 26 exported by
exporter 30, as shown in FIG. 1. The sampling rate can be
adjusted using an iterative process. For example, an author
may simulate the resulting script of a 3D user interface appli
cation, with a particular sampling rate having been chosen. If
the quality of the resulting graphics is not sufficient given the
expectations of the author, the sample rate may be changed
accordingly.

In a next act 206, all (or a subset, in an alternate embodi
ment) of animation curves are evaluated at the chosen sample
rate. At this point, a raw animation data stream has been
obtained, which has been baked at the determined sample
rate. This data is stored in the offline platform.
By way of example, this raw animation data can be stored

in an indexed array (not shown), with each row in the indexed
array accessible by inputting into the array an index value,
e.g., determined with the use of an index look-up table (LUT)
(not shown). The indexed array stores in respective rows sets
of attributes, with each row being associated with a particular
node and frame. These attributes may, e.g., bex, y, Z. r11, r12,
r13, r21, r22, r23, r31, r32, r33, and color. The x, y, and Z
attributes may be local coordinates of a scene, or part of a
scene. The attributes r11, r12, r13, r21, r22, r23, r31, r32, r33
are rotation and orientation values that may, e.g., correspond
to a 3x3 matrix.

In a next act 208, the rotation and orientation values for
each frame/node combination (from the baked raw animation
data stream) are converted to quaternions. Quaternions are
another way of representing rotations and orientations, for
example, instead of using Euler angles and matrices. A
quaternion may be represented by 4 values (C, B, Y. (D). Thus,
in this example, the 9 rotation and orientation values may be
transformed into 4 quaternion values.

In a next act 210, a cluster is created for each unique value
within the quaternions that have been converted from the
rotations and orientations of the baked raw animation data
stream. In the illustrated embodiment, a cluster is a 7-tuple
value which may beformed by using a local set of coordinates

5

10

15

25

30

35

40

45

50

55

60

65

6
(x,y,z) and a quaternion value (C, B, Y. (D). In one aspect, the
cluster may beformed when the 7-tuple value is unique. Thus,
if there are M rows of data in the baked raw animation data
(i.e., corresponding to respective different combinations of
frame and node values), there may be N clusters, where N is
less than M. because of non-unique 7-tuple values. A cluster
may be composed of a cluster vector (x,y,z), and a cluster
quaterion (C. f6, Y. (D).

In a next act 212, a determination is made for a given pair
of clusters as to whether the error between those clusters is
less than a given threshold. Each cluster is provided with an
error value. By way of example, this error value may be the
midpoint value of the respective clusters.

For example, a cluster pair may be identified by operating
on the 7-tuple in two spaces: (1) a cartesian space (x,y,z); and
(2) a quarternion space. In the Cartesian space, the magnitude
of the midpoint between any two cluster vectors may generate
a midpoint value, mpV1. Similarly, in the quaternion space,
the magnitude of the midpoint arc distance between any two
cluster quaterions may generate a midpoint value, mpV2.
When the determination at act 212 determines that the error

is less than the threshold, the process proceeds to act 214.
where that pair of clusters is merged into a new cluster, and a
new least error value (i.e., a midpoint magnitude value) is
computed for that newly merged cluster. The process returns
to act 212, for evaluation of another pair of clusters.

This clustering process can be considered a method of
reducing the number of rows of data corresponding to unique
frame-node pairs, so that a plurality of unique frame-node
pairs that may have animation data (generally, translation
information, orientation and rotation information) has the
same set of clustered data.
When no more pairs of clusters meet the conditions of act

212, the process proceeds to act 216, at which point, for a
given set of animation values for a given cluster, the quater
nion values (generally four different values) are packed into a
single binary word (e.g., of N bits; N may be, e.g., 32 bits).

After act 216, the compression process is ended.
The clusters can be made larger or Smaller to increase

animation playback accuracy or to reduce file size, respec
tively. Once the streams are compressed, the individual values
in the animation streams are packed into a single contiguous
memory buffer, which is aligned and optimized for the mobile
device's cache line characteristics.
Once the animation stream is compressed, the individual

values in the animation stream are packed into a single con
tiguous animation value memory buffer 128, which is ulti
mately exported to the target embedded device 120, as shown
in FIG. 6.
As shown in FIG. 6, in order for a given process of the

target device to access data in animation value buffer 128, an
animation lookup table (LUT) 124 is provided that outputs,
for each unique frame-node combination, an offset value that
locates the corresponding animation data in buffer 128.

FIG.9 is a schematic diagram of a 3D object hierarchy 220.
The illustrated object hierarchy 220 is of a biped, including a
waist, which is a root node. An upper right leg, an upper left
leg, and a chest are each connected to the waist. Each of these
nodes is a child of the waist node. A left lower leg and a left
lower foot are each connected to the upper left leg. Each of
these nodes is a child node to the upper right leg node, and a
grandchild node to the waist node. A lower left leg and a lower
left foot node are each coupled to the upper left leg node, are
children to the upper left leg node, and are grandchildren to
the waist node. Head, upper right arm, and upper left arm
nodes are provided which are children to the chest node, and
grandchildren to the waist node.

US 8,026,910 B2
7

If the hierarchy illustrated in FIG. 9 is updated using a
recursive algorithm, where the nodes are processed in a
breadth first traversal order, the nodes will be processed in the
following order: first the waist node; second the upper right
leg node; third the left right leg node: fourth the left right foot
node; fifth the upper left leg node; and so on. In contrast, in the
embodiment shown in FIG.9, a breadth first traversal order is
used, where the waist node is first processed; the upper right
leg node is processed second; the upper left leg node is pro
cessed third; and the chest node is process fourth. The order in
which the nodes are processed is indicated by the numbers to
the left of each of the associated nodes. Accordingly, the
waist, upper right leg, upper left leg, and chest nodes are
process first, second, third, and fourth respectively, before
nodes at the next depth level down are processed. This pro
cessing of the nodes ultimately occurs in the target embedded
device, but the order in which these nodes is processed can be
controlled by controlling the order in which these nodes are
stored in a contiguous portion of a tree data buffer 129 ulti
mately (as shown in FIG. 6) formed in the heap memory of the
target embedded device. Accordingly, a data structure 221
can be provided (offline by the hierarchy update pre-process
ing stage 108 as shown in FIG. 5), to provide for a contiguous
amount of memory and for the storage of these nodes in that
memory in the particular order in which they are to be pro
cessed ultimately in the target embedded device.
As shown in FIG. 6, breadth first hierarchy update mecha

nism 130 may be provided as part of code and data 122 in
target embedded device 120, for performing on-the-fly hier
archy updates of a particular hierarchy. In order to determine
where the data associated with that hierarchy is within ani
mation data buffer 128, breadth first hierarchy update mecha
nism 130 locates that data in accordance with the offset value
provided by baked animation LUT 124.
Once breadth first hierarchy update mechanism 130 locates

the data within animation data buffer 128, the data is decoded
by decoding mechanism 126 (by converting the data to a
homogeneous transform matrix), and the nodes are processed
in their consecutive order per the structure of the tree as stored
in tree data buffer 129, i.e., the waist node first, the upper right
leg node second, the upper left leg node third, and so on per
the example in FIG. 9. The updated animation data is then
stored, per node, in holding spaces provided for Such data in
tree data buffer 129.

The breadth first approach processes the nodes of a given
tree in this order: the root node first, then child 1, then child
2, ... child N. grandchild 1, grandchild 2, ... grandchild M,
great grandchild 1.

In the example shown in FIG. 9, the cache line boundary
extends at least the amount of memory that is required for two
contiguous nodes. Accordingly, if a cache, provided within a
target embedded device has two lines, only one cache miss
would be required to process, i.e., update, the hierarchy for
the first through the fourth nodes in the example shown in
FIG. 9. To facilitate the ability to store two nodes within the
space of one cacheline boundary, the individual nodes may be
compressed, for example, using the compression that results
from the baked animation provided by the baked animation
stage 104 as shown in FIG. 5.
A hierarchy update involving a depth first traversal order

will generally result in numerous cache misses. Among the
reasons for this are the fact that the nodes for the hierarchy are
not stored in contiguous memory. In addition, since the tra
versal is recursive, for each node, the data for each of its
parent nodes all the way to the ultimate root note is required
for processing and updating that node.

10

15

25

30

35

40

45

50

55

60

65

8
For purposes of the discussion regarding the updating of

hierarchy, for example, in relation to the example shown in
FIG. 9, updating refers to the conversion of a node from its
local coordinates to world coordinates, before rendering on a
display of the target embedded device.
An advantage of the approach of organizing the node data

in the example shown in FIG.9, is that the use of the stack in
the target device for updating hierarchy information can be
eliminated for this process. Moreover, there is no need to
emulate a stack in the heap of the memory of the target
embedded device. In addition, the total space consumed in the
heap memory of the target embedded device is minimized, so
that larger hierarchy trees can be accommodated.
As shown in FIG. 6, once node data is updated by breadth

first hierarchy update mechanism 130, it is ready for render
ing by render mechanism 135.

FIG. 10 shows a flow chart of a pre-allocation process. In a
first act 250, memory is allocated for each asset, and for each
data structure created up until this point in offline optimiza
tion pipeline 99. In act 252, any engine data structures that
will be in the target embedded device, when it runs the script
and performs all necessary operations, will be built. In act
254, the target simulator 19 simulates the target device, which
may involve, for example, emulation of heap, stack, and
cache memories within the simulated target embedded
device. Target simulator 19 may further simulate all the data
structures of the engine for each of the assets in the 3D
program.

Inact 256, all of the data accessed by the simulated engine,
or created by the simulated engine, is packed in the order of
engine access or creation into contiguous portions of a 'simu
lated” heap memory. In act 258, metadata structures helpful
to the engine in the target embedded device may be created. In
addition, the allocation data resulting from the pre-allocation
process is stored. Generally, the allocation data includes the
total memory space and size of the contiguous memory that
was packed in act 256.
The allocation process shown in FIG. 10, which is per

formed in pre-allocations stage 110 of off-line optimization
pipeline 99 as shown in FIG. 5, causes, ultimately, in target
embedded device 120, memory allocation and copy actions to
be taken by memory allocation and copy mechanism 136, in
accordance with metadata and pack total data 138 produced
as a result of the pre-allocation process. Specifically, a single
memory allocation may be made within memory 134 of target
embedded device 120, at the start of the execution of the 3D
application, as well as a single memory copy of all data that
was packed during the packing act 256 in the pre-allocation
process. Any built engine data structures that were built
offline can then be copied into the memory, resulting in a
single allocation and a single memory copy being required to
prepare the data for use in the target embedded device. This
minimizes the allocations required for the target embedded
device. In addition, start up and initialization times of the
target embedded device can be minimized, since all of the
packed data is loaded at one time into the target embedded
device memory.
The processing performed by each of the elements shown

in the figures herein may be performed by a general purpose
computer, and/or by a specialized processing computer. Such
processing may be performed by a single platform, by a
distributed processing platform, or by separate platforms. In
addition, such processing can be implemented in the form of
special purpose hardware, or in the form of software being run
by a general purpose computer. Any data handled in Such
processing or created as a result of Such processing can be
stored in any type of memory. By way of example, Such data

US 8,026,910 B2
9

may be stored in a temporary memory. Such as in the RAM of
a given computer system or Subsystems. In addition, or in the
alternative, such data may be stored in longer-term storage
devices, for example, magnetic discs, rewritable optical discs,
and so on. For purposes of the disclosure herein, computer
readable media may comprise any form of data storage
mechanism, including Such memory technologies as well as
hardware or circuit representations of Such structures and of
Such data. The processes may be implemented in any
machine-readable media and/or in an integrated circuit.
The claims, as originally presented and as they may be

amended, encompass variations, alternatives, modifications,
improvements, equivalents, and Substantial equivalents of the
embodiments and teachings disclosed herein, including those
that are presently unforeseen or unappreciated, and that, for
example may arise from applicants/patentees, and others.

What is claimed is:
1. An apparatus comprising:
a computer-readable media embodied three-dimensional

(3D) application in a computer platform other than a
target mobile device; and

a baking mechanism operative in an offline engine of the
computer platform to bake animation data into an ani
mation data structure to be loaded into a graphics engine
of the target mobile device, the baking mechanism
operative to convert frame-node combinations of an ani
mation stream into clusters, to determine whether an
error between a particular pair of clusters satisfies a
predetermined threshold, and to merge the particular
pair of clusters to create a new cluster when the error
satisfies the predetermined threshold.

2. The apparatus according to claim 1,
wherein the 3D application includes a 3D user interface

application,
wherein the offline engine is operative to process data to be

acted upon by the graphics engine of the target mobile
device,

wherein the animation data includes node location data,
orientation data, and rotation data for nodes in a display
frame to be displayed upon rendering an animated
Scene; and

wherein the animation data is retrievable from storage
based on a baked animation lookup table responsive to a
frame input and a node input.

3. The apparatus according to claim 1, wherein the offline
engine includes a data structure mechanism operative to cre
ate and prepare data structures to be acted upon by the graph
ics engine of the target mobile device by extracting a hierar
chy structure from an animated Scene, creating the animation
stream for each node of the hierarchy structure, selecting a
sampling rate for each animation stream, evaluating anima
tion curves at each selected Sampling rate, and converting
frame-node combinations of the animation stream into
quaternion values, wherein the clusters are formed from the
quaternion values.

4. The apparatus according to claim 1, further comprising
a graphics engine simulator operative in the computer plat
form to simulate select functions of the target mobile device
running the graphics engine including application program
ming interface (API) calls that directly call API functions of
a hardware level API of the target mobile device.

5. An apparatus comprising:
a mobile device including a graphics engine;
a mobile device asset load mechanism operative to load an

asset produced from an offline computer platform into

10

15

25

30

35

40

45

50

55

60

65

10
the graphics engine, the mobile device asset load mecha
nism using a single allocation to prepare the asset for
use; and

a node processing hierarchy update mechanism operative
to perform hierarchy updates based on update data pro
vided at an animation data buffer of the mobile device
using a breadth-first traversal of the hierarchy.

6. The apparatus according to claim 5.
wherein the asset includes assets defining three-dimen

sional (3D) models, including 3D icons, and animations
of the 3D models, and

wherein a location of the update data in the animation data
buffer is determined in accordance with an offset value
provided at a baked animation look up table.

7. An apparatus comprising:
assets defining three-dimensional (3D) models, including
3D icons and Scenes, and animations of the 3D models;
and

an off-line optimization engine operative in a computer
platform other than a target embedded device to process
data to be acted upon by a graphics engine of the target
embedded device, the off-line optimization engine com
prising:
a hierarchy update pre-processing mechanism operative

to establish an order of processing of nodes in a 3D
object, wherein the nodes are stored in a memory in a
particular order for processing by the graphics engine,
and wherein at least two contiguous nodes are sized
for storage in a cache line.

8. The apparatus according to claim 7, wherein the assets
defining the 3D models, and the animations of the 3D models
are exported assets having been exported from a 3D image
defining system.

9. The apparatus according to claim 8, wherein the off-line
optimization engine includes a pipeline.

10. The apparatus according to claim 9, further compris
ing:

a scripting language interface operative to receive Script
statements defining a 3D user interface via a computer
Screen input, and to generate a set of Script files repre
senting the Script statements defining the 3D user inter
face.

11. The apparatus according to claim 10, further compris
ing:

icon association mechanisms operative to associate a given
3D object in a scene in a interface tool of a mobile phone
to cause at least one of an input and an output of a signal
regarding the mobile phone by manipulation of the given
3D object.

12. The apparatus according to claim 7, further compris
ing:

a graphics engine simulator operative in the computer plat
form to simulate select functions of the target embedded
device running the graphics engine including applica
tion programming interface (API) calls that directly call
API functions of a hardware level API of the target
embedded device.

13. The apparatus according to claim 7, the off-line opti
mization engine further comprising:

a baking mechanism operative in the computer platform to
bake animation data into an animation data structure to
be loaded into the graphics engine of the target embed
ded device, wherein the animation data includes node
location data, orientation data, and rotation data for
nodes in a display frame to be displayed upon rendering
an animated Scene.

US 8,026,910 B2
11

14. The apparatus according to claim 13, the baking
mechanism further comprising:

a conversion mechanism operative to convert the orienta
tion data and the rotation data to quaternions;

a cluster mechanism operative to cluster groups of values;
and

a packing mechanism operative to packgroups of quater
nion values.

15. The apparatus according to claim 7, wherein the 3D
object is a 3D model tree, wherein the hierarchy update pre
processing mechanism is operative to arrange processed node
holding places in a tree data buffer for export to the target
embedded device.

16. The apparatus according to claim 15, wherein the estab
lished order of processing of the nodes is a breadth-first
traversal order of the 3D model tree.

17. The apparatus according to claim 16, wherein the pro
cessed node holding places are each compressed holding
places in relation to an amount of memory space required to
hold node information in an unmodified format.

18. The apparatus according to claim 7, the off-line opti
mization engine further comprising:

a pre-allocation mechanism in the computer platform, the
pre-allocation mechanism comprising:
an engine data structure builder operative to build engine

data structures;
a simulated engine;
a simulation data packer operative to pack data accessed

and produced by the simulated engine and to pack
built engine data structures; and

a pack total determiner.
19. A method comprising:
storing a three-dimensional (3D) application in a computer

platform other than a target mobile device; and
baking animation data in an offline engine of the computer

platform into an animation data structure to be loaded
into a graphics engine of the target mobile device, the
baking further comprising:
converting frame-node combinations of an animation

stream into clusters;
determining whether an error between a particular pair

of clusters satisfies a predetermined threshold; and
merging the particular pair of clusters to create a new

cluster when the error satisfies the predetermined
threshold.

20. The method according to claim 19, wherein the 3D
application includes a 3D user interface application, wherein
the animation data is retrievable from storage based on an
output of a baked animation lookup table responsive to a
frame input and a node input.

21. The method according to claim 20, further comprising
simulating, on the computer platform, select functions of the
target mobile device running the graphics engine including
application programming interface (API) calls that directly
call API functions of a hardware level API of the target mobile
device.

22. The method according to claim 19, further comprising:
creating and preparing data structures to be acted upon by

the graphics engine of the target mobile device by
extracting a hierarchy structure from an animated Scene,
creating the animation stream for each node of the hier
archy structure, selecting a sampling rate for the anima
tion stream for each node, evaluating animation curves
at each selected sampling rate, converting frame-node
combinations of the animation stream into quaternion

10

15

25

30

35

40

45

50

55

60

65

12
values, and creating a cluster for each unique quaternion
value, wherein the clusters are formed from the quater
nion values.

23. A method comprising:
providing a mobile device including a graphics engine;
loading an asset produced from an offline computer plat

form into the graphics engine, the loading using a single
allocation to prepare the asset for use; and

updating a node processing hierarchy based on update data
provided at an animation data buffer of the mobile
device using a breadth-first traversal of the node pro
cessing hierarchy.

24. The method according to claim 23, wherein the asset
includes assets defining three-dimensional (3D) models,
including 3D icons, and animations of the 3D models, the
method further comprising:

determining a location of the update data in the animation
data buffer based on an offset value provided at a baked
animation look up table.

25. A method comprising:
storing assets defining three-dimensional (3D) models,

including 3D icons and scenes, and animations of the 3D
models;

processing, on a computer platform other than a target
embedded device, data to be acted upon by a graphics
engine of the target embedded device, the processing
further comprising:
updating a node processing hierarchy to establish an

order of processing of nodes in a 3D object, wherein
the nodes are stored in a memory in a particular order
for processing by the graphics engine, and wherein at
least two contiguous nodes are sized for storage in a
cache line; and

simulating, on the computer platform, select functions of
the target embedded device running the graphics engine
including application programming interface (API)
calls that directly call API functions of a hardware level
API of the target embedded device.

26. The method according to claim 25, wherein the assets
defining the 3D models, and the animations of the 3D models,
are exported assets having been exported from a 3D image
defining system.

27. The method according to claim 25, the processing
further comprising:

baking animation data in the computer platform into an
animation data structure to be loaded into the graphics
engine of the target embedded device, wherein the ani
mation data includes node location data, orientation
data, and rotation data for nodes in a display frame to be
displayed upon rendering an animated Scene.

28. The method according to claim 27, wherein the baking
includes converting the orientation data and the rotation data
to quaternions, clustering groups of values, and packing
groups of quaternion values.

29. The method according to claim 25, wherein the 3D
object is a 3D model tree, wherein performing hierarchy
update pre-processing comprises arranging processed node
holding places in a tree data buffer for export to the target
embedded device.

30. The method according to claim 29, wherein the estab
lished order of processing of the nodes is a breadth-first
traversal order of the 3D model tree.

31. The method according to claim 30, wherein the pro
cessed node holding places are each compressed holding
places in relation to an amount of memory space required to
hold node information in an unmodified format.

US 8,026,910 B2
13

32. The method according to claim 25, the processing
further comprising:

performing a pre-allocation in the computer platform, the
pre-allocation comprising:
building engine data structures;
simulating an engine;
packing data accessed and produced by the simulated

engine and packing built engine data structures; and
determining a pack total.

33. Machine-readable storage media encoded with data,
the encoded data being interoperable with a machine to cause:

storing a three-dimensional (3D) application in a computer
platform other than a target mobile device; and

baking animation data in an offline engine of the computer
platform into an animation data structure to be loaded
into the graphics engine of the target mobile device, the
baking further comprising:
converting frame-node combinations of an animation

stream into clusters;
determining whether an error between a particular pair

of clusters satisfies a predetermined threshold; and
merging the particular pair of clusters to create a new

cluster when the error satisfies the predetermined
threshold.

34. The machine-readable storage media according to
claim 33, wherein the 3D application includes a 3D user
interface application, wherein the animation data is retriev
able from storage based on an output of a baked animation
lookup table responsive to a frame input and a node input.

35. The machine-readable storage media according to
claim 34, wherein the encoded data is interoperable with the
machine to further cause simulating, on the computer plat
form, select functions of the target mobile device running the
graphics engine including application programming interface
(API) calls that directly call API functions of a hardware level
API of the target mobile device.

36. The machine-readable storage media according to
claim 33, wherein the encoded data is interoperable with the
machine to further cause creating and preparing data struc
tures to be acted upon by the graphics engine of the target
mobile device, by extracting a hierarchy structure from an
animated Scene, creating the animation stream for each node
of the hierarchy structure, selecting a sampling rate for the
animation stream for each node, evaluating animation curves
at each selected sampling rate, converting frame-node com
binations of the animation stream into quaternion values,
creating a cluster for each unique quaternion value, wherein
the clusters are formed from the quaternion values.

37. Machine-readable storage media encoded with data,
the encoded data being interoperable with a machine to cause:

loading an asset produced from an offline computer plat
form into a graphics engine of a mobile device, the
loading using a single allocation to prepare the asset for
use; and

updating a node processing hierarchy based on update data
provided at an animation data buffer of a mobile device
using a breadth-first traversal of the node processing
hierarchy.

38. The machine-readable storage media according to
claim 37, wherein the asset includes assets defining three
dimensional (3D) models, including 3D icons, and anima
tions of the 3D models, the encoded data being interoperable
with the machine to further cause:

determining a location of the update data in the animation
data buffer based on an offset value provided at a baked
animation look up table.

5

10

15

25

30

35

40

45

50

55

60

65

14
39. Machine-readable storage media encoded with data,

the encoded data being interoperable with a machine to cause:
storing assets defining three-dimensional (3D) models,

including 3D icons and scenes, and animations of the 3D
models;

processing, on a computer platform other than a target
embedded device, data to be acted upon by a graphics
engine of a target embedded device, the processing fur
ther comprising:
updating a node processing hierarchy to establish an

order of processing of nodes in a 3D object, wherein
the nodes are stored in a memory in a particular order
for processing by the graphics engine, and wherein at
least two contiguous nodes are sized for storage in a
cache line; and

simulating, on the computer platform, select functions of
the target embedded device running the graphics engine
including application programming interface (API)
calls that directly call API functions of a hardware level
API of the target embedded device.

40. The machine-readable storage media according to
claim 39, wherein the assets defining the 3D models, and the
animations of the 3D models, are exported assets having been
exported from a 3D image defining system.

41. The machine-readable storage media according to
claim 39, the processing further comprising:

baking animation data in the computer platform into an
animation data structure to be loaded into the graphics
engine of the target embedded device, wherein the ani
mation data includes node location data, orientation
data, and rotation data for nodes in a display frame to be
displayed upon rendering an animated Scene.

42. The machine-readable storage media according to
claim 41, wherein the baking further includes converting the
orientation data and the rotation data to quaternions, cluster
ing groups of values, and packing groups of quaternion Val
CS.

43. The machine-readable storage media according to
claim 39, wherein the 3D object is a 3D model tree, wherein
performing hierarchy update pre-processing comprises
arranging processed node holding places in a tree data buffer
for export to the target embedded device.

44. The machine-readable storage media according to
claim 43, wherein the established order of processing of the
nodes is a breadth-first traversal order of the 3D model tree.

45. The machine-readable storage media according to
claim 44, wherein the encoded data is interoperable with the
machine to further cause the processed node holding places to
be each compressed holding places in relation to an amount of
memory space required to hold node information in an
unmodified format.

46. The machine-readable storage media according to
claim 39, the processing further comprising:

performing a pre-allocation in the computer platform, the
pre-allocation including:
building engine data structures;
simulating an engine;
packing data accessed and produced by the simulated

engine and packing built engine data structures; and
determining a pack total.

47. An apparatus comprising:
means for storing a three-dimensional (3D) application in

a computer platform other than a target mobile device;
and

means for baking animation data in an offline engine of the
computer platform into an animation data structure to be

US 8,026,910 B2
15

loaded into agraphics engine of the target mobile device,
the means for baking further comprising:
means for converting frame-node combinations of an

animation stream into clusters;
means for determining whether an error between a par

ticular pair of clusters satisfies a predetermined
threshold; and

means for merging the particular pair of clusters to cre
ate a new cluster when the error satisfies the predeter
mined threshold.

48. The apparatus according to claim 47, wherein the 3D
application includes a 3D user interface application, wherein
the animation data is retrievable from storage based on an
output of a baked animation lookup table responsive to a
frame input and a node input.

49. The apparatus according to claim 48, further compris
ing means for simulating, on the computer platform, select
functions of the target mobile device running the graphics
engine including application programming interface (API)
calls that directly call API functions of a hardware level API
of the target mobile device.

50. The apparatus according to claim 47, further compris
ing means for creating and preparing data structures to be
acted upon by the graphics engine of the target mobile device,
by extracting a hierarchy structure from an animated Scene,
creating the animation stream for each node of the hierarchy
structure, selecting a sampling rate for the animation stream
for each node, evaluating animation curves at each selected
sampling rate, converting frame-node combinations of the
animation stream into quaternion values, creating a cluster for
each unique quaternion value, wherein the clusters are
formed from the quaternion values.

51. An apparatus comprising:
means for loading an asset produced from an offline com

puter platform into a graphics engine of a mobile device,
the means for loading using a single allocation to pre
pare the asset for use; and

means for updating a node processing hierarchy based on
update data provided at an animation data buffer of a
mobile device using a breadth-first traversal of the pro
cessing node hierarchy.

52. The apparatus according to claim 51, wherein the asset
includes assets defining three-dimensional (3D) models,
including 3D icons, and animations of the 3D models, the
apparatus further comprising:

means for determining a location of the update data in the
animation data buffer based on an offset value provided
at a baked animation look up table.

53. An apparatus comprising:
means for storing assets defining three-dimensional (3D)

models, including 3D icons and Scenes, and animations
of the 3D models;

means for processing, on a computer platform other than a
target embedded device, data to be acted upon by a

10

15

25

30

35

40

45

50

16
graphics engine of the target embedded device, the
means for processing further comprising:
means for updating a node processing hierarchy to

establish an order of processing of nodes in a 3D
object, wherein the nodes are stored in a memory in a
particular order for processing by the graphics engine,
and wherein at least two contiguous nodes are sized
for storage in a cache line; and

means for simulating, on the computer platform, select
functions of the target embedded device running the
graphics engine including application programming
interface (API) calls that directly call API functions of a
hardware level API of the target embedded device.

54. The apparatus according to claim 53, wherein the assets
defining the 3D models, and the animations of the 3D models,
are exported assets having been exported from a 3D image
defining system.

55. The apparatus according to claim 53, the means for
processing further comprising:
means forbaking animation data in the computer platform

into an animation data structure to be loaded into the
graphics engine of the target embedded device, wherein
the animation data includes node location data, orienta
tion data, and rotation data for nodes in a display frame
to be displayed upon rendering an animated Scene.

56. The apparatus according to claim 55, wherein the
means for baking includes means for converting the orienta
tion data and the rotation data to quaternions, means for
clustering groups of values, and means for packing groups of
quaternion values.

57. The apparatus according to claim 53, wherein the 3D
object is a 3D model tree, the means for updating further
comprising means for arranging processed node holding
places in a tree data buffer for export to the target embedded
device.

58. The apparatus according to claim 57, wherein the estab
lished order of processing of the nodes is a breadth-first
traversal order of the 3D model tree.

59. The apparatus according to claim 58, wherein the pro
cessed node holding places are each compressed holding
places in relation to an amount of memory space required to
hold node information in an unmodified format.

60. The apparatus according to claim 53, the means for
processing further comprising:
means for performing a pre-allocation in the computer

platform, the pre-allocation including:
building engine data structures;
simulating an engine;
packing data accessed and produced by the simulated

engine and packing built engine data structures; and
determining a pack total.

