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OFFLINE OPTIMIZATION PIPELINE FOR 3D 
CONTENT IN EMBEDDED DEVICES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

Priority is hereby claimed to U.S. Provisional Patent Appli 
cation Nos. 60/696,347, 60/696,185, 60/696,488, 60/696, 
346, and 60/696, 186 each filed Jun. 29, 2005. 

COPYRIGHT NOTICE 

This patent document contains information Subject to 
copyright protection. The copyright owner has no objection to 
the facsimile reproduction by anyone of the patent document 
or the patent, as it appears in the US Patent and Trademark 
Office files or records, but otherwise reserves all copyright 
rights whatsoever. 

FIELD OF THE DISCLOSURE 

Aspects of the disclosure relate to tools to facilitate the 
development and implementation of 3D content used in 
embedded devices. Other aspects of the disclosure relate to 
tools to optimize such 3D content. The embedded devices 
may be mobile devices that capture, receive, and/or transmit 
Voice, data, text, and/or images. 

BACKGROUND OF THE DISCLOSURE 

Various systems exists which facilitate the development 
and implementation of 3D content used in embedded devices. 
Such embedded devices generally included displays to dis 
play the 3D content. In this regard, Qualcomm Corporation 
sells many software products under the trade name BREWTM, 
which include, for example, SDKs which can be run on a 
given computer platform to develop programs for providing 
3D content in embedded devices, just as mobile phones. 

SUMMARY OF THE DISCLOSURE 

In accordance with one embodiment, apparatus are pro 
vided which include assets defining 3D models, including 3D 
icons and scenes, and animations of the 3D models. An offline 
optimization engine is provided to process data to be acted 
upon by a graphics engine of a target embedded device. A 
graphics engine simulator is provided to simulate, on a com 
puter platform other than a target embedded device, select 
functions of a target embedded device that runs a graphics 
engine including API calls that directly call API functions of 
a hardware level API of the target embedded device. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Non-limiting example embodiments of the disclosure are 
further described in the detailed description, which follows, 
by reference to the noted drawings, in which like reference 
numerals represents similar parts throughout the several 
views of the drawings, and wherein: 

FIG. 1 is a block diagram of one or more device content 
development platforms; 

FIG. 2 is a block diagram illustrating an embodiment of the 
software architecture in a target embedded device; 

FIG.3 is a schematic diagram of an example data structure 
of a 3D model file; 

FIG. 4 is a schematic diagram of an example data structure 
of a user interface (UI) layout file; 
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2 
FIG. 5 is a block diagram of an offline optimization pipe 

line; 
FIG. 6 is a schematic diagram of select code and data in a 

target embedded device: 
FIGS. 7 and 8 illustrate a flow chart of a process for baking 

animations; 
FIG.9 is a diagram that illustrates a process for performing 

hierarchy update pre-processing on 3D model and animation 
data; and 

FIG. 10 is a flow chart of a pre-allocation process for 
determining, among other things, the memory space that will 
be required in the embedded device. 

DETAILED DESCRIPTION 

Referring now to the drawings in greater detail, FIG. 1 
illustrates a 3D content development system 9. The illustrated 
system 9 includes one or more device content development 
platforms 10, and a mobile device 11. The illustrated mobile 
device 11 includes a display 12 and keys 13. The illustrated 
display 12 may be caused to display a 3D graphical virtual 
interface which includes 3D icons and scenes. In this regard, 
a 3D icon application may be developed which include icon 
association mechanisms to associate a given 3D object in a 
scene with a mobile device interface tool to cause, by manipu 
lation of the given 3D object, at least one of an input and 
output of a signal or information regarding the mobile device. 
The mobile device may be, for example, a mobile phone. The 
input may involve a controlling function of the mobile device, 
a switch state change of the mobile device, or text input of the 
mobile device. An output may involve information display, a 
state of the device, or a status indication regarding the mobile 
device. The information that is input or output via use of such 
a 3D graphical virtual interface, including 3D icons, may be 
regarding operations, settings, events, states, and/or statuses 
of mobile device 11. 
The illustrated mobile device 11 is one type of embedded 

device, which captures, receives, and/or transmits Voice, data, 
text, and/or images. The illustrated mobile device 11 includes 
a display 12 and keys 13, to allow the control of mobile device 
11 and the input of information into mobile device 11. 
The illustrated device content development platform(s) 10 

may be a single or a distributed platform, or may include 
multiple platforms. The illustrated platform set includes a 
number of software interfaces which interact with and pro 
vide corresponding windows or screens on a computer plat 
form. These include a scripting window 14a and a corre 
sponding scripting language interface 14b. A source code 
window 16a is provided which corresponds to a source code 
interface 16b. Each of the interfaces 14b and 16b is operable 
through the use of its corresponding window, 14a and 16a, for 
receiving controls and information via a computer screen and 
for displaying information to the user. 
The illustrated platform set 10 is further provided with an 

offline optimization engine 18, which may include a target 
simulator 19. 

Scripting language interface 14b is coupled to, and gener 
ates, one or more script files 20, which cater to the building of 
3D user interfaces on a target embedded device. Those script 
files 20 provide information for 3D icon and scene definition 
as well as for programming the animation of the defined 3D 
icons and Scenes. 

Source code interface 16b, in connection with source code 
window 16a, allows for the creation of a program using 
Source code, typically using commands provided in code 
provided for original equipment manufacturers (OEMs). 
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A 3D model system 32 may be provided for allowing an 
artist to perform 3D modeling and/or image processing to 
create 3D user interface assets, and to define user interface 
layouts, to each form and ultimately define a 3D user inter 
face. An exporter 30 may be provided to export files, i.e., 
convert such files, from 3D model system 32 into certain 
types of files that can be useable by the compiled script and/or 
Source code 24 to cause a particular type of 3D user interface 
which can be exported to a target embedded device. The 
“exporting performed by exporter 30 is distinct from the 
exporting performed by device export interface 41, which is 
provided to export resulting code and data to a target embed 
ded device, such as mobile device 11. Exporter 30 converts 
information into files that are compatible with the compiled 
Script and/or source code 24 (and also useable by a graphics 
engine that operates in accordance with the compiled code), 
while device export interface 41 facilitates the physical 
exporting of Such compiled Script and/or source code and 
associated user interface assets and user interface layout files, 
into mobile device 11. 

In the illustrated embodiment, exporter 30 exports infor 
mation from 3D modeling system 32 into a set of files defin 
ing user interface assets 25, 26, and 27, and a set of files 
defining user interface layouts 28. Specifically, the user inter 
face assets include 3D models 25, animations 26, and textures 
27. 

Offline optimization engine 18 may include a target simu 
lator 19 that simulates a graphics engine to simulate, on a 
computer platform other than a target embedded device (i.e., 
platform(s) 10) select functions of a target embedded device 
running a graphics engine, for example, the graphics engine 
illustrated in FIG. 2. 

FIG. 2 provides an architectural diagram of software as it 
exists once exported into a target embedded device. Such as 
mobile device 11. The architecture includes compiled script 
and/or source code 40 (which includes API calls), managed 
APIs 44, base structures and APIs 46, and a hardware level 
API 64. The compiled script and/or source code communi 
cates directly with, i.e., performs API calls to API functions 
within, each of managed APIs 44 and base structures APIs 46. 
The managed APIs 44 include a rendering API 48, a resource 
management API 50, and a camera management API 52. 
Rendering API 48 takes care of memory management, render 
states, and other bookkeeping tasks. 
The base structures and APIs 46 include textures 54, 

meshes 56, animations 58, cameras 60, and math and utilities 
62. These structures and APIs provide full access to all geom 
etry, animation streams, and other underlying engine data 
types. In addition, fixed point math and container structures 
may be provided that can be used independently of the rest of 
the engine. Applications may be implemented, embodied 
within compiled script and/or source code 40. So as to inter 
face through managed APIs 44 for some or all functions. They 
may implement their own resource management and memory 
instantiation techniques, and, accordingly, interface directly 
with base structures and APIs 46. Moreover, completely 
bypassing managed APIs 44 is possible in the event an OEM 
developer wishes to write source code that takes advantage of 
exporter and mesh optimization tools or otherwise retain 
control over how higher-level functionality is implemented. 
Managed APIs 44 together with base structures and APIs 

46 comprise an optimization engine layer 42. The hardware 
level API 64, may include, for example, OpenGL-ES soft 
ware, Direct3D mobile software, or SKT GIGA software. 

FIG. 3 schematically shows one embodiment of the data 
structure of a 3D model file 70. A given 3 model file 70 
includes an identifier 72 identifying the model 72 and sets of 
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4 
material parameters 74a, 74b, ... 74c, defining the manner in 
which geometry for that model can be drawn. A particular 
material 74a, for example, may have a particular texture and 
mapping color of the mesh, a particular transparency value, 
and a particular incandescence value. Material information 
74a includes these rendering parameters. A render mesh 76 is 
provided that corresponds to a given set of material param 
eters 74a. In the illustrated structure, render mesh 76 includes 
vertex arrays 78, texture coordinate arrays 80, and render 
groups 82. The render groups 82 include groups of render 
primitives (triangle-strips, triangle-lists, and so on). One or 
more update hierarchies 84 may be provided, which are used 
for animations and for transforming rendergroups from local 
space to world space. 

FIG. 4 schematically depicts a data structure of a user 
interface layout file 90. A UI layout file 90 includes a UI 
definition file 92 and a scene file 94. UI definition file 92 
includes asset link information and other information includ 
ing UI states; state management; commands upon occurrence 
of certain state transitions; and UI events. Scene file 94 
includes link node information and scene node information. 

Scene nodes are all those nodes that are not linked to a 3D 
model. Link nodes have 3D models associated therewith. The 
models associated with link nodes are exported to their own 
files, and their link node association is specified in the UI 
definition file 92. Scripting language may be used to provide 
a set of tags that could be used in connection with externally 
created 3D assets, otherwise referred to as user interface 
assets, and produced by another set of software, 3D model 
system 32 as shown in FIG. 1. These files produced by this 
external software are exported by exporter 30, and thereby 
converted into formats compatible with the 3D user interface 
development code 24 as compiled from script files 20 and/or 
Source code 22. 

FIG. 5 is a block diagram of an example offline optimiza 
tion pipeline 99 which can be used to implement the offline 
optimization engine 18 shown in FIG.1. The offline optimi 
zation pipeline 99 shown in FIG. 5 starts with a start stage 
100. In the start stage, data validation and general setup are 
carried out to facilitate the remainder of the optimization 
process. After the start stage 100, the pipeline proceeds to an 
extract scene stage 102. In the extract scene stage 102, the 
pipeline extracts the data that will be processed in the pipeline 
for a particular scene in the 3D user interface. Subsequent 
stages, consecutively, include a bake animations stage 104, an 
offline setup stage 106, a hierarchy update pre-processing 
stage 108, and a pre-allocation stage 110. 

In the bake animations stage 104, animations for the 
extracted Scene are baked to reduce processing time in per 
forming 3D animation updates in the target embedded device, 
and the baked animations are compressed to reduce the space 
occupied by animation data in the target embedded device. In 
the offline setup stage 106, various processing steps are per 
formed, including, e.g., bookkeeping, index structuring, data 
preparation, and memory allocation. 

In the Subsequent hierarchy update pre-processing stage 
108, each of the hierarchies for the extracted scene are (for 3D 
models and for animations) rearranged so that a hierarchy 
update, including a conversion from local coordinates to 
world coordinates, in the target embedded device, will 
involve a non-recursive tree traversal by performing a breadth 
first traversal of the hierarchy tree. In addition, in this stage, 
the nodes of the tree are compressed, and the hierarchy is 
packed into a single contiguous buffer, including the nodes 
that need to be present in order to allow the target embedded 
device to perform the hierarchy update on the fly. In the 
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illustrated embodiment, this buffer will take the form of tree 
data buffer 129 (as shown in FIG. 6), once it is exported to the 
target device. 

In the pre-allocation stage 110, every data structure that 
will be required for the extracted scene will be identified and 
a memory allocation required in the target embedded device 
will be determined. This results in a total memory allocation 
figure (otherwise sometimes referred to hereinas a pack total) 
that can be utilized in the target embedded device to perform 
a single memory allocation call (using the MALLOC call of 
ANSI C, for example), in comparison to the numerous 
memory allocation calls that might be necessary otherwise. 

FIGS. 7 and 8 depict a flow chart of a process for baking 
animations and for compressing the baked animations. 
The illustrated flow chart shown in FIGS. 7 and 8 is pro 

vided to optimize animation updates on the target embedded 
device by pre-evaluating animation curves in an offline step. 
The illustrated embodiment shown in FIGS. 7 and 8 produces 
(as shown in FIG. 6) a baked animation lookup table (LUT) 
124, which will be part of code and data 122 ultimately in 
target embedded device 120. 

In the illustrating baking process shown in FIGS. 7 and 8. 
in an initial act 200, animation hierarchy is extracted from the 
extracted Scene. In a next act 202, an animation stream is 
created for each node of the extracted hierarchy. In act 204, 
the sampling rate is determined for all animation streams that 
have been created. In this regard, a user may choose a par 
ticular sampling rate. Generally, the sampling rate is much 
higher than the standard rate of frames in which the frames of 
an animation are stored in the animation file 26 exported by 
exporter 30, as shown in FIG. 1. The sampling rate can be 
adjusted using an iterative process. For example, an author 
may simulate the resulting script of a 3D user interface appli 
cation, with a particular sampling rate having been chosen. If 
the quality of the resulting graphics is not sufficient given the 
expectations of the author, the sample rate may be changed 
accordingly. 

In a next act 206, all (or a subset, in an alternate embodi 
ment) of animation curves are evaluated at the chosen sample 
rate. At this point, a raw animation data stream has been 
obtained, which has been baked at the determined sample 
rate. This data is stored in the offline platform. 
By way of example, this raw animation data can be stored 

in an indexed array (not shown), with each row in the indexed 
array accessible by inputting into the array an index value, 
e.g., determined with the use of an index look-up table (LUT) 
(not shown). The indexed array stores in respective rows sets 
of attributes, with each row being associated with a particular 
node and frame. These attributes may, e.g., bex, y, Z. r11, r12, 
r13, r21, r22, r23, r31, r32, r33, and color. The x, y, and Z 
attributes may be local coordinates of a scene, or part of a 
scene. The attributes r11, r12, r13, r21, r22, r23, r31, r32, r33 
are rotation and orientation values that may, e.g., correspond 
to a 3x3 matrix. 

In a next act 208, the rotation and orientation values for 
each frame/node combination (from the baked raw animation 
data stream) are converted to quaternions. Quaternions are 
another way of representing rotations and orientations, for 
example, instead of using Euler angles and matrices. A 
quaternion may be represented by 4 values (C, B, Y. (D). Thus, 
in this example, the 9 rotation and orientation values may be 
transformed into 4 quaternion values. 

In a next act 210, a cluster is created for each unique value 
within the quaternions that have been converted from the 
rotations and orientations of the baked raw animation data 
stream. In the illustrated embodiment, a cluster is a 7-tuple 
value which may beformed by using a local set of coordinates 
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6 
(x,y,z) and a quaternion value (C, B, Y. (D). In one aspect, the 
cluster may beformed when the 7-tuple value is unique. Thus, 
if there are M rows of data in the baked raw animation data 
(i.e., corresponding to respective different combinations of 
frame and node values), there may be N clusters, where N is 
less than M. because of non-unique 7-tuple values. A cluster 
may be composed of a cluster vector (x,y,z), and a cluster 
quaterion (C. f6, Y. (D). 

In a next act 212, a determination is made for a given pair 
of clusters as to whether the error between those clusters is 
less than a given threshold. Each cluster is provided with an 
error value. By way of example, this error value may be the 
midpoint value of the respective clusters. 

For example, a cluster pair may be identified by operating 
on the 7-tuple in two spaces: (1) a cartesian space (x,y,z); and 
(2) a quarternion space. In the Cartesian space, the magnitude 
of the midpoint between any two cluster vectors may generate 
a midpoint value, mpV1. Similarly, in the quaternion space, 
the magnitude of the midpoint arc distance between any two 
cluster quaterions may generate a midpoint value, mpV2. 
When the determination at act 212 determines that the error 

is less than the threshold, the process proceeds to act 214. 
where that pair of clusters is merged into a new cluster, and a 
new least error value (i.e., a midpoint magnitude value) is 
computed for that newly merged cluster. The process returns 
to act 212, for evaluation of another pair of clusters. 

This clustering process can be considered a method of 
reducing the number of rows of data corresponding to unique 
frame-node pairs, so that a plurality of unique frame-node 
pairs that may have animation data (generally, translation 
information, orientation and rotation information) has the 
same set of clustered data. 
When no more pairs of clusters meet the conditions of act 

212, the process proceeds to act 216, at which point, for a 
given set of animation values for a given cluster, the quater 
nion values (generally four different values) are packed into a 
single binary word (e.g., of N bits; N may be, e.g., 32 bits). 

After act 216, the compression process is ended. 
The clusters can be made larger or Smaller to increase 

animation playback accuracy or to reduce file size, respec 
tively. Once the streams are compressed, the individual values 
in the animation streams are packed into a single contiguous 
memory buffer, which is aligned and optimized for the mobile 
device's cache line characteristics. 
Once the animation stream is compressed, the individual 

values in the animation stream are packed into a single con 
tiguous animation value memory buffer 128, which is ulti 
mately exported to the target embedded device 120, as shown 
in FIG. 6. 
As shown in FIG. 6, in order for a given process of the 

target device to access data in animation value buffer 128, an 
animation lookup table (LUT) 124 is provided that outputs, 
for each unique frame-node combination, an offset value that 
locates the corresponding animation data in buffer 128. 

FIG.9 is a schematic diagram of a 3D object hierarchy 220. 
The illustrated object hierarchy 220 is of a biped, including a 
waist, which is a root node. An upper right leg, an upper left 
leg, and a chest are each connected to the waist. Each of these 
nodes is a child of the waist node. A left lower leg and a left 
lower foot are each connected to the upper left leg. Each of 
these nodes is a child node to the upper right leg node, and a 
grandchild node to the waist node. A lower left leg and a lower 
left foot node are each coupled to the upper left leg node, are 
children to the upper left leg node, and are grandchildren to 
the waist node. Head, upper right arm, and upper left arm 
nodes are provided which are children to the chest node, and 
grandchildren to the waist node. 
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If the hierarchy illustrated in FIG. 9 is updated using a 
recursive algorithm, where the nodes are processed in a 
breadth first traversal order, the nodes will be processed in the 
following order: first the waist node; second the upper right 
leg node; third the left right leg node: fourth the left right foot 
node; fifth the upper left leg node; and so on. In contrast, in the 
embodiment shown in FIG.9, a breadth first traversal order is 
used, where the waist node is first processed; the upper right 
leg node is processed second; the upper left leg node is pro 
cessed third; and the chest node is process fourth. The order in 
which the nodes are processed is indicated by the numbers to 
the left of each of the associated nodes. Accordingly, the 
waist, upper right leg, upper left leg, and chest nodes are 
process first, second, third, and fourth respectively, before 
nodes at the next depth level down are processed. This pro 
cessing of the nodes ultimately occurs in the target embedded 
device, but the order in which these nodes is processed can be 
controlled by controlling the order in which these nodes are 
stored in a contiguous portion of a tree data buffer 129 ulti 
mately (as shown in FIG. 6) formed in the heap memory of the 
target embedded device. Accordingly, a data structure 221 
can be provided (offline by the hierarchy update pre-process 
ing stage 108 as shown in FIG. 5), to provide for a contiguous 
amount of memory and for the storage of these nodes in that 
memory in the particular order in which they are to be pro 
cessed ultimately in the target embedded device. 
As shown in FIG. 6, breadth first hierarchy update mecha 

nism 130 may be provided as part of code and data 122 in 
target embedded device 120, for performing on-the-fly hier 
archy updates of a particular hierarchy. In order to determine 
where the data associated with that hierarchy is within ani 
mation data buffer 128, breadth first hierarchy update mecha 
nism 130 locates that data in accordance with the offset value 
provided by baked animation LUT 124. 
Once breadth first hierarchy update mechanism 130 locates 

the data within animation data buffer 128, the data is decoded 
by decoding mechanism 126 (by converting the data to a 
homogeneous transform matrix), and the nodes are processed 
in their consecutive order per the structure of the tree as stored 
in tree data buffer 129, i.e., the waist node first, the upper right 
leg node second, the upper left leg node third, and so on per 
the example in FIG. 9. The updated animation data is then 
stored, per node, in holding spaces provided for Such data in 
tree data buffer 129. 

The breadth first approach processes the nodes of a given 
tree in this order: the root node first, then child 1, then child 
2, ... child N. grandchild 1, grandchild 2, ... grandchild M, 
great grandchild 1. . . . . 

In the example shown in FIG. 9, the cache line boundary 
extends at least the amount of memory that is required for two 
contiguous nodes. Accordingly, if a cache, provided within a 
target embedded device has two lines, only one cache miss 
would be required to process, i.e., update, the hierarchy for 
the first through the fourth nodes in the example shown in 
FIG. 9. To facilitate the ability to store two nodes within the 
space of one cacheline boundary, the individual nodes may be 
compressed, for example, using the compression that results 
from the baked animation provided by the baked animation 
stage 104 as shown in FIG. 5. 
A hierarchy update involving a depth first traversal order 

will generally result in numerous cache misses. Among the 
reasons for this are the fact that the nodes for the hierarchy are 
not stored in contiguous memory. In addition, since the tra 
versal is recursive, for each node, the data for each of its 
parent nodes all the way to the ultimate root note is required 
for processing and updating that node. 
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8 
For purposes of the discussion regarding the updating of 

hierarchy, for example, in relation to the example shown in 
FIG. 9, updating refers to the conversion of a node from its 
local coordinates to world coordinates, before rendering on a 
display of the target embedded device. 
An advantage of the approach of organizing the node data 

in the example shown in FIG.9, is that the use of the stack in 
the target device for updating hierarchy information can be 
eliminated for this process. Moreover, there is no need to 
emulate a stack in the heap of the memory of the target 
embedded device. In addition, the total space consumed in the 
heap memory of the target embedded device is minimized, so 
that larger hierarchy trees can be accommodated. 
As shown in FIG. 6, once node data is updated by breadth 

first hierarchy update mechanism 130, it is ready for render 
ing by render mechanism 135. 

FIG. 10 shows a flow chart of a pre-allocation process. In a 
first act 250, memory is allocated for each asset, and for each 
data structure created up until this point in offline optimiza 
tion pipeline 99. In act 252, any engine data structures that 
will be in the target embedded device, when it runs the script 
and performs all necessary operations, will be built. In act 
254, the target simulator 19 simulates the target device, which 
may involve, for example, emulation of heap, stack, and 
cache memories within the simulated target embedded 
device. Target simulator 19 may further simulate all the data 
structures of the engine for each of the assets in the 3D 
program. 

Inact 256, all of the data accessed by the simulated engine, 
or created by the simulated engine, is packed in the order of 
engine access or creation into contiguous portions of a 'simu 
lated” heap memory. In act 258, metadata structures helpful 
to the engine in the target embedded device may be created. In 
addition, the allocation data resulting from the pre-allocation 
process is stored. Generally, the allocation data includes the 
total memory space and size of the contiguous memory that 
was packed in act 256. 
The allocation process shown in FIG. 10, which is per 

formed in pre-allocations stage 110 of off-line optimization 
pipeline 99 as shown in FIG. 5, causes, ultimately, in target 
embedded device 120, memory allocation and copy actions to 
be taken by memory allocation and copy mechanism 136, in 
accordance with metadata and pack total data 138 produced 
as a result of the pre-allocation process. Specifically, a single 
memory allocation may be made within memory 134 of target 
embedded device 120, at the start of the execution of the 3D 
application, as well as a single memory copy of all data that 
was packed during the packing act 256 in the pre-allocation 
process. Any built engine data structures that were built 
offline can then be copied into the memory, resulting in a 
single allocation and a single memory copy being required to 
prepare the data for use in the target embedded device. This 
minimizes the allocations required for the target embedded 
device. In addition, start up and initialization times of the 
target embedded device can be minimized, since all of the 
packed data is loaded at one time into the target embedded 
device memory. 
The processing performed by each of the elements shown 

in the figures herein may be performed by a general purpose 
computer, and/or by a specialized processing computer. Such 
processing may be performed by a single platform, by a 
distributed processing platform, or by separate platforms. In 
addition, such processing can be implemented in the form of 
special purpose hardware, or in the form of software being run 
by a general purpose computer. Any data handled in Such 
processing or created as a result of Such processing can be 
stored in any type of memory. By way of example, Such data 
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may be stored in a temporary memory. Such as in the RAM of 
a given computer system or Subsystems. In addition, or in the 
alternative, such data may be stored in longer-term storage 
devices, for example, magnetic discs, rewritable optical discs, 
and so on. For purposes of the disclosure herein, computer 
readable media may comprise any form of data storage 
mechanism, including Such memory technologies as well as 
hardware or circuit representations of Such structures and of 
Such data. The processes may be implemented in any 
machine-readable media and/or in an integrated circuit. 
The claims, as originally presented and as they may be 

amended, encompass variations, alternatives, modifications, 
improvements, equivalents, and Substantial equivalents of the 
embodiments and teachings disclosed herein, including those 
that are presently unforeseen or unappreciated, and that, for 
example may arise from applicants/patentees, and others. 

What is claimed is: 
1. An apparatus comprising: 
a computer-readable media embodied three-dimensional 

(3D) application in a computer platform other than a 
target mobile device; and 

a baking mechanism operative in an offline engine of the 
computer platform to bake animation data into an ani 
mation data structure to be loaded into a graphics engine 
of the target mobile device, the baking mechanism 
operative to convert frame-node combinations of an ani 
mation stream into clusters, to determine whether an 
error between a particular pair of clusters satisfies a 
predetermined threshold, and to merge the particular 
pair of clusters to create a new cluster when the error 
satisfies the predetermined threshold. 

2. The apparatus according to claim 1, 
wherein the 3D application includes a 3D user interface 

application, 
wherein the offline engine is operative to process data to be 

acted upon by the graphics engine of the target mobile 
device, 

wherein the animation data includes node location data, 
orientation data, and rotation data for nodes in a display 
frame to be displayed upon rendering an animated 
Scene; and 

wherein the animation data is retrievable from storage 
based on a baked animation lookup table responsive to a 
frame input and a node input. 

3. The apparatus according to claim 1, wherein the offline 
engine includes a data structure mechanism operative to cre 
ate and prepare data structures to be acted upon by the graph 
ics engine of the target mobile device by extracting a hierar 
chy structure from an animated Scene, creating the animation 
stream for each node of the hierarchy structure, selecting a 
sampling rate for each animation stream, evaluating anima 
tion curves at each selected Sampling rate, and converting 
frame-node combinations of the animation stream into 
quaternion values, wherein the clusters are formed from the 
quaternion values. 

4. The apparatus according to claim 1, further comprising 
a graphics engine simulator operative in the computer plat 
form to simulate select functions of the target mobile device 
running the graphics engine including application program 
ming interface (API) calls that directly call API functions of 
a hardware level API of the target mobile device. 

5. An apparatus comprising: 
a mobile device including a graphics engine; 
a mobile device asset load mechanism operative to load an 

asset produced from an offline computer platform into 
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10 
the graphics engine, the mobile device asset load mecha 
nism using a single allocation to prepare the asset for 
use; and 

a node processing hierarchy update mechanism operative 
to perform hierarchy updates based on update data pro 
vided at an animation data buffer of the mobile device 
using a breadth-first traversal of the hierarchy. 

6. The apparatus according to claim 5. 
wherein the asset includes assets defining three-dimen 

sional (3D) models, including 3D icons, and animations 
of the 3D models, and 

wherein a location of the update data in the animation data 
buffer is determined in accordance with an offset value 
provided at a baked animation look up table. 

7. An apparatus comprising: 
assets defining three-dimensional (3D) models, including 
3D icons and Scenes, and animations of the 3D models; 
and 

an off-line optimization engine operative in a computer 
platform other than a target embedded device to process 
data to be acted upon by a graphics engine of the target 
embedded device, the off-line optimization engine com 
prising: 
a hierarchy update pre-processing mechanism operative 

to establish an order of processing of nodes in a 3D 
object, wherein the nodes are stored in a memory in a 
particular order for processing by the graphics engine, 
and wherein at least two contiguous nodes are sized 
for storage in a cache line. 

8. The apparatus according to claim 7, wherein the assets 
defining the 3D models, and the animations of the 3D models 
are exported assets having been exported from a 3D image 
defining system. 

9. The apparatus according to claim 8, wherein the off-line 
optimization engine includes a pipeline. 

10. The apparatus according to claim 9, further compris 
ing: 

a scripting language interface operative to receive Script 
statements defining a 3D user interface via a computer 
Screen input, and to generate a set of Script files repre 
senting the Script statements defining the 3D user inter 
face. 

11. The apparatus according to claim 10, further compris 
ing: 

icon association mechanisms operative to associate a given 
3D object in a scene in a interface tool of a mobile phone 
to cause at least one of an input and an output of a signal 
regarding the mobile phone by manipulation of the given 
3D object. 

12. The apparatus according to claim 7, further compris 
ing: 

a graphics engine simulator operative in the computer plat 
form to simulate select functions of the target embedded 
device running the graphics engine including applica 
tion programming interface (API) calls that directly call 
API functions of a hardware level API of the target 
embedded device. 

13. The apparatus according to claim 7, the off-line opti 
mization engine further comprising: 

a baking mechanism operative in the computer platform to 
bake animation data into an animation data structure to 
be loaded into the graphics engine of the target embed 
ded device, wherein the animation data includes node 
location data, orientation data, and rotation data for 
nodes in a display frame to be displayed upon rendering 
an animated Scene. 
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14. The apparatus according to claim 13, the baking 
mechanism further comprising: 

a conversion mechanism operative to convert the orienta 
tion data and the rotation data to quaternions; 

a cluster mechanism operative to cluster groups of values; 
and 

a packing mechanism operative to packgroups of quater 
nion values. 

15. The apparatus according to claim 7, wherein the 3D 
object is a 3D model tree, wherein the hierarchy update pre 
processing mechanism is operative to arrange processed node 
holding places in a tree data buffer for export to the target 
embedded device. 

16. The apparatus according to claim 15, wherein the estab 
lished order of processing of the nodes is a breadth-first 
traversal order of the 3D model tree. 

17. The apparatus according to claim 16, wherein the pro 
cessed node holding places are each compressed holding 
places in relation to an amount of memory space required to 
hold node information in an unmodified format. 

18. The apparatus according to claim 7, the off-line opti 
mization engine further comprising: 

a pre-allocation mechanism in the computer platform, the 
pre-allocation mechanism comprising: 
an engine data structure builder operative to build engine 

data structures; 
a simulated engine; 
a simulation data packer operative to pack data accessed 

and produced by the simulated engine and to pack 
built engine data structures; and 

a pack total determiner. 
19. A method comprising: 
storing a three-dimensional (3D) application in a computer 

platform other than a target mobile device; and 
baking animation data in an offline engine of the computer 

platform into an animation data structure to be loaded 
into a graphics engine of the target mobile device, the 
baking further comprising: 
converting frame-node combinations of an animation 

stream into clusters; 
determining whether an error between a particular pair 

of clusters satisfies a predetermined threshold; and 
merging the particular pair of clusters to create a new 

cluster when the error satisfies the predetermined 
threshold. 

20. The method according to claim 19, wherein the 3D 
application includes a 3D user interface application, wherein 
the animation data is retrievable from storage based on an 
output of a baked animation lookup table responsive to a 
frame input and a node input. 

21. The method according to claim 20, further comprising 
simulating, on the computer platform, select functions of the 
target mobile device running the graphics engine including 
application programming interface (API) calls that directly 
call API functions of a hardware level API of the target mobile 
device. 

22. The method according to claim 19, further comprising: 
creating and preparing data structures to be acted upon by 

the graphics engine of the target mobile device by 
extracting a hierarchy structure from an animated Scene, 
creating the animation stream for each node of the hier 
archy structure, selecting a sampling rate for the anima 
tion stream for each node, evaluating animation curves 
at each selected sampling rate, converting frame-node 
combinations of the animation stream into quaternion 
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values, and creating a cluster for each unique quaternion 
value, wherein the clusters are formed from the quater 
nion values. 

23. A method comprising: 
providing a mobile device including a graphics engine; 
loading an asset produced from an offline computer plat 

form into the graphics engine, the loading using a single 
allocation to prepare the asset for use; and 

updating a node processing hierarchy based on update data 
provided at an animation data buffer of the mobile 
device using a breadth-first traversal of the node pro 
cessing hierarchy. 

24. The method according to claim 23, wherein the asset 
includes assets defining three-dimensional (3D) models, 
including 3D icons, and animations of the 3D models, the 
method further comprising: 

determining a location of the update data in the animation 
data buffer based on an offset value provided at a baked 
animation look up table. 

25. A method comprising: 
storing assets defining three-dimensional (3D) models, 

including 3D icons and scenes, and animations of the 3D 
models; 

processing, on a computer platform other than a target 
embedded device, data to be acted upon by a graphics 
engine of the target embedded device, the processing 
further comprising: 
updating a node processing hierarchy to establish an 

order of processing of nodes in a 3D object, wherein 
the nodes are stored in a memory in a particular order 
for processing by the graphics engine, and wherein at 
least two contiguous nodes are sized for storage in a 
cache line; and 

simulating, on the computer platform, select functions of 
the target embedded device running the graphics engine 
including application programming interface (API) 
calls that directly call API functions of a hardware level 
API of the target embedded device. 

26. The method according to claim 25, wherein the assets 
defining the 3D models, and the animations of the 3D models, 
are exported assets having been exported from a 3D image 
defining system. 

27. The method according to claim 25, the processing 
further comprising: 

baking animation data in the computer platform into an 
animation data structure to be loaded into the graphics 
engine of the target embedded device, wherein the ani 
mation data includes node location data, orientation 
data, and rotation data for nodes in a display frame to be 
displayed upon rendering an animated Scene. 

28. The method according to claim 27, wherein the baking 
includes converting the orientation data and the rotation data 
to quaternions, clustering groups of values, and packing 
groups of quaternion values. 

29. The method according to claim 25, wherein the 3D 
object is a 3D model tree, wherein performing hierarchy 
update pre-processing comprises arranging processed node 
holding places in a tree data buffer for export to the target 
embedded device. 

30. The method according to claim 29, wherein the estab 
lished order of processing of the nodes is a breadth-first 
traversal order of the 3D model tree. 

31. The method according to claim 30, wherein the pro 
cessed node holding places are each compressed holding 
places in relation to an amount of memory space required to 
hold node information in an unmodified format. 



US 8,026,910 B2 
13 

32. The method according to claim 25, the processing 
further comprising: 

performing a pre-allocation in the computer platform, the 
pre-allocation comprising: 
building engine data structures; 
simulating an engine; 
packing data accessed and produced by the simulated 

engine and packing built engine data structures; and 
determining a pack total. 

33. Machine-readable storage media encoded with data, 
the encoded data being interoperable with a machine to cause: 

storing a three-dimensional (3D) application in a computer 
platform other than a target mobile device; and 

baking animation data in an offline engine of the computer 
platform into an animation data structure to be loaded 
into the graphics engine of the target mobile device, the 
baking further comprising: 
converting frame-node combinations of an animation 

stream into clusters; 
determining whether an error between a particular pair 

of clusters satisfies a predetermined threshold; and 
merging the particular pair of clusters to create a new 

cluster when the error satisfies the predetermined 
threshold. 

34. The machine-readable storage media according to 
claim 33, wherein the 3D application includes a 3D user 
interface application, wherein the animation data is retriev 
able from storage based on an output of a baked animation 
lookup table responsive to a frame input and a node input. 

35. The machine-readable storage media according to 
claim 34, wherein the encoded data is interoperable with the 
machine to further cause simulating, on the computer plat 
form, select functions of the target mobile device running the 
graphics engine including application programming interface 
(API) calls that directly call API functions of a hardware level 
API of the target mobile device. 

36. The machine-readable storage media according to 
claim 33, wherein the encoded data is interoperable with the 
machine to further cause creating and preparing data struc 
tures to be acted upon by the graphics engine of the target 
mobile device, by extracting a hierarchy structure from an 
animated Scene, creating the animation stream for each node 
of the hierarchy structure, selecting a sampling rate for the 
animation stream for each node, evaluating animation curves 
at each selected sampling rate, converting frame-node com 
binations of the animation stream into quaternion values, 
creating a cluster for each unique quaternion value, wherein 
the clusters are formed from the quaternion values. 

37. Machine-readable storage media encoded with data, 
the encoded data being interoperable with a machine to cause: 

loading an asset produced from an offline computer plat 
form into a graphics engine of a mobile device, the 
loading using a single allocation to prepare the asset for 
use; and 

updating a node processing hierarchy based on update data 
provided at an animation data buffer of a mobile device 
using a breadth-first traversal of the node processing 
hierarchy. 

38. The machine-readable storage media according to 
claim 37, wherein the asset includes assets defining three 
dimensional (3D) models, including 3D icons, and anima 
tions of the 3D models, the encoded data being interoperable 
with the machine to further cause: 

determining a location of the update data in the animation 
data buffer based on an offset value provided at a baked 
animation look up table. 
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39. Machine-readable storage media encoded with data, 

the encoded data being interoperable with a machine to cause: 
storing assets defining three-dimensional (3D) models, 

including 3D icons and scenes, and animations of the 3D 
models; 

processing, on a computer platform other than a target 
embedded device, data to be acted upon by a graphics 
engine of a target embedded device, the processing fur 
ther comprising: 
updating a node processing hierarchy to establish an 

order of processing of nodes in a 3D object, wherein 
the nodes are stored in a memory in a particular order 
for processing by the graphics engine, and wherein at 
least two contiguous nodes are sized for storage in a 
cache line; and 

simulating, on the computer platform, select functions of 
the target embedded device running the graphics engine 
including application programming interface (API) 
calls that directly call API functions of a hardware level 
API of the target embedded device. 

40. The machine-readable storage media according to 
claim 39, wherein the assets defining the 3D models, and the 
animations of the 3D models, are exported assets having been 
exported from a 3D image defining system. 

41. The machine-readable storage media according to 
claim 39, the processing further comprising: 

baking animation data in the computer platform into an 
animation data structure to be loaded into the graphics 
engine of the target embedded device, wherein the ani 
mation data includes node location data, orientation 
data, and rotation data for nodes in a display frame to be 
displayed upon rendering an animated Scene. 

42. The machine-readable storage media according to 
claim 41, wherein the baking further includes converting the 
orientation data and the rotation data to quaternions, cluster 
ing groups of values, and packing groups of quaternion Val 
CS. 

43. The machine-readable storage media according to 
claim 39, wherein the 3D object is a 3D model tree, wherein 
performing hierarchy update pre-processing comprises 
arranging processed node holding places in a tree data buffer 
for export to the target embedded device. 

44. The machine-readable storage media according to 
claim 43, wherein the established order of processing of the 
nodes is a breadth-first traversal order of the 3D model tree. 

45. The machine-readable storage media according to 
claim 44, wherein the encoded data is interoperable with the 
machine to further cause the processed node holding places to 
be each compressed holding places in relation to an amount of 
memory space required to hold node information in an 
unmodified format. 

46. The machine-readable storage media according to 
claim 39, the processing further comprising: 

performing a pre-allocation in the computer platform, the 
pre-allocation including: 
building engine data structures; 
simulating an engine; 
packing data accessed and produced by the simulated 

engine and packing built engine data structures; and 
determining a pack total. 

47. An apparatus comprising: 
means for storing a three-dimensional (3D) application in 

a computer platform other than a target mobile device; 
and 

means for baking animation data in an offline engine of the 
computer platform into an animation data structure to be 
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loaded into agraphics engine of the target mobile device, 
the means for baking further comprising: 
means for converting frame-node combinations of an 

animation stream into clusters; 
means for determining whether an error between a par 

ticular pair of clusters satisfies a predetermined 
threshold; and 

means for merging the particular pair of clusters to cre 
ate a new cluster when the error satisfies the predeter 
mined threshold. 

48. The apparatus according to claim 47, wherein the 3D 
application includes a 3D user interface application, wherein 
the animation data is retrievable from storage based on an 
output of a baked animation lookup table responsive to a 
frame input and a node input. 

49. The apparatus according to claim 48, further compris 
ing means for simulating, on the computer platform, select 
functions of the target mobile device running the graphics 
engine including application programming interface (API) 
calls that directly call API functions of a hardware level API 
of the target mobile device. 

50. The apparatus according to claim 47, further compris 
ing means for creating and preparing data structures to be 
acted upon by the graphics engine of the target mobile device, 
by extracting a hierarchy structure from an animated Scene, 
creating the animation stream for each node of the hierarchy 
structure, selecting a sampling rate for the animation stream 
for each node, evaluating animation curves at each selected 
sampling rate, converting frame-node combinations of the 
animation stream into quaternion values, creating a cluster for 
each unique quaternion value, wherein the clusters are 
formed from the quaternion values. 

51. An apparatus comprising: 
means for loading an asset produced from an offline com 

puter platform into a graphics engine of a mobile device, 
the means for loading using a single allocation to pre 
pare the asset for use; and 

means for updating a node processing hierarchy based on 
update data provided at an animation data buffer of a 
mobile device using a breadth-first traversal of the pro 
cessing node hierarchy. 

52. The apparatus according to claim 51, wherein the asset 
includes assets defining three-dimensional (3D) models, 
including 3D icons, and animations of the 3D models, the 
apparatus further comprising: 

means for determining a location of the update data in the 
animation data buffer based on an offset value provided 
at a baked animation look up table. 

53. An apparatus comprising: 
means for storing assets defining three-dimensional (3D) 

models, including 3D icons and Scenes, and animations 
of the 3D models; 

means for processing, on a computer platform other than a 
target embedded device, data to be acted upon by a 
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graphics engine of the target embedded device, the 
means for processing further comprising: 
means for updating a node processing hierarchy to 

establish an order of processing of nodes in a 3D 
object, wherein the nodes are stored in a memory in a 
particular order for processing by the graphics engine, 
and wherein at least two contiguous nodes are sized 
for storage in a cache line; and 

means for simulating, on the computer platform, select 
functions of the target embedded device running the 
graphics engine including application programming 
interface (API) calls that directly call API functions of a 
hardware level API of the target embedded device. 

54. The apparatus according to claim 53, wherein the assets 
defining the 3D models, and the animations of the 3D models, 
are exported assets having been exported from a 3D image 
defining system. 

55. The apparatus according to claim 53, the means for 
processing further comprising: 
means forbaking animation data in the computer platform 

into an animation data structure to be loaded into the 
graphics engine of the target embedded device, wherein 
the animation data includes node location data, orienta 
tion data, and rotation data for nodes in a display frame 
to be displayed upon rendering an animated Scene. 

56. The apparatus according to claim 55, wherein the 
means for baking includes means for converting the orienta 
tion data and the rotation data to quaternions, means for 
clustering groups of values, and means for packing groups of 
quaternion values. 

57. The apparatus according to claim 53, wherein the 3D 
object is a 3D model tree, the means for updating further 
comprising means for arranging processed node holding 
places in a tree data buffer for export to the target embedded 
device. 

58. The apparatus according to claim 57, wherein the estab 
lished order of processing of the nodes is a breadth-first 
traversal order of the 3D model tree. 

59. The apparatus according to claim 58, wherein the pro 
cessed node holding places are each compressed holding 
places in relation to an amount of memory space required to 
hold node information in an unmodified format. 

60. The apparatus according to claim 53, the means for 
processing further comprising: 
means for performing a pre-allocation in the computer 

platform, the pre-allocation including: 
building engine data structures; 
simulating an engine; 
packing data accessed and produced by the simulated 

engine and packing built engine data structures; and 
determining a pack total. 


