发明名称
基于GPS数据的道路交通流预测方法

摘要
本发明属于交通管理技术领域，涉及一种基于GPS数据的道路交通流预测方法；将一天中需要进行交通流预测和监控的时间划分成不同的时段；对于所观测的每一时段，通过对装载有车载GPS的出租车的位置进行监测，得到各个时段的GPS位置数据，并监测和统计各个时间段上的道路交通流数据；计算GPS位置数据的中每辆车的位置所对应的每一个历史时刻的速度以及整条主干道上的所车的平均速度；实时监测各个时间段的每辆车的实时位置数据，计算出每辆车的瞬时速度和道路的平均车流速度，预测未来交通流数据，并判断是否可能发生堵塞。本发明能够减少道路检测设备的资金和人力的投入，辅助解决交通拥堵问题。
1. 一种基于 GPS 数据的道路交通流预测方法，用于城市主干道的路段交通流预测上，
该方法包括以下步骤：

1) 将一天中需要进行交通流预测和监控的时间划分成不同的时间段；

2) 在观测阶段，对于所观测的每一时段，通过对车辆装载 GPS 的出租车的位置进行
监测，得到各个时间段的 GPS 位置数据，并监测和统计各个时间段上的道路交通流数据；

3) 计算 GPS 位置数据的中每辆车的位置所对应的每一个历史时刻的速度以及整条主
干道上的所有车的平均速度；

4) 在预测阶段，实时监测各个时间段的每辆车的实时位置数据，计算出每辆车的瞬时
速度和道路的平均车流速度；

5) 利用步骤 4 计算出来的数据，预测该路段的未来某时刻的交通流数据，设预测出未
来某一时刻 N 的主干道上的速度的预测值 G (N)，如果预测值 G (N) 非常小，小于设定的值，
则判断该条公路在时刻 N 将会发生大量的拥堵。

2. 根据权利要求 1 所述的基于 GPS 数据的道路交通流预测方法，其特征在于，利用回归
的方法预测未来某时刻的该路段的车流速度和行车的平均速度，得到未来某时刻的交通流
数据。
基于 GPS 数据的道路交通流预测方法

技术领域
[0001] 本发明属于交通管理技术领域，涉及一种交通流预测方法。

背景技术
[0002] 当前，随着社会和经济的高速发展，交通拥堵成为了制约社会发展的严重问题，是
市民出行的困扰，也是政府管理部门进行交通管理的难题。同时，在发生突发公共事件时，
交通拥堵也会严重影响应对紧急处置人员对事故的响应速度，造成许多不必要的经济损失。因
此，能够通过有效手段及时高效的预测出交通流量，是解决交通拥堵的有效手段。在道路上
安装密集的检测设备肯定是最为有效的方法，但是其资金和人力的投入非常巨大，显然其
操作性差。

发明内容
[0003] 本发明的目的是克服现有技术的上述不足，提供一种能够及时高效的预测和监控
交通流量方法。本发明的技术方案如下：
[0004] 一种基于 GPS 数据的道路交通流预测方法，用于城市主干道的某个路段交通流预
测。该方法包括以下步骤：
[0005] 1）将一天中需要进行交通流预测和监控的时间划成不同的时间段；
[0006] 2）在观测阶段，对于所观测的每一时段，通过对装载有车载 GPS 的出租车的位置
进行监测，得到各个时间段的 GPS 位置数据，并监测和统计各个时间段上的道路交通流数
据；
[0007] 3）计算 GPS 位置数据的中每辆车的位置对应的每一个历史时刻的速度以及整
条主干道上的所有车的平均速度；
[0008] 4）在预测阶段，实时监测各个时间段的每辆车的实时位置数据，计算出每辆车的
瞬时速度和道路的平均车流速度；
[0009] 5）利用步骤 4 计算出来的数据，预测该路段的未来某时刻的交通流数据，设预测
出未来某一时刻 N 的主干道上的速度的预测值 G(N)，如果预测值 G(N) 非常小，小于设定
的值，则判断该条公路在时刻 N 将会发生大量的拥堵。
[0010] 作为优选实施方式，步骤 4）中，利用回归的方法预测未来某时刻的该路段的车流
速度和行车的平均速度，得到未来某时刻的交通流数据。
[0011] 本发明利用观测数据得到一个路段上的部分车辆的实时 GPS 位置数据，利用回归
的方法预测到未来某时刻的高速公路的车流速度和行车的平均速度，进而判断道路的拥堵
情况。本发明的方法，能够减少道路检测设备的资金和人力的投入，为实现城市智能交通、
解决交通拥堵等社会问题提供了有效的解决方案。

具体实施方式
[0012] 在具有一定车辆规模的城市，利用 GPS 设备的收集实时位置数据进行交通流预
测，是解决预测交通流量的重要途径之一。本发明利用手机数据预测并监控道路交通流。

[0013] 本发明的交通流预测方法分为两个阶段，第一步是观测阶段，第二步是实时预测阶段。

[0014] 本发明首先将一天中需要预测的时间划分成各个时间段，比如从早晨 6 点到晚上 10 点，按照分钟数分成 80 个时间段。在观测阶段，将该条道路的车辆的位置和车辆的总数，按各个时间段分别进行收集和统计。而在预测阶段，根据各个时间段的平均车流速度和每辆车的瞬时速度，计算平均行车速度，方法如下：

\[G(n) = K(n \mid n-1)C(n)K(n \mid n-1)C^t + R(n) \]

\[a(n) = Y(n) - C(n)X(n \mid n-1) \]

\[K(n \mid n-1) = F(n, n-1)K(n-1, n-1)F^t(n, n-1) + Q(n-1) \]

\[K(n, n) = (I - G(n)C(n))K(n, n-1) \]

\[X(n+1, n) = F(n+1, n)X(n, n) \]

\[Y(n+1, n) = C(n+1)X(n+1, n) \]

\[Y(n, n) = C(n)X(n, n) \]

[0022] 以上式中符号说明：

\[X(n+1 \mid n) \] —— 表示给定观测值；

\[Y(n), Y(2), \ldots, Y(n) \text{ 时} \text{刻状态的预测估计。} \]

\[G(n) \] —— 滤波增益矩阵；

\[F(n \mid n-1) \] —— 从 n-1 时刻到 n 时刻的转移矩阵；

\[K(n \mid n) \] —— X(n+1, n) 注入误差的相关矩阵；

\[C(n) \] —— n 时的测量矩阵；

\[Q(n) \] —— 为过程噪声的相关矩阵；

\[R(n) \] —— 测量噪声的相关矩阵；

\[Y(n+1 \mid n) \] —— n+1 时刻的预测估计值。

[0027] 方程中的回归系数是随时间变化的，预测每向前延伸一步，都将预测结果与观测结果进行比较，其差别（预测误差）将以适当的方式反馈到回归系数的变化方程中去。通过利用前一时刻预测误差的反馈信息来及时修正预测方程，以提高下一时刻的预测精度。

[0028] 在进行实时预测时，实时以分钟为单位记录每一个车辆的实时位置，用上述回归算法预测出未来时刻任意时刻的速度，求所有的车辆的未来某一时刻的平均速度的平均值 Y1(n, N)，求出某一时刻所有车辆速的平均值 Y2(N)。在利用上述的回归算法计算出未来某时刻的平均速度 Y2(m, N)，通过加权计算出最终得预测值 Y(N) = [mY2(n, N) + nY(m, N)] / (m+n)

[0034] 通过将当前获取到的手机通讯网络数据进行数据接收、计算处理、数据分析步骤，可得出当前道路交通状况信息。通过上述过程求出 Y(N)，如果 Y(N) 小于一定的值则判断该条公路在时刻 N 会发生大量的拥堵，应当予以关注和处理，避免交通拥堵。