(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f 0
International Bureau

(43) International Publication Date
7 February 2008 (07.02.2008)

) /IO O OO I O

(10) International Publication Number

WO 2008/017010 A1l

(51) International Patent Classification:

Parkway, Santa Clara, CA 95054 (US). SONI, Ajay

HO4L 29/06 (2006.01) HO4L 12/46 (2006.01) [US/US]; C/o Citrix Silicon Valley, 4988 Great America
HO4L 29/08 (2006.01) Parkway, Santa Clara, CA 95054 (US).

(21) International Application Number:

(22) International Filing Date: 2 August 2007 (02.08.2007)

(74) Agent: MCKENNA, Christopher, J.; Choate, Hall &
PCT/US2007/075034 Stewart, Two International Place, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(25) Filing Language: English AT, AU, AZ BA. BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(26) Publication Language:

English CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,

(30) Priority Data: IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, 1.C, LK,
11/462,341 3 August 2006 (03.08.2006) US LR LS LT, LU. LY. MA. MD. ME. MG, MK, MN. MW,
(71) Applicant (for all designated States except US): CITRIX MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
SYSTEMS, INC. [US/US]; 851 West Cypress Creek Road, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
Fort Lauderdale, FIL. 33309 (US). TJ, T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

M, ZW.

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUMAR, Arkesh (84) Designated States (unless otherwise indicated, for every

[US/US]; Clo Citrix Silicon Valley, 4988 Great America

[IN/US]; C/o Citrix Silicon Valley, 4988 Great America kind of regional protection available): ARIPO (BW, GH,

Parkway, Santa Clara, CA 95054 (US). HARRIS, James GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

NETWORK ENVIRONMENT

440 Terminate existing

K session?

/

=\

Client 102a

<
o
D
2]
=]
=
<
L 2
s o
2 &
g E
8 L o
S
= L 5
e 54
- sw
2 T ®
-~ .Eg
@ = L
g %3
@ 2
o @5
2 =
S @
[

Appliance 200

wO 2008/017010 A 1 |00 0 OO0 O I 0

(54) Title: SYSTEMS AND METHODS FOR MANAGING A PLURALITY OF USER SESSIONS IN A VIRTUAL PRIVATE

(57) Abstract: Methods for
establishing an SSL/VPN session
on behalf of a user of a client
(102a) where the user has a
previously existing session are
described. Methods include
receiving, by an appliance (200),
a request from a first client (102a)
operated by a user to establish a
virtual private network session;
creating, by the appliance, a
temporary virtual private network
session with the client; identifying,
by the appliance, an existing
virtual private network session
previously established on behalf of
the user; terminating the previous
session; and creating a new virtual
private network session with the
client using the temporary session.
Other methods may further
include transmitting a request to
a user corresponding to whether
to terminate one or more previous
sessions, and transferring session
data from a previously existing
session to a current session.
Corresponding systems are also
described.

WO 20087017010 A1 |0 00 00000000000 0

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,FI, — before the expiration of the time limit for amending the
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, claims and to be republished in the event of receipt of
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, amendments
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

WO 2008/017010 PCT/US2007/075034

SYSTEMS AND METHODS FOR MANAGING A PLURALITY OF
USER SESSIONS IN A VIRTUAL PRIVATE NETWORK
ENVIRONMENT

Field of the Invention

The present invention generally relates to data communication networks. In
particular, the present invention relates to systems and methods for managing a plurality

of user sessions in a virtual private network environment.

Backeround of the Invention

Virtual private networks may provide functionality for a user of a client computer
to securely access remote resources using public networks. Many virtual private
networks utilize network appliances to provide secure connections to clients. For
example, a user may access resources including applications, web sites, and files by
connecting to a network appliance which manages a number of virtual private network
connections. When a user connects to a virtual private network to access such resources,
a virtual private network session is created with the connection. This session may
correspond to a secure protocol used to communicate over a transport layer connection.
This session may have associated information including a virtual private network address,
session keys, information corresponding to the resources accessed, and authentication
permissions.

In some circumstances, a user may attempt to use a client to log into a virtual
private network when the user already has an established session to the virtual private
network from a different client. One reason for this second log on may be that the user
has moved to a different location without logging out of their original session. Several
problems may be associated with having multiple virtual private network sessions
associated with a single user. For example, the appliance may not be able to determine to
which of the plurality of sessions to route communications corresponding to the user. Or,
for example, a user who has moved to a new location may not be able to access session

data associated with the user’s previous sessions

WO 2008/017010 PCT/US2007/075034

Brief Summary of the Invention

In one aspect, the present invention is a method for establishing a virtual private
network session on behalf of a user of a client where the user has a previously existing
session. In one embodiment, the method comprises: receiving, by an appliance, a request
from a first client operated by a user to establish a virtual private network session;
creating, by the appliance, a temporary virtual private network session with the client;
identifying, by the appliance, an existing virtual private network session previously
established on behalf of the user; terminating the previous session; and creating a new
virtual private network session with the client using the temporary session. In other
embodiments, the method additionally comprises identifying, by the appliance, one or
more existing virtual private network session previously established on behalf of the user;
transmitting, from the appliance to the client, a request for information corresponding to
whether to terminate the one or more previous sessions; and receiving, by the appliance
from the client, a response comprising an indication to terminate one or more previous
sessions. In still other embodiments, the method further comprises transferring, by the
appliance, session data corresponding to the previous session to the current temporary
session.

In another aspect, the present invention is a system for establishing a virtual
private network session on behalf of a user of a client where the user has a previously
existing session, the system comprising an appliance, which receives a request from a
first client operated by a user to establish a virtual private network session; creates, by the
appliance, a temporary virtual private network session with the client; identifies, by the
appliance, an existing virtual private network session previously established on behalf of
the user; terminates the previous session; and creates a new virtual private network
session with the client using the temporary session. In other embodiments, the appliance
identifies a plurality of existing virtual private network sessions previously established on
behalf of the user; transmits, from the appliance to the client, a request for information
corresponding to whether to terminate one of the plurality of previous sessions; and
receives, by the appliance from the client, a response comprising an indication to

terminate one of the plurality of previous sessions. In still other embodiments, the

WO 2008/017010 PCT/US2007/075034

appliance transfers session data corresponding to the previous session to the current
temporary session.
The details of various embodiments of the invention are set forth in the

accompanying drawings and the description below.

Brief Description of the Figures

The foregoing and other objects, aspects, features, and advantages of the
invention will become more apparent and better understood by referring to the following
description taken in conjunction with the accompanying drawings, in which:

FIG. 1A is a block diagram of an embodiment of a network environment for a
client to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIGs. 1C and 1D are block diagrams of embodiments of a computing device;

FIG. 2A is a block diagram of an embodiment of an appliance for processing
communications between a client and a server;

FIG. 2B is a block diagram of another embodiment of an appliance for
optimizing, accelerating, load-balancing and routing communications between a client
and a server;

FIG. 3 is a block diagram of an embodiment of a client for communicating with a
server via the appliance;

FIG 4A is a block diagram of a virtual private network environment where a
single user attempts to create multiple sessions; and

FIG 4B is a block diagram of a method for establishing a virtual private network

session on behalf of a user of a client where the user has a previously existing session.

The features and advantages of the present invention will become more apparent
from the detailed description set forth below when taken in conjunction with the
drawings, in which like reference characters identify corresponding elements throughout.
In the drawings, like reference numbers generally indicate identical, functionally similar,

and/or structurally similar elements.

WO 2008/017010 PCT/US2007/075034

Detailed Description of the Invention

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the systems and methods of an
appliance and/or client, it may be helpful to discuss the network and computing
environments in which such embodiments may be deployed. Referring now to Figure
1A, an embodiment of a network environment is depicted. In brief overview, the
network environment comprises one or more clients 102a-102n (also generally referred to
as local machine(s) 102, or client(s) 102) in communication with one or more servers
106a-106n (also generally referred to as server(s) 106, or remote machine(s) 106) via one
or more networks 104, 104’ (generally referred to as network 104). In some
embodiments, a client 102 communicates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104’ between the clients
102 and the servers 106, the clients 102 and the servers 106 may be on the same network
104. The networks 104 and 104’ can be the same type of network or different types of
networks. The network 104 and/or the network 104’ can be a local-area network (LAN),
such as a company Intranet, a metropolitan area network (MAN), or a wide area network
(WAN), such as the Internet or the World Wide Web. In one embodiment, network 104’
may be a private network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and network 104’ a public network.
In another embodiment, networks 104 and 104’ may both be private networks. In some
embodiments, clients 102 may be located at a branch office of a corporate enterprise
communicating via a WAN connection over the network 104 to the servers 106 located at
a corporate data center.

The network 104 and/or 104’ be any type and/or form of network and may
include any of the following: a point to point network, a broadcast network, a wide area
network, a local area network, a telecommunications network, a data communication
network, a computer network, an ATM (Asynchronous Transfer Mode) network, a
SONET (Synchronous Optical Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline network. In some embodiments,
the network 104 may comprise a wireless link, such as an infrared channel or satellite

band. The topology of the network 104 and/or 104° may be a bus, star, or ring network

WO 2008/017010 PCT/US2007/075034

topology. The network 104 and/or 104’ and network topology may be of any such
network or network topology as known to those ordinarily skilled in the art capable of
supporting the operations described herein.

As shown in FIG. 1A, the appliance 200, which also may be referred to as an
interface unit 200 or gateway 200, is shown between the networks 104 and 104°. In some
embodiments, the appliance 200 may be located on network 104. For example, a branch
office of a corporate enterprise may deploy an appliance 200 at the branch office. In
other embodiments, the appliance 200 may be located on network 104’. For example, an
appliance 200 may be located at a corporate data center. In yet another embodiment, a
plurality of appliances 200 may be deployed on network 104. In some embodiments, a
plurality of appliances 200 may be deployed on network 104’. In one embodiment, a first
appliance 200 communicates with a second appliance 200°. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106 on the same or different
network 104,104’ as the client 102. One or more appliances 200 may be located at any
point in the network or network communications path between a client 102 and a server
106.

In one embodiment, the system may include multiple, logically-grouped servers
106. In these embodiments, the logical group of servers may be referred to as a server
farm 38. In some of these embodiments, the serves 106 may be geographically dispersed.
In some cases, a farm 38 may be administered as a single entity. In other embodiments,
the server farm 38 comprises a plurality of server farms 38. In one embodiment, the
server farm executes one or more applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous. One or more of the
servers 106 can operate according to one type of operating system platform (e.g.,
WINDOWS NT, manufactured by Microsoft Corp. of Redmond, Washington), while one
or more of the other servers 106 can operate on according to another type of operating
system platform (e.g., Unix or Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 in the same farm 38. Thus, the group of
servers 106 logically grouped as a farm 38 may be interconnected using a wide-area
network (WAN) connection or medium-area network (MAN) connection. For example, a

farm 38 may include servers 106 physically located in different continents or different

WO 2008/017010 PCT/US2007/075034

regions of a continent, country, state, city, campus, or room. Data transmission speeds
between servers 106 in the farm 38 can be increased if the servers 106 are connected
using a local-area network (LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application server, web server,
proxy server, or gateway server. In some embodiments, a server 106 may have the
capacity to function as either an application server or as a master application server. In
one embodiment, a server 106 may include an Active Directory. The clients 102 may
also be referred to as client nodes or endpoints. In some embodiments, a client 102 has
the capacity to function as both a client node seeking access to applications on a server
and as an application server providing access to hosted applications for other clients
102a-102n.

In some embodiments, a client 102 communicates with a server 106. In one
embodiment, the client 102 communicates directly with one of the servers 106 in a farm
38. In another embodiment, the client 102 executes a program neighborhood application
to communicate with a server 106 in a farm 38. In still another embodiment, the server
106 provides the functionality of a master node. In some embodiments, the client 102
communicates with the server 106 in the farm 38 through a network 104. Over the
network 104, the client 102 can, for example, request execution of various applications
hosted by the servers 106a-106n in the farm 38 and receive output of the results of the
application execution for display. In some embodiments, only the master node provides
the functionality required to identify and provide address information associated with a
server 106’ hosting a requested application.

In one embodiment, the server 106 provides functionality of a web server. In
another embodiment, the server 106a receives requests from the client 102, forwards the
requests to a second server 106b and responds to the request by the client 102 with a
response to the request from the server 106b. In still another embodiment, the server 106
acquires an enumeration of applications available to the client 102 and address
information associated with a server 106 hosting an application identified by the
enumeration of applications. In yet another embodiment, the server 106 presents the
response to the request to the client 102 using a web interface. In one embodiment, the

client 102 communicates directly with the server 106 to access the identified application.

WO 2008/017010 PCT/US2007/075034

In another embodiment, the client 102 receives application output data, such as display
data, generated by an execution of the identified application on the server 106.

Referring now to FIG. 1B, a network environment for delivering and/or operating
a computing environment on a client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a computing environment or
an application and/or data file to one or more clients 102. In brief overview, a client 10 is
in communication with a server 106 via network 104, 104’ and appliance 200. For
example, the client 102 may reside in a remote office of a company, ¢.g., a branch office,
and the server 106 may reside at a corporate data center. The client 102 comprises a
client agent 120, and a computing environment 15. The computing environment 15 may
execute or operate an application that accesses, processes or uses a data file. The
computing environment 15, application and/or data file may be delivered via the
appliance 200 and/or the server 106.

In some embodiments, the appliance 200 accelerates delivery of a computing
environment 15, or any portion thereof, to a client 102. In one embodiment, the
appliance 200 accelerates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodiments described herein may be
used to accelerate delivery of a streaming application and data file processable by the
application from a central corporate data center to a remote user location, such as a
branch office of the company. In another embodiment, the appliance 200 accelerates
transport layer traffic between a client 102 and a server 106. The appliance 200 may
provide acceleration techniques for accelerating any transport layer payload from a server
106 to a client 102, such as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buffering, 4) compression and 5)
caching. In some embodiments, the appliance 200 provides load balancing of servers 106
in responding to requests from clients 102. In other embodiments, the appliance 200 acts
as a proxy or access server to provide access to the one or more servers 106. In another
embodiment, the appliance 200 provides a secure virtual private network connection from
a first network 104 of the client 102 to the second network 104’ of the server 106, such as

an SSL VPN connection. It yet other embodiments, the appliance 200 provides

WO 2008/017010 PCT/US2007/075034

application firewall security, control and management of the connection and
communications between a client 102 and a server 106.

In some embodiments, the application delivery management system 190 provides
application delivery techniques to deliver a computing environment to a desktop of a
user, remote or otherwise, based on a plurality of execution methods and based on any
authentication and authorization policies applied via a policy engine 195. With these
techniques, a remote user may obtain a computing environment and access to server
stored applications and data files from any network connected device 100. In one
embodiment, the application delivery system 190 may reside or execute on a server 106.
In another embodiment, the application delivery system 190 may reside or execute on a
plurality of servers 106a-106n. In some embodiments, the application delivery system
190 may execute in a server farm 38. In one embodiment, the server 106 executing the
application delivery system 190 may also store or provide the application and data file.
In another embodiment, a first set of one or more servers 106 may execute the application
delivery system 190, and a different server 106n may store or provide the application and
data file. In some embodiments, each of the application delivery system 190, the
application, and data file may reside or be located on different servers. In yet another
embodiment, any portion of the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality of appliances.

The client 102 may include a computing environment 15 for executing an
application that uses or processes a data file. The client 102 via networks 104, 104’ and
appliance 200 may request an application and data file from the server 106. In one
embodiment, the appliance 200 may forward a request from the client 102 to the server
106. For example, the client 102 may not have the application and data file stored or
accessible locally. In response to the request, the application delivery system 190 and/or
server 106 may deliver the application and data file to the client 102. For example, in
one embodiment, the server 106 may transmit the application as an application stream to
operate in computing environment 15 on client 102.

In some embodiments, the application delivery system 190 comprises any portion
of the Citrix Access Suite™ by Citrix Systems, Inc., such as the MetaFrame or Citrix

Presentation Server™ and/or any of the Microsoft® Windows Terminal Services

WO 2008/017010 PCT/US2007/075034

manufactured by the Microsoft Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients 102 or users via a remote-
display protocol or otherwise via remote-based or server-based computing. In another
embodiment, the application delivery system 190 may deliver one or more applications to
clients or users via steaming of the application.

In one embodiment, the application delivery system 190 includes a policy engine
195 for controlling and managing the access to, selection of application execution
methods and the delivery of applications. In some embodiments, the policy engine 195
determines the one or more applications a user or client 102 may access. In another
embodiment, the policy engine 195 determines how the application should be delivered
to the user or client 102, ¢.g., the method of execution. In some embodiments, the
application delivery system 190 provides a plurality of delivery techniques from which to
select a method of application execution, such as a server-based computing, streaming or
delivering the application locally to the client 120 for local execution.

In one embodiment, a client 102 requests execution of an application program and
the application delivery system 190 comprising a server 106 selects a method of
executing the application program. In some embodiments, the server 106 receives
credentials from the client 102. In another embodiment, the server 106 receives a request
for an enumeration of available applications from the client 102. In one embodiment, in
response to the request or receipt of credentials, the application delivery system 190
enumerates a plurality of application programs available to the client 102. The
application delivery system 190 receives a request to execute an enumerated application.
The application delivery system 190 selects one of a predetermined number of methods
for executing the enumerated application, for example, responsive to a policy of a policy
engine. The application delivery system 190 may select a method of execution of the
application enabling the client 102 to receive application-output data generated by
execution of the application program on a server 106. The application delivery system
190 may select a method of execution of the application enabling the local machine 10 to
execute the application program locally after retrieving a plurality of application files

comprising the application. In yet another embodiment, the application delivery system

WO 2008/017010 PCT/US2007/075034

190 may select a method of execution of the application to stream the application via the
network 104 to the client 102.

A client 102 may execute, operate or otherwise provide an application, which can
be any type and/or form of software, program, or executable instructions such as any type
and/or form of web browser, web-based client, client-server application, a thin-client
computing client, an ActiveX control, or a Java applet, or any other type and/or form of
executable instructions capable of executing on client 102. In some embodiments, the
application may be a server-based or a remote-based application executed on behalf of
the client 102 on a server 106. In one embodiments the server 106 may display output to
the client 102 using any thin-client or remote-display protocol, such as the Independent
Computing Architecture (ICA) protocol manufactured by Citrix Systems, Inc. of Ft.
Lauderdale, Florida or the Remote Desktop Protocol (RDP) manufactured by the
Microsoft Corporation of Redmond, Washington. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP client, an Oscar client, or a
Telnet client. In other embodiments, the application comprises any type of software
related to VolP communications, such as a soft IP telephone. In further embodiments,
the application comprises any application related to real-time data communications, such
as applications for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38 may be running one or
more applications, such as an application providing a thin-client computing or remote
display presentation application. In one embodiment, the server 106 or server farm 38
executes as an application, any portion of the Citrix Access Suite™ by Citrix Systems,
Inc., such as the MetaFrame or Citrix Presentation Server™, and/or any of the
Microsoft® Windows Terminal Services manufactured by the Microsoft Corporation. In
one embodiment, the application is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Florida. In other embodiments, the application includes a Remote
Desktop (RDP) client, developed by Microsoft Corporation of Redmond, Washington.
Also, the server 106 may run an application, which for example, may be an application
server providing email services such as Microsoft Exchange manufactured by the
Microsoft Corporation of Redmond, Washington, a web or Internet server, or a desktop

sharing server, or a collaboration server. In some embodiments, any of the applications

10

WO 2008/017010 PCT/US2007/075034

may comprise any type of hosted service or products, such as GoToMeeting™ provided
by Citrix Online Division, Inc. of Santa Barbara, California, WebEx™ provided by
WebEx, Inc. of Santa Clara, California, or Microsoft Office Live Meeting provided by
Microsoft Corporation of Redmond, Washington.

The client 102, server 106, and appliance 200 may be deployed as and/or
executed on any type and form of computing device, such as a computer, network device
or appliance capable of communicating on any type and form of network and performing
the operations described herein. FIGs. 1C and 1D depict block diagrams of a computing
device 100 useful for practicing an embodiment of the client 102, server 106 or appliance
200. As shown in FIGs. 1C and 1D, each computing device 100 includes a central
processing unit 101, and a main memory unit 122. As shown in FIG. 1C, a computing
device 100 may include a visual display device 124, a keyboard 126 and/or a pointing
device 127, such as a mouse. Each computing device 100 may also include additional
optional elements, such as one or more input/output devices 130a-130b (generally
referred to using reference numeral 130), and a cache memory 140 in communication
with the central processing unit 101.

The central processing unit 101 is any logic circuitry that responds to and
processes instructions fetched from the main memory unit 122. In many embodiments,
the central processing unit is provided by a microprocessor unit, such as: those
manufactured by Intel Corporation of Mountain View, California; those manufactured by
Motorola Corporation of Schaumburg, Illinois; those manufactured by Transmeta
Corporation of Santa Clara, California; the RS/6000 processor, those manufactured by
International Business Machines of White Plains, New York; or those manufactured by
Advanced Micro Devices of Sunnyvale, California. The computing device 100 may be
based on any of these processors, or any other processor capable of operating as
described herein.

Main memory unit 122 may be one or more memory chips capable of storing data
and allowing any storage location to be directly accessed by the microprocessor 101, such
as Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM
(BSRAM), Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM
DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM),

11

WO 2008/017010 PCT/US2007/075034

Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM
(BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM
(DRDRAM), or Ferroelectric RAM (FRAM). The main memory 122 may be based on
any of the above described memory chips, or any other available memory chips capable
of operating as described herein. In the embodiment shown in FIG. 1C, the processor
101 communicates with main memory 122 via a system bus 150 (described in more detail
below). FIG. 1C depicts an embodiment of a computing device 100 in which the
processor communicates directly with main memory 122 via a memory port 103. For
example, in FIG. 1D the main memory 122 may be DRDRAM.

FIG. 1D depicts an embodiment in which the main processor 101 communicates
directly with cache memory 140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 101 communicates with cache memory
140 using the system bus 150. Cache memory 140 typically has a faster response time
than main memory 122 and is typically provided by SRAM, BSRAM, or EDRAM. In
the embodiment shown in FIG. 1C, the processor 101 communicates with various 1/0
devices 130 via a local system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the I/O devices 130, including a VESA VL bus, an
ISA bus, an EISA bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X bus,
a PCI-Express bus, or a NuBus. For embodiments in which the I/O device is a video
display 124, the processor 101 may use an Advanced Graphics Port (AGP) to
communicate with the display 124. FIG. 1D depicts an embodiment of a computer 100 in
which the main processor 101 communicates directly with 1I/O device 130 via
HyperTransport, Rapid I/O, or InfiniBand. FIG. 1D also depicts an embodiment in which
local busses and direct communication are mixed: the processor 101 communicates with
I/O device 130 using a local interconnect bus while communicating with I/0O device 130
directly.

The computing device 100 may support any suitable installation device 116, such
as a floppy disk drive for receiving floppy disks such as 3.5-inch, 5.25-inch disks or ZIP
disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of various

12

WO 2008/017010 PCT/US2007/075034

formats, USB device, hard-drive or any other device suitable for installing software and
programs such as any client agent 120, or portion thereof. The computing device 100
may further comprise a storage device 128, such as one or more hard disk drives or
redundant arrays of independent disks, for storing an operating system and other related
software, and for storing application software programs such as any program related to
the client agent 120. Optionally, any of the installation devices 116 could also be used as
the storage device 128. Additionally, the operating system and the software can be run
from a bootable medium, for example, a bootable CD, such as KNOPPIX®, a bootable
CD for GNU/Linux that is available as a GNU/Linux distribution from knoppix.net.
Furthermore, the computing device 100 may include a network interface 118 to
interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to, standard telephone lines,
LAN or WAN links (e.g,, 802.11, T1, T3, 56kb, X.25), broadband connections (e.g.,
ISDN, Frame Relay, ATM), wireless connections, or some combination of any or all of
the above. The network interface 118 may comprise a built-in network adapter, network
interface card, PCMCIA network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device suitable for interfacing the
computing device 100 to any type of network capable of communication and performing
the operations described herein.
A wide variety of I/0 devices 130a-130n may be present in the computing device 100.
Input devices include keyboards, mice, trackpads, trackballs, microphones, and drawing
tablets. Output devices include video displays, speakers, inkjet printers, laser printers,
and dye-sublimation printers. The I/O devices 130 may be controlled by an I/O
controller 123 as shown in FIG. 1C. The I/O controller may control one or more 1/0
devices such as a keyboard 126 and a pointing device 127, e.g., a mouse or optical pen.
Furthermore, an I/O device may also provide storage 128 and/or an installation medium
116 for the computing device 100. In still other embodiments, the computing device 100
may provide USB connections to receive handheld USB storage devices such as the USB
Flash Drive line of devices manufactured by Twintech Industry, Inc. of Los Alamitos,

California.

13

WO 2008/017010 PCT/US2007/075034

In some embodiments, the computing device 100 may comprise or be connected
to multiple display devices 124a-124n, which each may be of the same or different type
and/or form. As such, any of the I/0 devices 130a-130n and/or the 1/O controller 123
may comprise any type and/or form of suitable hardware, software, or combination of
hardware and software to support, enable or provide for the connection and use of
multiple display devices 124a-124n by the computing device 100. For example, the
computing device 100 may include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or otherwise use the display
devices 124a-124n. In one embodiment, a video adapter may comprise multiple
connectors to interface to multiple display devices 124a-124n. In other embodiments, the
computing device 100 may include multiple video adapters, with each video adapter
connected to one or more of the display devices 124a-124n. In some embodiments, any
portion of the operating system of the computing device 100 may be configured for using
multiple displays 124a-124n. In other embodiments, one or more of the display devices
124a-124n may be provided by one or more other computing devices, such as computing
devices 100a and 100b connected to the computing device 100, for example, via a
network. These embodiments may include any type of software designed and
constructed to use another computer’s display device as a second display device 124a for
the computing device 100. One ordinarily skilled in the art will recognize and appreciate
the various ways and embodiments that a computing device 100 may be configured to
have multiple display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge 170 between the
system bus 150 and an external communication bus, such as a USB bus, an Apple
Desktop Bus, an RS-232 serial connection, a SCSI bus, a FireWire bus, a FireWire 800
bus, an Ethernet bus, an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous
Transfer Mode bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus,
a FibreChannel bus, or a Serial Attached small computer system interface bus.

A computing device 100 of the sort depicted in FIGs. 1C and 1D typically operate
under the control of operating systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running any operating system such

as any of the versions of the Microsoft® Windows operating systems, the different

14

WO 2008/017010 PCT/US2007/075034

releases of the Unix and Linux operating systems, any version of the Mac OS® for
Macintosh computers, any embedded operating system, any real-time operating system,
any open source operating system, any proprietary operating system, any operating
systems for mobile computing devices, or any other operating system capable of running
on the computing device and performing the operations described herein. Typical
operating systems include: WINDOWS 3.x, WINDOWS 95, WINDOWS 98,
WINDOWS 2000, WINDOWS NT 3.51, WINDOWS NT 4.0, WINDOWS CE, and
WINDOWS XP, all of which are manufactured by Microsoft Corporation of Redmond,
Washington; MacOS, manufactured by Apple Computer of Cupertino, California; OS/2,
manufactured by International Business Machines of Armonk, New York; and Linux, a
freely-available operating system distributed by Caldera Corp. of Salt Lake City, Utah, or
any type and/or form of a Unix operating system, among others.

In other embodiments, the computing device 100 may have different processors,
operating systems, and input devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart phone
manufactured by Palm, Inc. In this embodiment, the Treo smart phone is operated under
the control of the PalmOS operating system and includes a stylus input device as well as
a five-way navigator device. Moreover, the computing device 100 can be any
workstation, desktop computer, laptop or notebook computer, server, handheld computer,
mobile telephone, any other computer, or other form of computing or
telecommunications device that is capable of communication and that has sufficient

processor power and memory capacity to perform the operations described herein.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appliance 200. The
architecture of the appliance 200 in FIG. 2A is provided by way of illustration only and is
not intended to be limiting. As shown in FIG. 2, appliance 200 comprises a hardware
layer 206 and a software layer divided into a user space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon which programs and

services within kernel space 204 and user space 202 are executed. Hardware layer 206

15

WO 2008/017010 PCT/US2007/075034

also provides the structures and elements which allow programs and services within
kernel space 204 and user space 202 to communicate data both internally and externally
with respect to appliance 200. As shown in FIG. 2, the hardware layer 206 includes a
processing unit 262 for executing software programs and services, a memory 264 for
storing software and data, network ports 266 for transmitting and receiving data over a
network, and an encryption processor 260 for performing functions related to Secure
Sockets Layer processing of data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform the functions of the
encryption processor 260 in a single processor. Additionally, the hardware layer 206
may comprise multiple processors for cach of the processing unit 262 and the encryption
processor 260. The processor 262 may include any of the processors 101 described
above in connection with FIGs. 1C and 1D. In some embodiments, the central processing
unit 262 may perform the functions of the encryption processor 260 in a single processor.
Additionally, the hardware layer 206 may comprise multiple processors for each of the
processing unit 262 and the encryption processor 260. For example, in one embodiment,
the appliance 200 comprises a first processor 262 and a second processor 262°. In other
embodiments, the processor 262 or 262’ comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is generally illustrated with an
encryption processor 260, processor 260 may be a processor for performing functions
related to any encryption protocol, such as the Secure Socket Layer (SSL) or Transport
Layer Security (TLS) protocol. In some embodiments, the processor 260 may be a
general purpose processor (GPP), and in further embodiments, may be have executable
instructions for performing processing of any security related protocol.

Although the hardware layer 206 of appliance 200 is illustrated with certain
elements in FIG. 2, the hardware portions or components of appliance 200 may comprise
any type and form of elements, hardware or software, of a computing device, such as the
computing device 100 illustrated and discussed herein in conjunction with FIGs. 1C and
ID. In some embodiments, the appliance 200 may comprise a server, gateway, router,
switch, bridge or other type of computing or network device, and have any hardware

and/or software elements associated therewith.

16

WO 2008/017010 PCT/US2007/075034

The operating system of appliance 200 allocates, manages, or otherwise
segregates the available system memory into kernel space 204 and user space 204. In
example software architecture 200, the operating system may be any type and/or form of
Unix operating system although the invention is not so limited. As such, the appliance
200 can be running any operating system such as any of the versions of the Microsoft®
Windows operating systems, the different releases of the Unix and Linux operating
systems, any version of the Mac OS® for Macintosh computers, any embedded operating
system, any network operating system, any real-time operating system, any open source
operating system, any proprictary operating system, any operating systems for mobile
computing devices or network devices, or any other operating system capable of running
on the appliance 200 and performing the operations described herein.

The kernel space 204 is reserved for running the kernel 230, including any device
drivers, kernel extensions or other kernel related software. As known to those skilled in
the art, the kernel 230 is the core of the operating system, and provides access, control,
and management of resources and hardware-related elements of the application 104. In
accordance with an embodiment of the appliance 200, the kernel space 204 also includes
a number of network services or processes working in conjunction with a cache manager
232. sometimes also referred to as the integrated cache, the benefits of which are
described in detail further herein. Additionally, the embodiment of the kernel 230 will
depend on the embodiment of the operating system installed, configured, or otherwise
used by the device 200.

In one embodiment, the device 200 comprises one network stack 267, such as a
TCP/IP based stack, for communicating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate with a first network, such as
network 108, and a second network 110. In some embodiments, the device 200
terminates a first transport layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server 106 for use by the client
102, e.g., the second transport layer connection is terminated at the appliance 200 and the
server 106. The first and second transport layer connections may be established via a
single network stack 267. In other embodiments, the device 200 may comprise multiple

network stacks, for example 267 and 267, and the first transport layer connection may be

17

WO 2008/017010 PCT/US2007/075034

established or terminated at one network stack 267, and the second transport layer
connection on the second network stack 267°. For example, one network stack may be
for receiving and transmitting network packet on a first network, and another network
stack for receiving and transmitting network packets on a second network. In one
embodiment, the network stack 267 comprises a buffer 243 for queuing one or more
network packets for transmission by the appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache manager 232, a high-
speed layer 2-7 integrated packet engine 240, an encryption engine 234, a policy engine
236 and multi-protocol compression logic 238. Running these components or processes
232, 240, 234, 236 and 238 in kernel space 204 or kernel mode instead of the user space
202 improves the performance of each of these components, alone and in combination.
Kernel operation means that these components or processes 232, 240, 234, 236 and 238
run in the core address space of the operating system of the device 200. For example,
running the encryption engine 234 in kernel mode improves encryption performance by
moving encryption and decryption operations to the kernel, thereby reducing the number
of transitions between the memory space or a kernel thread in kernel mode and the
memory space or a thread in user mode. For example, data obtained in kernel mode may
not need to be passed or copied to a process or thread running in user mode, such as from
a kernel level data structure to a user level data structure. In another aspect, the number
of context switches between kernel mode and user mode are also reduced. Additionally,
synchronization of and communications between any of the components or processes
232, 240, 235, 236 and 238 can be performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components 232, 240, 234, 236 and 238
may run or operate in the kernel space 204, while other portions of these components
232, 240, 234, 236 and 238 may run or operate in user space 202. In one embodiment,
the appliance 200 uses a kernel-level data structure providing access to any portion of one
or more network packets, for example, a network packet comprising a request from a
client 102 or a response from a server 106. In some embodiments, the kernel-level data
structure may be obtained by the packet engine 240 via a transport layer driver interface
or filter to the network stack 267. The kernel-level data structure may comprise any

interface and/or data accessible via the kernel space 204 related to the network stack 267,

18

WO 2008/017010 PCT/US2007/075034

network traffic or packets received or transmitted by the network stack 267. In other
embodiments, the kernel-level data structure may be used by any of the components or
processes 232, 240, 234, 236 and 238 to perform the desired operation of the component
or process. In one embodiment, a component 232, 240, 234, 236 and 238 is running in
kernel mode 204 when using the kernel-level data structure, while in another
embodiment, the component 232, 240, 234, 236 and 238 is running in user mode when
using the kernel-level data structure. In some embodiments, the kernel-level data
structure may be copied or passed to a second kernel-level data structure, or any desired
user-level data structure.

The cache manager 232 may comprise software, hardware or any combination of
software and hardware to provide cache access, control and management of any type and
form of content, such as objects or dynamically generated objects served by the
originating servers 106. The data, objects or content processed and stored by the cache
manager 232 may comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the cache manager 232
duplicates original data stored elsewhere or data previously computed, generated or
transmitted, in which the original data may require longer access time to fetch, compute
or otherwise obtain relative to reading a cache memory element. Once the data is stored
in the cache memory element, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data, thereby reducing the access time.
In some embodiments, the cache memory element nat comprise a data object in memory
264 of device 200. In other embodiments, the cache memory element may comprise
memory having a faster access time than memory 264. In another embodiment, the cache
memory element may comrpise any type and form of storage element of the device 200,
such as a portion of a hard disk. In some embodiments, the processing unit 262 may
provide cache memory for use by the cache manager 232. In yet further embodiments,
the cache manager 232 may use any portion and combination of memory, storage, or the
processing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques of the appliance 200 described

herein. For example, the cache manager 232 includes logic or functionality to invalidate

19

WO 2008/017010 PCT/US2007/075034

objects based on the expiration of an invalidation time period or upon receipt of an
invalidation command from a client 102 or server 106. In some embodiments, the cache
manager 232 may operate as a program, service, process or task executing in the kernel
space 204, and in other embodiments, in the user space 202. In one embodiment, a first
portion of the cache manager 232 executes in the user space 202 while a second portion
executes in the kernel space 204. In some embodiments, the cache manager 232 can
comprise any type of general purpose processor (GPP), or any other type of integrated
circuit, such as a Field Programmable Gate Array (FPGA), Programmable Logic Device
(PLD), or Application Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an intelligent statistical engine
or other programmable application(s). In one embodiment, the policy engine 236
provides a configuration mechanism to allow a user to identifying, specify, define or
configure a caching policy. Policy engine 236, in some embodiments, also has access to
memory to support data structures such as lookup tables or hash tables to enable user-
selected caching policy decisions. In other embodiments, the policy engine 236 may
comprise any logic, rules, functions or operations to determine and provide access,
control and management of objects, data or content being cached by the appliance 200 in
addition to access, control and management of security, network traffic, network access,
compression or any other function or operation performed by the appliance 200. Further
examples of specific caching policies are further described herein.

The encryption engine 234 comprises any logic, business rules, functions or
operations for handling the processing of any security related protocol, such as SSL or
TLS, or any function related thereto. For example, the encryption engine 234 encrypts
and decrypts network packets, or any portion thereof, communicated via the appliance
200. The encryption engine 234 may also setup or establish SSL or TLS connections on
behalf of the client 102a-102n, server 106a-106n, or appliance 200. As such, the
encryption engine 234 provides offloading and acceleration of SSL processing. In one
embodiment, the encryption engine 234 uses a tunneling protocol to provide a virtual
private network between a client 102a-102n and a server 106a-106n. In some

embodiments, the encryption engine 234 is in communication with the Encryption

20

WO 2008/017010 PCT/US2007/075034

processor 260. In other embodiments, the encryption engine 234 comprises executable
instructions running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises any logic, business rules,
function or operations for compressing one or more protocols of a network packet, such
as any of the protocols used by the network stack 267 of the device 200. In one
embodiment, multi-protocol compression engine 238 compresses bi-directionally
between clients 102a-102n and servers 106a-106n any TCP/IP based protocol, including
Messaging Application Programming Interface (MAPI) (email), File Transfer Protocol
(FTP), HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS)
protocol (file transfer), Independent Computing Architecture (ICA) protocol, Remote
Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and
Voice Over IP (VolP) protocol. In other embodiments, multi-protocol compression
engine 238 provides compression of Hypertext Markup Language (HTML) based
protocols and in some embodiments, provides compression of any markup languages,
such as the Extensible Markup Language (XML). In one embodiment, the multi-protocol
compression engine 238 provides compression of any high-performance protocol, such as
any protocol designed for appliance 200 to appliance 200 communications. In another
embodiment, the multi-protocol compression engine 238 compresses any payload of or
any communication using a modified transport control protocol, such as Transaction TCP
(T/TCP), TCP with selection acknowledgements (TCP-SACK), TCP with large windows
(TCP-LW), a congestion prediction protocol such as the TCP-Vegas protocol, and a TCP
spoofing protocol.

As such, the multi-protocol compression engine 238 accelerates performance for
users accessing applications via desktop clients, e.g., Microsoft Outlook and non-Web
thin clients, such as any client launched by popular enterprise applications like Oracle,
SAP and Siebel, and even mobile clients, such as the Pocket PC. In some embodiments,
the multi-protocol compression engine 238 by executing in the kernel mode 204 and
integrating with packet processing engine 240 accessing the network stack 267 is able to
compress any of the protocols carried by the TCP/IP protocol, such as any application

layer protocol.

21

WO 2008/017010 PCT/US2007/075034

High speed layer 2-7 integrated packet engine 240, also generally referred to as a
packet processing engine or packet engine, is responsible for managing the kernel-level
processing of packets received and transmitted by appliance 200 via network ports 266.
The high speed layer 2-7 integrated packet engine 240 may comprise a buffer for queuing
one or more network packets during processing, such as for receipt of a network packet
or transmission of a network packer. Additionally, the high speed layer 2-7 integrated
packet engine 240 is in communication with one or more network stacks 267 to send and
receive network packets via network ports 266. The high speed layer 2-7 integrated
packet engine 240 works in conjunction with encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238. In particular, encryption
engine 234 is configured to perform SSL processing of packets, policy engine 236 is
configured to perform functions related to traffic management such as request-level
content switching and request-level cache redirection, and multi-protocol compression
logic 238 is configured to perform functions related to compression and decompression
of data.

The high speed layer 2-7 integrated packet engine 240 includes a packet
processing timer 242. In one embodiment, the packet processing timer 242 provides one
or more time intervals to trigger the processing of incoming, i.e., received, or outgoing,
1.e., transmitted, network packets. In some embodiments, the high speed layer 2-7
integrated packet engine 240 processes network packets responsive to the timer 242. The
packet processing timer 242 provides any type and form of signal to the packet engine
240 to notify, trigger, or communicate a time related event, interval or occurrence. In
many embodiments, the packet processing timer 242 operates in the order of
milliseconds, such as for example 100ms, 50ms or 25ms. For example, in some
embodiments, the packet processing timer 242 provides time intervals or otherwise
causes a network packet to be processed by the high speed layer 2-7 integrated packet
engine 240 at a 10 ms time interval, while in other embodiments, at a 5 ms time interval,
and still yet in further embodiments, as short as a 3, 2, or 1 ms time interval. The high
speed layer 2-7 integrated packet engine 240 may be interfaced, integrated or in
communication with the encryption engine 234, cache manager 232, policy engine 236

and multi-protocol compression engine 238 during operation. As such, any of the logic,

22

WO 2008/017010 PCT/US2007/075034

functions, or operations of the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression logic 238 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. Therefore, any of the logic,
functions, or operations of the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression logic 238 may be performed at the granularity of
time intervals provided via the packet processing timer 242, for example, at a time
interval of less than or equal to 10ms. For example, in one embodiment, the cache
manager 232 may perform invalidation of any cached objects responsive to the high
speed layer 2-7 integrated packet engine 240 and/or the packet processing timer 242. In
another embodiment, the expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet processing timer 242, such as
at every 10 ms

In contrast to kernel space 204, user space 202 is the memory area or portion of
the operating system used by user mode applications or programs otherwise running in
user mode. A user mode application may not access kernel space 204 directly and uses
service calls in order to access kernel services. As shown in FIG. 2, user space 202 of
appliance 200 includes a graphical user interface (GUI) 210, a command line interface
(CLI) 212, shell services 214, health monitoring program 216, and daemon services 218.
GUI 210 and CLI 212 provide a means by which a system administrator or other user can
interact with and control the operation of appliance 200, such as via the operating system
of the appliance 200 and either is user space 202 or kernel space 204. The GUI 210 may
be any type and form of graphical user interface and may be presented via text, graphical
or otherwise, by any type of program or application, such as a browser. The CLI 212
may be any type and form of command line or text-based interface, such as a command
line provided by the operating system. For example, the CLI 212 may comprise a shell,
which is a tool to enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh, tcsh, or ksh type shell. The
shell services 214 comprises the programs, services, tasks, processes or executable
instructions to support interaction with the appliance 200 or operating system by a user

via the GUI 210 and/or CLI 212.

23

WO 2008/017010 PCT/US2007/075034

Health monitoring program 216 is used to monitor, check, report and ensure that
network systems are functioning properly and that users are receiving requested content
over a network. Health monitoring program 216 comprises one or more programs,
services, tasks, processes or executable instructions to provide logic, rules, functions or
operations for monitoring any activity of the appliance 200. In some embodiments, the
health monitoring program 216 intercepts and inspects any network traffic passed via the
appliance 200. In other embodiments, the health monitoring program 216 interfaces by
any suitable means and/or mechanisms with one or more of the following: the encryption
engine 234, cache manager 232, policy engine 236, multi-protocol compression logic
238, packet engine 240, daemon services 218, and shell services 214. As such, the health
monitoring program 216 may call any application programming interface (API) to
determine a state, status, or health of any portion of the appliance 200. For example, the
health monitoring program 216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and currently running. In another
example, the health monitoring program 216 may check any status, error or history logs
provided by any program, process, service or task to determine any condition, status or
error with any portion of the appliance 200.

Daemon services 218 are programs that run continuously or in the background
and handle periodic service requests received by appliance 200. In some embodiments, a
daemon service may forward the requests to other programs or processes, such as another
daemon service 218 as appropriate. As known to those skilled in the art, a dacmon
service 218 may run unattended to perform continuous or periodic system wide functions,
such as network control, or to perform any desired task. In some embodiments, one or
more daemon services 218 run in the user space 202, while in other embodiments, one or
more daemon services 218 run in the kernel space.

Referring now to FIG. 2B, another embodiment of the appliance 200 is depicted.
In brief overview, the appliance 200 provides one or more of the following services,
functionality or operations: SSL VPN connectivity 280, switching/load balancing 284,
Domain Name Service resolution 286, acceleration 288 and an application firewall 290
for communications between one or more clients 102 and one or more servers 106. In

one embodiment, the appliance 200 comprises any of the network devices manufactured

24

WO 2008/017010 PCT/US2007/075034

by Citrix Systems, Inc. of Ft. Lauderdale Florida, referred to as Citrix NetScaler devices.
Each of the servers 106 may provide one or more network related services 270a-270n
(referred to as services 270). For example, a server 106 may provide an http service 270.
The appliance 200 comprises one or more virtual servers or virtual internet protocol
servers, referred to as a vServer, VIP server, or just VIP 275a-275n (also referred herein
as vServer 275). The vServer 275 receives, intercepts or otherwise processes
communications between a client 102 and a server 106 in accordance with the
configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any combination of
software and hardware. The vServer 275 may comprise any type and form of program,
service, task, process or executable instructions operating in user mode 202, kernel mode
204 or any combination thereof in the appliance 200. The vServer 275 includes any
logic, functions, rules, or operations to perform any embodiments of the techniques
described herein, such as SSL VPN 280, switching/load balancing 284, Domain Name
Service resolution 286, acceleration 288 and an application firewall 290. In some
embodiments, the vServer 275 establishes a connection to a service 270 of a server 106.
The service 275 may comprise any program, application, process, task or set of
executable instructions capable of connecting to and communicating to the appliance 200,
client 102 or vServer 275. For example, the service 275 may comprise a web server, http
server, ftp, email or database server. In some embodiments, the service 270 is a daemon
process or network driver for listening, receiving and/or sending communications for an
application, such as email, database or an enterprise application. In some embodiments,
the service 270 may communicate on a specific IP address, or IP address and port.

In some embodiments, the vServer 275 applies one or more policies of the policy
engine 236 to network communications between the client 102 and server 106. In one
embodiment, the policies are associated with a VServer 275. In another embodiment, the
policies are based on a user, or a group of users. In yet another embodiment, a policy is
global and applies to one or more vServers 275a-275n, and any user or group of users
communicating via the appliance 200. In some embodiments, the policies of the policy
engine have conditions upon which the policy is applied based on any content of the

communication, such as internet protocol address, port, protocol type, header or fields in

25

WO 2008/017010 PCT/US2007/075034

a packet, or the context of the communication, such as user, group of the user, vServer
275, transport layer connection, and/or identification or attributes of the client 102 or
server 106.

In other embodiments, the appliance 200 communicates or interfaces with the
policy engine 236 to determine authentication and/or authorization of a remote user or a
remote client 102 to access the computing environment 15, application, and/or data file
from a server 106. In another embodiment, the appliance 200 communicates or interfaces
with the policy engine 236 to determine authentication and/or authorization of a remote
user or a remote client 102 to have the application delivery system 190 deliver one or
more of the computing environment 15, application, and/or data file. In yet another
embodiment, the appliance 200 establishes a VPN or SSL VPN connection based on the
policy engine’s 236 authentication and/or authorization of a remote user or a remote
client 103 In one embodiment, the appliance 102 controls the flow of network traffic
and communication sessions based on policies of the policy engine 236. For example,
the appliance 200 may control the access to a computing environment 15, application or
data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes a transport layer connection,
such as a TCP or UDP connection with a client 102 via the client agent 120. In one
embodiment, the vServer 275 listens for and receives communications from the client
102. In other embodiments, the vServer 275 establishes a transport layer connection,
such as a TCP or UDP connection with a client server 106. In one embodiment, the
vServer 275 establishes the transport layer connection to an internet protocol address and
port of a server 270 running on the server 106. In another embodiment, the vServer 275
associates a first transport layer connection to a client 102 with a second transport layer
connection to the server 106. In some embodiments, a vServer 275 establishes a pool of
tranport layer connections to a server 106 and multiplexes client requests via the pooled
transport layer connections.

In some embodiments, the appliance 200 provides a SSL. VPN connection 280
between a client 102 and a server 106. For example, a client 102 on a first network 102
requests to establish a connection to a server 106 on a second network 104°. In some

embodiments, the second network 104 is not routable from the first network 104. In

26

WO 2008/017010 PCT/US2007/075034

other embodiments, the client 102 is on a public network 104 and the server 106 is on a
private network 104°, such as a corporate network. In one embodiment, the client agent
120 intercepts communications of the client 102 on the first network 104, encrypts the
communications, and transmits the communications via a first transport layer connection
to the appliance 200. The appliance 200 associates the first transport layer connection on
the first network 104 to a second transport layer connection to the server 106 on the
second network 104. The appliance 200 receives the intercepted communication from
the client agent 102, decrypts the communications, and transmits the communication to
the server 106 on the second network 104 via the second transport layer connection. The
second transport layer connection may be a pooled transport layer connection. As such,
the appliance 200 provides an end-to-end secure transport layer connection for the client
102 between the two networks 104, 104°.

In one embodiment, the appliance 200 hosts an intranet internet protocol or
intranetIP 282 address of the client 102 on the virtual private network 104. The client
102 has a local network identifier, such as an internet protocol (IP) address and/or host
name on the first network 104. When connected to the second network 104’ via the
appliance 200, the appliance 200 establishes, assigns or otherwise provides an IntranetIP,
which is network identifier, such as IP address and/or host name, for the client 102 on
the second network 104°. The appliance 200 listens for and receives on the second or
private network 104’ for any communications directed towards the client 102 using the
client’s established IntranetIP 282. In one embodiment, the appliance 200 acts as or on
behalf of the client 102 on the second private network 104. For example, in another
embodiment, a vServer 275 listens for and responds to communications to the IntranetIP
282 of the client 102. In some embodiments, if a computing device 100 on the second
network 104’ transmits a request, the appliance 200 processes the request as if it were the
client 102. For example, the appliance 200 may respond to a ping to the client’s
IntranetIP 282. In another example, the appliance may establish a connection, such as a
TCP or UDP connection, with computing device 100 on the second network 104
requesting a connection with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or more of the following

acceleration techniques 288 to communications between the client 102 and server 106: 1)

27

WO 2008/017010 PCT/US2007/075034

compression; 2) decompression; 3) Transmission Control Protocol pooling; 4)
Transmission Control Protocol multiplexing; 5) Transmission Control Protocol buffering;
and 6) caching.

In one embodiment, the appliance 200 relieves servers 106 of much of the processing
load caused by repeatedly opening and closing transport layers connections to clients 102
by opening one or more transport layer connections with each server 106 and maintaining
these connections to allow repeated data accesses by clients via the Internet. This
technique is referred to herein as “connection pooling”.

In some embodiments, in order to seamlessly splice communications from a client
102 to a server 106 via a pooled transport layer connection, the appliance 200 translates
or multiplexes communications by modifying sequence number and acknowledgment
numbers at the transport layer protocol level. This is referred to as “connection
multiplexing”. In some embodiments, no application layer protocol interaction is
required. For example, in the case of an in-bound packet (that is, a packet received from
a client 102), the source network address of the packet is changed to that of an output port
of appliance 200, and the destination network address is changed to that of the intended
server. In the case of an outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106 to that of an output port of
appliance 200 and the destination address is changed from that of appliance 200 to that of
the requesting client 102. The sequence numbers and acknowledgment numbers of the
packet are also translated to sequence numbers and acknowledgement expected by the
client 102 on the appliance’s 200 transport layer connection to the client 102. In some
embodiments, the packet checksum of the transport layer protocol is recalculated to
account for these translations.

In another embodiment, the appliance 200 provides switching or load-balancing
functionality 284 for communications between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and directs client requests to a server
106 based on layer 4 or application-layer request data. In one embodiment, although the
network layer or layer 2 of the network packet identifies a destination server 106, the
appliance 200 determines the server 106 to distribute the network packet by application

information and data carried as payload of the transport layer packet. In one

28

WO 2008/017010 PCT/US2007/075034

embodiment, the health monitoring programs 216 of the appliance 200 monitor the health
of servers to determine the server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not available or has a load over
a predetermined threshold, the appliance 200 can direct or distribute client requests to
another server 106.

In some embodiments, the appliance 200 acts as a Domain Name Service (DNS)
resolver or otherwise provides resolution of a DNS request from clients 102. In some
embodiments, the appliance intercepts’ a DNS request transmitted by the client 102. In
one embodiment, the appliance 200 responds to a client’s DNS request with an IP address
of or hosted by the appliance 200. In this embodiment, the client 102 transmits network
communication for the domain name to the appliance 200. In another embodiment, the
appliance 200 responds to a client’s DNS request with an IP address of or hosted by a
second appliance 200°. In some embodiments, the appliance 200 responds to a client’s
DNS request with an IP address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides application firewall
functionality 290 for communications between the client 102 and server 106. In one
embodiment, the policy engine 236 provides rules for detecting and blocking illegitimate
requests. In some embodiments, the application firewall 290 protects against denial of
service (DoS) attacks. In other embodiments, the appliance inspects the content of
intercepted requests to identify and block application-based attacks. In some
embodiments, the rules/policy engine 236 comprises one or more application firewall or
security control policies for providing protections against various classes and types of
web or Internet based vulnerabilities, such as one or more of the following: 1) buffer
overflow, 2) CGI-BIN parameter manipulation, 3) form/hidden field manipulation, 4)
forceful browsing, 5) cookie or session poisoning, 6) broken access control list (ACLs) or
weak passwords, 7) cross-site scripting (XSS), 8) command injection, 9) SQL injection,
10) error triggering sensitive information leak, 11) insecure use of cryptography, 12)
server misconfiguration, 13) back doors and debug options, 14) website defacement, 15)
platform or operating systems vulnerabilities, and 16) zero-day exploits. In an
embodiment, the application firewall 290 provides HTML form field protection in the

form of inspecting or analyzing the network communication for one or more of the

29

WO 2008/017010 PCT/US2007/075034

following: 1) required fields are returned, 2) no added field allowed, 3) read-only and
hidden field enforcement, 4) drop-down list and radio button field conformance, and 5)
form-field max-length enforcement. In some embodiments, the application firewall 290
ensures cookies are not modified. In other embodiments, the application firewall 290
protects against forceful browsing by enforcing legal URLs.

In still yet other embodiments, the application firewall 290 protects any
confidential information contained in the network communication. The application
firewall 290 may inspect or analyze any network communication in accordance with the
rules or polices of the engine 236 to identify any confidential information in any field of
the network packet. In some embodiments, the application firewall 290 identifies in the
network communication one or more occurrences of a credit card number, password,
social security number, name, patient code, contact information, and age. The encoded
portion of the network communication may comprise these occurrences or the
confidential information. Based on these occurrences, in one embodiment, the
application firewall 290 may take a policy action on the network communication, such as
prevent transmission of the network communication. In another embodiment, the
application firewall 290 may rewrite, remove or otherwise mask such identified

occurrence or confidential information.

C. Client Agent
Referring now to FIG. 3, an embodiment of the client agent 120 is depicted. The

client 102 includes a client agent 120 for establishing and exchanging communications
with the appliance 200 and/or server 106 via a network 104. In brief overview, the client
102 operates on computing device 100 having an operating system with a kernel mode
302 and a user mode 303, and a network stack 310 with one or more layers 310a-310b.
The client 102 may have installed and/or execute one or more applications. In some
embodiments, one or more applications may communicate via the network stack 310 to a
network 104. One of the applications, such as a web browser, may also include a first
program 322. For example, the first program 322 may be used in some embodiments to

install and/or execute the client agent 120, or any portion thereof. The client agent 120

30

WO 2008/017010 PCT/US2007/075034

includes an interception mechanism, or interceptor 350, for intercepting network
communications from the network stack 310 from the one or more applications.

The network stack 310 of the client 102 may comprise any type and form of
software, or hardware, or any combinations thereof, for providing connectivity to and
communications with a network. In one embodiment, the network stack 310 comprises a
software implementation for a network protocol suite. The network stack 310 may
comprise one or more network layers, such as any networks layers of the Open Systems
Interconnection (OSI) communications model as those skilled in the art recognize and
appreciate. As such, the network stack 310 may comprise any type and form of protocols
for any of the following layers of the OSI model: 1) physical link layer, 2) data link layer,
3) network layer, 4) transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310 may comprise a transport
control protocol (TCP) over the network layer protocol of the internet protocol (IP),
generally referred to as TCP/IP. In some embodiments, the TCP/IP protocol may be
carried over the Ethernet protocol, which may comprise any of the family of IEEE wide-
arca-network (WAN) or local-area-network (LAN) protocols, such as those protocols
covered by the IEEE 802.3. In some embodiments, the network stack 310 comprises any
type and form of a wireless protocol, such as IEEE 802.11 and/or mobile internet
protocol.

In view of a TCP/IP based network, any TCP/IP based protocol may be used,
including Messaging Application Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System
(CIFS) protocol (file transfer), Independent Computing Architecture (ICA) protocol,
Remote Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP
protocol, and Voice Over IP (VoIP) protocol. In another embodiment, the network stack
310 comprises any type and form of transport control protocol, such as a modified
transport control protocol, for example a Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a TCP spoofing protocol. In
other embodiments, any type and form of user datagram protocol (UDP), such as UDP

31

WO 2008/017010 PCT/US2007/075034

over IP, may be used by the network stack 310, such as for voice communications or real-
time data communications.

Furthermore, the network stack 310 may include one or more network drivers
supporting the one or more layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating system of the computing device
100 or as part of any network interface cards or other network access components of the
computing device 100. In some embodiments, any of the network drivers of the network
stack 310 may be customized, modified or adapted to provide a custom or modified
portion of the network stack 310 in support of any of the techniques described herein. In
other embodiments, the acceleration program 120 is designed and constructed to operate
with or work in conjunction with the network stack 310 installed or otherwise provided
by the operating system of the client 102.

The network stack 310 comprises any type and form of interfaces for receiving,
obtaining, providing or otherwise accessing any information and data related to network
communications of the client 102. In one embodiment, an interface to the network stack
310 comprises an application programming interface (API). The interface may also
comprise any function call, hooking or filtering mechanism, event or call back
mechanism, or any type of interfacing technique. The network stack 310 via the interface
may receive or provide any type and form of data structure, such as an object, related to
functionality or operation of the network stack 310. For example, the data structure may
comprise information and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises a portion of the network
packet processed at a protocol layer of the network stack 310, such as a network packet
of the transport layer. In some embodiments, the data structure 325 comprises a kernel-
level data structure, while in other embodiments, the data structure 325 comprises a user-
mode data structure. A kernel-level data structure may comprise a data structure obtained
or related to a portion of the network stack 310 operating in kernel-mode 302, or a
network driver or other software running in kernel-mode 302, or any data structure
obtained or received by a service, process, task, thread or other executable instructions

running or operating in kernel-mode of the operating system.

32

WO 2008/017010 PCT/US2007/075034

Additionally, some portions of the network stack 310 may execute or operate in
kernel-mode 302, for example, the data link or network layer, while other portions
execute or operate in user-mode 303, such as an application layer of the network stack
310. For example, a first portion 310a of the network stack may provide user-mode
access to the network stack 310 to an application while a second portion 310a of the
network stack 310 provides access to a network. In some embodiments, a first portion
310a of the network stack may comprise one or more upper layers of the network stack
310, such as any of layers 5-7. In other embodiments, a second portion 310b of the
network stack 310 comprises one or more lower layers, such as any of layers 1-4. Each
of the first portion 310a and second portion 310b of the network stack 310 may comprise
any portion of the network stack 310, at any one or more network layers, in user-mode
203, kernel-mode, 202, or combinations thereof, or at any portion of a network layer or
interface point to a network layer or any portion of or interface point to the user-mode
203 and kernel-mode 203. .

The interceptor 350 may comprise software, hardware, or any combination of
software and hardware. In one embodiment, the interceptor 350 intercept a network
communication at any point in the network stack 310, and redirects or transmits the
network communication to a destination desired, managed or controlled by the
interceptor 350 or client agent 120. For example, the interceptor 350 may intercept a
network communication of a network stack 310 of a first network and transmit the
network communication to the appliance 200 for transmission on a second network 104.
In some embodiments, the interceptor 350 comprises any type interceptor 350 comprises
a driver, such as a network driver constructed and designed to interface and work with the
network stack 310. In some embodiments, the client agent 120 and/or interceptor 350
operates at one or more layers of the network stack 310, such as at the transport layer. In
one embodiment, the interceptor 350 comprises a filter driver, hooking mechanism, or
any form and type of suitable network driver interface that interfaces to the transport
layer of the network stack, such as via the transport driver interface (TDI). In some
embodiments, the interceptor 350 interfaces to a first protocol layer, such as the transport
layer and another protocol layer, such as any layer above the transport protocol layer, for

example, an application protocol layer. In one embodiment, the interceptor 350 may

33

WO 2008/017010 PCT/US2007/075034

comprise a driver complying with the Network Driver Interface Specification (NDIS), or
a NDIS driver. In another embodiment, the interceptor 350 may comprise a min-filter or
a mini-port driver. In one embodiment, the interceptor 350, or portion thereof, operates in
kernel-mode 202. In another embodiment, the interceptor 350, or portion thereof,
operates in user-mode 203. In some embodiments, a portion of the interceptor 350
operates in kernel-mode 202 while another portion of the interceptor 350 operates in
user-mode 203. In other embodiments, the client agent 120 operates in user-mode 203
but interfaces via the interceptor 350 to a kernel-mode driver, process, service, task or
portion of the operating system, such as to obtain a kernel-level data structure 225. In
further embodiments, the interceptor 350 is a user-mode application or program, such as
application.

In one embodiment, the interceptor 350 intercepts any transport layer connection
requests. In these embodiments, the interceptor 350 execute transport layer application
programming interface (API) calls to set the destination information, such as destination
IP address and/or port to a desired location for the location. In this manner, the
interceptor 350 intercepts and redirects the transport layer connection to a IP address and
port controlled or managed by the interceptor 350 or client agent 120. In one
embodiment, the interceptor 350 sets the destination information for the connection to a
local IP address and port of the client 102 on which the client agent 120 is listening. For
example, the client agent 120 may comprise a proxy service listening on a local IP
address and port for redirected transport layer communications. In some embodiments,
the client agent 120 then communicates the redirected transport layer communication to
the appliance 200.

In some embodiments, the interceptor 350 intercepts a Domain Name Service
(DNS) request. In one embodiment, the client agent 120 and/or interceptor 350 resolves
the DNS request. In another embodiment, the interceptor transmits the intercepted DNS
request to the appliance 200 for DNS resolution. In one embodiment, the appliance 200
resolves the DNS request and communicates the DNS response to the client agent 120.
In some embodiments, the appliance 200 resolves the DNS request via another appliance

200’ or a DNS server 106.

34

WO 2008/017010 PCT/US2007/075034

In yet another embodiment, the client agent 120 may comprise two agents 120
and 120°. In one embodiment, a first agent 120 may comprise an interceptor 350
operating at the network layer of the network stack 310. In some embodiments, the first
agent 120 intercepts network layer requests such as Internet Control Message Protocol
(ICMP) requests (e.g., ping and traceroute). In other embodiments, the second agent 120’
may operate at the transport layer and intercept transport layer communications. In some
embodiments, the first agent 120 intercepts communications at one layer of the network
stack 210 and interfaces with or communicates the intercepted communication to the
second agent 120°.

The client agent 120 and/or interceptor 350 may operate at or interface with a
protocol layer in a manner transparent to any other protocol layer of the network stack
310. For example, in one embodiment, the interceptor 350 operates or interfaces with the
transport layer of the network stack 310 transparently to any protocol layer below the
transport layer, such as the network layer, and any protocol layer above the transport
layer, such as the session, presentation or application layer protocols. This allows the
other protocol layers of the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the client agent 120 and/or
interceptor 350 can interface with the transport layer to secure, optimize, accelerate, route
or load-balance any communications provided via any protocol carried by the transport
layer, such as any application layer protocol over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may operate at or interface
with the network stack 310 in a manner transparent to any application, a user of the client
102, and any other computing device, such as a server, in communications with the client
102. The client agent 120 and/or interceptor 350 may be installed and/or executed on the
client 102 in a manner without modification of an application. In some embodiments, the
user of the client 102 or a computing device in communications with the client 102 are
not aware of the existence, execution or operation of the client agent 120 and/or
interceptor 350. As such, in some embodiments, the client agent 120 and/or interceptor
350 is installed, executed, and/or operated transparently to an application, user of the
client 102, another computing device, such as a server, or any of the protocol layers

above and/or below the protocol layer interfaced to by the interceptor 350.

35

WO 2008/017010 PCT/US2007/075034

The client agent 120 includes an acceleration program 302, a streaming client
306, and/or a collection agent 304. In one embodiment, the client agent 120 comprises an
Independent Computing Architecture (ICA) client, or any portion thereof, developed by
Citrix Systems, Inc. of Fort Lauderdale, Florida, and is also referred to as an ICA client.
In some embodiments, the client 120 comprises an application streaming client 306 for
streaming an application from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for accelerating communications
between client 102 and server 106. In another embodiment, the client agent 120 includes
a collection agent 304 for performing end-point detection/scanning and collecting end-
point information for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302 comprises a client-side
acceleration program for performing one or more acceleration techniques to accelerate,
enhance or otherwise improve a client’s communications with and/or access to a server
106, such as accessing an application provided by a server 106. The logic, functions,
and/or operations of the executable instructions of the acceleration program 302 may
perform one or more of the following acceleration techniques: 1) multi-protocol
compression, 2) transport control protocol pooling , 3) transport control protocol
multiplexing, 4) transport control protocol buffering, and 5) caching via a cache manager
Additionally, the acceleration program 302 may perform encryption and/or decryption of
any communications received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or more of the acceleration
techniques in an integrated manner or fashion. Additionally, the acceleration program
302 can perform compression on any of the protocols, or multiple-protocols, carried as
payload of network packet of the transport layer protocol =~ The streaming client 306
comprises an application, program, process, service, task or executable instructions for
receiving and executing a streamed application from a server 106. A server 106 may
stream one or more application data files to the streaming client 306 for playing,
executing or otherwise causing to be executed the application on the client 102. In some
embodiments, the server 106 transmits a set of compressed or packaged application data
files to the streaming client 306. In some embodiments, the plurality of application files

are compressed and stored on a file server within an archive file such as a CAB, ZIP, SIT,

36

WO 2008/017010 PCT/US2007/075034

TAR, JAR or other archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits the files to the client 102. In
another embodiment, the client 102 decompresses, unpackages or unarchives the
application files. The streaming client 306 dynamically installs the application, or portion
thereof, and executes the application. In one embodiment, the streaming client 306 may
be an executable program. In some embodiments, the streaming client 306 may be able
to launch another executable program.

The collection agent 304 comprises an application, program, process, service, task
or executable instructions for identifying, obtaining and/or collecting information about
the client 102. In some embodiments, the appliance 200 transmits the collection agent
304 to the client 102 or client agent 120. The collection agent 304 may be configured
according to one or more policies of the policy engine 236 of the appliance. In other
embodiments, the collection agent 304 transmits collected information on the client 102
to the appliance 200. In one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide access, authentication and
authorization control of the client’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an end-point detection
and scanning mechanism, which identifies and determines one or more attributes or
characteristics of the client. For example, the collection agent 304 may identify and
determine any one or more of the following client-side attributes: 1) the operating system
an/or a version of an operating system, 2) a service pack of the operating system, 3) a
running service, 4) a running process, and 5) a file. The collection agent 304 may also
identify and determine the presence or versions of any one or more of the following on
the client: 1) antivirus software, 2) personal firewall software, 3) anti-spam software, and
4) internet security software. The policy engine 236 may have one or more policies based
on any one or more of the attributes or characteristics of the client or client-side
attributes.

In some embodiments and still referring to FIG. 3, a first program 322 may be
used to install and/or execute the client agent 120, or portion thereof, such as the
interceptor 350, automatically, silently, transparently, or otherwise. In one embodiment,

the first program 322 comprises a plugin component, such an ActiveX control or Java

37

WO 2008/017010 PCT/US2007/075034

control or script that is loaded into and executed by an application. For example, the first
program comprises an ActiveX control loaded and run by a web browser application,
such as in the memory space or context of the application. In another embodiment, the
first program 322 comprises a set of executable instructions loaded into and run by the
application, such as a browser. In one embodiment, the first program 322 comprises a
designed and constructed program to install the client agent 120. In some embodiments,
the first program 322 obtains, downloads, or receives the client agent 120 via the network
from another computing device. In another embodiment, the first program 322 is an
installer program or a plug and play manager for installing programs, such as network
drivers, on the operating system of the client 102.

Referring now to FIG. 4A, a VPN environment where a single user attempts to
make multiple connections is shown. In brief overview, a first client 102a communicates
to an appliance 200 a request for a VPN session associated with a user A. A second
client 102b, is connected to the appliance 200 via a VPN connection also associated with
the user A. The appliance 200 may then respond by transmitting to the first client 102a a
request asking whether the user would like to terminate the previous session. This
request may then be displayed by the client 102b in a web page 440.

Still referring to FIG. 4A, now in greater detail, a first client 102a, is connected to
an appliance 200 via a VPN session associated with a given user, user A. This session
may be any type of VPN session, and may occur via any network. In some embodiments,
the first client 102a and the second client 102b may be on the same local network. In
other embodiments, the first and second clients may be on different local networks. In
some embodiments, the first and second client may be the same device. For example, a
user may connect to an appliance 200 using a laptop. The communication link between
the appliance and the laptop may then be severed due to a network failure or other
reasons, but because of the failure, the session was not closed. When the user attempts to
reconnect using the laptop, either from the same or a different location, the appliance may
detect that the previous session associated with the user is still open.

Referring now to FIG. 4B, a method for establishing a VPN session on behalf of a
user of a client where the user has a previously existing session is shown. In brief

overview, the method comprises receiving, by an appliance, a request from a first client

38

WO 2008/017010 PCT/US2007/075034

operated by a user to establish a VPN session (step 401); creating, by the appliance, a
temporary VPN session with the client (step 403); identifying, by the appliance, an
existing VPN session previously established on behalf of the user (step 405);
transmitting, from the appliance to the client, a request for information corresponding to
whether to terminate the previous session (step 407); receiving, by the appliance from the
client, a response comprising an indication to terminate the previous session (step 409);
transferring, by the appliance, session data corresponding to the previous session to the
current temporary session (step 411); terminating the previous session (step 413); and
creating a new VPN session with the client using the temporary session (step 415).

Still referring to FIG. 4B, now in greater detail, the method shown comprises
receiving, by an appliance, a request from a first client operated by a user to establish a
VPN session (step 401). This request may be received via any protocol, and via any
network. In one embodiment, the request may be received by a transport layer
connection established between the first client and the appliance. In some embodiments,
the request may be received from a client agent as described herein. In some
embodiments, the request may be a request to establish an SSL VPN session.

In some embodiments, the request may contain information identifying the user.
In other embodiments, the appliance may determine the user identity by other means,
including without limitation identifying a given user as associated with the address of the
client, or by sending a request to the client for identification. In some embodiments, the
request may be accompanied by user authentication information, such as a username and
password, or an HTTP cookie containing authentication credentials. In still other
embodiments, the appliance may transmit a request for authentication information to the
client.

After receiving, by an appliance, a request from a first client operated by a user to
establish a VPN session (step 401) the appliance may create a temporary VPN session
with the client (step 403). This session may be created using any manner of creating a
VPN session. In some embodiments, the appliance may refuse to accept any data
received via the temporary session until a new VPN session is created from temporary
session. In some embodiments, the temporary VPN session may be allocated less

resources by the appliance than would be allocated to a standard VPN session. In some

39

WO 2008/017010 PCT/US2007/075034

embodiments, a temporary VPN session may not be assigned a VPN address, or may
otherwise be prevented from receiving data.

After creating, by the appliance, a temporary VPN session with the client (step
403); the appliance may identify an existing VPN session previously established on
behalf of the user (step 405). The appliance may identify the existing session via any
technique or data structure, including without limitation a table of connected users, or a
list of open sessions. In some embodiments, the appliance may identify a number of
properties associated with the existing session. For example, the appliance may identify
that the existing session is not fully established, such as due to an incomplete login, or a
partial timeout. Or for example, the appliance may identify properties including, without
limitation, the address of the client, the duration of session, time of establishment, time of
last data received, the amount of data transferred via the session, number of active
sessions within the VPN session, number of applications accessing the session, session
protocols, and bandwidth. In some embodiments, an appliance may identify a plurality of
existing sessions previously established on behalf of the user. In some embodiments,
after identifying an existing session, the appliance may transmit a message via the
previously existing session indicating the current session attempt.

After identifying, by the appliance, an existing VPN session previously
established on behalf of the user (step 405); the appliance may transmit, to the client, a
request for information corresponding to whether to the previous session (step 407). In
some embodiments, this request may comprise a web page which accepts user input. For
example, the web page may comprise an enumerated list of existing session, with input
means for the user to a select one or more sessions to be terminated. In other
embodiments, this request may comprise a communication to a client agent, which then
may respond on behalf of the user. In some embodiments, this request may comprise a
request for information corresponding to whether to terminate one or more of a plurality
of previous sessions.

In one embodiment, the request may comprise information relating to any of the
properties of the existing session. In some embodiments, this information may be
displayed to the user along with the choice of whether to terminate the existing session.

For example, a web page may be displayed to the user stating “you have a previously

40

WO 2008/017010 PCT/US2007/075034

existing session which was opened July 2nd at 10:30am, do you wish to close?” In other
embodiments, this information may be transmitted to a client agent which may then make
a determination whether to close a previously existing session based on the properties of
the previously existing session. For example, a client agent executing on the client
making the new session request may determine to automatically terminate a previous
session in the event that no applications are currently associated with the previous
session.

In some embodiments, the request may also comprise a request for information
relating to whether the user would like to transfer data from a previous session to a
current session. For example, if a user was remotely executing an application, the user
may wish to resume the remote execution and the previous session or sessions associated
with the remote execution using the current session.

After transmitting, from the appliance to the client, a request for information
corresponding to whether to terminate the previous session (step 407); the appliance may
receive, from the client, a response comprising an indication to terminate the previous
session (step 409). In some embodiments, the appliance may receive a response
comprising an indication to terminate one or more of a plurality of previous sessions. In
still other embodiments, the appliance may receive a response comprising a request to
transfer data associated with a previous session to the current session. In one
embodiment, the appliance may receive any of these responses prior to sending a request
as described in step 407. For example, a client agent connecting to an appliance may
transmit a message to the appliance indicating that any previous sessions should be
terminated. Or, for example, a client agent connecting to an appliance might transmit a
message to the appliance that any data associated with a previous session also made by
the client agent should be transferred to the current session.

In the event the appliance receives a response comprising an indication not to
terminate the previous session, the appliance may refuse to allow the user access, and
terminate the temporary VPN session. In other embodiments, the appliance may create a
new VPN session unrelated to any of the identified previous sessions.

After receiving, by the appliance from the client, a response comprising an

indication to terminate the previous session (step 409); the appliance may transfer session

41

WO 2008/017010 PCT/US2007/075034

data corresponding to the previous session to the current temporary session (step 411).
Session data may include any properties and statistics associated with the previous
session. In one embodiment, a VPN address assigned to the client associated with the
previous session may be assigned to the client associated with the temporary session. In
this embodiment, traffic addressed to the previously existing session would then be
routed to the current session. In this embodiment, a user would thus be able to continue
to receive data addressed to the previously existing session via the new connection. In
some embodiments, data queued at the appliance for transmission over the previous
session may be transferred to the current session.

For example, a user may use a desktop computer to connect to a VPN via an
appliance 200. The appliance may then assign a unique VPN address to the user, such
that any servers or peer-to-peer applications can transmit data to the user via the
appliance by specifying the VPN address assigned. If the user then leaves the desktop,
and attempts to use a laptop connect to the VPN, the appliance may transfer the
previously assigned VPN address to the new connection with the laptop. In this manner,
data addressed to the user would now be transmitted to the laptop, and the user may be
able to resume any previous applications or communications.

In some embodiments, one or more application sessions may be associated with a
previous VPN session. In these embodiments, any application session data may also be
transferred by the appliance to the temporary virtual private network session

After transferring, by the appliance, session data corresponding to the previous
session to the current temporary session (step 411); the appliance may terminate the
previous session (step 413). In some embodiments, the appliance may terminate a
previous session in response to a response received from the client indicating to terminate
the previous session. In other embodiments, the appliance may terminate the previous
session without such a response. In one embodiment, the appliance may determine to
terminate a previous session as a result of a property of the previous session. For
example, the appliance may terminate a previous session if the previous session is not
fully established, or a given amount of time has passed since the last transmission via the

previous session.

42

WO 2008/017010 PCT/US2007/075034

After terminating the previous session (step 413); the appliance may then create a
new VPN session with the client using the temporary session (step 415). The new VPN
session may be created using any means of establishing a VPN session, and may use any
data associated with the temporary session, including session keys, internal addresses,
authentication credentials, and client addresses. In some embodiments, the new VPN
session may be created simultaneously or prior to the termination of the previously
existing session. The appliance may then route any traffic received by the appliance for
the user via the new session.

While the invention has been particularly shown and described with reference to
specific preferred embodiments, it should be understood by those skilled in the art that
various changes in form and detail may be made therein departing from the spirit and

scope of the invention as defined by the appended claims.

43

WO 2008/017010 PCT/US2007/075034

We claim:
1. A method for establishing a virtual private network session on behalf of a user of
a client where the user has a previously existing session, the method comprising;:

(a) receiving, by an appliance, a request from a first client operated by
a user to establish a virtual private network session;
(b) creating, by the appliance, a temporary virtual private network
session with the client;
(©) identifying, by the appliance, an existing virtual private network
session previously established on behalf of the user;
(d) terminating the previous session; and
() creating a new virtual private network session with the client using

the temporary session.

2. The method of claim 1, wherein step (a) comprises receiving, by an appliance, a
request from a first client operated by a user to establish an SSL virtual private

network session.

3. The method of claim 1, wherein step (a) comprises the steps of:
(a-a) receiving, by an appliance, a request from a first client operated by
a user to establish a virtual private network session; and

(a-b) authenticating, by the appliance, the user.

4. The method of claim 1, wherein step (¢) comprises the steps of:
(c-a) 1identifying, by the appliance, an existing virtual private network
session previously established on behalf of the user; and
(c-b) receiving, by the appliance from the client, a response comprising

an indication to terminate the previous session.
5. The method of claim 1, wherein step (¢) comprises the steps of:

(c-a) 1identifying, by the appliance, an existing virtual private network

session previously established on behalf of the user;

44

WO 2008/017010 PCT/US2007/075034

(c-b) transmitting, from the appliance to the client, a request for
information corresponding to whether to terminate the previous session;
and

(c-¢c) receiving, by the appliance from the client, a response comprising

an indication to terminate the previous session.

6. The method of claim 1, wherein step (c) comprises
(c-a) 1identifying, by the appliance, an existing virtual private network
session previously established on behalf of the user; and
(c-b) determining, by the appliance, a session corresponding to the

existing virtual private network session is not fully established.

7. The method of claim 1, wherein step (¢) further comprises transferring, by the
appliance, session data corresponding to the previous session to the current

temporary session.

8. The method of claim 1, wherein step (c) further comprises transferring, by the
appliance, a virtual private network address corresponding to the previous session

to the current temporary session.

9. The method of claim 1, wherein step (c) comprises identifying, by the appliance,
a plurality of existing virtual private network sessions previously established on

behalf of the user.

10. The method of claim 1, wherein step (¢) comprises the steps of:
(c-a) identifying, by the appliance, a plurality of existing virtual private
network sessions previously established on behalf of the user; and
(c-b) receiving, by the appliance from the client, a response comprising an

indication to terminate one of the plurality of previous sessions.

11. The method of claim 1, wherein step (¢) comprises the steps of:

45

WO 2008/017010 PCT/US2007/075034

12.

13.

14.

15.

16.

(c-a) identifying, by the appliance, a plurality of existing virtual private
network sessions previously established on behalf of the user;

(c-b) transmitting, from the appliance to the client, a request for
information corresponding to whether to terminate one of the plurality of
previous sessions; and

(c-¢) receiving, by the appliance from the client, a response comprising an

indication to terminate one of the plurality of previous sessions.

The method of claim 1, wherein the request to establish a virtual private network
session is received via a first transport layer connection, and the existing virtual

private network session is associated with a second transport layer connection.

A system for establishing a virtual private network session on behalf of a user of a
client where the user has a previously existing session, the system comprising:
an appliance, which receives a request from a first client operated
by a user to establish a virtual private network session; creates, by the
appliance, a temporary virtual private network session with the client;
identifies, by the appliance, an existing virtual private network session
previously established on behalf of the user; terminates the previous
session; and creates a new virtual private network session with the client

using the temporary session.

The system of claim 13, wherein the appliance receives a request from a first

client operated by a user to establish an SSL virtual private network session.
The system of claim 13, wherein the appliance receives a request from a first
client operated by a user to establish a virtual private network session; and

authenticates, by the appliance, the user.

The system of claim 13, wherein the appliance identifies an existing virtual

private network session previously established on behalf of the user; and receives,

46

WO 2008/017010 PCT/US2007/075034

17.

18.

19.

20.

21.

22.

23.

from the client, a response comprising an indication to terminate the previous

Session.

The system of claim 13, wherein the appliance identifies an existing virtual
private network session previously established on behalf of the user; transmits, to
the client, a request for information corresponding to whether to terminate the
previous session; and receives from the client, a response comprising an

indication to terminate the previous session.

The system of claim 13, wherein the appliance identifies an existing virtual
private network session previously established on behalf of the user; and
determines, by the appliance, a session corresponding to the existing virtual

private network session is not fully established.

The system of claim 13, wherein the appliance transfers session data

corresponding to the previous session to the current temporary session.

The system of claim 13, wherein the appliance transfers a virtual private network

address corresponding to the previous session to the current temporary session.

The system of claim 13, wherein the appliance identifies a plurality of existing

virtual private network sessions previously established on behalf of the user.

The system of claim 13, wherein the appliance identifies a plurality of existing
virtual private network sessions previously established on behalf of the user; and
receives from the client, a response comprising an indication to terminate one of

the plurality of previous sessions.
The system of claim 13, wherein the appliance identifies a plurality of existing

virtual private network sessions previously established on behalf of the user;

transmits, from the appliance to the client, a request for information

47

WO 2008/017010 PCT/US2007/075034

corresponding to whether to terminate one of the plurality of previous sessions;
and receives, by the appliance from the client, a response comprising an

indication to terminate one of the plurality of previous sessions.
24. The system of claim 13, wherein the request to establish a virtual private network

session is received via a first transport layer connection, and the existing virtual

private network session is associated with a second transport layer connection.

48

&

WO 2008/017010 PCT/US2007/075034

119

—\

Client 102a Client 102b Client 102n
Network
104

N
Network
104’
y
Server 106a Server 106b Server 106n

N
FIG. 1A

WO 2008/017010 PCT/US2007/075034

Computing
Environment 15

Application

Client 102

Data file

Client Agent 120

Network

Appliance 200

Network
104’

Application

Data file

[=2}

Server 10 Application
Delivery

System 190

Policy Engine
195

FIG. 1B

WO 2008/017010

3/9

/_\5128

PCT/US2007/075034

v
0OS
Software
101 122 Client | —120
- - Agent |
CcPU MMriinr Storage
emory < Stor _g/
<€
123
A Display
/O device(s) Installation Network
CTRL _ Device Interface
126\ / \ 17 124a-n 116 Usrs
Keyboard P[%T/Eicneg

Fig IC

WO 2008/017010 PCT/US2007/075034
4/9
140
Main -
Processor Cache
/—122
/O | I/O [Memory Main
Port |Port P‘ort Memory /_1 30b
__
103 1/O
Device
Bridge 170
/ 150
<
s 130a
/0
Device

Fig. 1D

WO 2008/017010 PCT/US2007/075034

5/9

5 GUl CLI | Shell Services Hea th Monitoring
SPSai:re 218 212 214 rograms g
202 System D Servi
ystem Daemon Services g
Policy Multi-protocol
MC‘;E;Z .l Engine 2 Compression
/ 238
Karnsl K : 232 @
Space erne S T .
204 230 e High-Speed Layer 2-7
T » intagrated Packet Engine 240
f,/" Timer 242 busfer 243
Encryption | .
Engine 234 v
- Network
e Stack 267
Hardware poomne e v
‘ | Encryption | | pricessor || Processor || Memory Network
206 ! Processor
i 285 bl 262 262 264 Ports 266

Fig.

24

WO 2008/017010

lierd Agast

St 1D23

'/;6 0y S

Ciert 182k

Thisrd Agent

E0n
Ciert A820

Retwork

i it
w§&§x §§§§

%

il

6/9

Epphance
2B

Fig. 2B

Intranst IF 382 A
_i”@
r

PCT/US2007/075034

Savics 2

Sarver

b BT

Sepdre 2

Server BN

WO 2008/017010 PCT/US2007/075034

Kernel mode 302

79
Client 102
i user mode 303 :
i 1st Program
i App 1 App2 | 322 i
5 App N i
i A v E
i 310a §
Streaming Client
' | Network e ;
| Stack i
! 310 Collection Agent i
o - 304 4
i APl data Acceleration i
i structure 325 Program 302 !
i interceptor E
! 350 i
Client Agent 120 i
| 310 i

PCT/US2007/075034

WO 2008/017010

8/9
440 Terminate existing
\ session?
Yes No
///
to‘.!:e:o%:«;o.? % [[
0000080 ,,/—\\
Client 102b Client 102a
2
44
S
IS
QD <
o8
&5 D
2 &
QO P
= D
= -g
@ QO
L q
o
JE==

Appliance 200

WO 2008/017010 PCT/US2007/075034

9/9
401 receiving a request from a first client operated by
| a user to establish a virtual private network
session
403 v

creating a temporary virtual private network
session with the client

[

A

405 identifying an existing virtual private network
N session previously established on behalf of the
user
A 4
407 transmitting, from the appliance to the client, a

N request for information corresponding to whether
to terminate the previous session

409 :
AN receiving, by the appliance from the client, a

response comprising an indication to terminate
the previous session

411

A 4
N transferring session data corresponding to the
previous session to the current temporary
session

413
A

terminating the previous session

[

415 ‘
creating a new virtual private network session

with the client using the temporary session

[

Fig. 4B

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/075034

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/06 HO4L29/08

HO4L12/46

According 1o International Patent Classification (IPGC) or to both national classification and IPC

B. FIELDS SEARCHED

HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, COMPENDEX,

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

paragraphs [00031, [0005
paragraphs [0046] - [0053
paragraphs [0069] - [0077
figures 1,8-14

Category* C?tation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 1 549 006 A (LUCENT TECHNOLOGIES INC 1-4,
[US]) 29 June 2005 (2005-06-29) 6-10,
12-16,
18-22,24

%, [0006]
1

5,11,17,
23

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A' document defining the general state of the art which is not
considered to be of particular relevance

“E* earlier document but published on or after the international
filing date

"L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y*" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
gn?gts, rsiuch combination being obvious 1o a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

14 December 2007

Date of mailing of the intemational search report

21/12/2007

Name and maliling address of the 1ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 3402040, TX. 31 651 epo nl,
Fax: (+31-70) 3403016

Authorized officer

Bengi, Kemal

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/075034

C{Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 7 036 143 B1 (LEUNG KENG [US] ET AL)
25 April 2006 (2006-04-25)

abstract

column 4, line 57 - column 5, line 57
column 8, Tine 1 - column 9, Tline 23
column 9, Tline 52 - column 10, line 32
figures 1,5,8,9

US 2003/182431 A1 (STURNIOLO EMIL [US] ET
AL) 25 September 2003 (2003-09-25)
abstract

paragraphs [01071 - [0114]

figures 4,5

1-4,

- 6-10,
12-16,
18-22,24

5,11,17,
23

1-24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2007/075034
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1549006 A 29-06-2005 NONE
US 7036143 Bl 25-04-2006 US 7246373 Bl 17-07-2007
- US 2003182431 - Al 25-09-2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - wo-search-report
	Page 61 - wo-search-report
	Page 62 - wo-search-report

