(86) Date de dépôt/PCT Filing Date: 2009/05/12
(87) Date publication PCT/PCT Publication Date: 2009/12/03
(85) Entrée phase nationale/National Entry: 2010/11/19
(86) N° demande PCT/PCT Application No.: EP 2009/055737
(87) N° publication PCT/PCT Publication No.: 2009/144137
(30) Priorités/Priorities: 2008/05/27 (EP08157010.3); 2008/07/08 (EP08159900.3)

(51) Cl.Int./Int.Cl. A61K 35/74 (2006.01), A23C 9/142 (2006.01), A23L 1/29 (2006.01), A23L 1/30 (2006.01), A61K 31/702 (2006.01), A61P 1/00 (2006.01), A61P 31/00 (2006.01), A61P 37/00 (2006.01)

(71) Demandeur/Applicant: NESTEC S.A., CH
(72) Inventeurs/Inventors: ROCAT, FLORENCE, CH; FICHOT, MARIE-CLAIRE, CH
(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : PROBIOTIQUES DESTINES A AMELIORER LE MICROBIOTE INTESTINAL
(54) Title: PROBIOTICS TO IMPROVE GUT MICROBIOTA

(57) Abrégé/Abstract:
The use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for promoting the development of an early bifidogenic intestinal microbiota in infants without siblings.
Title: PROBIOTICS TO IMPROVE GUT MICROBIOTA

Abstract: The use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for promoting the development of an early bifidogenic intestinal microbiota in infants without siblings.
Probiotics to Improve Gut Microbiota

Field of the Invention

This invention relates to the administration to infants without siblings of probiotic bacteria capable of promoting an early bifidogenic gut microflora.

Background to the Invention

Immediately before birth, the gastro-intestinal tract of a baby is thought to be sterile. During the normal process of birth, it encounters bacteria from the digestive tract, skin and environment of the mother and starts to become colonised. The faecal microbiota of a healthy, vaginally-delivered, breast-fed infant of age 2 to 4 weeks which may be taken as the optimum microbiota for this age group is dominated by Bifidobacteria species with some Lactobacillus species and lesser amounts of Bacteroides such as Bacteroides fragilis species, at the expense of potential pathogens such as Clostridia. After the completion of weaning at about 2 years of age, a pattern of gut microbiota that resembles the adult pattern becomes established.

It should be noted that, in the healthy, vaginally-delivered, breast-fed infant, Bifidobacteria form the basis of the microbiota accounting for 60-90% of total bacteria in the infant gut. Breast feeding also promotes intestinal barrier development which, together with bifidobacterial domination leads to enhanced absorption and therefore utilisation of ingested nutrition.

Penders et al have examined the effects of a broad range of external influences on the composition of the gut microbiota in early infancy. They identified mode of delivery, type of infant feeding, gestational age, infant hospitalisation and antibiotic use by the infant as the most important determinants of the microbiota composition noting inter alia that exclusively formula-fed infants were more often colonised with E. coli, C. difficile, Bacteroides and lactobacilli compared with breast-fed infants and also that infants with older siblings had slightly higher numbers of Bifidobacteria compared with infants without siblings (Penders et al, “Factors Influencing the Composition of the Intestinal Microbiota in Early
Infancy”, Pediatrics Volume 118, Number 2, August 2006). This sibling effect has been hypothesised to be a marker for infections early in life.

More recently, in a large study of gut microbiota and development of atopic eczema in infants in Sweden, Italy and the UK, Adlerberth et al noted that the colonisation pattern of infants without siblings (i.e. first born or only infants) resembled that of infants born by caesarean section (Adlerberth et al, “Gut microbiota and development of atopic eczema in 3 European birth cohorts”, J. Allergy Clin. Immunol. 2007; 120: 343-350).

A “sibling effect” has also been shown on the incidence of atopic dermatitis. For example, Koppelman et al have shown with a multiple regression analysis that having older siblings was inversely related to atopy (Koppelman et al, “Sibling effect on atopy in children of patients with asthma”, Clin. Exp. Allergy, 2003; 33: 170-175). Other studies have also shown a sibling effect on asthma and wheezing (Crane et al, “Asthma and having siblings” BMJ, 1994; 309:272, Bennis et al, “The prevalence of adolescent asthma in Rabat. A study conducted in secondary schools” Rev. Mal. Respir. 1992; 9: 163-169).

More recently Gibbs et al also observed a reduction in the incidence of atopic dermatitis with rising birth order (Gibbs et al, “Atopic dermatitis and the hygiene hypothesis: a case-control study” Int. J. Epidemiol. 2004; 33: 199-207). It was thought that this might be linked to lower incidence of infection in first born children. However, none of the measures of infection reduced the odds of atopic dermatitis, meaning that the reduced incidence of atopy in younger siblings cannot be unequivocally explained by a higher incidence of infections.

Mother's milk is recommended for all infants. However, in some cases breast feeding is inadequate or unsuccessful for medical reasons or the mother chooses not to breast feed. Infant formulas have been developed for these situations.

In the recent past, certain strains of bacteria have attracted considerable attention because they have been found to exhibit valuable properties for man if ingested. In particular, specific strains of the genera lactobacilli and bifidobacteria have been found to be able to colonise the intestine, to reduce the capability of pathogenic bacteria to adhere to the intestinal epithelium, to have
immunomodulatory effects and to assist in the maintenance of well-being. Such bacteria are sometimes called probiotics and it has already been proposed to add suitable probiotic bacteria to infant formulas.

Extensive studies have been carried out to identify new probiotic strains. For example, EP 0 199 535, EP 0 768 375, WO 97/00078, EP 0 577 903 and WO 00/53200 disclose specific strains of lactobacilli and bifidobacteria and their beneficial effects.

The intestinal microbiota plays an important role in the hydrolysis of indigestible oligosaccharides and polysaccharides to absorbable monosaccharides and activation of lipoprotein lipase by direct action on the villous epithelium. Further, it has recently been demonstrated that human milk contains not only oligosaccharides but also bifidobacteria. At the same time, genomic studies have convincingly shown that bifidobacteria present in the gut of breast-fed infants, such as Bifidobacterium longum, are specially equipped to utilize breast-milk oligosaccharides as nutrients. Bifidobacterium longum is also adapted to the conditions in the large intestine where energy harvest from slowly absorbable carbohydrates takes place.

In short, more and more evidence is emerging which suggests that the establishment of an appropriate intestinal microbiota early in life may be a significant in subsequent healthy development. It is therefore clear that there is a need to provide a means to promote the rapid establishment of an appropriate intestinal microbiota in infants where this does not occur naturally for whatever reason.

Summary of the Invention

As noted above, for an infant, the optimum gut microbiota includes 60-90% bifidobacteria, predominantly Bifidobacterium breve, Bifidobacterium infantis, and Bifidobacterium longum. The present inventors have surprisingly found that administration of probiotic bacteria including, but not necessarily limited to, the above-mentioned species of bifidobacteria promotes the development of an early bifidogenic intestinal microbiota in infants in need of the same, for example infants without siblings.
Accordingly the present invention provides the use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for promoting the development of an early bifidogenic intestinal microbiota in infants without siblings.

The invention further provides the use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for reducing the risk of subsequent development of allergy and/or asthma in infants without siblings.

In a further aspect, the invention provides the use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for preventing or treating pathogenic infections in infants without siblings.

The invention extends to a method of promoting the development of an early bifidogenic intestinal microbiota in infants without siblings comprising providing a therapeutic amount of probiotic bacteria to an infant without siblings in need of the same.

The invention further extends to a method of reducing the risk that an infant without siblings will subsequently develop allergy and/or asthma comprising providing a therapeutic amount of probiotic bacteria to an infant without siblings in need of the same.

Without wishing to be bound by theory, the present inventors believe that administration of probiotic bacteria to an infant without siblings in some way as yet incompletely understood primes the gastrointestinal tract of the infant to favour subsequent colonisation by those species of bifidobacteria which are commonly found in the tracts of healthy, vaginally-delivered infants. It should be noted that it is neither the object nor the effect of such treatment to promote colonisation by the species of probiotic that is administered but rather to promote colonisation with other species so as to achieve an early bifidogenic intestinal microbiota comparable with that found in healthy, breast-fed, vaginally-delivered infants with siblings. Subsequently, the promotion of Bifidobacteria leads to resistance to pathogenic infections such as rotavirus diarrhoea as well as to the development of the immune system thus reducing the risk of subsequent
development of allergic symptoms (as manifested for example by atopic dermatitis or asthma).

Detailed Description of the Invention

In this specification, the following terms have the following meanings:

“early bifidogenic intestinal microbiota” means for an infant up to the age of 12 months an intestinal microbiota which is dominated by bifidobacteria such as *Bifidobacterium breve*, *Bifidobacterium infantis*, and *Bifidobacterium longum* to the exclusion of appreciable populations of such species as Clostridia and Streptococci and which is generally comparable with that found in a vaginally-delivered, breast fed infant of the same age.

“infant” means a child under the age of 12 months.

“infant without siblings” means a first-born or only infant or other infant living only with adults.

“prebiotic” means a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon and thus improves host health (Gibson and Roberfroid “Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics” J. Nutr 125:1401 – 1412).

“probiotic” means microbial cell preparations or components of microbial cells with a beneficial effect on the health or well-being of the host. (Salminen S, Ouwehand A. Benno Y. et al “Probiotics: how should they be defined” Trends Food Sci. Technol. 1999:10 107-10).

“N-acetylated oligosaccharide” means an oligosaccharide having an N-acetyl residue;
“oligosaccharide” means a carbohydrate having a degree of polymerisation (DP) ranging from 2 to 20 inclusive but not including lactose;

“sialylated oligosaccharide” means an oligosaccharide having a sialic acid residue with associated charge.

All references to percentages are percentages by weight unless otherwise stated.

The probiotic bacteria may be any lactic acid bacteria or Bifidobacteria with established probiotic characteristics which are also capable of promoting the development of an early bifidogenic intestinal microbiota. Suitable probiotic lactic acid bacteria include *Lactobacillus rhamnosus* ATCC 53103 obtainable *inter alia* from Valio Oy of Finland under the trade mark LGG, *Lactobacillus rhamnosus* CGMCC 1.3724, *Lactobacillus reuteri* ATCC 55730 and *Lactobacillus reuteri* DSM 17938 obtainable from Biogaia and *Lactobacillus paracasei* CNCM I-2116.

Suitable probiotic Bifidobacteria strains include *Bifidobacterium infantis* 35624 *Bifidobacterium longum* ATCC BAA-999 sold by Morinaga Milk Industry Co. Ltd. of Japan under the trade mark BB536, the strain of *Bifidobacterium breve* sold by Danisco under the trade mark Bb-03, the strain of *Bifidobacterium breve* sold by Morinaga under the trade mark M-16V and the strain of *Bifidobacterium breve* sold by Institut Rosell (Lallemand) under the trade mark R0070. A particularly preferred probiotic is *Bifidobacterium lactis* CNCM I-3446 sold *inter alia* by the Christian Hansen company of Denmark under the trade mark Bb12. A mixture of suitable probiotic lactic acid bacteria and Bifidobacteria may be used.

A suitable daily dose of the probiotic bacteria is from 10^3 to 10^{11} colony forming units (cfu), more preferably from 10^7 to 10^{10} cfu.

The probiotic bacteria are preferably administered to the infant immediately after delivery and thereafter for at least the first two months of the life of the infant.
More preferably, administration of the probiotic bacteria continues until the infant reaches six months of age.

Preferably the *Bifidobacterium lactis* CNCM I-3446 is co-administered with a prebiotic. Suitable prebiotics include certain oligosaccharides, such as fructoooligosaccharides (FOS) and galactooligosaccharides (GOS). A combination of prebiotics may be used such as 90% GOS with 10% short chain fructo-oligosaccharides such as the product sold under the trade mark Beneo® P95 or 10% inulin such as the product sold under the trade mark Beneo® HP, ST or HSI.

A particularly preferred prebiotic is an oligosaccharide mixture which comprises 5-70 wt% of at least one N-acetylated oligosaccharide selected from the group comprising GalNAcα1,3Galβ1,4Glc and Galβ1,6GalNAcα1,3Galβ1,4Glc, 20-90 wt% of at least one neutral oligosaccharide selected from the group comprising Galβ1,6Gal, Galβ1,6Galβ1,4Glc Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,3Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc Galβ1,3Galβ1,6Galβ1,4Glc and Galβ1,3Galβ1,3Galβ1,4Glc and 5-50 wt% of at least one sialylated oligosaccharide selected from the group comprising NeuAca2,3Galβ1,4Glc and NeuAca2,6Galβ1,4Glc. Such an oligosaccharide mixture is described in more detail in WO2007/090894, the contents of which are incorporated herein by reference and is referred to hereinafter as “the oligosaccharide mixture described above”.

Suitable N-acetylated oligosaccharides include GalNAcα1,3Galβ1,4Glc and Galβ1,6GalNAcα1,3Galβ1,4Glc. The N-acetylated oligosaccharides may be prepared by the action of glucosaminidase and/or galactosaminidase on N-acetyl-glucose and/or N-acetyl galactose. Equally, N-acetyl-galactosyl transferases and/or N-acetyl-glycosyl transferases may be used for this purpose. The N-acetylated oligosaccharides may also be produced by fermentation technology using respective enzymes (recombinant or natural) and/or microbial fermentation. In the latter case the microbes may either express their natural enzymes and
substrates or may be engineered to produce respective substrates and enzymes. Single microbial cultures or mixed cultures may be used. N-acetylated oligosaccharide formation can be initiated by acceptor substrates starting from any degree of polymerisation (DP) from DP=1 onwards. Another option is the chemical conversion of keto-hexoses (e.g. fructose) either free or bound to an oligosaccharide (e.g. lactose) into N-acetylhexasamine or an N-acetylhexasamine containing oligosaccharide as described in Wrodnigg, T.M.; Stutz, A.E. (1999) Angew. Chem. Int. Ed. 38:827-828.

Suitable galacto-oligosaccharides include Galβ1,6Gal, Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,3Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc, Galβ1,3Galβ1,4Glc, Galβ1,3Galβ1,3Galβ1,4Glc, Galβ1,4Galβ1,4Glc and Galβ1,4Galβ1,4Glc. Synthesised galacto-oligosaccharides such as Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc and Galβ1,3Galβ1,6Galβ1,4Glc, Galβ1,4Galβ1,4Glc and Galβ1,4Galβ1,4Galβ1,4Glc and mixtures thereof are commercially available under the trade marks Vivinal® and Elix’or®. Other suppliers of oligosaccharides are Dextra Laboratories, Sigma-Aldrich Chemie GmbH and Kyowa Hakko Kogyo Co., Ltd. Alternatively, specific glycosyltransferases, such as galactosyltransferases may be used to produce neutral oligosaccharides.

Suitable sialylated oligosaccharides include NeuAcα2,3Galβ1,4Glc and NeuAcα2,6Galβ1,4Glc. These sialylated oligosaccharides may be isolated by chromatographic or filtration technology from a natural source such as animal milks. Alternatively, they may also be produced by biotechnology using specific sialyltransferases either by enzyme based fermentation technology (recombinant or natural enzymes) or by microbial fermentation technology. In the latter case
microbes may either express their natural enzymes and substrates or may be engineered to produce respective substrates and enzymes. Single microbial cultures or mixed cultures may be used. Sialyl-oligosaccharide formation can be initiated by acceptor substrates starting from any degree of polymerisation (DP) from DP=1 onwards.

In one embodiment, the nutritional composition comprises 3.0 to 12.0% of the oligosaccharide mixture, more preferably from 4.0 to 7.0% of the oligosaccharide mixture.

In one embodiment the nutritional composition comprises at least 0.03 wt% of an N-acetylated oligosaccharide, at least 3.0 wt% of a galacto-oligosaccharide and at least 0.08 wt% of a sialylated oligosaccharide, more preferably at least 0.04 wt% of an N-acetylated oligosaccharide, at least 4.0 wt% of a galacto-oligosaccharide and at least 0.09 wt% of a sialylated oligosaccharide.

In one embodiment of the invention, the formula will contain from 2.5 to 15.0 wt% of an oligosaccharide mixture consisting of N-acetylated oligosaccharide(s), galacto-oligosaccharide(s) and sialylated oligosaccharide(s) in amounts of at least 0.02 wt% of an N-acetylated oligosaccharide, at least 2.0 wt% of a galacto-oligosaccharide and at least 0.04 wt% of a sialylated oligosaccharide, the N-acetylated oligosaccharide(s) comprising 0.5 to 4.0% of the oligosaccharide mixture, the galacto-oligosaccharide(s) comprising 92.0 to 98.5% of the oligosaccharide mixture and the sialylated oligosaccharide(s) comprising 1.0 to 4.0% of the oligosaccharide mixture.

In one embodiment of the invention the oligosaccharide mixture described above comprises 10-70 wt% of the specified N-acetylated oligosaccharide(s), 20-80
wt% of the specified neutral oligosaccharide(s) and 10-50 wt% of the specified sialylated oligosaccharide(s). More preferably the mixture comprises 15-40 wt% of the N-acetylated oligosaccharide(s), 40-60 wt% of the other neutral oligosaccharide(s) and 15-30 wt% of the sialylated oligosaccharide(s). A particularly preferred mixture is 30 wt% of the N-acetylated oligosaccharide(s), 50 wt% of the neutral oligosaccharide(s) and 20 wt% of the sialylated oligosaccharide(s).

Alternatively, the oligosaccharide mixture described above may conveniently comprise 5-20 wt% of the specified N-acetylated oligosaccharide(s), 60-90 wt% of the specified neutral oligosaccharide(s) and 5-30 wt% of the specified sialylated oligosaccharide(s)

The oligosaccharide mixture described above may be prepared from one or more animal milks. The milk may be obtained from any mammal, in particular from cows, goats, buffalos, horses, elephants, camels or sheep.

Alternatively the oligosaccharide mixture described above may be prepared by purchasing and mixing the individual components. For example, synthesised galacto-oligosaccharides such as Galβ1,6Galβ1,4Glc Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc and Galβ1,3Galβ1,6Galβ1,4Glc and mixtures thereof are commercially available under the trade marks Vivinal ® and Elix‘or ®. Other suppliers of oligosaccharides are Dextra Laboratories, Sigma-Aldrich Chemie GmbH and Kyowa Hakko Kogyo Co., Ltd. Alternatively, specific glycosyltransferases, such as galactosyltransferases may be used to produce neutral oligosaccharides.

The N-acetylated oligosaccharides may be prepared by the action of glucosaminidase and/or galactosaminidase on N-acetyl-glucose and/or N-acetyl galactose. Equally, N-acetyl-galactosyl transferases and/or N-acetyl-glycosyl transferases may be used for this purpose. The N-acetylated oligosaccharides may also be produced by fermentation technology using respective enzymes (recombinant or natural) and/or microbial fermentation. In the latter case the microbes may either express their natural enzymes and substrates or may be engineered to produce respective substrates and enzymes. Single microbial cultures or mixed cultures may be used. N-acetylated oligosaccharide formation
can be initiated by acceptor substrates starting from any degree of polymerisation (DP) from DP=1 onwards. Another option is the chemical conversion of keto-hexoses (e.g. fructose) either free or bound to an oligosaccharide (e.g. lactulose) into N-acetylhexosamine or an N-acetylhexosamine containing oligosaccharide as described in Wrodnigg, T.M.; Stutz, A.E. (1999) Angew. Chem. Int. Ed. 38:827-828.

The siaIylated oligosaccharides 3’ siaIyl-lactose and 6’ siaIyl-lactose may be isolated by chromatographic or filtration technology from a natural source such as animal milks. Alternatively, they may also be produced by biotechnology using specific siaIyltransferases either by enzyme based fermentation technology (recombinant or natural enzymes) or by microbial fermentation technology. In the latter case microbes may either express their natural enzymes and substrates or may be engineered to produce respective substrates and enzymes. Single microbial cultures or mixed cultures may be used. SiaIyl-oligosaccharide formation can be initiated by acceptor substrates starting from any degree of polymerisation (DP) from DP=1 onwards.

The probiotic bacteria may be administered directly to the infant or, if the mother is breast-feeding, via the mother. If the probiotic bacteria are to be administered via the mother, they may be supplied to the mother as a supplement in the form of tablets, capsules, pastilles, chewing gum or a liquid for example. The supplement preferably also contains the oligosaccharide mixture described above in an amount of from 10e3 to 10e11 cfu/day. The supplement may further contain protective hydrocolloids (such as gums, proteins, modified starches), binders, film forming agents, encapsulating agents/materials, wall/shell materials, matrix compounds, coatings, emulsifiers, surface active agents, solubilizing agents (oils, fats, waxes, lecithins etc.), adsorbents, carriers, fillers, co-compounds, dispersing agents, wetting agents, processing aids (solvents), flow agents, taste masking agents, weighting agents, jellifying agents, gel forming agents, antioxidants and antimicrobials. The supplement may also contain conventional pharmaceutical additives and adjuvants, excipients and diluents, including, but not limited to, water, gelatine of any origin, vegetable gums, ligninsulfonate, talc, sugars, starch, gum arabic, vegetable oils, polyalkylene glycols, flavouring agents, preservatives, stabilizers, emulsifying agents, buffers, lubricants, colorants, wetting agents, fillers, and the like. In all cases, such
further components will be selected having regard to their suitability for the intended recipient.

Alternatively, the probiotic bacteria may be administered to the mother in the form of a therapeutic nutritional composition. The composition may be a nutritionally complete formula.

A nutritionally complete formula for administration to lactating women according to the invention may comprise a source of protein. Any suitable dietary protein may be used for example animal proteins (such as milk proteins, meat proteins and egg proteins); vegetable proteins (such as soy protein, wheat protein, rice protein, and pea protein); mixtures of free amino acids; or combinations thereof. Milk proteins such as casein and whey, and soy proteins are particularly preferred. The composition may also contain a source of carbohydrates and a source of fat.

If the formula includes a fat source in addition to the DHA, the fat source preferably provides 5% to 40% of the energy of the formula; for example 20% to 30% of the energy. A suitable fat profile may be obtained using a blend of canola oil, corn oil and high-oleic acid sunflower oil.

A source of carbohydrate may be added to the formula. It preferably provides 40% to 80% of the energy of the formula. Any suitable carbohydrate may be used, for example sucrose, lactose, glucose, fructose, corn syrup solids, maltodextrins, and mixtures thereof. Dietary fibre may also be added if desired. Dietary fibre passes through the small intestine undigested by enzymes and functions as a natural bulking agent and laxative. Dietary fibre may be soluble or insoluble and in general a blend of the two types is preferred. Suitable sources of dietary fibre include soy, pea, oat, pectin, guar gum, gum Arabic, fructooligosaccharides and galacto-oligosaccharides. Preferably, if fibre is present, the fibre content is between 2 and 40 g/l of the formula as consumed, more preferably between 4 and 10 g/l. In addition, the formula also preferably contains the oligosaccharide mixture described above in an amount of from 0.2 to 5 grams per litre of reconstituted formula, preferably 1 to 2 g/l.
The formula may also contain minerals and micronutrients such as trace elements and vitamins in accordance with the recommendations of Government bodies such as the USRDA. For example, the formula may contain per daily dose one or more of the following micronutrients in the ranges given: - 300 to 500 mg calcium, 50 to 100 mg magnesium, 150 to 250 mg phosphorus, 5 to 20 mg iron, 1 to 7 mg zinc, 0.1 to 0.3 mg copper, 50 to 200 µg iodine, 5 to 15 µg selenium, 1000 to 3000 µg beta carotene, 10 to 80 mg Vitamin C, 1 to 2 mg Vitamin B1, 0.5 to 1.5 mg Vitamin B6, 0.5 to 2 mg Vitamin B2, 5 to 18 mg niacin, 0.5 to 2.0 µg Vitamin B12, 100 to 800 µg folic acid, 30 to 70 µg biotin, 1 to 5 µg Vitamin D, 3 to 10 IU Vitamin E.

One or more food grade emulsifiers may be incorporated into the formula if desired; for example diacetyl tartaric acid esters of mono- and di- glycerides, lecithin and mono- and di-glycerides. Similarly suitable salts and stabilisers may be included.

The formula is preferably enterally administrable; for example in the form of a powder for re-constitution with milk or water.

Alternatively, or in the case of infants who are not breast fed, the probiotic may be administered as a supplement, for example as a daily dose of 10e10 cfu dissolved in water and administered on a spoon.

For infants who are not breast fed, the probiotic bacteria may be conveniently administered in an infant formula.

An infant formula for use according to the present invention may contain a protein source in an amount of not more than 2.0 g/100 kcal, preferably 1.8 to 2.0 g/100 kcal. The type of protein is not believed to be critical to the present invention provided that the minimum requirements for essential amino acid content are met and satisfactory growth is ensured although it is preferred that over 50% by weight of the protein source is whey. Thus, protein sources based on whey, casein and mixtures thereof may be used as well as protein sources based on soy. As far as whey proteins are concerned, the protein source may be based on acid whey or sweet whey or mixtures thereof and may include alpha-lactalbumin and beta-lactoglobulin in whatever proportions are desired.
The proteins may be intact or hydrolysed or a mixture of intact and hydrolysed proteins. It may be desirable to supply partially hydrolysed proteins (degree of hydrolysis between 2 and 20%), for example for infants believed to be at risk of developing cows’ milk allergy. If hydrolysed proteins are required, the hydrolysis process may be carried out as desired and as is known in the art. For example, a whey protein hydrolysate may be prepared by enzymatically hydrolysing the whey fraction in one or more steps. If the whey fraction used as the starting material is substantially lactose free, it is found that the protein suffers much less lysine blockage during the hydrolysis process. This enables the extent of lysine blockage to be reduced from about 15% by weight of total lysine to less than about 10% by weight of lysine; for example about 7% by weight of lysine which greatly improves the nutritional quality of the protein source.

The infant formula may contain a carbohydrate source. Any carbohydrate source conventionally found in infant formulae such as lactose, saccharose, maltodextrin, starch and mixtures thereof may be used although the preferred source of carbohydrates is lactose. Preferably the carbohydrate sources contribute between 35 and 65% of the total energy of the formula.

The infant formula may contain a source of lipids. The lipid source may be any lipid or fat which is suitable for use in infant formulas. Preferred fat sources include palm olein, high oleic sunflower oil and high oleic safflower oil. The essential fatty acids linoleic and α-linolenic acid may also be added as may small amounts of oils containing high quantities of preformed arachidonic acid and docosahexaenoic acid such as fish oils or microbial oils. In total, the fat content is preferably such as to contribute between 30 to 55% of the total energy of the formula. The fat source preferably has a ratio of n-6 to n-3 fatty acids of about 5:1 to about 15:1; for example about 8:1 to about 10:1.

The infant formula may also contain all vitamins and minerals understood to be essential in the daily diet and in nutritionally significant amounts. Minimum requirements have been established for certain vitamins and minerals. Examples of minerals, vitamins and other nutrients optionally present in the infant formula include vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin E, vitamin K, vitamin C, vitamin D, folic acid, inositol, niacin, biotin, pantothenic
acid, choline, calcium, phosphorous, iodine, iron, magnesium, copper, zinc, manganese, chloride, potassium, sodium, selenium, chromium, molybdenum, taurine, and L-carnitine. Minerals are usually added in salt form. The presence and amounts of specific minerals and other vitamins will vary depending on the intended infant population.

Preferably, the infant formula will contain the oligosaccharide mixture described above in an amount of from 0.2 to 5 grams per litre of reconstituted formula, preferably 1 to 2 g/l.

The infant formula may optionally contain other substances which may have a beneficial effect such as lactoferrin, nucleotides, nucleosides, and the like. Both the infant formula and the nutritional formula described above may be prepared in any suitable manner. For example, they may be prepared by blending together the protein, the carbohydrate source, and the fat source in appropriate proportions. If used, the emulsifiers may be included at this point. The vitamins and minerals may be added at this point but are usually added later to avoid thermal degradation. Any lipophilic vitamins, emulsifiers and the like may be dissolved into the fat source prior to blending. Water, preferably water which has been subjected to reverse osmosis, may then be mixed in to form a liquid mixture. The temperature of the water is conveniently about 50°C to about 80°C to aid dispersal of the ingredients. Commercially available liquefiers may be used to form the liquid mixture. The liquid mixture is then homogenised; for example in two stages.

The liquid mixture may then be thermally treated to reduce bacterial loads, by rapidly heating the liquid mixture to a temperature in the range of about 80°C to about 150°C for about 5 seconds to about 5 minutes, for example. This may be carried out by steam injection, autoclave or by heat exchanger; for example a plate heat exchanger.

Then, the liquid mixture may be cooled to about 60°C to about 85°C; for example by flash cooling. The liquid mixture may then be again homogenised; for example in two stages at about 10 MPa to about 30 MPa in the first stage and about 2 MPa to about 10 MPa in the second stage. The homogenised mixture may then be further cooled to add any heat sensitive components; such as
vitamins and minerals. The pH and solids content of the homogenised mixture are conveniently adjusted at this point.

The homogenised mixture is transferred to a suitable drying apparatus such as a spray drier or freeze drier and converted to powder. The powder should have a moisture content of less than about 5% by weight.

The selected probiotic bacteria may be cultured according to any suitable method and prepared for addition to the nutritional or infant formula by freeze-drying or spray-drying for example. Alternatively, bacterial preparations can be bought from specialist suppliers such as Christian Hansen and Valio already prepared in a suitable form for addition to food products such as nutritional and infant formulas. The probiotic bacteria may be added to the formula in an amount between 10e3 and 10e12 cfu/g powder, more preferably between 10e7 and 10e12 cfu/g powder.

The invention will now be further illustrated by reference to the following examples:-

Example 1

An example of the composition of a suitable infant formula to be used in the present invention is given below

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>per 100kcal</th>
<th>per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal)</td>
<td>100</td>
<td>670</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>1.83</td>
<td>12.3</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>5.3</td>
<td>35.7</td>
</tr>
<tr>
<td>Linoleic acid (g)</td>
<td>0.79</td>
<td>5.3</td>
</tr>
<tr>
<td>α-Linolenic acid (mg)</td>
<td>101</td>
<td>675</td>
</tr>
<tr>
<td>Lactose (g)</td>
<td>11.2</td>
<td>74.7</td>
</tr>
<tr>
<td>Minerals (g)</td>
<td>0.37</td>
<td>2.5</td>
</tr>
<tr>
<td>Na (mg)</td>
<td>23</td>
<td>150</td>
</tr>
<tr>
<td>K (mg)</td>
<td>89</td>
<td>590</td>
</tr>
<tr>
<td>Cl (mg)</td>
<td>64</td>
<td>430</td>
</tr>
<tr>
<td>Element</td>
<td>Lower Limit</td>
<td>Upper Limit</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ca (mg)</td>
<td>62</td>
<td>410</td>
</tr>
<tr>
<td>P (mg)</td>
<td>31</td>
<td>210</td>
</tr>
<tr>
<td>Mg (mg)</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Mn (μg)</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Se (μg)</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Vitamin A (μg RE)</td>
<td>105</td>
<td>700</td>
</tr>
<tr>
<td>Vitamin D (μg)</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>Vitamin E (mg TE)</td>
<td>0.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Vitamin K1 (μg)</td>
<td>8</td>
<td>54</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Vitamin B1 (mg)</td>
<td>0.07</td>
<td>0.47</td>
</tr>
<tr>
<td>Vitamin B2 (mg)</td>
<td>0.15</td>
<td>1.0</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Vitamin B6 (mg)</td>
<td>0.075</td>
<td>0.50</td>
</tr>
<tr>
<td>Folic acid (μg)</td>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>Pantothenic acid (mg)</td>
<td>0.45</td>
<td>3</td>
</tr>
<tr>
<td>Vitamin B12 (μg)</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>Biotin (μg)</td>
<td>2.2</td>
<td>15</td>
</tr>
<tr>
<td>Choline (mg)</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Fe (mg)</td>
<td>1.2</td>
<td>8</td>
</tr>
<tr>
<td>I (μg)</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Cu (mg)</td>
<td>0.06</td>
<td>0.4</td>
</tr>
<tr>
<td>Zn (mg)</td>
<td>0.75</td>
<td>5</td>
</tr>
</tbody>
</table>

Biﬁdobacterium lactis CNMC 1-3446: 2×10^7 cfu/g of powder, live bacteria
Claims

1. The use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for promoting the development of an early bifidogenic intestinal microbiota in infants without siblings.

2. The use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for reducing the risk of subsequent development of allergy in infants without siblings.

3. The use of probiotic bacteria in the manufacture of a medicament or therapeutic nutritional composition for preventing or treating pathogenic infections in infants without siblings.

4. The use of Claim 3, wherein the pathogenic infection is rotavirus diarrhoea.

5. The use of any preceding claim, wherein the probiotic bacteria are lactic acid bacteria.

6. The use of Claim 5, wherein the lactic acid bacteria are of the strain *Lactobacillus rhamnosus* ATCC 53103, *Lactobacillus rhamnosus* CGMCC 1.3724, *Lactobacillus reuteri* ATCC 55730, *Lactobacillus reuteri* DSM 17938 or *Lactobacillus paracasei* CNCM I-2116.

7. The use of any of Claims 1 to 4, wherein the probiotic bacteria are Bifidobacteria.

9. The use of any preceding claim wherein the medicament or therapeutic nutritional composition further comprises an oligosaccharide mixture which comprises 5-70 wt% of at least one N-acetylated oligosaccharide selected from the group comprising GalNACα1,3Galβ1,4Glc and
Galβ1,6GalNAcα1,3Galβ1,4Glc, 20-90 wt% of at least one neutral oligosaccharide selected from the group comprising Galβ1,6Gal, Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,3Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc and Galβ1,3Galβ1,3Galβ1,4Glc and 5-50 wt% of at least one sialylated oligosaccharide selected from the group comprising NeuAcα2,3Galβ1,4Glc and NeuAcα2,6Galβ1,4Glc.

10. The use of any preceding claim wherein the medicament or therapeutic nutritional composition further comprises an oligosaccharide mixture which comprises at least one N-acetylated oligosaccharide and wherein said oligosaccharide is selected from the group comprising: GalNAcα1,3Galβ1,4Glc, Galβ1,6GalNAcα1,3Galβ1,4Glc, Galβ1,6Gal, Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,3Glc, Galβ1,3Galβ1,4Glc, Galβ1,6Galβ1,6Galβ1,4Glc, Galβ1,3Galβ1,6Galβ1,4Glc, Galβ1,3Galβ1,3Galβ1,4Glc, Galβ1,4Galβ1,4Glc and Galβ1,4Galβ1,4Galβ1,4Glc, GalNAcα1,3Galβ1,4Glc, Galβ1,6GalNAcα1,3Galβ1,4Glc, NeuAcα2,3Galβ1,4Glc, NeuAcα2,6Galβ1,4Glc, GalNAcα1,3Galβ1,4Glc, Galβ1,6GalNAcα1,3Galβ1,4Glc, Galβ1,6Gal, Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,6Glc, Galβ1,3Galβ1,3Glc, Galβ1,3Galβ1,4Glc, Galβ1,3Galβ1,6Galβ1,4Glc, Galβ1,6Galβ1,3Galβ1,4Glc, Galβ1,4Galβ1,4Glc and Galβ1,4Galβ1,4Galβ1,4Glc, NeuAcα2,3Galβ1,4Glc, NeuAcα2,6Galβ1,4Glc or a mixture thereof.

11. The use of any of the preceding claims wherein the composition comprises, on a dry matter basis, from 2.5 to 15.0 wt% of an oligosaccharide mixture consisting of N-acetylated oligosaccharide(s), galacto-oligosaccharide(s) and sialylated oligosaccharide(s) with the proviso that the composition comprises
at least 0.02 wt% of an N-acetylated oligosaccharide, at least 2.0 wt% of a galacto-oligosaccharide and at least 0.04 wt% of a sialylated oligosaccharide and that the N-acetylated oligosaccharide(s) comprise 0.5 to 4.0% of the oligosaccharide mixture, the galacto-oligosaccharide(s) comprise 92.0 to 98.5% of the oligosaccharide mixture and the sialylated oligosaccharide(s) comprise 1.0 to 4.0% of the oligosaccharide mixture.

12. The composition of any of the preceding claims which comprises at least 0.03 wt% of an N-acetylated oligosaccharide, at least 3.0 wt% of a galacto-oligosaccharide and at least 0.08 wt% of a sialylated oligosaccharide.

13. The composition of any of the preceding claims, which comprises at least 0.04 wt% of an N-acetylated oligosaccharide, at least 4.0 wt% of a galacto-oligosaccharide and at least 0.09 wt% of a sialylated oligosaccharide.

14. The use of any of the preceding claims, wherein the oligosaccharide mixture comprises 10-70 wt% of the N-acetylated oligosaccharides, 20-80 wt% of the neutral oligosaccharides and 10-50 wt% of the sialylated oligosaccharides.

15. The use of any of the preceding claims wherein the oligosaccharide mixture comprises 15-40 wt% of the N-acetylated oligosaccharides, 40-60 wt% of the neutral oligosaccharides and 15-30 wt% of the sialylated oligosaccharides.

16. The use of any of the preceding claims, wherein the oligosaccharide mixture comprises 5-20 wt% of the N-acetylated oligosaccharides, 60-90 wt% of the neutral oligosaccharides and 5-30 wt% of the sialylated oligosaccharides.
17 The use of any preceding claim wherein the medicament or therapeutic nutritional composition is administered to the infant immediately after delivery and thereafter for at least 2 months.

18 The use of any preceding claim, wherein the medicament or therapeutic nutritional composition is administered to the infant for at least 6 months after delivery.

19 The use of any preceding claim, wherein the probiotic bacteria are administered to the infant via the breast-feeding mother.

20 The use of any of any of the preceding claims, wherein the therapeutic nutritional composition is an infant formula.

21 The use of any preceding claim wherein the medicament comprises between 10^{5} and 10^{11} cfu of probiotic bacteria per daily dose.

22 The use of any of the preceding claims wherein the therapeutic nutritional composition comprises between 10^{3} and 10^{12} cfu of probiotic bacteria per gram of composition (dry weight).