WO 01/82075 A2

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

1 November 2001 (01.11.2001) PCT WO 01/82075 A2
(51) International Patent Classification’: GO6F 9/46 Jeremy, S.; 59 Burlington Drive, Petaluma, CA 94952
(US).
(21) International Application Number: PCT/US01/13138
(74) Agents: RAY, Michael, B. et al.; Sterne, Kessler, Gold-
(22) International Filing Date: 25 April 2001 (25.04.2001) stein & Fox PL.L.C., Suite 600, 1100 New York Avenue,
N.W., Washington, DC 20005-3934 (US).
(25) Filing Language: English g1) Designated States (national): AE, AG, AL, AM, AT, AU,
L. . AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(26) Publication Language: English CZ. DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
L. HR, HU, ID, 1L, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
(30) Priority Data: _ LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
TJ, T, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(71) Applicant: ICPLANET ACQUISITION CORPORA-
TION [US/US]; 2570 North First Street, San Jose, CA (84) Designated States (regional): ARIPO patent (GH, GM,
95131 (US). KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
(72) Inventors: FOULGER, Michael, G.; 637 Olive Avenue, patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,

Novato, CA 94945 (US). CHIPPERFIELD, Thomas, R,;
7729 TIsabel Drive, Cotati, CA 94931 (US). COOPER,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SCHEDULING EXECUTION OF CROSS-PLATFORM COMPUTER PROCESSES

108
{

SERVER
o 132 | ScHepuLING |~ 102m
| CLIENT

110

100
’/

MASTER
SCHEDULING
ENGINE

130

INTERFACE
112

/ 104

102b
{

1020
L

(57) Abstract: A distributed computing system
includes at least first and second distinct computers
each having a different operating system. First
processes are compatible with the first operating
system and second processes are compatible with
the second operating system. A third scheduling
computer, coupled to the first and second computer
via a communication network, includes a scheduler
for scheduling the first processes and the second
processes to execute respectively on the first and
second computers. The scheduler accesses a master
schedule that defines an executing sequence of the

MASTER
SCHEDULE | SCHEDULING

CLIENT

COMMUNICATION
NETWORK

SCHEDULING
CLIENT

first processes and the second processes. The master
schedule can define conditional inter-relationships

106n

1023 10/511

between the first processes and the second
processes.

SCHEDULING CLIENT

/
| PHOCESSESJ . ﬁnocESSEsJ

INTERFACE

e~
~
b=

OPERATING | 124

SYSTEM

122

B

106a

PROCESSES

w0 01/82075 A2 0000 OO A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/82075

SYSTEM AND METHOD FOR SCHEDULING EXECUTION OF
CROSS- PLATFORM COMPUTER PROCESSES

Background of the Invention

Field of the Invention

The present invention relates to a system, method, and computer program
product for scheduling the execution of computer processes in a network

environment.

Related Art

Known distributed computing systems are useful for performing a variety
of different computing tasks. “Distributed” refers to physically separated
computers that are capable of communicating with one another and/or with a
central computer. One such system includes a plurality of distributed computers,
wherein each of the computers has its own operating system, which is different
from at least one of the other computers. For example, numerous Unix-based
computers execute computer programs compatible with Unix, while numerous
Microsoft Windows NT based computers execute computer programs compatible
with Windows NT. The Unix compatible computer programs can be
incompatible with the Windows NT based computers, and vice versa. The Unix
and Windows NT compatible programs are collectively referred to as cross-
platform processes because the processes collectively execute on plural computer
platforms, wherein each computer platform respectively hosts an operating
system different from the operating systems hosted by at least one of the other
computer platforms.

It is desirable in such a distributed system to coordinate the execution of
the computer programs on the distributed computers, so as to achieve one or more
useful results. Coordinating the execution of the computer programs requires

scheduling the computer programs to execute on the different, incompatible, and

PCT/US01/13138

10

15

20

WO 01/82075

distributed Unix and Windows NT based computers. It is desirable to schedule
the computer programs to execute in a preferably user defined executing
sequence. It is further desirable to schedule the computer programs to execute in
a sequence that depends on the execution results produced by executing or
executed computer programs. Itis even further desirable to define the scheduling
sequence and then control the scheduling sequence (that is, the sequence in which
the distributed computer programs are executed) from a centralized location and
computer.

Therefore, what is needed is a system, method and computer program
product for coordinating the execution of the computer programs on distributed

computers and having the above-mentioned desirable features.

Summary of the Invention

The present invention meets the above-mentioned needs and
advantageously provides the above-mentioned desired features. The present
invention provides a system, method and computer program product for
scheduling cross-platform computer programs or processes to execute on
distributed computers having operating systems compatible with the processes
associated with the computers, each of the computers having an operating system
that is different from the operating system of at least one of the other distributed
computers.

The present invention advantageously schedules the computer programs
to execute on the computers in a user defined executing sequence.

The present invention advantageously schedules the computer programs
to execute on the computers in a sequence that depends on the execution results
produced by executing or executed computer programs.

In the present invention, the scheduling sequence is defined at a
centralized computer that can communicate with each of the distributed

computers. Then, the centralized computer controls the scheduling sequence (that

PCT/US01/13138

10

15

20

25

WO 01/82075

is, the sequence in which the distributed computer programs are executed). In the
present invention, the centralized computer and the distributed computers are
advantageously networked together.

In one embodiment, the present invention provides a system for
scheduling the execution of cross-platform computer processes on client
computers. The client computers include first and second distinct computers
having respective first and second different operating systems. The system
includes a process scheduling computer coupled to the first and second
computers. The process scheduling computer includes a scheduler that schedules
a first brocess compatible with the first operating system and a second process
compatible with the second operating system to respectively execute on the first
and second client.

The system also includes a master schedule that is accessible to the
scheduler. The master schedule includes a first process identifier identifying the
first process and a second process identifier identifying the éecond process, the
first and second process identifiers being linked together to define an executing
sequence of the first and second processes, wherein the scheduler schedules the
first and second processes to execute on the respective first and second computers
according to the defined executing sequence.

The master schedule also includes one or more conditional inter-
relationships between the first and second processes, wherein the scheduler
schedules the first and second processes to execute based on the one or more
conditional inter-relationships. The one or more conditional inter-relationships
include a success criteria associated with the first process. The scheduler includes
means for executing the first process, means for comparing the success criteria
to execution results produced by the first process, and means for determining
whether the first process executed successfully based on a comparison result

produced by the comparing means.

PCT/US01/13138

10

15

20

25

WO 01/82075

The present invention further provides a method and a computer program
product for scheduling computer processes to execute in accordance with the
above mentioned system for performing same.

Additional features and advantages of the present invention, as well as the
structure and operation of various embodiments of the present invention, are

described in detail below with reference to the accompanying drawings.

Brief Description of the Figures

The accompanying drawings, which are incorporated herein and form part
of the specification, illustrate the present invention and, together with the
description, further serve to explain the principles of the invention and to enable
a person skilled in the pertinent art make and use the invention.

FIG. 1 is an illustration of a system according to an embodiment of the
present invention.

FIG. 2 is an illustration of an exemplary master schedule used in the

present invention to schedule processes.

FIG. 3 is a flow chart of a high-level method according to an embodiment
of the present invention.

FIG. 4 is an exemplary series of detailed method steps corresponding to
a scheduling method step of FIG. 3.

FIG. SA is a diagram of an example internetwork environment according
to the present invention.

FIG.5B is an illustration of a simplified four-layered communication
model supporting Web commerce including an application layer, a transport
layer, an Internet layer, and a physical layer.

FIG. 5C is an exemplary computer architecture on which the present

invention can be implemented.

PCT/US01/13138

10

15

20

25

WO 01/82075

-5-

Detailed Description of the Preferred Embodiments

Fig. 1 is an illustration of a system 100 according to an embodiment of the
present invention. System 100 includes a plurality of client computers 102a-102n
(also referred to as client or clients 102) coupled to a computer communication
network 104. A plurality of processes or tasks 106a-106n are respectively
assigned to client computers 102a-102n. Each client (for example, client 102a)
can execute one or more processes (for example, processes 106a) assigned to the
client.

A server computer 108 (also referred to as server 108) is coupled to
computer communication network 104. Server computer 108 includes a Master
Scheduling Engine (MSE) 110 for scheduling processes 106a-106n to execute on
associated clients 102a-102n, according to the present invention. Note that clients
102 can be thought of as “scheduling clients” because the clients are schedule
clients of the MSE 110. However, clients 102 can operate as both servers or
clients in a server-client environment, such as the Internet. A master schedule
112, residing in or external to server 108, is accessible to server 108. According
to the present invention, server 108 generates master schedule 112 and accesses
the contents of master schedule 112 to facilitate the scheduling of processes 106
for execution. Server 108 communicates with clients 102 over communication
network 104, which can be any known computer communication network,
including the Internet, a company intranet, a local area network (LAN), a wide
area network (WAN), the Public Switch Telephone Network (PSTN), and so on.
An exemplary network and computer environment in which the present invention
can be implemented is described in further detail below, in connection with FIGs.
SA, 5B and 5C.

A logical configuration of client 102a, in an embodiment of the present
invention that is typical of the other clients in system 100, is depicted in FIG. 1.
Client 102a includes a message interface 120 for sending information (such as

messages) to and receiving information from server 108 and the other clients via

PCT/US01/13138

10

15

20

25

WO 01/82075

communication network 104. In an embodiment of the present invention, client
102a may also include a Graphical User Interface (GUI) 122 for permitting a user
to enter information and commands into client 102a and for displaying
information to the user. Client 102a operates (for example, executes processes)
under an operating system 124. Operating system 124 responds to user
commands entered via GUI 102a, and also responds to commands and/or
messages received from server 108 via message interface 120.

An exemplary logical configuration of server 108 is also depicted in FIG.
1. Server 108 includes a message interface 130 for sending information (such as
messages) to and receiving information from clients 102 via communication
network 104. Server 108 also includes a GUI 132 for permitting a user to enter
information and commands into server 108 and for displaying information to the
user. Server GUI 132 and client GUI 122 can be, for example, web-based or
browser GUIs. The MSE 110 is responsive to information including messages
received from clients 102 over communication network 104 (and via interface
130), and from commands and information input to server 108 via GUI 132. The
MSE 110 generates master schedule 112 in response to such user input and the
information received from clients 102.

Each client executes one or more processes 106, as mentioned above. A
process is an executable program, such as a compiled program or “executable”,
a program script, and any other type of executable program that can be executed
on a computer, as would be apparent to one skilled in the relevant art. Such
processes are often also referred to as “tasks”, as is known in the art. A client (for
example, client 102a) can execute a process after the process has been installed
on the client computer. Installing a process in a client computer typically
includes loading the process, for example, a compiled program, into client
computer memory such that the client computer can execute the process to
produce a useful result. Typically, the installed process is executed under the

supervision of the client OS. Each of processes 106 (for example, process 106a).

PCT/US01/13138

10

15

20

25

30

WO 01/82075

can be several processes installed on an associated client 102 (for example, client
102a).

As will be appreciated by those skilled in the relevant art(s), the
configuration of system 100 may include at least one scheduling client 102m (and
associated processes) which is physically located on the same computer as server
108 as shown in FIG. 1.

In an embodiment of the present invention, at least two of client
computers 102a-102n are distinct from one another. This means each of the at
least two client computers includes, for example, its own processing unit for
executing program instructions, memory, user interface hardware (such as, a
keyboard), display, logical configuration (for example, its own operating system),
etc. For example, client computer 102a comprises a first computer workstation
or platform, while client computer 102b comprises a second computer platform.
Also in accordance with the present invention, the two distinct clients have
different operating systems. For example, client 102a runs under a Microsoft
Windows NT operating system (OS), while client 102b runs under any Unix
based OS. Thus, system 100 has a “cross-platform” configuration, meaning that
a plurality of processes can execute on a plurality of associated clients, each
having different operating systems. It is envisioned that system 100 includes
many distinct computer platforms that respectively operate under many different
operating systems. The different operating systems can be any presently known
or future developed operating systems.

It is important to note that while the present invention is described in
terms of the above example, this is for convenience only and is not intended to
limit the application of the present invention. In fact, after reading the following
description, it will be apparent to one skilled in the relevant art(s) how to
implement the following invention in alternative embodiments. For example,
client computers 102a-n may each operate under a first operating system (e.g.,

Unix), while server 108 may operate under a second, distinct operating system

(e.g., Windows NT).

PCT/US01/13138

10

15

20

25

30

WO 01/82075

Consider such an exemplary “cross-platform” configuration of system
100, wherein client 102a is a Microsoft Windows NT platform and client 102b
is a Unix based platform. In this exemplary configuration, processes 106a can
execute on client 102a only under the Windows NT OS, and processes 106b can
execute on client 102b only under the Unix based OS. Accordingly, only
Windows NT compatible processes (processes 106a) and only Unix compatible
processes (processes 106b) can run on clients 102a and 102b, respectively. Inthe
present invention, the MSE 110 advantageously performs cross-platform
scheduling, whereby Windows NT compatible processes 106a and Unix
compatible processes 106b are scheduled to execute on respective compatible
clients 102a and 102b in accordance with a user defined executing sequence
captured in master schedule 112, as will be described in further detail below. In
the present invention, the cross-platform processes 106 are advantageously
scheduled to execute on associated clients 102 from one central controller (that
is, the MSE 110).

FIG. 2 is an illustration of an exemplary master schedule 112. Master
schedule 112 includes a process identifier column 202 for listing process
identifiers identifying all of the processes 106 installed in and to be executed on
associated clients 102. Master schedule 112 includes a client address column 204
for listing client network addresses corresponding to clients 102, to enable server
108 to communicate with each client. Similarly, a network address of server 108
is known to each client 102. Master schedule 112 includes a result criteria
column 206 for listing criteria associated with the execution of corresponding
processes on clients 102. Such criteria can include, for example, expected
outcomes or results produced by processes when the processes execute to
successful completions.

Master schedule 112 also includes an action column 210 for listing
actions, for example branching commands, that define the sequence in which
processes 106a-106n are to be executed (this is also referred to as the “executing

sequence” of processes 106). The actions can be conditional, that is, dependent

PCT/US01/13138

10

15

20

25

30

WO 01/82075

upon the outcome or results reported by an executed process. Alternatively, the
actions can be unconditional, that is, not dependent on such an outcome. Master
schedule 112 can optionally include an operating system column 212 for listing
the operating systems under which the processes listed in column 202 will run.
In an embodiment, master schedule may also include a column (not shown in
FIG. 2) for listing process priorities corresponding to each of the identified
process. For example, processes can be identified as having high, medium or low
execution priorities. ‘

Master schedule 112 includes a plurality of records or rows 220a-220n,
each corresponding to a process that is scheduled to be executed in system 100.
Processes that are to be installed and executed are also referred to as “jobs”. Each
row includes a plurality of fields for respectively storing information associated
with columns 202-21 2, described above. For example, row 220a includes a field
230 for storing a process identifier “p1” identifying one of the process 106a in
FIG. 1. Row 220a includes a field 231 for storing an exemplary client address
corresponding to client 102a. Row 220a also includes a field 232 for storing the
following exemplary actions:

1. if p1 fails, goto pl

2. if p1 successful, goto p2

The above listed actions, along with the result criteria information of
column 206, define conditional inter-relationships between the processes p1, p2
and p3. The format of the above actions as listed in FIG. 2 is exemplary, and
therefore any format can be used that would be apparent to one skilled in the
relevant art based on the descriptions provided above and below. The actions (for
example, actions (1) and (2)) direct the MSE 110 to cause the processes identified
in column 202 of master schedule 112 to execute in a defined executing sequence.
Assume, for example, process pl is currently executing on Windows NT client
102a, and process p2 is installed and waiting to be executed on Unix based client
102b. Action (1) above directs MSE 110 to re-execute process pl on client 102b

when it is determined that process pl failed because, for example, pl did not

PCT/US01/13138

10

15

20

25

30

WO 01/82075

-10-

successfully execute to completion or returned erroneous data to a monitoring
function of the MSE 110. On the other hand, action (2) directs MSE 110 to
execute process p2 on client 102b when it is determined, for example, that
process pl executed to successful completion. In an another example scenario,
the actions could be redefined to direct the MSE 110 to execute process p2 when
it is determined pl has executed successfully, or to execute p3 instead of p2,
when it is determined p1 did not execute successfully. Many other conditional,
process executing sequence permutations and combinations are possible by
simply redefining the above described master schedule, as would be apparent to
one skilled in the relevant art based on the above description. For example, as
will be appreciated by those skilled in the relevant art(s), master schedule 112
may include timing information which would allow MSE [10 to execute
processes on a pre-determined schedule (e.g., hourly, daily, weekly, etc.).

FIG. 3 is a flow chart of a high-level method 300 according to an
embodiment of the present invention. Method 300 is described with reference to
system 100 and under the assumption that at least two of clients 102 are distinct
and are operating under different operating systems, as described above.

Again, the present invention is described under this assumption for
convenience only and is not intended to limit the application of the present
invention. As will be appreciated by one skilled in the relevant art(s), all client
computers 102a-n may each operate under a first operating system (e.g., Unix),
while server 108 may operate under a second, distinct operating system (e.g.,
Windows NT). In fact, as will also be appreciated by one skilled in the relevant
art(s), the configuration of system 100 may include scheduling clients102a and
102b (and associated their processes) which are physically located (and
executing) on the same computer.

Returning to FIG. 3, method 300 begins at a step 305 when processes
106a-106n are installed to execute on respective clients 102a-102n. In an
example scenario, one or more Windows NT compatible processes 106a are

installed on Windows NT based client 102a, and one or more Unix compatible

PCT/US01/13138

10

15

20

25

WO 01/82075

-11-

processes are installed on Unix based client 102b. Whenever a process is
installed on a client 102 in the present invention, the client sends a notification
message to server 108 indicating the installed process needs to be scheduled for
execution. The notification message includes a process identifier (for example
“p1”). Inan alternative embodiment, server 108 will assign the process identifier.
In yet another embodiment, an OS type identifier (for example, “Unix”)
identifying the type of OS residing on the client is also included in the notification
message from client 102 to server 108.

At a next step 310, server 108 receives the notification message or
messages corresponding to each installed process. Such notification messages are
displayed to a user at server 108. The user enters information and commands into
server 108 as necessary to construct master schedule 112. Such information
includes the information required to populate the fields of each of rows 220a-
220n, where each row corresponds to an installed process that needs to be
scheduled for execution. For example, the fields of results criteria column 206
are populated with result criteria. Such criteria includes success criteria by which
the successful execution of the corresponding processes can be judged or
determined. The fields of action column 210 are populated with actions, such as
branch commands similar to the action (1) and action (2) mentioned above,
defining executing sequences of the installed processes (identified in column 202
of master schedule 112). The user can also enter process executing priorities for
the installed processes into master schedule 112. The end result of step 310 is the
generation of master schedule 112. Master schedule 112 links together the
installed processes, associated with process identifiers in column 202, in such a
way as to define executing sequences for the cross-platform processes 106. Itis
to be understood that the particular form of the construct used to link processes
106 together in master schedule 112 (such as goto statements) is not limited to
those depicted in FIG. 2. Any construct, such as linked links, and the like, that

would be apparent to one skilled in the relevant art, can be used.

PCT/US01/13138

10

15

20

25

30

WO 01/82075

-12-

Ata next, run-time step 315, the MSE 110 schedules cross-platform
processes 106 to execute on clients 102. To do this, the MSE 110 accesses
master schedule 112 to thereby schedule processes 106 to execute according to
the executing sequence defined by the master schedule. Run-time scheduling step
315 is now described in further detail with reference to FIG. 4, wherein
exemplary detailed method steps 400 corresponding to method step 315, are
depicted.

At an initial step 405, the MSE 110 accesses master schedule 112 to
determine which one of the processes 106 (for example process pl) is to be
executed “next”. Depending on the processing requirements associated with
system 100, master schedule 112 can indicate that several processes 106 are to be
executed concurrently, “next”. Initially, the “next” process is the first process (or
processes) that is to be executed in master schedule 112 (for example, process
pl).

At a next step 410, the MSE 110 sends an “initiate execution command”
to each of the clients 102 (for example, client 102a) hosting an installed process
that is to be executed “next”. This command prompts the operating system of the
client that receives the command to initiate execution of the process identified in
the command.

At a next step 415, the MSE 110 monitors interface 130 for an incoming
status message from any of clients 102. Each status message includes a process
identifier and a client identifier respectively identifying the sending client and
associated process. The status message also includes process execution results
produced by the associated process during execution of the process, or when the
process completes execution. The process execution results can indicate, for
example, that the process successfully executed to completion, or that the process
did not successfully execute to completion.

At a next step 420, after receiving such a status message, the MSE 110
uses the process identifier included in the received status message to access and

retrieve the appropriate result criteria in the appropriate row of the master

PCT/US01/13138

10

15

20

25

30

WO 01/82075

schedule 112. The MSE 110 compares the retrieved result criteria to the process
execution results included in the status message.

At a next step 425, the MSE 110 determines which process scheduling
action is appropriate based on comparison step 420 and the action information
stored in action column 210 of master schedule 112, as described above in
connection with the FIG. 2. In other words, the MSE 110 determines a “next”
process to be executed, and flow control proceeds back to step 410. In this
manner, master schedule 112 and the MSE 110 together form a dynamic and
flexible, centralized, cross-platform process scheduling mechanism, whereby a
process executing sequence can be based on execution results produced by the
processes identified in the master schedule. In other words, the executing
sequence can be adjusted based on the execution results, the user defined result
criteria, and the actions defined in the master schedule 112.

In another embodiment, the MSE 110 determines which process
scheduling action is appropriate based on the above mentioned factors, and in
addition, on a process priority stored in master schedule 112. For example, the
MSE 110 may cause a high priority “next” process to preempt a low priority
“next” process on one of clients 102.

In yet another embodiment, the MSE 110 monitors a processing loading
or “busy-state” of each of clients 102. In this embodiment, the MSE 110
determines which process scheduling action is appropriate based on the factors
described above in connection with method steps 420 and 425, and in addition,
on the “busy-state” of each client. This embodiment gives the MSE 110 the
flexibility to transfer “next” processes from busy clients to available clients, and
to initiate execution of the transferred “next” processes on the available clients.
To do this, the MSE 110 determines which “next” processes are scheduled to be
executed on busy clients. The MSE 110 also determines which clients are
available to execute processes. Assuming the MSE 110 determines that one or
more clients are available, the MSE sends “process transfer” commands to the

busy clients associated with the “next” processes. Each process transfer

PCT/US01/13138

10

15

20

25

WO 01/82075

-14-

command received by a busy client directs the busy client to transfer its “next”
installed process to an available client identified by a client destination address
in the transfer command. Each available destination client has an operating
system compatible with the busy client from where the process is being
transferred. MSE 110 is able to determine such compatible client transfer pairs
based on the OS type information in column 212 of master schedule 112. When
the “next” process has been successfully transferred from the busy client to the
available client, then the MSE 110 initiates execution of the transferred “next”
process on the available client.

With reference to FIG. 1 an example cross-platform scheduling scenario
is now described. The example scenario includes the following client/process
configuration. Client 102a is an Internet Web-server having a Sun/Solaria Unix
based operating system. An Internet information gathering process installed on
client 102a (e.g., a Web search engine or crawler) is used to automatically search
Internet-web sites for predetermined information, collect “found” information,
and send the found information to another computer within the same network.
All of this is referred to as “jobl.”

In the example scenario, the particular web-information collected by the
Internet information gathering process of client 102a is passed to client 102b.
Client 102b is a work station operating under the Windows NT OS. A chart
cenerating process installed on client 102b is used to generate bit mapped charts
based on the web-information passed to client 102b. The charts are displayed to
auser. This is referred to as “job2”. The chart generating process of client 102b
submits queries to a database application (this is referred to as “job3”) residing
on client 102¢, which is also a Windows NT based client.

In this example scenario, a master schedule 112 is generated to schedule
the following conditional executing sequence of processes (i.e., jobl, job2 and

job3):

PCT/US01/13138

10

15

20

25

WO 01/82075 PCT/US01/13138

-15-

l. jobl (Execute the information gathering process on client 102a to
collect web information and then pass the gathered web information to client
102b);

2. If jobl successful, goto jde (concurrently execute the chart
generating process on client 102b and the database application on client 102c, to
generate and display charts),

If job1 unsuccessful, goto jobl (re-execute jobl one time only);
and

3. If job2 successful, then DONE,

If job2 unsuccessful, then ERROR.

In yet another, example cross-platform scenario, a Unix based client 102a
executes the web-based information gatherer (jobl) described above, a Unix
based client 102b executes a parser to parse the gathered information (job2), and
a Windows NT based client 102¢ executes an email generator to generate email
messages available to a user (job3 and job4). The jobs are scheduled to execute
according to the following master schedule:

1. jobl (execute the information gatherer);

2. If jobl successful, goto job2 (parse the gathered data); and

3. [fjob2 successful, goto job3 (generate an email Success message),

Ifjob1 unsuccessful, goto job4 (generate an email Error message).

In the above example scenarios, only a single job is scheduled to execute
on each distinct client 102. However, in an alternate embodiment of the present
invention, master schedule 112 can be constructed such that several jobs are

queued for scheduled execution on one or more of clients 102.

10

15

20

25

WO 01/82075

-16-

Example Network Environment

The present invention can be implemented in any communication
network, such as, the Internet, which supports interactive services and
applications. In particular, the present invention can be implemented in any Web
service, preferably a Web service supporting secure transactions, such as, the
Secure Socket Layer (SSL) protocol and/or using a Secure HyperText Transport
Protocol (S-HTTP). In one example, the present invention is implemented in a
multi-platform (platform independent) programming language such as Java.
Java-enabled browsers are used, such as, Netscape, HotJava, and Microsoft
Explorer browsers. Active content Web pages can be used. Such active content
Web pages can include Java applets or ActiveX controls, or any other active
content technology developed now or in the future. The present invention,
however, is not intended to be limited to Java or Java-enabled browsers, and can
be implemented in any programming language and browser, developed now or
in the future, as would be apparent to a person skilled in the art given this
description. Further, the present invention is not intended to be limited toa Web-
based implementation or environment and can be implemented in any
communication network now or in the future, as would be apparent to a person
skilled in the art given this description. Even further, the present invention can
operate in the absence of a network, for example, on a computer not connected
with a network.

FIG. 5A is a diagram of an example internetwork environment according
to the present invention. FIG. 5A shows a communication network or
combination of networks (Internet) 500 (corresponding to communication
network 104 of FIG. 1) which can support the invention. Internet 500 consists of
interconnected computers which supports communication between many different
tvpes of users including businesses, universities, individualé, government, and
financial institutions. Internet 500 supports many different types of

communication links implemented in a variety of architectures. For example,

PCT/US01/13138

10

15

20

25

WO 01/82075

-17-

voice and data links can be used including phone, paging, cellular, and cable TV
(CATV) links. Terminal equipment can include local area networks, personal
computers with modems, content servers of multi-media, audio, video, and other
information, pocket organizers, personal digital assistants (PDAs), and set-top
boxes.

Communication over a communication network such as, Internet 500, is
carried out through different layers of communication. FIG. 5B shows a
simplified four-layered communication model supporting Web commerce
including an application layer 508, transport layer 510, Internet layer 520,
physical layer 530. As would be apparent to a person skilled in the art, in
practice, a number of different layers can be used depending upon a particular
network design and communication application. Application layer 508 represents
the different tools and information services which are used to access the
information over the Internet. Such tools include, but are not limited to, telenet
log-in service 501, IRC chat 502, Web service 503, and SMTP (Simple Mail
Transfer Protocol) electronic mail service 506. Web service 503 allows access
to HTTP documents 504, and FTP and Gopher files 505. A Secure Socket Layer
(SSL) is an optional protocol used to encrypt communications between a Web
browser and Web server.

Description of the example environment in these terms is provided for
convenience only. It is not intended that the invention be limited to application
in this example environment. In fact, after reading the following description, it
will become apparent to a person skilled in the relevant art how to implement the

invention in alternative environments.
Example Computer System

An example of a computer system 540 is shown in FIG. 5C. The

computer system 540 represents any single or multi-processor computer. Single

PCT/US01/13138

10

15

20

25

30

WO 01/82075

18-

or multi-tasking computers can be used. Unified or distributed memory systems
can be used.

Computer system 540 includes one or more processors, such as processor
544. In one embodiment, computer system 540 corresponds to server 108 of FIG.
1, wherein scheduling engine 110 (also referred to as scheduler 110) comprises
one or more processors 544 for executing software implemented methods 300 and
400 as described above, and as appropriate. Each processor 544 is connected to
a communication infrastructure 542 (e.g., a communications bus, cross-bar, or
network). Various software embodiments are described in terms of this
exemplvary computer system. After reading this description, it will become
apparent to a person skilled in the relevant art how to implement the invention
using other computer systems and/or computer architectures.

Computer system 540 also includes a main memory 546, preferably
random access memory (RAM), and can also include a secondary memory 548.
The secondary memory 548 can include, for example, a hard disk drive 552
and/or a removable storage drive 552, representing a floppy disk drive, a
magnetic tape drive, an optical disk drive, etc. The removable storage drive 552
reads from and/or writes to aremovable storage unit 554 in a well known manner.
Removable storage unit 554 represents a floppy disk, magnetic tape, optical disk,
etc., which is read by and written to by removable storage drive 552. As will be
appreciated, the removable storage unit 554 includes a computer usable storage
medium having stored therein computer software and/or data.

In alternative embodiments, secondary memory 560 may include other
similar means for allowing computer programs or other instructions to be loaded
into computer system 540. Such means can include, for example, a removable
storage unit 562 and an interface 560. Examples can include a program cartridge
and cartridge interface (such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated socket, and other
remoyable storage units 562 and interfaces 560 which allow software and data to

be transferred from the removable storage unit 562 to computer system 540.

PCT/US01/13138

10

15

20

25

30

WO 01/82075

-19-

Computer system 540 can also include a communications interface 564.
Communications interface 564 allows software and data to be transferred between
computer system 540 and external devices via communications path 566.
Ekamples of communications interface 564 can include a modem, a network
interface (such as Ethernet card), a communications port, etc. Software and data
transferred via communications interface 564 are in the form of signals 568 which
can be electronic, electromagnetic, optical or other signals capable of being
received by communications interface 564, via communications path 566. Note
that communications interface 564 provides a means by which computer system
540 can interface to a network such as the Internet.

The present invention can be implemented using software running (that
is. executing) in an environment similar to that described above with respect to
FIG. SA. In this document, the term “computer program product” is used to
generally refer to removable storage unit 554, a hard disk installed in hard disk
drive 552, or a carrier wave carrying software over a communication path 566
(wireless link or cable) to communication interface 564. A computer useable
medium can include magnetic media, optical media, or other recordable media,
or media that transmits a carrier wave or other signal. These computer program
products are means for providing software to computer system 540.

Computer programs (also called computer control logic) are stored in
main memory 546 and/or secondary memory 548. Computer programs can also
be received via communications interface 564. Such computer programs, when
executed, enable the computer system 540 to perform the features of the present
invention as discussed herein. In particular, the computer programs, when
executed, enable the processor 544 to perform the features of the present
invention, as related to proximity searching. Accordingly, such computer
programs represent controllers of the computer system 540.

The present invention can be implemented as control logic in software,
firmware, hardware or any combination thereof. In an embodiment where the

invention is implemented using software, the software may be stored in a

PCT/US01/13138

10

15

20

WO 01/82075

220-

computer program product and loaded into computer system 540 using removable
storage drive 552, hard drive 550, or interface 560. Alternatively, the computer
program product may be downloaded to computer system 540 over
communications path 566. The control logic (software), when executed by the
one or more processors 544, causes the processor(s) 544 to perform the functions
of the invention as described herein.

In another embodiment, the invention is implemented primarily in
firmware and/or hardware using, for example, hardware components such as
application specific integrated circuits (ASICs). Implementation of a hardware
state machine so as to perform the functions described herein will be apparent to

persons skilled in the relevant art(s).
Conclusion

While various embodiments of the present invention have been described
above, it should be understood that they have been presented by way of example
only, and not limitation. It will be understood by those skilled in the art that
various changes in form and details may be made therein without departing from
the spirit and scope of the invention as defined in the appended claims. Thus, the
breadth and scope of the present invention should not be limited by any of the
above-described exemplary embodiments, but should be defined only in

accordance with the following claims and their equivalents.

PCT/US01/13138

10

15

20

25

WO 01/82075

21-

What Is Claimed Is:

1. In a system including first and second distinct computers
respectively having first and second different operating systems, a cross-platform
process scheduling method comprising the step of:

scheduling a first process compatible with the first operating system and
a second process compatible with the second operating system to respectively

execute on the first and second computers.

2. The method of claim 1, wherein a master schedule includes a first
process identifier identifying the first process and a second process identifier
identifying the second process, the first and second process identifiers being
linked together to define an executing sequence of the first and second processes,
the method further comprising the step of scheduling the first and second
processes to execute on the respective first and second computers according to the

defined executing sequence.

3, The method of claim 2, wherein the master schedule includes one
or more conditional inter-relationships between the first and second processes, the
method further comprising the step of scheduling the first and second processes

to execute based on the one or more conditional inter-relationships.

4, The method of claim 3, wherein the one or more conditional inter-
relationships include a success criteria associated with the first process, the
method further comprising the steps of:

executing the first process;

comparing the success criteria to execution results produced by the first
process; and

determining whether the first process executed successfully based on the

comparison step.

PCT/US01/13138

10

15

20

25

WO 01/82075

22

5. The method of claim 4, wherein the master table includes a third
process identifier identifying a third process, the method further comprising the
alternative steps of:

executing the second process when the first process executed successfully
according to the determining step, and

executing the third process but not the second process when the first

process did not execute successfully according to the determining step.

6. The method of claim 5, further comprising the steps of:
‘sending a command to the first computer to initiate execution of the first
process on the first computer;
receiving a result message from the first computer, the result message
including the execution results produced by the first process; and
sending a command to the second computer when the first process
executed successfully according to the determining step to initiate execution of

the second process on the second computer.

7. The method of claim 2, further comprising the step of monitoring
processor loading associated with the first and second computers and adjusting

the executing sequence based on the processor loading.

8. The method of claim 2, wherein the master table includes a
priority associated with each process identifier, the method further comprising the
step of adjusting the executing sequence based on the respective priorities

associated with the first and second processes.

9. The method of claim 1, further comprising prior to the scheduling
step, the steps of:
receiving a first message from the first computer indicating that the first

process needs to be scheduled for execution on the first computer;

PCT/US01/13138

10

15

20

25

WO 01/82075

receiving a second message from the second computer indicating that the
second process needs to be scheduled for execution on the second computer; and

generating the master schedule based on the first and second messages.

10. The method of claim 9, wherein the generating step includes the
steps of:

receiving one or more commands indicating an executing sequence of the
first and second processes; and

linking the first and second processes together according to the

commands.

11. Asystem for scheduling the execution of cross-platform computer
processes on a plurality of client computers, the plurality of client computers
including first and second distinct computers having respective first and second
different operating systems, comprising:

a process scheduling computer coupled to the first and second computers,
the scheduling computer including a scheduler that schedules a first process
compatible with the first operating system and a second process compatible with
the second operating system to respectively execute on the first and second client

computers.

12. The system of claim 11, further comprising a master schedule that
is accessible to the scheduler, the maéter schedule including a first process
identifier identifying the first process and a second process identifier identifying
the second process, the first and second process identifiers being linked together
1o define an executing sequence of the first and second processes, wherein the
scheduler schedules the first and second processes to execute on the respective

first and second computers according to the defined executing sequence.

PCT/US01/13138

10

15

20

25

WO 01/82075

24-

13. The system of claim 12, wherein the master schedule includes one
of more conditional inter-relationships between the first and second processes,
and wherein the scheduler schedules the first and second processes to execute

based on the one or more conditional inter-relationships.

14. Thesystem of claim 13, wherein the one or more conditional inter-
relationships include a success criteria associated with the first process, and
wherein the scheduler includes:

means for executing the first process;

means for comparing the success criteria to execution results produced by
the first process; and

means for determining whether the first process executed successfully

based on a comparison result produced by the comparing means.

15. The system of claim 14, wherein the master table includes a third
process identifier identifying a third process, and wherein the scheduler includes:

means for executing the second process when the first process executed
successfully according to the determining step; and

means for executing the third process but not the second process when the

first process did not execute successfully according to the determining step.

16. The system of claim 15, wherein the scheduler further comprises:

means for sending a command to the first computer to initiate execution
of the first process on the first computer;

means for receiving a result message from the first computer, the result |
message including the execution results produced by the first process; and

means for sending a command to the second computer to initiate
execution of the second process on the second computer when the determining

means determines the first process executed successfully.

PCT/US01/13138

10

15

20

25

WO 01/82075

25-

17. The system of claim 12, wherein the scheduler comprises means
for monitoring a processor loading associated with the first and second computers

and adjusting the executing sequence based on the processor loading.

18. The system of claim 12, wherein the master table includes a
priority associated with each process identifier, and wherein the scheduler
includes means for adjusting the executing sequence based on the respective

priorities associated with the first and second processes.

'19. The system of claim 11, wherein the scheduler comprises:
means for receiving a first message from the first computer indicating that
the first process needs to be scheduled for execution on the first computers;
means for receiving a second message from the second computer
indicating that the second process needs to be scheduled for execution on the
second computer; and
means for generating the master schedule based on the first and second

messages.

20. The system of claim 19, wherein the generating means includes:

means for receiving one or more commands indicating an executing
sequence of the ﬁfst and second processes; and

means for linking the first and second processes together according to the

commands.

21. In a system including first and second distinct computers
respectively having first and second different operating systems, a computer
program product comprising computer usable media having computer readable
program code means embodied in the media for causing application programs to
execute on a computer processor to perform cross-platform computer process

scheduling, the computer readable program code means comprising;:

PCT/US01/13138

10

15

20

25

WO 01/82075

-26-

first computer readable program code means for causing the processor to
schedule a first process compatible with the first operating svstem and a second
process compatible with the second operating system to respectively execute on

the first and second computers.

22. The computer program product of claim 21. wherein a master
schedule includes a first process identifier identifying the first process and a
second process identifier identifying the second process, the first and second
process identifiers being linked together to define an executing sequence of the
first and second processes, the computer program product further comprising a
second computer readable program code means for causing the processor to
schedule the first and second processes to execute on the respective first and

second computers according to the defined executing sequence.

23. The computer program product of claim 22. wherein the master
schedule includes one or more conditional inter-relationships between the first
and second processes, the computer program product further comprising a third
computer readable program code means for causing the processor to schedule the
first and second processes to execute based on the one or more conditional inter-

relationships.

24. The computer program product of claim 23. wherein the one or
more conditional inter-relationships include a success criteria associated with the
first process, the computer program product further comprising:

fourth computer readable program code means for causing the processor
to execute the first process;

fifth computer readable program code means for causing the processor to
compare the success criteria to execution results produced by the first process;

and

PCT/US01/13138

WO 01/82075 PCT/US01/13138

27-

sixth computer readable program code means for causing the processor
to determine whether the first process executed successfully based on a result of

the compare.

25. The computer program product of claim 24, wherein the master

5 table includes a third process identifier identifying a third process, the computer
program product further comprising:

seventh computer readable program code means for causing the processor

to execute the second process when the first process executed successfully; and

eighth computer readable program code means for causing the processor

10 to execute the third process but not the second process when the first process did

not execute successfully.

26. The computer program product of claim 25, further comprising:
ninth computer readable program code means for causing the processor
to send a command to the first computer to initiate execution of the first process
15 on the first computer;
tenth computer readable program code means for causing the processor
to receive a result message from the first computer, the result message including
the execution results produced by the first process; and
eleventh computer readable program code means for causing the processor
20 to send a command to the second computer to initiate execution of the second
process on the second computer when it is determined that the first process

executed successfully.

WO 01/82075 PCT/US01/13138
1/6
FIG. 1
AN
. N\
108
/
SERVER L 100
ol 132 | SOHEDULING -~ 102m
CLIENT
t 10 3
MASTER
SCHEDULTNG la—ue] TNTERRAGE 120
ENGINE ?
1 z
) 10 102 1020
NASTER ({
SCHEDULE COMMUNICATION SCHEDULING SCHEDULING
NETWORK CLIENT CLIENT
108 t 106 T
13?a > |)
120
INTERFACE fet——
OPERATING |~ 124
SYSTEM
oI | _-122
108a t
{
PROCESSES

WO 01/82075 PCT/US01/13138
216
FIG. 2 s 112
202 204 o34 208 32 210 212
{ () {) { {
PROCESS | CLIENT /| RESULT \CTTON OPERATING
yog | WENTIFIER | ADDFESS/ | CAITEAIA SYSTEM
I\ v
CLIENT ¢ 1. TF pt FAILS, GOTO pt
20~ pl 1023 2. TF pt SUCCEEDS, 6070 p2 | "OOKS NT
20~y g CLIENT 1. 60T0 p3 NIX
220¢
N WINDOWS T
220n~
FIG. 3
300

(:HIGH LEVEL METHOD

!

INSTALL CROSS-PLATFORM PROCESSES 108 ON CLIENTS 102, L~305

SEND NOTIFICATION MESSAGES TO SERVER 108

|

GENERATE MASTER SCHEDULE 112

RECEIVE NOTIFICATION MESSAGES AT SFRVER 108, |~310
ENTER SCHEDULING INFORMATION AT SERVER 108
SCHEDULE CROSS-PLATFORM PROCESSES 106 TO EXEQUTE |31

ON CLIENTS 102 ACCORDING TO MASTER SCHEDULE 112

i
C ®m)

WO 01/82075 PCT/US01/13138

3/6

FIG. 4

(:SCHEDULING METHOQ:)«/’4°°

ACCESS MASTER SCHEDULE 112 TO DETERMINE p~ 405
"NEXT" PROCESSES THAT ARE TO BE EXECUTED

..1

SEND COMMAND TO CLIENTS 102 TO INITIATE |~ 410
EXECUTION OF "NEXT" PROCESSES 106

l

MONITOR FOR PROCESS EXECUTION 415
RESULTS FROM PROCESSES 106

RECEIVE PROCESS EXECUTION RESULTS; L~ 420
COMPARE PROCESS EXECUTION RESULTS TO
RESULTS CRITERIA IN MASTER SCHEDULE 112

l

DETERMINE “NEXT® PROCESSES 106 TO BE |42
~a—— [XECUTED BASED ON COMPARLSON STEP AND
ACTIONS INFORMATION IN MASTER SCHEDULE 112

PCT/US01/13138

Vad THoH 14

T N 7

—
[l
[

HIZINVIHO //

L]
134304
= W m .m_ % =

= // W300W
// (0co00)
005 % INJWNHIA09

GEN

416

=

ALTSHIAINN (I0G0000N E | L0[}f|Co00000g
0oo 000 e
oog 00O j—
[O]]
O] . HIAHIS INJINOD

[o] ~ IN
] s E==
v = =
I W1 | .
| D:D % Ju zazzmgz E
SSINTSNG

TYTINVNIL S

WO 01/82075

e
vs "9Id

WO 01/82075

a/6

WeW (WEB)

[e
' |FPT. cOPHER FILES

202~

IRC (CHAT)

201~

TELNET (LOG-IN) |

L
Y

APPLICATION =~ =e——y

PCT/US01/13138

SMTP (E-MAIL)

506

TRANSPORT (TCP, UDP)

|_-510

INTERNET (IP)

220

PHYSICAL LAYER

330

WO 01/82075 PCT/US01/13138

6/6
COMMUNICATIONS
INFRASTRUCTURE FIG. 5C
542
‘\T‘ L

0000000 /544

O0O00O0O00O0O0

o
o
o
o
PROCESSOR | ©
o
o
o
0

0000000

N O A s ot I e

K MAIN MEMORY

Ny Ny N VR [N NN N [|

| _-546

550
= HARD DISK DRIVE L—" -
_’///,—L 552 (
REMOVABLE STORMGEL. | AENOVABLE
RIVE [T STORAGE UNIT
T 560
ylll RENOVABLE
TNTERFACE STORAGE UNIT
o

<—————=> (OMMUNICATION INTERFACE K

\
564

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

