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GRAPHICS ENGINE FOR HIGH PRECISION LITHOGRAPHY

FIELD OF THE INVENTION

[001] The invention relates to rendering high precision images with sub-pixel
resolution. This invention is applicable to production of reticles and large area masks,
direct writing of patterns and inspection of reticles or other patterned work pieces.

Aspects of the invention can apply to both SLM and scanning technologies.
BACKGROUND OF THE INVENTION

[002] Equipment for semi-conductor manufacturing includes writers and
inspection equipment for producing images on reticles and large area masks, for direct
writing of patterns for chips, and for inspection of patterned work pieces. Over time,
chips have become increasingly complex and dense, as processors, memory circuits and
other semi-conductors have gained greater capacity. Memory circuits, in particular, and
all circuits with small feature sizes, in general, have become denser. Patterns for these
circuits have become even more complex than the circuits, as optical proximity and laser
proximity correction features have been added to the patterns. The equipment and writing
strategies have become increasingly sophisticated, in response to requirements for smaller
features on chips and tighter critical dimensions. One description of equipment ahd
writing strategies developed years ago to meet the needs for semi-conductor
manufacturing equipment is found in U.S. Patent No. 5,533,170 issued to Teitzel et al. on
July 2, 1996.

[003] Another challenge for manufacturers is to compensate for variations in
process chemistries, such as variations in responsiveness of resists to exposing radiations.
Variations are found in the response of different types and even batches of resists to
exposure. Resists sometimes respond differently near the edges and in the corners of
coated work pieces.

[004] As manufacturers strive to keep pace with the Moore’s law, there is a
continuing need for writers and inspection equipment that can process large volumes of
geometric figures and produce precise patterns on work pieces. There is a corollary need
for techniques, methods and equipments that compensate for variations in resist and other

process variables, while producing the needed precise patterns.
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SUMMARY OF THE INVENTION

[005] Aspects of the present invention may be combined to process large
volumes of geometric figures and generate precise patterns on work pieces using SLM
projection technology, for instance. Additional aspects of the present invention facilitate
compensation for variations in resist response and other process variable.

[006] One embodiment of the present invention is a data path and plurality of
processors that accept fractured geometry data as input and generate driving values for
micromirrors in a micromirror array as output. In this embodiment, the method includes
mapping the work piece into overlap regions, corresponding to patterns of intended
energy contributions from a plurality of overlapping exposures onto regions of the work
piece; rendering fractured polygons to gray scale pixel values using dual resolution
memories for a pixel map and for micropixel arrays corresponding to pixels in the pixel
map; calculating exposure values for the grayscale pixel values, taking into account the
overlap regions; contouring the exposure values based on individual micromirror
characteristics; and outputting the contoured exposure values. The mappin.g step may
produce nine overlap regions, 81 overlap regions or some other number of overlap
regions, depending on the number of passes for printing. The calculating step may use
the overlap regions to take into account the cumulative dose resulting from multiple
exposures. This method may further include buffering contoured exposure values in at
least one segmented buffer, which is coupled to a set of mirror pixel drivers. The buffer
may be dual segmented, having a first segmentation corresponding to rendering engines
and a second segmentation corresponding to regions of a micromirror array. The first
segmentation and second segmentation of the buffer may be different. A plurality of
buffers may be used to collect data for output. Output from the buffer may be directed to
digital to analog converters. A further aspect of this embodiment is that the overlap
regions or zones is to take into account pulse to pulse variations in energy applied to the
work piece. During the course of printing, the illumination of the overlap zones may be
adjusted to take into account resist affects on the work piece, such as aging of the resist,
activation of the resist by multiple exposures, and variations in the sensitivity of the resist,
especially at edges or corners of the work piece.

[007] Various sub combinations of the first embodiment are useful in their own
right. The application of overlap zones in a stamp-oriented process is useful. Rendering

geometric figures to gray scale pixel values in dual resolution memories, including a pixel
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map and micropixel arrays corresponding to pixels in the pixel map is useful.
Computations take into account overlaps between stamps, to take into account overlaps
between multiple passes, and to take into account pulse to pulse variations in exposing
energy are all useful, individually or in combination. Contouring of exposure values
based on individual micromirror characteristics, instead of general characteristics of the
micromirror array, is useful. Pair-wise combinations of these aspects of the first
embodiment are also useful.

[008] An additional embodiment of the present invention is use of the guard
zone as an alternative to clipping. This includes providing a smaller address window
corresponding to a memory; providing a larger address window creating a guard zone
around the smaller addressing window, which is addressable but does not correspond to
the memory; receiving a polygon contained within the larger addressing window;
rendering at least sections of the polygon into the larger address window; and writing data
for the rendered sections of the polygon within the smaller address window to the
memory while discarding rendered sections of the polygon outside the smaller window.
A further aspect of this embodiment is that the rendering step may be carried out without
distinction between portions of the polygon that are inside, versus outside the smaller
addressing window. This method may be carried out without clipping the polygon to fit
the smaller addressing window. The discarding of rendered sections of the polygon may
take place before data is sent to a memory controller, by a filter, or in the memory
controller, by comparing memory address signals with valid addresses of the smaller
addressing window in using the result of the comparison to control one or more memory
arbitration signals, such as write enable signals. This embodiment and its various aspects
may be further enhanced by including a stamp of filtering a set of polygons so that at least
a portion of the polygon received and rendered lies inside the smaller addressing window.
[009] A variation on the alternative embodiment is a method of rendering
polygons to a larger addressing window, the larger addressing window comprising a
smaller addressing window corresponding to a memory and a guard zone outside the
smaller addressing window, the guard zone being addressable but not corresponding to
the memory. This method may include receiving a polygon contained within the larger
addressing window; repeatedly selecting a section of the polygon and converting it into
rasterized representation data; processing the rasterized representation data so that

portions within the smaller addressing window are written to memory and portions
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outside that window are not written to memory. The aspects of this variation may be
similar to the first variation on this embodiment. The converting step may be carried out
without the distinction between portions of the polygon inside, versus outside the smaller
addressing window. Clipping the polygon to fit the smaller addressing window may be
avoided. The rasterized representation data may be filtered before it is written to a
memory controller or to memory. Alternatively, it may be filtered in a memory
controller, as described above. The input polygons may be filtered so that at least a
portion of each polygon lies inside the smaller addressing window. This variation may
further include constraining polygons received or input so that those polygons are small
enough to fit within the guard zone.

[010] A device corresponding to the preceding embodiment may render a
polygon contained within a larger addressing window, the larger addressing window
comprising a smaller addressing window in a guard zone outside the smaller address
window. This device may include a renderer connected to input lines, adapted to receive
a polygon contained within a larger addressing window and to repeatedly convert a
section of the polygon into rasterized representation data; a memory, corresponding to the
smaller addressing window.

[011] A memory controller, connected to the renderer, adapted to process the
rasterized representation data and to write rasterized representation data that is within the
smaller addressing window to the memory and to discard portions of the rasterized
representation data outside the smaller addressing window. The renderer of this device
may be adapted to convert sections of the polygon into rasterized representation data
without distinction between the portions of the section inside, versus outside the smaller
addressing window. The device may operate without clipping received polygons to fit
within the smaller addressing window and without requiring that received polygons be
contained within the smaller addressing window. A further variation of this device is a
device for writing to memory a section of a polygon contained within a larger addressing
window, the larger addressing window comprising a smaller addressing window in a
guard zone outside the smaller addressing window, the section represented by rasterized
representation data and a device including: input lines; a memory corresponding to the
smaller address window; and the memory controller connected to the input lines and the
memory adapted to receive the rasterized representation data referencing the larger

addressing window, to write portions of the rasterized representation data within the
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smaller addressing window to the memory, and to discard portions of the rasterized
representation data within the guard zone. The aspects of this variation may be drawn
from either of the preceding methods or the other variation on this embodiment.

[012] A further embodiment of the present invention is a method of representing
an area utilizing at least two levels of resolution, including: receiving a polygon
representation bounded by edges; repeatedly selecting a section of the polygon for
rendering, the section corresponding to pixels; representing the pixels in a first data
structure is filled, empty or partially filled, based on the edges of the polygon
representation; in representing the partially filled pixels in a second data structure by
arrays of sub-pixels that are filled or empty, set arrays defining the edges of the polygon
representation and set arrays including at least 3 x 3 subpixels. Alternatively, the arrays
may include 4 x 4 or 8 x § subpixels. The polygon may be a quadrangle, a convex
quadrangle, a trapezoid or a triangle. Either a quadrangle or a trapezoid representation
may have one side of zero length. The pixel representation for filled, empty or partially
filled may use two data bits. The method may further include maintaining summaries of
the partially filled pixels corresponding to filled or empty subpixels in the arrays. These
summaries may consist of counts of filled or empty subpixels or weighted evaluations of
the subpixels.

[013] A related embodiment of the present invention is a method of representing
an area utilizing at least two Ievels of resolution, including: receiving a polygon
representation bounded by edges; repeatedly selecting a section through the polygon
representation for rendering, the section corresponding to pixels; classifying the pixels as
filled, empty or partially filled, based on the edges of the polygon representation; and
representing partially filled pixels by arrays of subpixels that are assigned an intensity
level, instead of a filled or empty value. The arrays of subpixels define the edge of the
polygon representation. These arrays may include at least 3 x 3 subpixels, 4 x 4
subpixels, 8 x 8 subpixels, or 16 x 16 subpixels. As above, the polygon may have several
different forms. The pixel map classifying the pixels is filled, empty or partially filled
may consist of two bits for each pixel. The method may further include maintaining
summaries of the partially filled pixels, corresponding to the intensity levels of the
subpixels in the arrays. These summaries may be summations of subpixel intensity levels

or weighted evaluations of the subpixels.
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[014] A data structure embodiment representing an area having at least one edge,
utilizing two levels of resolution, includes; at least one memory; at least one pixel map
stored in the memory, representing a pixel as filled, empty or partially filled; and at least
one subpixel map stored in the memory, corresponding to the pixel map, representing the
partially filled pixel by an array of subpixels that are filled or empty, the subpixels
defining the edge of the area, the subpixel arrays including at least 3 x 3 subpixels; and
the filled or empty pixels being represented without using subpixel values to represent
them. Another aspect of this embodiment is that it may further include a sub-pixel
summary that summarizes filled or empty sub-pixels in the arrays. This embodiment may
further include separately addressable memories for the pixel map and the sub pixel
arrays. It may further include separately addressable memories for the pixel map and the
sub-pixel summary map.

{015] A variation on this embodiment is a data structure representing at least one
trapezoid utilizing two levels of resolution, the trapezoid having first and third parallel
edges that are parallel to each other and to a reference axis and having second and fourth
opposing edges, the data structure including: at least one memory; at least one pixel map
stored in the memory, representing pixels as filled, empty, or partially filled; and at least
one subpixel array stored in the memory, corresponding to a pixel in the pixel map,
representing pixels on the parallel edges and the opposing edges by arrays of subpixels.
The subpixels in these arrays may be filled or empty. These arrays may include at least 3
x 3 subpixels, 4 x 4 subpixels, 8 x 8 subpixels or 16 x 16 subpixels. This data structure
may further include a gray value summary memory, summarizing the subpixels that are
either filled or empty. The summary may be based on a count of subpixels that are filled
or empty or a weighted evaluation of subpixels. The subpixels may have binary values or
may additionally have intermediate intensity values. The pixel map and subpixel arrays
may be stored in separately addressable memory. One of the parallel edges of the
trapezoid may have a zero length.

[016] A further embodiment of aspects of the present invention is a protocol for
transmitting graphic data representing a polygon having a plurality of edges, utilizing two
levels of resolution, including: representing a section of the polygon by an array of
pixels, the pixels being assigned a value of filled, empty or partially filled; representing
the partially filled pixel by a sub-pixel array, the sub-pixels being assigned a value filled

or empty defining at least part of an edge, the array including at least 3 x 3 sub-pixels;
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and transmitting a representation of the array of pixels and a plurality of arrays of
subpixels using at least first channel and an independent second channel, the first channel
being used for the representation of the array of pixels in the second channel being used
for the arrays of subpixels. In this embodiment, the sub-pixel array may alternatively
include at least 4 x 4, 8 x 8 or 16 x 16 sub-pixels. The representation of the array of
pixels may be run length encoded. The polygon may be a trapezoid, the trapezoid having
first and third parallel sides being parallel to a reference axis; and a plurality of partially
filled pixels along the first or third parallel side may be represented by a single subpixel
array. This protocol may further include maintaining a subpixel summary map
summarizing filled or empty subpixels in the array. Said summary may be a count of
filled or empty subpixels in the array or a weighted evaluation of the subpixels. The
subpixels may also have intermediate intensity values, in addition to filled or empty
values. The pixels and the subpixel arrays may be stored in separately addressable
memories. Similarly, the pixels and the sub-pixel summary map may be stored in
separately addressable memories. Adjacent pixels of the first or third parallel sides may
be represented by the same sub-pixel map. The first or third parallel sides can be
assigned a zero length.

[017] Yet another embodiment of the present invention is a method of
calculating a value for a multi-value pixel corresponding to at least part of an edge of a
polygon, including: providing a sub-pixel array; providing a set of precalculated sub-pixel
bar maps, corresponding to edges having particular orientations; representing the part of
the edge of the polygon by subpixels that are filled or empty, by applying the
precalculated subpixel bar maps; and super sampling a set of subpixels corresponding to a
pixel and to assign a gray value to the pixel. In this method, the precalculated subpixel
bar map may be represented by an array of fill bars and applying the precalculated
subpixel map may further include applying an offset value to the fill bars corresponding
to an intersection of the edge or an extension of the edge with a boundary of an area
represented by the array of subpixels.

[018] A further aspect of methods utilizing subpixel arrays to represent at least
part of a polygon edge is a method of defining an edge of a polygon within an area having
sides, the area being subdivided into sub-pixels. This method includes: providing a
plurality of precalculated sub-pixel bar maps corresponding to potential intercepts and

orientations of the polygon edge with the sides of the area, wherein the potential
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intercepts are limited to discrete positions along the sides of the area in the potential
orientations are limited to orientations that connect the discrete positions; determining
two out of three of two intercepts of the polygon edge with the sides of the area in an
orientation of the polygon edge; and applying one of the pre-calculated sub-pixel bar
maps corresponding to two out of three of the two intercepts in the orientation. In one
aspect of the present invention, the area is subdivided by no more than 256 sub-pixels and
the discrete positions are limited to no more than 65 positions per subpixel. Alternatively,
the area is subdivided by no more than 64 sub-pixels and the discrete positions are limited
to no more than 33 positions per subpixel. In yet another configuration, the area is
subdivided into no more than 32 x 16 sub-pixels and there are no more than 17 discrete
positions along the edge of the subpixel; or the area can be subdivided into no more than
16 x 8 subpixels, an edge of the subpixel having no more than nine discrete positions. A
further aspect of this embodiment is that the pre-calculated sub-pixel bar maps may be
limited to a set of potential orientations forming a range of approximately 45 degrees and
this range of pre-calculated sub-pixel bar maps can be transformed to cover a range of
approximately 180 degrees. The sides of the area intercepted by the polygon edge may
either be opposing sides or adjacent sides. Variations in this embodiment may involve
using the polygon edge and an extension of the polygon edge to construct intercepts with
sides of the area. The orientation of the polygon edge may be determined and utilized in
this method or it may be ignored, as the two intercepts define the polygon edge.

[019] Subpixel bar map selection is a further embodiment of the present
invention. A method of selecting a sub-pixel bar map to represent an edge intersecting an
area, the area having at least first and second sides and the area being subdivided into
sub-pixels, the method includes: construction segment between intercepts along the first
and second sides, the segment defining first and second regions of the area, wherein the
intercepts are limited to discrete positions along the sides of the area; forming candidate
sets of sub-pixels to represent the first region, the subpixels in the candidate sets being
completely or partially within the first region: determining a variance between area
coverage of the candidate sets and the area coverage of the first region; evaluating corners
formed by combining candidate sets with sub-pixel bar maps for other segments;
selecting among the candidate sets based on the determination of variance in the
evaluation of corners; and storing the selected set in a memory. This embodiment further

may include repeating said method for a set of segments defining potential intercepts



10

15

25

30

WO 03/023488 PCT/SE02/01609

along the first side and culling redundant sets. Culling redundant sets may take into
account a maximum number of sets to represent the set of segments or it may take into
account a maximum acceptable error from using sets to represent the set of segments. A
variation on this embodiment is a method of precalculating sub-pixel bar maps for
subpixels corresponding to pixels, to define part of a polygon edge, including: providing
potential first intercepts for a line corresponding to the polygon edge along a side of one
of the subpixels on a first side of a pixel pair; providing potential second intercepts for the
line along a second side of the pixel pair opposed to the first side, wherein the potential
first and second intercepts are limited to discrete positions; providing segments
connecting the first potential intercepts and the second potential intercepts, spanning a
predetermined range of angles; and selecting subpixel bar maps to define regions bounded
by the segments, wherein the selection of subpixel bar maps takes into account variation
between area coverage of the subpixel bar maps and area coverage of the region, and
further takes into account evaluation of corners formed by combining subpixel bar maps.
The range of angles spanned by the segments may include approximately 45 degrees or
may include approximately 90 degrees. Transformation may be provided to apply the
subpixel maps to a range of potential segment orientations spanning approximately 180
degrees.

[020] A further application of the present invention is a method of calculating a
value of a pixel corresponding to a corner and an intersection of first and second edges of
a polygon, including: providing a memory including a first array of subpixels and a
second array of subpixels, both first and second arrays corresponding to a pixel;
extending the first and second edges into first and second lines; setting the subpixels of
the first array to filled or empty, corresponding to the first region defined by the first line;
setting the subpixels of the second array to filled or empty, corresponding to the second
region defined by the second line; calculating an intersection of the first array and the
second array; and super sampling a set of subpixels in the intersection corresponding to a
pixel and assigning a gray value to the pixel. In this embodiment, setting the subpixels of
the first and second arrays may include application of pre-calculated sub-pixel bar maps
corresponding to the first and second regions.

[021] Need to write a summary of the SDU and edge displacement claims, once I

write those claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

[022] Figures 1A-B are a pair of radiation absorption graphs which depict the
shifting of an edge by less than one pixel or grid element as a result of reducing the
amplitude of exposing radiation at the edge.

[023] Figure 2 is a block diagram providing an overview of one data path
practicing aspects of the present invention.

[024] Figure 3 is a block diagram overview of the hierarchical relationship
among a cluster coordination process, support and mask writing processes and rendering
modules.

[025] Figures 4A-B are a pair of diagrams illustrating rendering windows, guard
windows, stamp strips, sub strips and other features relevant to rendering. Figure 4Cisa
block diagram showing the inner relationship among modulator windows, stamps, strips,
sub strips and an image. Figure 4D is a vector diagram illustrating the relationship
between global and local coordinate systems.

[026] Figures 5A-B are a pair of sub-pixel grids that illustrate representation of
an edge that intersects a pixel.

[027] Figure 6 includes a series of pixel grids and a sub-pixel grid corresponding

to one of the pixels. The mapping of a pair of geometric figures onto a pixel grid is

illustrated.
[028] Figure 7 is a block diagram of a super sampling circuit.
[029] Figures 8 through 10 are examples of geometries, micro pixel cache sets

and address sets generated from those geometries.

[030] Figures 11A-D illustrate four cases of extending an edge from a corner to a
side of a pixel and a sub-pixel array corresponding to the pixel.

[031] Figure 12 illustrates horizontal and vertical pairing of pixels and other
features of rendering an edge using micro pixel bars.

[032] Figures 13A-D illustrate four edges of different orientations that can be
rendered from a set of micro pixel bars.

[033] Figures 14A-D illustrate using a set of micro pixel bars for construction of
an edge displaced from a corner.

[034] Figure 15A illustrates features of a trapezoid which overlaps rendering and
guard zones. Figures 15B-C illustrate an interface for preparation of subpixel bar maps

used to define an edge that intersects a pixel.
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[035] Figures 16A-C illustrate construction of a corner in a sub-pixel grid and
calculation of a pixel gray value corresponding to the corner. Figure 16D illustrates the

application of access qualifiers to overlaying one geometric figure on another.

[036] Figure 17 illustrates an elliptical structuring element useful for edge
displacement.
[037] Figures 18 and 19 illustrate the operation of so-called filling up and sliding

displacement algorithms.

[038] Figure 20 is a hardware block diagram for logic elements that can be used
to implement edge displacement in a neighborhood size up to 5 x 5 gray valued pixels.
[039] Figure 21 depicts six modulator or rendering windows overlapping a
stamp. Figure 22 depicts a stamp and nine overlap subzones. Figure 23A extends the
subzone concept to printing in multiple passes. Figure 23B illustrates 81 overlap
subzones resulting from four exposure passes. Figures 23C-D are block diagram
depicting relationships between stamps, strips, and sub strips. Figures 24A-B illustrate
overlap subzones within rendering or modulator windows of a stamp, and a radiation dose
profile corresponding to some of the overlap subzones.

[040] Figure 25 is a block diagram including application of overlap zone and
energy variation processes to calculation of a multi-pass compensated illumination value
for a grayscale pixel.

[041] Figure 26 is a block diagram of several processes that are useful in
rasterizing fractured geometry.

[042] Figure 27 is a hardware block diagram illustrating application of a mirror

transfer function.

[043] Figure 28 depicts a pair of base functions calculated using eigen vector
methods.
[044] Figure 29 is a block diagram illustrating potential buffer configurations.

Figure 30 illustrates the flow of data from fracture through loading into an SLM.

[045] Figure 31 is a hardware block diagram of a rendering module. Figure 32 is
a hardware block diagram of a rendering processor, which is part of a rendering module.
Figure 33 is a hardware block diagram of a fracture converter, which is part of a
rendering processor. Figure 34 is a block diagram of a micro pixel cache generator.
Figure 35 is a block diagram of a micro pixel cache buffer. Figure 36 is a block diagram

of a frame buffer interface and related components.
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[046] Figure 37 illustrates the operation of a guard zone filter implemented
before data is written to a memory controller. Figures 38-39 provide further detail
regarding the structure of a frame buffer interface.

[047] Figure 40 is a hardware block diagram providing detail regarding one

implementation of the pre-processor core.

[048] Figure 41 illustrates handling of memory blocks as memory is traversed.
[049] Figure 42 is a hardware block diagram of a micro pixel cache buffer.
[050] Figure 43 illustrates memory access in one embodiment of hardware

implementing aspects of the present invention.

[051] Figure 44 illustrates symmetrical weighting of subpixels representing a
pixel. Figure 45 illustrates symmetrical and non symmetrical subpixel maps representing
a particular edge orientation.

[052] Figures 46-47 illustrate two-stage convolution of a 5 x 5 neighborhood,

which is useful in detecting a corner.

[053] Figures 48-51 illustrate aspects of edge displacement. Figure 52 is an
overview flowchart of edge displacement.

[054] Figure 53 is a flowchart of applying the Bresenham algorithm.

[055] Figures 54A-C are examples of multiple SLM configurations.

[056] Figure 55 illustrates use of correction factors to compensate for minor

imperfections and distortions in projection from the SLM to the work piece.
DETAILED DESCRIPTION

[057] The following detailed description is made with reference to the figures.
Preferred embodiments are described to illustrate the present invention, not to limit its
scope, which is defined by the claims. Those of ordinary skill in the art will recognize a
variety of equivalent variations on the description that follows.

[058] New chip designs require high precision lithographic equipment for mask
making and direct writing. Much data needs to be translated from a geometry domain
into a format usable by the lithographic equipment to project the desired image. Data
translation techniques can be combined with a variety of lithographic projection
equipment,

[059] One variety of lithographic projection uses a micromirror or similar system

with individual pixels. A micromirror system uses an array, such as a 512 by 2048 array
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of pixels with 65 gray values per pixel. This size of system, using a pulse rate of one
kHz, requires loading approximately one giga pixels of data per second into the
micromirror array. A smaller array, such as 256 by 256 grayscale pixels requires smaller,
but still substantial data throughput. A greater depth of gray scaling, such as 257 gray
values per pixel, would require somewhat greater data throughput. An alternative
micromirror system could use a narrow array of micromirrors, e.g., 1 x 512,2 x 512, or 4
x 512 mirrors, swept across a work piece.

[060] Another technology for lithographic projection involves the use of one or
more scanned beams. The beams can either be scanned systematically to create a raster
image, similar to the image on a TV screen, or the beams can be vector scanned to create
individual features. The beams maybe laser, electron, ion or particle beams. Most
generally, any radiation beam can be used. Data rasterized in accordance with aspects of
the present invention can be run length encoded or otherwise compressed for use with

scanned beams.
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Process Overview

[061] Lithographic equipment is used to project images onto surfaces sensitive to
the radiation projected. Typically, a resist is exposed by the radiation. The exposed resist
is developed and areas of the resist are removed, corresponding positively or negatively to
the projected image. Figure 1A illustrates two patterns of resist exposure. Individual
peaks 101 represent distributions of radiation at evenly spaced positions. For a
micromirror system, these positions may represent individual micromirror pixel elements.
For a scanned beam system, these positions may represent grid locations to which the
beam is intended to scan. The total energy absorbed by the resist is the sum of radiation
distributions overlapping the exposed area. The curve 102 represents total absorbed
radiation. Resist typically produces very high contrast images. Areas of the resist having
total absorbed radiation above a threshold 103 may harden when developed, while areas
of resist having less absorbed radiation than the threshold may be removed after
development. The width of the feature created at the resist surface corresponds to the
distance along the threshold line 103 from one intersection of the total absorbed radiation
curve 102 to the other intersection. Figure 1B illustrates adjustment of the feature size by
reducing the radiation dose at one edge of the feature. In figure 1B, the edge 104 is
moved by a distance 105 when the radiation dose in the right most position is reduced by
approximately one half 106. In a micromirror system, an individual mirror element can
be adjusted to reduce the radiation dose from a single pixel. In a scanned radiation
system, the intensity of the scanning radiation can be reduced at a particular position or
the radiation can be blanked out shortly before the beam reaches a particular position in

its scan.

System Architecture Overview

[062] The image rendering engine of the present invention can be used in
conjunction with a fracturing engine, rasterizing engine and drive circuit. Figure 2
provides a data path overview. This data path begins with preprocessed geometry data
201 as input. Preprocessed geometry data may be the output of a computer-aided design
system. Preprocessing may reduce hierarchical or iterative information and effectively
flatten the geometry representation stream. Data fetching 202 typically includes
obtaining preprocessed geometry data from a secondary storage device. Geometry

conversion 203 is the process in which geometries are converted to renderable fixed-point
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geometries (RFG). Fracturing 203 is the process of partitioning geometries into different
windows and sub windows which correspond, in a micromirror implementation, to
stamps and rendering windows of the stamp. The output of the fracturing engine is
geometry data in one or more specified record formats. The records represent geometric
figures, such as polygons and groups of polygons. It is useful to represent the fractured
data as trapezoids, where triangles and rectangles are sub classes of trapezoids. One of
the parallel edges of the trapezoid may have a zero or near-zero length, to represent a
triangle. Another useful representation of fractured data is as triangles or chains of
triangles. Most aspects of the present invention are equally suited to trapezoids,
rectangles, triangles or other polygons or geometric figures. Coordinates of the polygon
corners may be given with a sub-pixel or half sub-pixel resolution of 7 or bits or more, to
support an accuracy of one 64" or 128" of a pixel or greater. Higher and lower bit
resolutions may be used, depending on the desired accuracy and the characteristics of the
image projection technology.

[063] The image rendering engine 210 includes a variety of components.
Expansion 211 is the process of expanding geometry iteration prior to rendering.
Fractured geometry may be received as iterated RFGs, with repeated geometric figures or
repeated groups of geometric figures. Expansion ungroups the RFGs so they can be
processed individually. Rendering 212 is the process of converting polygons, including
renderable fixed-point geometries, to rasterized images. The rendering process is carried
out on multiple rendering processors. Super sampling 212 is the process of sampling the
micro pixel resolution image and calculating grayscale pixel values. (In this document,
sub-pixel and micro pixel generally refer to the same subdivision of a pixel.) Alternative
weighting schemes for super sampling are discussed below. Edge displacement 213 is the
process of shrinking or expanding geometries, for instance to compensate for proximate
and stray radiation by laser proximity correction (LPC) or by optical proximity correction
(OPC). Image correction 214 is the process of compensating for non-linearities and
minor defects in the optical path, the placement of the stage or another feature of the
projection system. This may include non-linear image recoupling. Ilumination
conversion 215 takes into account factors such as overlap between projected regions,
variations in exposing radiation, and multi-pass writing. Mirror compensation 216
applies pre-calibrated factors to compensate for idiosyncrasies of individual mirrors,

when the projection system uses a micromirror array. Mirror compensation factors can be
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used to compensate for differential response to voltages, for change in response during
the course of a work cycle, for a dead pixel in an array, or similar characteristics of a
micromirror array. Additional components can be added to the rendering engine 210 as
needed and as appropriate to the projection system being used.

[064] The drive circuit 220 includes composition 221 and modulation 222
processes. Composition 221 is the process of combining results from several rendering
processes into one or more data streams to which modulation is responsive. Use of a
composer allows the number of rendering modules 330 to be scaled. For instance, the
number of rendering modules may be increased from 10 to 12 by modification of
composer parameters, without changing the interface to the modulation system. In one
type of micromirror system, one data stream may be used for modulation, to set
individual micromirrors before flashing the micromirror array with radiation. In another
type of micromirror system, the number of data streams may match the number of
micromirrors or a factor of the number of micromirrors, if the micromirrors are used for
scanning a work piece. In a conventional scanning system, the number of data streams
may match the number of scanning beams used. Modulation 222 is the process that
converts concentrated data into driving values for the projection system. For a
micromirror system, a digital-to-analog converter can be used to produce analog voltages
that are applied to individual mirror elements. For a scanning system, drive signals may
be used to control an acousto-optical modulator that modulates the radiation beams or an
equivalent control element for electron, ion or particle radiation.

[065] A non-linear transform may require application of a pixel resampling
gradient to each pixel being resampled. Alternatively, gradients for each pixel could be
sampled by a convolution kernel to produce an output pixel value. The neighborhood of
the convolution kernel will depend on the maximum allowed magnitude of the gradient.
A one pixel gradient could be sampled by a 3 x 3 kernel; a two pixel gradientby a 5 x 5
kernel. .

[066] A projection system typically also includes a sweep 230 and a reticle 240.
The sweep 230 carries image information across the field of the reticle 240 which is being
exposed to radiation. The reticle 240 is the work piece against which the projection

system operates.
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Raster Cluster Overview

[067] Figure 3 is a block diagram providing an overview of data processing. A
writer controller 310 controls projection of an image onto the work piece. The writer
connector 310 may be coupled in communication with a cluster coordination process 321
by one or more interfaces. In figure 3, a Telnet interface and a writer to rasterizer
interface (WRI) are depicted. A WRI interface may comprise a TCP/IP socket and
interface between supervisory control software functioning on the writer control 310 and
a cluster coordination process 321. This interface synchronizes the rasterization process
with the processes of fetching and computing data in the fracturing engine and exposing
the work piece. Across this interface, the cluster coordination process 321 may report to
the writer control 310 the position of the stage and the current state of writing functions.
The cluster coordination process 321 is one of a group of processes 320 that rely on
rendering modules 330 to render the RFG geometries. The cluster level processes 320
support multiple clusters 322, 324. Clusters include a cluster controller 323, which
provides support and mask writing processes 323. Clusters further include one or more
rendering modules 331. The cluster controller 323 may be designed to support up to
seven rendering modules, consistent with existing PCI protocols, or may be designed for
more or fewer modules and different bus structures as required to achieve the desired
throughput and as consistent with other bus protocols. The organization of tasks depicted
in figure 3 affords flexibility and scalability. Less flexibility and higher speed operation
could be achieved through an alternative hardware organization.

[068] This overview at the cluster controller level is supplemented, below, by
additional description of hardware on which various methods of the present invention

may be implemented.

Overview of Rasterizing Methods

[069] Figure 4C provides a basis for explaining terminology that is helpful in
understanding aspects of the present invention. The SLM (Spatial Light Modulator) is, in
one embodiment practicing aspect of the invention, a rectangular array of micromirrors
used to modulate a laser pulse used for exposure. A stamp (e.g., 431A-431E, individually
or 434A-434F, collectively) represents a single exposure of the SLM. A strip (e.g., 432)
is a horizontal series of overlapping stamps. Horizontal may or may not be the physical

representation of the strip. Horizontal may defined by the orientation of a strip, which is
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in turn defined by the sweep motion of the SLM across the work piece. The stamp area
includes an overlap zone. The height of stamps in a strip may be equal or may vary. The
width of the stamps also may vary from stamp to stamp. The time order of the stamps in a
strip is most likely to be sequential. It can have either left-to-right or right-to-left
orientation, or both. An image is a vertical sequence of strips (e.g., 432 through 432A-
432C.) The individual strips of may or may not have the same width. The strips of an
image have vertical overlap areas 433, similar to adjacent stamps of a strip. The overlaps
among stamps are further discussed below. Stamps may consist of data from one or more
modulator windows 434A-434F. Alternatively, a modulator window could include an
entire strip 432 or substrip (e.g., 432A) that spans several stamps. The partitioning into
rendering windows is used to implement parallelism in the data path of the rasterizing
engine. Strips may be divided into two or more substrips 432A-432C. Substrips need not
overlap, as they are printed by a single stamp exposure. In the rendering process, their
extension zones, as described later, overlap and so the input data for generating substrips
overlaps slightly. The divisions of substrips may corresponds divisions between
modulator windows in the stamps. Substrips within a strip have the same width, from one
side of the image to the other, but need not have to have the same height.

[070] Figure 26 provides a further overview of rasterizing and rendering. It
illustrates parameter files (2611-2626), support software (2630-2645), parameter loading,
and functional components of rendering modules (2662-2668). The use of many data
tables or files may increase the flexibility of the system. Data values preferably stored in
tables can, alternatively, be coded into software, firmware or hardware implementing
aspects of the present invention. Hard coding typically reduces flexibility but increases
performance.

[071] In figure 26, the mask parameter file 2611 may be used for parameters that
are static. Processing may be done on a strip by strip basis. Process critical information
may change from strip to strip. Some of the input files may be the same from strip to
strip, from mask-part to mask-part and from job to job. The alteration of parameters
loaded in the system is performed on a mask-by-mask or strip-by-strip basis by the CPAS
software process of the platform processor. A further aspect of the present invention is
that parameters used by the system can be altered within a strip, for instance, as the
writing process reaches a corner of work piece where resist baked hotter than in the center

of the work piece.
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[072] The strip header file 2612, window section 2613, and command
parameters 2614 contain information common to all stamps in a strip. It describes the
segmentation of the SLM into windows. The parameters that affect the RASE processing
are: The number of sub-strips, which represents the Y-axis segmentation of the SLM into
modulator windows. This parameter corresponds to the number of modules in the system
configuration. A table of sub-strip heights, which affects the RP (Rendering Processor) ,
which uses sub-strip height for the rendering address generation process and the readout
process. It also affects pixel data column height parameters. A table of sub-strip Y
coordinate offsets, which is used by the geometry pre-processor to give the Y offset for
the individual substrips. The rendering window size X, which affects the geometry pre-
processor, which uses X window size for the fracturing of complex geometries. It is also
used for guard window truncation by the address generator of the RP. The rendering
window pitch X, which is the distance between rendering windows. The X overlap zone
size can be calculated from the difference between the SLM size and the rendering
window pitch. The X pitch is used by the geometry pre-processor (PP) for the fracturing
of complex geometries and coordinate offset calculation on the geometries presented to
RP. The extension zone size X and Y, which is used by pixel neighborhood operations
(edge displacement), and affects fracturing in the PP. The rendering window size minus
the extension zone equals the modulator window size. This parameter is an implicit part
of the AP, and must always match the design of the AP. The adjustment parameter file
2621 contains several data types. It generally contains control information to the
processes implemented in the adjustment processor. This parameter section contains a
run-length encoded bitmap of the area codes. The number of area codes for an individual
modulator window is limited in one implementation to 128, but the total number of area
codes for the SLM may go as high as 512. Each run-length record has two values:
Overlap zone ID and Area Code. The number of overlap zone ID’s may be restricted to
at maximum 15 per modulator window. The illumination conversion section of the file
contains one transfer function table for each of the overlap zone ID-s. The mirror table
section contains one scale/offset entry [Cn2/Cnl] for each mirror compensation
coefficient [Cn] (n=1..4). The mirror function section of the AP parameter file contains
function tables for the two functions of the mirror compensation calculation, and a set of
scale/offset for each of the parameters C1..C4. The mirror calibration file contains an

image map with one entry for each pixel of the SLM with four calibration parameters
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(C1..C4) per pixel. General information regarding bit widths and offsets for the mirror
compensation function is stored in the mirror table section of the AP parameter file. This
file is in binary format for size reasons, as opposed to most other parameter files, which
are text based. The assignment of parameters to these files or sections of these files is not
a limitation on the invention, but one embodiment.

[073] The correction factors may be stored in a file for correction of static or
systematic features of the optical path, or may be generated in real time for dynamic or
random features of the system, such as stage placement.

[074] The CPAS software 2630 supplies parameters from files to the rendering
modules 2660. The logical blocks 2631-2645 correspond to the parameter files described
above. The CPAS software modifies parameters in the rendering modules in real time,
consistent with radiation exposure requirements. At least three resist issues can be
addressed by changing parameters in the rendering modules 2660 during the writing of a
reticle or direct writing of a chip. Baking of resist on a surface is not entirely uniform. In
many cases, the edges or corners of the surface bake faster or more thoroughly than the
center of the surface. Parameters can be set that take into account the position on a work
piece that is being exposed, corresponding to the bake characteristics of that part of the
work piece. The edge displacement and illumination conversion parameters can be used
to respond to surface baking characteristics. Next, resist response to exposing radiation
depends on how the exposure accumulates. That it, radiation doses do not have a linear
additive effect on the resist. Many resists are sensitized by their initial exposure.
Radiation doses of A followed by B will produce a greater response than a single dose C,
where the energies A + B = C. Resist activation can be taken into account by having the
CAPS software load appropriate parameters into the rendering modules in successive
printing passes. In addition, resist aging can effect response to exposing radiation. Some
resists are short lived, compared to the time required to expose a reticle or chip in
multiple passes. As the resist ages, it may become less sensitive. Resist aging can be
taken into account by having the CAPS software load appropriate parameters into the
rendering modules, based on resist aging. Alternatively, such issues can be addressed by
values in the energy spread compensation factor (ESCF) tables, which pass from the

geometry expansion module 2662 to the illumination conversion module 2666.
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Guard Window Alternative to Clipping

[075] Figure 4 depicts use of a guard zone and guard window to render
individual elements of the fractured geometries. The areas depicted in this figure include
a rendering window 401, a guard window 402, and a guard zone 403 between the
rendering and guard window. The rendering window is a smaller addressing window and
the guard window is a larger addressing window.

[076] Figure 4A illustrates the use of a guard zone and guard window in the
rendering process as alternatives to clipping geometric figures in the fracturing process.
A rendering window 401 corresponds to memory in which geometric figure can be
rendered for later projection. The rendering window 401 is surrounded by a guard
window 402. The guard zone 403 is the part of the guard window 402 outside the
rendering window 401. A geometric figure, such as a polygon, trapezoid, rectangle,
quadrangle, triangle, etc., is received for rendering. The geometric figures may be
convex. The geometric figure 404, a so-called renderable fixed-point geometry (RFG),
which falls within the rendering window 401, is rendered to a corresponding memory. A
geometric figure 405, which straddles the rendering window and guard zone, is partially
rendered to memory. The guard zone is addressable for rendering, but the data is not
written to memory for projection of an image. The data outside the rendering window is
discarded. The guard zone may not correspond to memory, in the sense that the rendering
window does correspond to memory. Data addressed to the guard zone can be handled
very quickly with a filter, because memory transfer is not required. A geometric figure
which straddles the rendering window and guard zone is not clipped at the boundary of
the rendering window during fracturing. As explained below, hardware can be
constructed which simultaneously renders the edges that are inside and outside the
rendering window. This rendering may not distinguish between edges inside and outside
the rendering window. Rendering the edge and area that are outside the rendering
window does not significantly slow rendering of the straddling geometric figure 405, in
comparison to rendering only the part of the geometric figure inside the rendering
window. Rendering of geometric figures can be assisted by restricting the geometric
figures in two ways. First, the geometric figures can be limited in size so that no
geometric figure can fall within the rendering window 401 and outside the guard window
402. Such geometric figures can fit within the guard zone. Second, the geometric figures

can be filtered before rendering so that no geometric figure that is entirely outside the
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rendering window 401 is processed for the rendering window. Data rendered to the guard
zone can be filtered or discarded before it is stored in a cache buffer, as further described
below, thereby reducing memory bandwidth loads. Alternatively, addressing circuitry
can recognize addresses in the guard zone when geometric figures were translated from a
micro pixel cache to a buffer memory corresponding to the rendering window. This
addressing circuitry could truncate writes of the geometric figure to the rendering
window. The addressing circuitry could compare address signals with the valid addresses
of the rendering window and use the result to control the write enable, or another memory
arbitration signal. Alternatively, a fixed length fill instruction beginning or ending in the
guard zone could be modified to match the portion of the instruction falling within the
window. A discrete instruction falling inside the guard window could be ignored by the
address processing circuitry. Addressing circuitry or a memory controller implementing a
guard zone could be combined with a FIFO memory, as described in conjunction with
circuitry implementing an adjustment processor, to achieve load averaging. In a
rendering process, sections of a geometric figure are repeatedly selected and micro pixel
caches are generated as described below. The micro pixel caches are one alternative set
of rasterized representation data that corresponds to the section. A micro pixel buffer is
another representation.

[077] An extension of the rendering and guard window concept is an extension
zone. An extension zone includes a few pixels outside each edge of the rendering
window 401. An extension zone, like the rendering window, corresponds to memory.
However, the pixels in the extension zone are not used for projection of an image.
Instead, they create a neighborhood of pixels that can be used for convolution of one or
more pixels at the edge of the rendering window. The size of the extension zone should
support the largest neighborhood of pixels used in any convolution. For instance, if a 5 x
5 convolution filter or neighborhood is used, or a dual application of 3 x 3 convolution
filters, the extension zone should be at least two pixels, so that pixels on the edge of the
rendering zone are surrounded by two pixels in each direction to create a 5 x 5

neighborhood for convolution.

Rendering Window Configuration

[078] Figure 4B further illustrates the geometry of rendering windows, as

applied to a micromirror array. Two flashes of the micromirror array are depicted 460,
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470. The array 460, is divided in this example into four rendering windows, including
451, 461. The array may be divided horizontally, vertically, or both into a suitable
number of rendering windows. A 512 by 2048 array might be divided into ten rendering
windows, for instance, to distribute the rendering work to ten rendering processors. A
rendering window 451, 461 is surrounded by an extension zone 452, 462. Rendering
window 451 is further surrounded by the guard zone 453. A stamp strip 475 includes a
plurality of stamp projections. A sub strip 471, 481 includes a plurality of rendering
windows and their extension zones, which may extend across a plurality of stamps. As
the sub strips and extension zones are larger than the rendering windows, an origin for
addressing may be at one corner of the extension zone 465. This origin may be used for
local addressing, for a particular rendering window and its extension zone, or for global
addressing throughout a sub strip or stamp strip. Local addressing reduces the number of
bits required for interpolation of geometry edges. Another useful origin for addressing
may be one corner of the guard zone 463.

[079] Figure 4D depicts transformation of global coordinates to a local
coordinate system. In one type of input stream, coordinates are given in soft-pixels
relative to current strip. A soft-pixel is one half of a micro pixel. One function of the
pre-processor is to prepare coordinates for the rendering processor, converting all
coordinates to a relative origin. In this figure, a trapezoid 404 is contained within the
rendering window 401, which is within the guard window 402. The coordinate
transformation may be described by vector operations shown in the figure. Let

M = (M;, M,) = origin of current modulator window relative strip.
G = (Gx,Gy) =origin of current guard window relative strip.
V = (V,,Vy) = geometry coordinates to be transformed.

m = (my,my) = origin of current modulator window relative guard window origin.
V = (Vx,Vy) = new geometry coordinates.
Then

G=M-m

v=V-G
Combining these equations yields:

VX=VX_Mx+mx

[080] Parameters M,, my and Gy may be stored in registers. My may be a 9 bit
unsigned integer; My = k*SLM_PITCH*128, where k is stamp number, k >=0. m, may
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be a 9 bit signed integer. Gy also may be a signed integer, of 11 bits. Note that parameter
values may be expressed in macro pixels.

[081] In an alternative embodiment, a rendering window might be wider than a
micromirror array, even as wide as an entire sub strip. A single rendering engine or group
of rendering engines may generate an entire sub strip or strip of stamps, depending on the
performance and organization of the rendering engine, the required throughput (for
instance, with large area writers), and the buffering of rendered output. A wide rendering
window may be particularly useful for a projection system that uses scanned radiation or
for a micromirror-based system with substantial overlap between successive flashes of the
micromirror array. In this embodiment, sections of the rendering window could be read

out for successive flashes.

Pixels and Sub-pixels for Enhanced Resolution

[082] Figures SA-B depict the use of a micro pixel or sub-pixel array to
represent a gray value assigned to a pixel. Above, figures 1A-B illustrated the impact of a
pixel gray value on an edge location. Figures SA-C, illustrate sub-pixels representing 65
gray levels (including all-white.) The same principles apply to use of 5, 10, 17, 26, 37,
50, 82, 101, 122, 145, 170, 197, 226, 257 or, generally, n squared plus 1 gray levels.
Similar principles apply to use of 4, 8, 16, 32, 64, 128 or 256 gray levels. It is convenient
to use an 8 x 8 grid of sub-pixels to represent a pixel. Other grid configurations may
include

3 X 3 sub-pixels, 4 x 4 sub-pixels, 16 x 16 sub-pixels or more. These sub-pixels may be
referred to as empty or filled or as on or off. Because resists may have a negative or
positive response to exposure, negative or positive representation of a sub-pixel is an
arbitrary convention. Figure 5A illustrates a vertical edge of a geometric figure running
through the middle of a pixel. The pixel has eight rows 501 and eight columns 502 of
sub-pixels. The geometric figure edge intersects 503 at a distance 510 along the top edge
of the pixel. In this example, the geometric figure edge intersects 504 at the same
distance 511 along the bottom edge of the pixel. The geometric area bounded by the
geometric figure edge is exactly half the pixel. This particular edge follows a boundary
between sub-pixels. The shaded sub-pixels to the left of the edge are outside or inside the
feature defined by the edge, depending on the shading diagram convention; the white sub-

pixels to the right of the edge are inside or outside the feature. The 32 shaded sub-pixels
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represent half the area of the pixel. A gray value of 32 can be assigned to the pixel,
corresponding to the number of sub-pixels which are shaded. Figure 5B illustrates a
diagonal edge of a geometric figure. This edge intersects the top pixel edge in the middle,
at a distance 530 represented by 4 of 8. This edge intersects the bottom pixel edge 531 at
a distance of 7. The geometric area of the region to the left of the geometric figure edge
is 68.75 percent of the pixel. This geometric area is represented by 44 sub-pixels in a
stair-step pattern, which have an area that exactly matches the geometric area of the
shaded region.

[083] The grid representation of sub-pixels can be further refined by allowing a
geometric figure edge to intersect between sub-pixel boundaries. It is convenient to
subdivide an edge of a sub-pixel into a number of increments that are represented by a
power of two, such as 2, 4, 8, 16, 32 or 64 increments, which correspond to 3, 5, 9, 17,
33, or 65 potential intersection positions per sub-pixel, if both edges of the sub-pixel are
counted. The number and pattern of sub-pixels used to represent a geometric figure edge
that intersects sub-pixel edges between boundaries can be pre-calculated, as described

below.

Two Level Rendering

[084] Figure 6 illustrates two geometric figures on a pixel grid, using sub-pixel
arrays to represent gray values of the pixels. Grid 610 includes eight rows 601 and eight
columns 602 of pixels. Two geometric figures 611, 610 are rendered from the geometry
domain onto the pixels. Grid 620 indicates whether individual pixels are white (W), gray
(G) or black (B). Pixel 621 is black; pixel 622 is gray; and pixel 623 is white. Two bits
of data can be used to represent each pixel, 00=B, 01=W, 10=G and 11=reserved. Pixel
624 is represented by the grid 640 of sub-pixels. Shaded pixels 641 that are white or gray
in the pixel grid 620 are on the interior of one of the geometric figures. Other pixels 642
are outside the geometric figures. Grid 630 indicates gray values for individual pixels.
For instance, pixels corresponding to the left edge of geometric figure 611, where the
edge divides pixels in half, have the gray value of 1/2 (or 32/64.) Pixel 632, on the
hypotenuse of geometric figure 611 has a gray value of 1/2. Pixel 633, on the interior of
the geometric figures, has a gray value of 1, representing fully on. Pixel 634 has gray

value of 5/8, corresponding to the 40 shaded sub-pixels in grid 640. In a pipeline or other
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optimized architecture, independent channels may provide access to the first, pixel map
resolution and to the second, higher resolution of micro pixel caches.

[085] Sub-pixel representations of pixels can correspond to memory locations,
such as 32- or 64-bit words, mapped directly to individual pixels. Alternatively, a pointer
structure could be used to map individual gray pixels to locations storing sub-pixel grids.
In any case, the sub-pixel grids only need to be updated for gray pixels, not for black or
white pixels. A sub-pixel array can effectively be erased by marking the corresponding
pixel array element "B", without changing the value of individual sub-pixels. The next
time the sub-pixel grid is used, values can be written to the sub-pixel grid without reading
the data first.

[086] In an alternative embodiment, sub-pixels could be assigned gray values
instead of binary values. Some logical operations for combining pixels would need to be
replaced by addition or subtraction operations. Gray values in sub-pixels could be used to

further refine resolution.

Two Levels with Summary Cache

[087] One enhancement of this method and apparatus utilizing two levels of
resolution would be to introduce a third set of memory locations to summarize a gray
value of a sub-pixel array or grid. In some hardware implementations, such as a pipeline
architecture, the gray value of a sub-pixel grid could be calculated when data was written
to or recorded in a sub-pixel grid. The gray value could be a count of the number of
empty or filled sub-pixels or it could be a weighted sum of sub-pixels that are filled or
empty. Weighting might be advantageous for either a micromirror array or a laser beam
sweep, because the intensity of radiation projected at the focal point of the projected
beam is greater than the intensity some distance from the center. The Gaussian
distribution of radiation intensities associated with most radiation sources may be better
represented by a weighted sum of sub-pixels. Figure 44 illustrates use of just 10 weights
to represent a Gaussian or similar distribution of exposing radiation in an 8 x 8 array of
sub-pixels. By its nature, a Gaussian or similar distribution is symmetrical, so the
weights applicable to the four quadrants of a pixel can be taken as the same. Symmetry
further allows a single weight or coefficient to be assigned covering pairs of numbered
sub-pixels, such as the sub-pixels pairs labeled 2, 3, 4, 6 and 9. With this extent of

symmetry, computation can be streamlined by counting the identically weighted 2 sub-
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pixels in all four quadrants before applying the weight. Processing would proceed from
counting to applying weights. The weights and the sum of weights should be calculated
using a fixed point numerical representation, with binals. The sum of weights could then
be rounded off before use. The weights assigned and even gate programming used in
some embodiments of the present invention to implement the weights would be field
programmable, using logic such a Xilinx’s partial reconfiguration interface. The
approach in figure 44 extends well to sampling from a more circular or larger
neighborhood. Supersampling from a larger neighborhood could be done in a square,
with weights in corners of the square set to zero to effectively generate a circular
sampling from a square neighborhood. Many variations on supersampling are practical
and field programmable, in accordance with the present invention.

[088] An alternative to using a third set of memory locations would be to
increase the number of bits used to represent individual pixels, so that a gray value could

be represented by the pixel grid.

[089] Figure 7 depicts one hardware architecture that could be applied at read-
out or be adopted to apply when writing to a micro pixel cache, to summarize the gray
value of a pixel. Figure 7 illustrates counting the number of on/off micro pixels in a 64
bit microcache, with two levels of resolution. The bits of the micro pixel cache array 701
are fed to four counters or summation circuits 702. In an alternative embodiment, these
circuits 702 could apply a weighting scheme to the micro pixels. The results of circuits
702, in turn, are combined by one or more adders 703 to produce a gray value 713 for the
micro pixel cache. A two-bit MUX 705 can control the selected output of the overall
circuit, for instance, when reading from the micro pixel cache. The two input bits 704 are
from the pixel map, which records whether each pixel is black, white, or gray. For gray
pixels, the MUX 705 passes through the result of the adder 703. For black or white
pixels, the MUX 705 passes through a static value 711, 712 that corresponds to all of the
sub-pixels being on or off. In an alternative embodiment, a fetch from or write to the
micro pixel cache could be avoided if the pixel map 704 indicates that the pixel is black
or white. This reduces the demand for access to micro pixel cache memory. This circuit
could be adapted to super sampling when a value is written to a micro pixel cache.

Adaptation would involve utilizing the summation hardware 701-703 and assuming that
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the write was being performed because the pixel was gray. The super sampled value

would be written to a gray value memory.

Parallel Processing of Edges

[090] Figure 8 illustrates the operation of a micro pixel cache generator on a
trapezoidal geometry. The micro pixel cache generator contains two Bresenham
interpolation units working in parallel on opposite edges 802, 803. One reference which
explains the Bresenham rendering algorithm is F. S. Hill, Jr., Computer Graphics, ISBN
0-02-354860-6, pp. 428-433. Bresenham’s algorithm uses integer values and avoids
multiplication. It is an example of an incremental algorithm that computes the location of
each pixel on a line that is being rendered, based on information about the previous pixel.
Bresenham is one of a number of curve and line generating methods that might be used
with the present invention. The two Bresenham interpolation units are preloaded during
initiation with the coordinates for opposing edges of the geometry. Interpolation
commences after the preloading. Interpolation iterates from one parallel edge of the
trapezoid to the other. If polygons are used instead of trapezoids, iteration may proceed
generally in the direction of an axis of the selected coordinate system 801. It begins with
one corner of the geometry and proceeds along the axis until an opposite corner is
reached. During interpolation, one or more micro pixel cache sets are generated for every
interpolation step. These cache sets represent sections through the geometric figure. The
micro pixel cache sets are stored in a micro pixel cache buffer. Five micro pixel cache
sets 810-50 are depicted in figure 8. For a specific coordinate along the interpolation axis
801, when both interpolation units indicate that interpolation is complete, an address set is
generated and stored in the micro pixel cache buffer. This address set, together with
individual micro pixel caches generated since the last address set was assembled, forms a
micro pixel cache set. In the address set, a first edge (e.g., 811, 821, 831, 841, 851)in a
cache set (e.g., 810) is represented by addresses X1S and X1E. In this notation, "X"
indicates the orientation of the axis, "1" represents the first edge, "S" represents the
starting pixel for rendering part of the edge and "E" represents the ending pixel for
rendering part of the edge. In the address set, a second edge is represented by addresses
X2S and X2E. The interval between the X1 and X2 addresses for the first and second
edges represents an area of enclosed data which may not contain any sub-pixel

information. When a trapezoid with top and bottom edges parallel to the coordinate
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system is rendered, a single micro pixel cache may be used to represent all of the pixels
along the top or bottom edge (812, 852), between the corners (811, 813 and 851, 853).
When the geometric figure rendered does not have a top or bottom edge parallel to the
coordinate system, there may not be any enclosed area between the edges. Above the
bottom edge and below the top edge, the enclosed area (822, 832, 842) is completely
filled and can be represented without a micro pixel cache, implicitly or using the two-bit
coding scheme described above, or, for consistency, it can be represented by a filled
micro pixel cache.

[091] Figure 9 presents a special case of rendering a trapezoid, where two points
in the trapezoid have the same or nearly the same location, effectively reducing the
trapezoid to a triangle. For consistency, four address points may be included in the data
stream provided by the fracturing engine. Five micro pixel cache sets, 910-50, are again
represented in this figure. The interpolation axis 901 is vertical. The first edge (911-951)
is also vertical. The second edge (913-953) is the hypotenuse of the triangle. The bottom
enclosed edge 912 lies between the interpolated edges. There is no top edge. Micro pixel
cache sets 920, 930, and 940 include completely filled pixels 922, 932, and 942. The
distance 903 between addresses X2S and X2E corresponds to the number of pixels which
have sub-pixe] grids representing parts of the slanted hypotenuse.

[092] Figure 10A represents a further special case, where the geometric feature
is represented by a single micro pixel cache set 1010. The interpolation axis is 1001. As
in figure 9, the trapezoid has been reduced to a triangle. The left edge extends through all
three cells 1011, 1012, and 1013. The right edge is contained in cell 1013, having a pixel
width indicated by 1003. Because the intervals X18S ... X1E and X2S ... X2E overlap, the
overlap represents an area where the micro pixel caches are combined with a logical and-
operation. Further because the entire geometric feature is represented by single micro
pixel cache set, the micro pixel caches representing the bottom edge of the triangle need
to be combined with micro pixel caches for part of the left edge with a logical and-
operation.

[093] Figures 10B-D illustrate part of the data transmitted with a micro pixel
cache set. Figure 10B depicts a trapezoid with a narrower base than top. It fitsina 7 x 7
pixel grid. The micro pixel caches generated by parallel processing of top and bottom,
and left and right edges for this trapezoid generally begin with top and bottom and

proceed from bottom to top:
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Left processor (;:icrhe Right processor
L6.1 9 R 6.7
L5.1 8 R 5.7
L4.1 7 R 5.6
L42 6 R 4.6
L3.2 5 R 3.6
L22 4 R 2.6
L23 3 R25
L13 2 R15
T6.1 1 B13

Processing the edges in a fixed order, such as the order listed above, can increase
throughput of various blocks of rendering logic. In an alternative embodiment, the edges
could be processed in a different order, the parallel edges of the geometric figure could be
vertically oriented, or the geometric figure might not be a trapezoid. In this example, the
top (T) and bottom (B) edges are parallel edges of the trapezoid. In the first iteration,
horizontal lines are rendered corresponding to the top and bottom edges, using the pixels
in which they intersect with the left edge, i.e., the top in pixel 6.1 and the bottom in pixel
1.3. Successive iterations render the left and right edges. In the second iteration, the right
and left edges in row 1 are fully contained in a single pixel. Row 2 requires two
iterations, third and fourth iterations, to generate micro pixel caches, because the row 2
sections of the left and right edges span two pixels. In addition to pairs of caches,
polygon interpretation includes generating address sets. The address set includes a row
coordinate (Y) and four column coordinates, X1S, X1E, X2S, and X2E, where S indicates
the edge start and E indicates its end. The distance between X1S, X1E, and X28S, X2E
defines where the left and right geometry edges are located for each row. The distance
between X18S, X1E, and X2S, X2E represents an area of enclosed data or an enclosed

section of a top or bottom edge. One address set is generated for each row of pixels:

Y X1S XI1E X2S X2E
6 1 1 7 7
5 1 1 6 7
4 2 1 6 6
3 2 2 6 6
2 3 2 5 6
1 3 3 5 5
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The relative sizes of the X1[S]tart and X1[E]end for the left edge indicate that the edge
slants to the left as it rises. The order in which pixel caches are generated by the left and
right processors can be deduced form the table.

[094] Figure 10C-D illustrate address sets in a pair of special cases. Figure 10B
is a small rectangle, vertically oriented. It is small in the sense that it is one pixel wide or
less. The address set for Y row 5 is illustrated. All four X parameters have the same
value. Figure 10C is a small rectangle, horizontally oriented. There is only one address
set for this rectangle, in Y row 5. Identification of small geometric figures, such as small
rectangles, can facilitate processing.

[095] Figures 11A-D help illustrate pixel rending within a micro pixel cache and
use of extension of polygon edges to begin application of a Bresenham algorithm. Each
of the figures represents an 8 x 8 sub-pixel grid for a single pixel. One operation useful
for rendering is to determine the intersection (11024, 1102B, 1112C or 1112D) of an
edge projection with the edges of a pixel. Four cases involving trapezoids are presented
in the figures. The angles of the trapezoid side edges in figures 11A and 11B are greater
than 45 degrees from horizontal. In figure 11A, xTop 1101A falls to the right of the
corner (Xm, Ym) 1103A. In figure 11B, xTop 1101B falls to the left of the corner (Xm,
Ym) 1103B. The remaining two cases in figures 11C and 11D involve angles less than
45 degrees from horizontal and right/left yTop 1111 to yBottom 1112 relationships. The
formulas for calculating the intersection of an edge projection with the edges of the pixel

depend on the four cases illustrated. For angles exceeding 45 degrees:

Cases A and B
xBottom= Xm- (dx1/dy)*Ym
XTop=xBottom- (dx1/dy)*Micro pixelCacheWidth

Case C Case D

yBottom= Ym- (dy/dx1)*Xm Ym+ (dy/dx1)*MPCWidth

yTop= yBottom+ (dy/dx1)*MPCWidth yBottom-(dy/dx1)*MPCWidth
[096] The pixels (“MiPxCaW?”) are rendered using the Bresenham algorithm.
Pixels that are intersected by an edge are rendered using micro pixels. To find the
MiPxCaW the following algorithm may be used:

1) Find the MiPxCaW where the lower left corner is.

2) Find the distance to from the lower left corner of that MiPxCaW to the
intersection of the extension of the edge and the lower edge of the MiPxCaW

31



10

15

30

35

40

WO 03/023488 PCT/SE02/01609

(xBottom). This is given in units of macro pixels as a fixed-point coordinate with
7 binals. This distance is:

xBottom = X — @ Y

dy

where (X,Y) are the coordinates of the corner calculated from the lower left corner
of the present MiPxCaW.

3) Using xBottom the next intersection is calculated as

xTop = xBottom + %M iPxCaWinWidth,
Yy

4) If 0 <= xTop < MiPxCaWidth, the micro pixel rendering should be performed
in the MiPxCaW just above the present one.

5) If xTop >= MiPxCaWidth, the micro pixel rendering should be performed in a
MiPxCaW to the right of the one just above the present one.

6) If xTop < 0, the micro pixel rendering should be performed in a MiPxCaW to
the left of the one just above the present one.

7) Repeat until the upper row is reached.

Instead of using floating point numbers to represent (dx1/dy), everything can be
multiplied by dy to give integers. If the slope of the edge is small one may have to take
several steps sideways to get to the next MiPxCaW on the next row. This is not the case
if the angle betweén the edge and the x-axis is restricted to be more than 45 degrees.
Smaller angles can be rendered by rotating the geometry 90 degrees. The code for the

Bresenham algorithm in the case where angles larger than 45 degrees are accepted is:

eleft = dy * xBottom =dy * X - dx1 * Y;
eLeftShift = dx1 * MiPxCaWinHeight;
eLeftCond = dy * MiPxCaWinWidth;

xBottom = eLeft/dy;

eleft+= eleftShift;

while (eLeft >= eLeftCond) {
eleft-= eLeftCond;
MiPxCaWNumber+=1;

}

while (eLeft < 0) {
elLeft+= elLeftCond;
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MiPxCaWNumber -=1;
}

xTop = eLeft/dy;

The variable MiPxCaWNumber is the consecutive number of the MiPxCaWs that should
be moved to the left or right, depending on whether the slope is positive or negative. The

right edge is rendered in a similar manner.

[097] The input parameters for rendering the left edge are the following:

XBottom Lower intersection of the edge and the MiPxCaW grid.

XTop Lower intersection of the edge and the MiPxCaW grid.

CacheWinLeft Number of the MiPxCaW where the rendering starts.

StartCacheWin Number of the MiPxCaW which is the first one to the right of the edge.
This is the first to be filled in the interior. This is a return parameter.

StartRow Lowest micro pixel row to be rendered. This is used on the lower edge-

StopRow Highest micro pixel row to be rendered. This is used on the upper edge.

In hardware, it is possible that the rendering on micro pixel level should be pre-computed
and stored in tables.
[098] The principle for rendering micro pixels inside a MiPxCaW is the same as
for finding the MiPxCaW in the first place. The procedure is the following:
1) Find the sub-micro pixel part of xBottom and use that as a starting value and
call it xBottomMi.
2) Fill the micro pixel through which the edge is entering the MiPxCaW.

3) Calculate which micro pixel the edge goes through on the next micro pixel line
using the Bresenham algorithm. Basically, MiPxHeight = size of a micro pixel in
fixed point units.

xBottomMi += (((xTop — xBottom)/MiPxCaHeight) * MiPxHeight;
if (xBottomMi >= MiPxWidth) {

xBottomMj -= MiPxWidth;
mMiPxNumber++;

}

4) As for the MiPxCaW, multiply this by MiPxCaHeight to get integer relations.
The code for the Bresenham algorithm is presented below.

xMiOffset = subMiPxBin(xBottom) * MiPxCaHeight;

shift = (xTop — xBottom) * MiPxHeight;
cond = MiPxWidth * MiPxCaHeight;
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xMiOffset+= shift;

while (xMiOffset >= cond) {
xMiOffset-= cond;
MiPxNumber+-+;

}

while (xMiOffset < 0) {
xMiOffset+= cond;
MiPxNumber--;

}

[099] Figure 53 is a flowchart describing one embodiment of applying the
Bresenham algorithm. Initialization steps are carried out at 5301. Tests at 5302, 5303
and 5306 separate starting points into cases corresponding to figures 11A-D. The code
for these cases is carried out in the blocks 5305, 5304, 5307 and 5308. An anchor point
for the algorithm is set in 5311. The algorithm iterates along the edge being interpolated
in 5312-5321.

[0100] The parameters of the calculations for figures 11A-D are further depicted
in figure 15A. In this figure, a trapezoid 1500 is laid over a grid of pixels 1501.
Examples are given of a horizontal pixel pair 1502 and a vertical pixel pair 1503. The
pixel grid includes a rendering window 1510A and a guard window 1520A. The distance
dx1 1531 is defined as the difference between the x-coordinates of the lower and upper
corners of the left edge. The distance dy 1532 is defined as the difference in y-
coordinates between the top and bottom parallel edges of the trapezoid 1500. Not shown
is the extension zone around the rendering window. The corner is at (Xm, Ym). "dx1" is
the x-coordinate difference 1531 between the top and bottom corners of the left edge. A
similar measure, “dx2”, would correspond to the distance between the top and bottom
corners of the right edge. "dy" is the y-coordinate difference 1532 between the parallel
top and bottom edges of the trapezoid. With a different geometric figure, a two or more
dy values might be required. MPCWidth is the width of the micro pixel cache (which
equals the width of a pixel.) Appropriate units should be chosen.

[0101] It is convenient to render pairs of pixels at once, such as the horizontal
pixel pair 1502 or the vertical pixel pair 1503. The pixel pair can always be selected so
that the edge being rendered, and any projection of the edge, intersect opposite sides of
the pixel pair, instead of cutting off a pixel corner. Along the left edge 1500, horizontal
pairs of pixels are rendered, due to the orientation of this left edge. Along the top edge

1501 and the remaining edges, vertical pairs of pixels are rendered in this example.
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Rendering of paired pixels, including an edge that intersects opposing sides of the pixel,
enables use of a table look-up method described below. Alternatively, Bresenham’s or

another interpolation algorithm can be applied directly, with or without pairing of pixels.

Equalization Pixels

[0102] One alternative for practicing aspects of the present invention is to use
equalization sub-pixels, with or without precalculated sub-pixel bar maps, which are
described in the following section. In one algorithm for rendering micro pixels on the left
edge, those micro pixels through which the edge being rendered intersects the bottom of
the micro pixel, plus all micro pixels to the right (in the interior of the geometry) of the
intersected micro pixel are initially filled. The area covered by the filled micro pixels will
then in general differ from the correct area. To compensate, this discrepancy can be
calculated and when the total area error is more than one micro pixel, a micro pixel is

added or subtracted. The excess area is initially zero. It increases by:

A= |:xB0tt0mM i+ (xBottomM i+ %x_l_ MiPxHeight ﬂ% MiPxWidth
y

for every MiPx row. If the accumulated excess area is larger than one MiPx the edge
should be shifted to compensate. This compensation is performed for both positive and
negative differences, and the equalization micro pixels are added (subtracted), so that the
excess area never deviates more than one MiPx from the ideal area in one MiPxCaW. The
excess area can be set to zero for every new MiPxCaW, or carried from one row of micro
pixel caches to the next.

[0103] The formula above for calculating A is basically the same Bresenham
algorithm as earlier. The two interpolation procedures can be combined to one single

procedure if implemented in hardware.

Use of Precalculated Sub-pixel Maps

[0104] Another alternative is use of precalculated sub-pixel maps for rendering
edges within micro pixel caches, utilizing equalization sub-pixels. Figure 12 illustrates
use of vertical pixel pairs to render angles less than 45 degrees from horizontal and use of
horizontal pixel pairs to render angles greater than 45 degrees. (Angles of exactly 45
degrees can be rendered using either orientation of the pixel pair.) The vertical pair is

along the X1 - X2 axis (1211, 1212). The horizontal pair is along the Y1 - Y2 axis (1201,
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1202). A single pixel or micro pixel cache is bounded by the bold line 1221. A single
sub-pixel or micro pixel is labeled 1225. The shaded area 1222 is filled to represent the
inside (or outside) of a geometric figure. The length of one row of shaded pixels 1223 is
a sub-pixel or micro pixel bar value. Micro pixel bars can be used as an alternative to
continuously performing the calculations necessary for rendering sub-pixel caches.
Micro pixel bars represent precalculated shadings stored in a table.

[0105] A table of micro pixel bars can be constructed using left hand and top
geometry edges. A left hand edge places the interior of the object to the right hand side
of the edge. A top edge places the interior of the object below the edge. Figures 13B and
13D represent left hand and top geometry edges. In a traditional x, y coordinate system,
the range of possible angles can be represented by anchoring the lower left hand corner at
or near the origin and sweeping through a range of angles from 90 to 45 degrees. In
figures 13, micro pixel bars for figure 13D can be transformed into the other figures by a
combination of reflection, rotation and inversion operations, the inversion applied if
necessary to keep the inside and outside of the edge in their proper places. Figure 13D is
a top left hand geometry edge between 90 and 45 degrees. Figure 13C is a reflection of
figure 13D across the y axis plus an inversion. Figure 13B is a shallower edge angle,
between 45 and 0 degrees. Reflecting figure 13D across the y axis followed by rotation
counterclockwise by 90 degrees produces figure 13B. An additional reflection across the
y axis plus an inversion further transforms figure 13B into figure 13A. In the four corner
arrangement of figures 13A-13D, it takes two operations, a reflection plus a rotation or
inversion, to translate a set of micro pixel bar values to an adjacent corner of the square
and four operations to translate to an opposite corner of the square. Thus, the range of
possible angles can be represented by anchoring the lower left hand corner at the ori gin
and sweeping through a range of angles from 90 to 45 degrees.

[0106] One useful aspect of the present invention is use of symmetrical sub-pixel

‘bar maps. Figure 45 illustrates this symmetry. In the left hand pair of sub-pixel bar

maps, map 4501 A and 4502 are mirror images of one another. They fit hand-in-glove.
Together, they will cover all sub-pixels of a micro pixel array, e.g., generating a
brightness of 64/64. In the right hand pair of sub-pixel bar maps, map 4501B and 4502
have the same area coverage as 4501A and 4502, but produce a different merged result.
Because 4501B and 4502 are not symmetrical, they do not fit well together. There are

some areas of overlap and other areas of gaps. Together, they cover less than all of the
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sub-pixels, e.g., 61/64. For a diagonally placed geometric figure in a pattern, lack of
symmetry can adversely impact critical dimension uniformity and the error budget of the
system.

[0107] The table of micro pixel bars includes only certain angles, because a
geometric figure edge is constrained to intersect a sub-pixel at a particular interval, as
mentioned above. Use of discrete positions along the edge of the pixel as intercepts is
one way to facilitate use of a table with a manageable number of entries. By discrete
positions, we mean 513 positions or fewer, given currently available memory and
processor configurations. It is sensible to limit the precision of the sub-pixels and
discrete positions to 256 sub-pixels and no more than 65 positions per sub-pixel, or to 64
sub-pixels and no more than 33 positions per sub-pixel, or to 32 by 16 sub-pixels and no
more than 17 discrete positions along an edge of a sub-pixel, or to 16 x 8 sub-pixels and
no more than 9 discrete positions along an edge of a sub-pixel. These are considered
likely alternative configurations given present memory, processor and FPGA
technologies. They generally relate to powers of two that extrapolate to configurations
that may be implemented in the near future, e.g., the next five years. Discrete positions is
not meant to refer to every position that could be addressed using a 16- or 32-bit address.
The use of discrete positions limits the potential number of table entries. A pixel edge
has 64 or 65 potential points of edge intersection, when it has 8 sub-pixels each having 8
increments. From the origin, representations for 64 angles between 90 and 45 degrees (or
65 angles, including both extremes) can used to represent the full range of potential
angles. In an 8 x 8 sub-pixel grid, 8 micro pixel bars effectively spanning a pair of pixels
can be represented as 5 bit values.

[0108] A left hand edge having an angle of 45 to 90 degrees can intersect, in our
example, at eight different increments along the x-axis without falling a full pixel width
away from the origin. A different pattern of micro pixel bars may be selected to represent
an angle that passes through the origin than to represent the same angle when it passes
through the x-axis half a pixel from the origin. Different patterns of micro pixel bars are
needed for the same angle, in order to achieve sub-pixel accuracy in edge placement. To
illustrate, consider a 45-degree edge. If this edge runs through the origin, it is represented
by shading 32/64 sub-pixels. If this 45-degree edge is shifted one full pixel to the right, it
is represented by 8 less pixels, at the rate of one less pixel per row. Between 32 and 25

shaded pixels, there can be eight variations on a 45-degree angle, corresponding to
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placing the edge at eight different locations along the sub-pixel edge. Figures 14A-14D
depict operations to construct a left hand edge using a set of micro pixel bars. Because
the angle is less than 45 degrees, a vertical pair of pixels is used. In figure 14A, the edge
being constructed 1402 is translated by an integer number of pixels to 1401, so that it
rests at or near (less than one pixel from) a corner. In figure 14B, a set of micro pixel

bars is selected based on the increments at which the translated edge intersects the edges
of sub-pixels on the right and left sides of the pixel pair. Next, in figure 14C, a number or
area of pixels 1412 corresponding to the translation from 1402 to 1401 is subtracted from
the micro pixel bars. In figure 14D, the micro pixel bars 1413 are moved back into place

against the top of the pixel pair, where they represent the desired edge 1402.

Pre-Calculation of Sub-pixel Bars

[0109] Figures 15B-C depict an interface for precalculating sub-pixel bars, which
are applied as described above. The features of both figures are the same, except the
chosen criteria and the resulting micro pixel bar configuration. The control “Generate
MiPxCaW rendering table” 1541 controls output from the precalculation process. When
the button is selected, output includes a parameter file that can be merged with other
parameter files and used in a system embodyirig aspects of the present invention. The
check boxes 1542 and 1543 select how the intercepts of the edge segment 1555 will be
expressed. In figure 15B, x-intercept coordinates are supplied. The x1 (1551) coordinate
is 20, which corresponds to one and one quarter micro pixels (20/16) to the right of the
origin. Valid coordinates are in the range of 0..255, which corresponds to 16 positions
per micro pixel for 16 micro pixels. The x2 (1552) coordinate is 80, which corresponds
to five micro pixels to the right of the origin. If the y coordinate option 1543 is selected,
values are given for intercepts on the y1 (1553) and y2 (1554) edges of the micro pixel
display. Three rendering options are presented. Unless the “Render right edge” option
1544 is selected, the edge depicted will be a left edge, with the filled part of the figure
1556 to the right of the edge 1555.

[0110] The distribution of equalization pixels is guided by two or optionally three
criteria. For an implementation using pipelined arithmetic to calculate the equalization
pixels at the time of rendering, the first two criteria are preferred. First, the area covered
by the micro pixels, including equalization pixels should differ at maximum on half of a

sub-pixel from the true area calculated trigonometrically from the corner points of the
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covered part of the MiPiCa. Control button 1545, “perform pixel equalization”, invokes
this criteria. Second, the area covered by the micro pixels when a corner is formed by the
logical 'and' operation of two edges to form a corner should not differ with more than 1
sub-pixel area from what can be calculated trigonometrically for the intersecting edges.
Control button 1546, “perform pixel area equalization”, invokes this criteria. The
information window 1547 supports annotation of a rendering exercise. Several outputs
are generated when the render button 1548 is selected. The true area value 1561 is
trigonometrically calculated, using the coordinates supplied. It is the area, in this
example, to the right of the edge segment 1555. The approximate area value 1562 is a
count of the micro pixels covered by the micro pixel bars 1556. The approximate area
fault 1563 is the difference between the true area 1561 and the approximate area 1562,
which is zero in this example. The grayscale value 1564 in this figure is redundant. The
maximum table fault 1565 is used when the system generates an entire set of micro pixel
bars in one pass. It provides a check on program performance, by indicating the
maximum difference between the true area and the approximate area for any of the micro
pixel bars in the set.

[0111] The process determining the distribution could be any kind of systematic
iteration over angles, offsets and distributions, evaluating the error budget fulfillment for
each possible combination. The number of equalization pixels needed is determined in
accordance with the first criteria. Then, an iterative procedure tries the different possible
corner combinations to find a sub-pixel configuration that fulfills the second criteria with
minimal error. The least squared error between the edge and the ends of the micro pixel
bars may be used to measure error.

[0112] Another method, which is in the present embodiment, is to check that the
accumulated error when traversing the MiPiCa from top to bottom and from bottom to top
(adding the error bar by bar) does not at any point exceed 1.

[0113] In general, selecting micro pixel bar sets involves a choice of favoring a
smaller table size or a tighter error budget. One approach is to set the desired table size
and find the set of micro pixel bars that contribute the least error to the process. The
other approach is to set the error budget and generate the set of micro pixel bars that
results in the smallest possibie table size. Yet another approach is to generate multiple
sets of micro pixel bars and select one based on a combination of table size and error

contribution, among other factors.
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[0114] Comparing figures 15B-C shows different resulting micro pixel bar sets,
depending on the criteria 1545, 1546 applied. The differences between 1556A and 1556B
appear in rows 0-1 and 2-3.

[0115] A further aspect of pre-calculating micro pixel bar sets may involve a
hierarchical table containing micro pixel bar sets for different angles and grid intersection
offsets. A reduction of table size is obtained by using a table system with two levels, one
table with entries for angle and intersection offset pairs (0..15, determined from the cache
intersection coordinate (0..127) modulo 8). This table contains pointers to the second
table, which contains sets of micro pixel bar lengths (8 in each set for the 8 x 8 sub-pixel
resolution). This hierarchy allows for several angle/offset combination to share one
micro pixel bar set. Since the bar set table is the larger table, the total table size is
reduced. Alternatively, a larger table could be constructed that supports additional
combinations of angles and offsets, with a reduced or eliminated need for translation and
rotation in application of the bars.

[0116] Matlab is a useful tool for finding the possible combinations that can all be
represented by a single micro pixel bar set. Potential equalization pixel distributions that
satisfy the first and second criteria are checked against distributions for other angle/offset
pairs. If two distribution pattern match for different angle/offset entries, as can be
identified using Matlab’s unique function, one copy of the pattern can be stored and both
of the two entries given a pointer to the same set of micro pixel bars.

[0117] Figures 16A-C illustrate forming a corner in the lower left-hand region of
a pixel or sub-pixel grid. Figure 16A illustrates a pattern of micro pixel bars defining an
edge. The edge nominally falls 4 1/2 increments out of 8 along the x-axis. The
intersections of the edge at the top 1601 and the bottom 1602 of the pixel are equal. In
this example, 36 of 64 sub-pixels are shaded. Figure 16B illustrates a pattern of macro
pixel bars defining a slanted edge. The intersection of the edge at the top of the pixel
1611 is in the middle of the pixel. The intersection of the edge at the bottom of the pixel
1612 falls 4 1/2 increments along the x-axis. Shaded sub-pixels cover 36 of 64 grid
locations. In figure 16C, a pair of edges as depicted in figures 16A-B intersect the former
corner. The patterns of sub-pixels corresponding to the vertical edge 1621 and the
horizontal edge 1622 are indicated by light gray. The intersection of the two pixel
patterns 1623, formed by a logical and-operation is shaded dark gray. The dark gray

shaded area in this example varies slightly from the ideal value.
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[0118] The preceding figures illustrate alternative embodiments that practice
aspects of the present invention. One of ordinary skill in the art will recognize that many
variations in geometric relationships can practice the present invention. For instance, grid
locations for devices using radiation sweeps to project an image can be rectangular. Grid
locations with sub grid addressing in the sweep direction can be treated as rectangular
pixels or as sub-pixels. Individual micromirrors of a micromirror array can be
rectangular, hexagonal or non-convex. A sub-pixel grid may cover a plurality of grid
locations, micromirrors or pixels, as suits the geometry of the device used to project
radiation to form an image. Summarizing the grayscale value of a pixel from a sub-pixel
grid should correspond to the mapping of sub-pixels to pixels. One of ordinary skill in
the art will further recognize that the use of two levels of resolution can be adapted to
gray scaling of the sub-pixel grid at the higher resolution. When the high-resolution sub-
pixel grid contains grayscale information for individual sub-pixels, the intersection of
edges to form a corner would require addition of values of sub-pixels, with attention to
sums overflowing the maximum value of a sub-pixel, instead of a logical operation.
Summarizing the grayscale value of a sub-pixel grid would require summation of, instead

of counting shaded sub-pixels.

Edge Displacement

[0119] Figure 17 begins the presentation of edge displacement in accordance with
aspects of the present invention. Edge displacement means growing or shrinking (dilating
or eroding) a geometric figure by displacing its edges outward from the center or inward
toward the center of the feature. This is different from translating a geometric figure,
because opposing edges of the geometric figure move opposite directions. When edges
are displaced, a corner between the edges would ideally reflect the new intersection of the
two edges. In practical applications, displacement of horizontal, vertical and 45 degree
edges is most important. Edge displacement in the rendering domain, as opposed to the
geometry domain, allows an equipment operator to fine-tune feature sizes without
changing the geometry file that is to be printed. A sequence of test patterns printed on a
single work piece using a variety of edge displacement parameters can be used to
calibrate the equipment. Repeated instances of a test pattern can be included in a data
file. This geometry can be fractured and expanded. Different edge displacement

parameters can be applied to different instances of the test pattern. An inspection tool can
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be used to select the edge displacement parameter set that produces the desired feature
dimensions from the test pattern.

[0120] Figure 17 illustrates the geometry of edge displacement. The parameters
for edge displacement include cdX and cdY. The cdX parameter indicates how far a
vertical edge should be displaced from the center of a geometric feature. A positive cdX
dilates the geometric figure. A negative cdX erodes it. The cdY parameter indicates how
far a horizontal edge should be displaced from the center of the geometric figure. Figure
17 1llustrates an old edge 1711 at an angle of approximately 30 degrees to horizontal
displaced to a new edge location 1712. An ellipse 1701 having axes equal to cdX and
cdY is used as a structuring tool. The new edge location 1712 is parallel to the old edge
1711 and separated from the old edge by a distance 1702 defined by the elliptical
structuring tool. The new edge touches the structuring tool at a point tangent to the old
edge. The location of the tangent point is dX, dY. The direction of displacement 1703 is
normal to both the old and new edges.

2 - 2
aX V(A Jy - pax,ar),
cdX cdY

dx  dy

cdX?® cdY? Joc (X )
cdX*

cdX*fX*+cdY?fr®
cdy?

cdX*fX*+ cdY?fr?

nOCVzoC(

ax* = fx?

dy‘l = fy?.

[0121] Calculation of dX and dY is computationally intensive. One way to
minimize the computing requirements for edge displacement is to load precalculated
values of dX, dY, fX and fY into the rendering engine at the same time the parameters

cdX and cdY are loaded.

Edge Angle Detection

[0122] Three algorithms, and variations, present cases of implementing edge
displacement in a rendering engine using two levels of resolution. The algorithms are
adapted for orthogonal displacement of horizontal and vertical edges, oblique
displacement, in a direction along a horizontal or vertical edge, and orthogonal

displacement of 45-degree edges.
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[0123] A convolution filter is one tool used to detect the angle or orientation of an
edge, for selection of an algorithm to apply. Consider the following convolution filters

applicable to a 3 x 3 neighborhood of pixels.

-1 0 1 1 2 1
fX= -2 0 2 fY= 0 0 0
-1 0 0 -1 -2 -1
[0124] To apply these convolution filters, the pattern of filter coefficients is laid

over a pattern of gray pixels values. The product of the filter coefficients and pixel gray
values is calculated for each cell and the cells are added together. A separate sum is
calculated for each filter. Better convolution filters can be constructed using larger
neighborhoods and using non-integer values, such as Sobel’s filter, or a filter that uses two
times the square root of two, instead of the integer two. A wide range of approximations
can be used for filter coefficients, depending on a rough trade-off between computation

requirements and accuracy.

Results of Edge Displacement

[0125] Use of the filter is given above to calculate an angle as the arc tangent of

TY/fX was tested with data corresponding to mask patterns. Results are as follows:

Angle Estimate Standard deviation Mean error
90 90.000000 0.000000 0.000000
85 80.324390 11.137572 -4.675610
80 73.371079 12.643785 -6.628921
75 67.821833 12.267936 -7 .178167
70 63.054278 10.983100 -6.945722
65 58.930741 9.160636 ~6.069259
60 55.165984 7.048248 -4.834016
55 51.650496 4.790010 -3.349504
50 48.287420 2.442252 -1.712580
45 45.000000 0.000000 0.000000
Filling Up Algorithm
[0126] The algorithm for displacement of horizontal or vertical edges is depicted

in figures 18A-B. Each of the figures includes five pixels, 1801-05. Figure 18A is before
displacement; figure 18B is after displacement. The edge being displaced is nearly
vertical 1811, 1812. Before displacement, the edge intersects a corner of pixel 1804.
Therefore, the gray value of pixel 1804 is 58/64. The edge intersects a slightly larger
corner of pixel 1803, so the gray value pixel 1803 is 10/64. The edge displacement
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parameter in this example is 15/64 sub-pixels to the left. This so-called "filling up" edge
displacement algorithm is used for edges that are close to parallel to one of the axes of the
raster coordinate system. It is used to move an edge by zero to one pixels. For dilation of
a geometric figure, the algorithm calls for filling up the brightest gray pixel to a white
value of 64 and spilling over any surplus amount of displacement to the first black or gray
pixel. To erode a geometric figure, the algorithm calls for emptying the darkest gray
pixel and taking any surplus amount of displacement from the first white or bright gray

pixel. The following function is one way of implementing this algorithm:

0, dX —(1+sgn(cdX))+
sgn(ch)(p [i +sgn(cdX )sgn(fX )]+ p[i +2sgn(cdX) sgn(jX)])
where, pTi] is the resulting brightness of pixel p[i]; ‘

sgn is (1,0,-1), depending on whether the argument is positive or negative;

cdX is an input parameter described above;

dX is calculated, and may be pre-calculated, using the formulas above; and

fX is calculated, and may be pre-calculated, using the formulas above.

[0127] In the example of figures 18A-B, the displacement by 15/64 of a pixel is
desired. Pixel 1804 begins with a value of 58/64. Pixel 1804 is filled with 6 of 15 sub-
pixel shadings. The remaining 9 of 15 is added to pixel 1803, increasing its value from
10 to 19. The edge 1811 is displaced to a position 1812 that is 15/64 micro pixels to the
left. This algorithm is useful in orthogonal displacement of vertical and horizontal edges,
but may not perform as well for displacement along an edge that is nearly horizontal or

vertical.

Sliding Displacement Algorithm — First Embodiment

[0128] The sliding displacement algorithm is illustrated by figures 19A-B. For
displacement along an axis that is nearly parallel to the edge being displaced, the
following function can be used:

. X . maxVal —dX
pli]= pli+sen(edX)sgn( )]+ )
maxVal maxVal

rli]

Where, maxVal= maximum brightness value of a filled pixel (64 in this example). This
algorithm depends only on the gray value of one adjacent pixel, either to the left or right
depending on the signs of the parameters cdX and fX. The formula essentially calculates

the weighted mean between two pixels, where the weighting factors add up to one.
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Different weighting factors can be applied to compensate for errors observed when the
method is applied. The displacement illustrated in this figure is a dilation of 32/64. The
resulting weights are half the brightness of the current pixel plus half the brightness of its
right-hand neighbor. The edge 1911 is displaced to the left 1912. Pixel 1904 is assigned
the average value of pixels 1904 and 1905. Its value changes from 48 to 56. Pixels 1903
and remains unchanged, because the weighted, pre-dilation average of pixels 1903 and
1904 and of pixels 1902 and 1903 is 48. Pixel 1901 changes from O to 24, as it takes on
half the brightness value of pixel 1902. The edge 1911 is displaced by this process 1/2
pixel to the left.

Sliding Displacement Algorithm — Second Embodiment

[0129] An alternative formula for sliding displacement is:
0
o 64
p'li] =max in x x
(A—=Dplil+* pli+sen(cd)sen(£9)]
where p[i] is the center pixel. If more than 64 sub-pixels represent a single pixel, the

alternative min value is adjusted accordingly.

Displacement by Sliding and Filling up

[0130] Variations in application of sliding and filling up edge displacements are
illustrated in figures 48-49. The approach used may depend on the angle of the edge
detected by the gradient filters. In each variation, first the slide operation is performed on
every central pixel of the neighborhood along either the x- or y-axis. Then a fill-up
operation is made on the center pixel of the neighborhood in the opposite direction. A
weight factor of 1 is used, but can be modified to proportionally increase or reduce the
response of the algorithm to a displacement parameter.

[0131] A variation on the fill up and sliding algorithms described above is to use
the fill up algorithm for all erosions, introducing a weight factor for the center pixel so
that it is only eroded proportionally to its filling factor in the first direction eroded and
proportionally to the square-root of the filling factor in the second direction eroded. The
sliding algorithm can be used for all dilations of geometric figures. When there are
several gray pixels in both the x and y directions, the fill up algorithm tends to under fill

pixels, making the sliding algorithm attractive.
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45 Degree Edge Algorithm

[0132] A third algorithm works well for displacement of 45-degree edges. This
algorithm can be applied to edges close to 45 degrees. Two tests for whether an edge is

close enough to 45 degrees to apply the 45-degree algorithm are:

abs(abs(fX)-abs(fY))*32 < (abs(fX)+abs(fY)), and

abs(abs(fX)-abs(fY))*8 < (abs(fX)+abs(fY))
where abs is the absolute value function. These tests are applied to the gradient filters
used to detect the edge orientation. The choice of the factor, 8 or 32, determines how
close the angle must be to 45 degrees before the algorithm is applied. Other factors or
ranges of factors can readily be used, including 16, 20 or 24 and 8-32 or 16-24. Use of
the factor 8 corresponds approximately to 45 degrees +/- 10 degrees.
[0133] If the edge is 45 degrees, the distance D from the corner of the pixel that it

intersects can be calculated as:

W, 0SF SmaxVal/2

B 2 - 1—E— maxVal|2 < F < maxVl

Where F is the number shaded sub-pixels (e.g., 32 of maxVal=64, when the 45 degree

D

edge bisects the pixel.) In general, the distance which the 45 degree edge is displaced can
be calculated as:
fX?cdX? sgn(cdX) + fY*cdY? sgn(cdY)

O+ fP(fX 2cdX? + fricdY?)

This displacement is, of course, in the same direction as the unit vector n (1703) in figure

cdH =

17. If cdH>0 and the pixel is empty, or cdH<0 and the pixel is full, we must check the
diagonal neighbors to see if they are gray and calculate the distance from corner
according the equation above. Then the present distance to corner is obtained by adding
or subtracting sqrt(2), which is the diagonal distance of a single pixel. The new distance
from the corner to the edge is thus:

D= D, ignoor £ V2
[0134] To calculate the new fill factor for the 45 degree edge, we calculate the

distance from the pixel corner as D+cdH. Then the new filing factor is:

F (D+cdH)?, 0< D +cdH <1/\2
maxVal

1-(N2-D-cdH)?, 1/N2<D+cdH <1
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Of course, there is a max (maxVal) and min (0) for F. In order to avoid round-off errors
we take an average of D from both the central pixel and the two neighboring pixels.
[0135] A second embodiment for displacement of 45 degree edges resembles the
first. This 45° algorithm transforms a gray scale virtual edge, classified as 45° edge, in a
128 x 128 pixel square. The edge is transformed from the raster domain to a geometrical
domain. Edge displacement is performed in the geometrical domain and then
retransformed into a grayscale fill value. The function GetDist is defined to transforms a
grayscale value to a geometric value. The function GetFill transforms a geometric value
to a grayscale value. GetDist converts a gray scale fill value to a geometric distance

value:

fill <0 dist =0

64 fill

<— dist = [ 222 %128

Jil <= " 64

64 , 64— fill
> dist =| ~J2 - #128
fll >~ o { V" 64 ]

fill 2 64

dist =1282

GetFill converts a distance value to a grayscale fill value:

dist <0 fill =0
. 128 dist 2
dist < — 1 =] 220 | 64
V2 & [128]
. 128 dist\’
dist > — =1 1= 2 =22 %64
iz |7 L ( 128) ]
dist > 1282 fill =64
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[0136] The 45° algorithm uses a 3x3 pixel surrounding to calculate the center
pixel displacement. Pixel position in the 3x3 matrix is expressed as p[x][y] where p[0][0]

is the center pixel. Input parameters for the algorithm are sgnfX, sgnfY and cdH.

if (cdH>0) {
if (p[0][0)<=64/2) {
p[0][0]=a

)
elsif(p[0]1[0]>64/2)]
pl0I[0]=b
}
elsif(p[sgnfX][sgnfY]>0){
if(p[sgnfX][sgnfY]>=64/2) {
p[0][0]=b

}
elsif(p[sgnfX][sgnfY]<64/2){
p[0][0]=c

}
elsif(cdH<0){
if(p[0][0]<64){
p[0][0]=e

}
elsif(p[-sgnfX][-sgnfY]<64){
| pl01[0]=d

)

[0137] In this code segment, (sgn fX,sgn fY € {— 1,1}). The values a through e

are.

128 128
GD 01]0 GD O)-—+GD 0 —_——
oot (ploJo) + GD (plsgn fx Jo) 5t (ploJsen 17} 5

3

+ cdH )

6D (p[0J0) + 6D (p- sgn fx To) + %+ 6D (ploT-sen 1)+ %

b)=GF(

+ cdH )
3

¢) = GetFill(GetDist(plsen fX [sgn f¥]) —128v2 + cdH)

d) = GetFill(GetDist(p[-sgn fX |- sgn ¥ + 1282 + cdH)

¢) = GetFill(GetDist(p[0J0)) + ca)

where GF is short for GetFill and GD is short for GetDist.
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Corner Detection and Handling

[0138] An additional, optional aspect of edge displacement can be special
handling of corners. The so-called Forstner-Plessey-Harris algorithm is one basis for
detecting corners. See, VIGRA Computer Vision Library, template <...> void
cornerResponseFunction at http://kogs-www.informatik.uni-
hamburg.de/~koethe/vigra/doc/ cornerResponseFunction.html; C.G. Harris and M.J.
Stevens: "A Combined Corner and Edge Detector”, Proc. of 4th Alvey Vision
Conference, ed. by C.J. Taylor, pp. 147-151 (Manchester University, 31st August--2nd
September 1988). The algorithm proceeds as follows: At a given scale s, it calculates the

structure tensor (which is the smoothed matrix of gradient products) at each pixel like

G'(g.g.) G'(g:8}) (A C
G'(g:8y) G'(g8)) \C B

Where G denotes Gaussian average at scale s, g, and g, are first Gaussian derivatives, and

this:

the multiplication is pixel wise. Then the corner response may be defined as:
CR=AB-C-0.0625(A+B)* .

The corner response CR can be used, after thresholding, to identify corner pixels.

[0139] In practice, we use fX and fY to estimate g and a Gaussian filter of the form
010
Gaussian=|1 4 1
010

Note that this operation requires a 5 x 5 neighborhood. The value of CR is high close to
corners. Thresholds are used to select the corner pixels (ALG2__PAR_HARRIS_LOW <
CR < ALG2_PAR_HARRIS_HIGH). Alternatively, comer detection may use a5 x5
pixel window to determine if the center pixel is an object corner. The two 3 x 3 gradient
filters for general edge detection are applied to every possible position in the window, as
suggested in Figure 46. The result is a 3 x 3 matrix with fx and fy values. In every
position the results are squared-and multiplied with each others, resulting in three values
per position, as shown in figure 47. The Gaussian filter above is applied to the matrix in
figure 47 for each value. The corner response (CR) is calculated and compared with the

threshold for corner detection.
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CR=G (fx*)*G (H*)-G(fx* ) =0.0625*(G(fx*)+ G(fH*)’
TBD < CR < TBD

[0140] Another approach to edge and corner detection is the Smallest Univalue
Segment Assimilation Nucleus (SUSAN), which has been widely described, including in
the patent, S.M. Smith, Method For Digitally Processing Images To Determine The
Position Of Edges And/Or Corners Therein For Guidance Of Unmanned Vehicle, UK
Patent 2272285 (15 January 1997), and in S.M. Smith, A New Class Of Corner Finder, in
Proc. 3rd British Machine Vision Conference, pages 139-148 (1992). The utility of edge
displacement is independent of the particular edge and corner detection algorithms
selected, except that better corner and edge detection methods provide a better basis for
dilating or eroding geometric figures.

[0141] Another alternative for corner detection is to record the creation of corners
during the rendering process. Corners are created by using a logical AND-operation to
intersect two edges. Application of a logical AND-operation, either in rendering a
polygon or combining polygons indicates a potential corner. The two-bit pixel encoding
described above reserved the bit value “11”. This value could be used to flag gray pixels
constructed by corner operations, as opposed to simple edges of geometric figures. This
flag would automatically be removed when successive geometric figures completely
covered a pixel, driving its brightness value to maxVal and causing the pixel to be
flagged as W/B. This flag could be removed when two abutting trapezoids created a
continuous edge where two corners had previously been. The flag could be taken as

indicating a corner for special case handling or as indicating a corner for further testing.

Flow Diagram of Edge Displacement

[0142] Figure 52 is a flow diagram for a hardware implementation of edge
displacement. In this embodiment, displacement calculations are calculated as soon as
the dX, dY and cdH values have been calculated, allowing for the corner detection
algorithm to be evaluated in parallel with the displacement calculations. In a detection
and decision tree, tables for the dX, dY and cdH values can e preloaded from software
and re-loaded when the cdX and cdY values change. In the figure, incoming pixel data is
buffered 5201. The data is delivered as five rows of pixel data, corresponding to the size

of neighborhood selected. The data goes both to a delay buffer 5211 and an edge
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convolution calculator 5212. The results of the convolution are used to calculate dX, dY
and cdH 5222, drawing some data from a table 5221. The convolution results also are
used to determine whether a corner, a 45-degree edge or other edge have been detected
5223. The delay buffer 5211 causes the 5 rows of pixel data and the calculated values
5222 to be combined for calculation of corner displacement 5231, 45-degree edge
displacement 5232 and other edge displacement 5233 in parallel processes. A mux 5241
or other logical selection device uses the detection results 5223 to select one or none of

the calculated displacements to apply.

Results of Edge Displacement

[0143] Tests were performed applying edge displacement algorithms with and
without corner detection. The test patterns were varied. The LR or lower right edges of a
square pattern resembled a square with the lower right corner sliced off at a 45 degree
angle, leaving a five-sided figure. The SQ or square pattern included a series of squares
with origins shifted half a pixel along x- and y-axes. The SQRot or rotated square pattern
uses the same squares as the SQ pattern, shifted only in x and rotated in y, between 0 and
90 degrees. The PlusRot pattern is a series of plus signs treated as SQRot, with x shifts
and rotations. This pattern introduces inside corners to a set of patterns that otherwise
have only outside corners. The parameters cdX and cdY were varied for each test pattern
and the range of errors was characterized, in terms of a difference in number of shaded
sub-pixels from ideal.

[0144] Without corner detection, the three edge displacement algorithms were
tested against the patterns described above, with various results. For the LR-files, the
statistics shown below were derived using only for those rows through the test patterns
that contain no corners. Thus, these results show the algorithm behavior of pure edges.

(The rows included are 27+i+j*32, where i,j=0,1,2...).

CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -4 3 2480 -0.80 1.42 1.59
+32+32 -6 3 2528 -0.76 1.54 1.76
+64+64 -6 4 2384 -0.85 1.64 1.90
+128+128 | -7 6 2264 -0.77 1.97 2.37
-16-16 -3 3 2376 -0.12 1.25 1.34
-32-32 -4 4 2136 -0.14 1.40 1.56
-64-64 -4 4 1768 ~-0.27 1.52 1.73
-128-128 | -7 6 1808 -0.14 2.00 2.44
+32+96 -5 3 2440 -1.01 1.62 1.85
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+32+96 -7 6 2392 -0.78 1.88 2.34
-32-96 -4 3 1816 0.04 1.53 1.69
-96-32 -7 6 2000 -0.25 1.88 2.29
[0145] For the SQ pattern, the following results were reached. Since the edges in

SQ are 0 or 90 degrees, the edge angles do not contribute to the number of differing

pixels from the ideal image. Therefore, the averages in this data set represent the errors at

corners.
CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-

of Diff absolute square
+16+16 -29 0 3418 -3.58 3.58 5.56
+32+32 -35 0 3708 ~5.99 5.99 9.27
+64+64 -42 0 4396 -10.15 10.15 15.67
+128+128 | -59 0 5872 -15.02 15.02 21.67
+324+96 -46 2 4306 ~-9.29 9.30 13.91
+96+32 ~-46 2 4330 -9.03 9.03 13.55
~-16-16 -5 14 2172 -0.42 1.69 2.15
-32-32 -8 24 2084 -0.76 2.37 3.36
-64-64 -9 32 1736 -1.24 2.78 4.69
-128-128 | -6 32 796 2.12 4.58 7.60
-32-96 -11 32 1604 -0.61 2.96 5.39
-96-32 -11 32 1604 -0.62 2.98 5.40
[0146] The test of the SQRot pattern needed to be repeated, because the original

data set contained errors for non-isotropic ED. The data below comes from corrected

images. Since the edges are not 0 or 90 degrees, errors in detecting edge orientation

contribute to the number of differing pixels. Therefore, the averages are not

representative of corner errors.

CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -26 14 23971 -1.50 1.89 2.52
+32+32 ~-34 4 25265 -1.85 2.29 3.61
+64+64 -52 4 25316 -2.76 3.22 5.98
+128+128 | -59 6 26286 | -4.22 4.76 9.31
+32+96 -52 21 24888 |-2.90 3.40 6.87
+96+32 -49 10 25347 | -2.77 3.26 6.59
-16-16 ~23 15 19867 -0.31 1.30 1.49
-32-32 ~48 25 18432 -0.25 1.53 2.08
-64-64 -40 33 16749 -0.19 1.75 2.55
-128-128 | -34 36 16501 0.23 2.21 3.14
-32-96 -25 39 18186 -0.09 1.87 2.93
-96-32 -51 35 18025 -0.09 1.86 2.93
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The test of the PlusRot pattern needed to be repeated, as did the SQRot

pattern, because the original data set contained errors for non-isotropic ED. The data

below comes from corrected images. Since the edges are not 0 or 90 degrees, errors in

detecting edge orientation contribute to the number of differing pixels. Therefore, the

averages are not representative of corner errors.

CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -40 20 24909 -1.83 2.29 3.18
+32+32 -44 20 25956 ~2.56 3.06 4.75
+64+64 -56 11 25974 -4.13 4.61 8.00
+128+128 | -60 9 27473 -7.07 7.53 13.02
+324+96 -51 25 26481 -4.56 5.12 9.60
+96+32 -52 10 26549 -4.24 4.81 8.94
-16-16 -38 33 21821 0.28 1.69 2.29
-32-32 -31 25 20642 0.75 2.33 3.63
-64-64 -45 43 19022 1.88 3.49 6.46
-128-128 | -34 57 19093 4.29 5.76 10.48
-32-96 -32 49 19849 2.20 3.88 7.46
-96-32 -54 50 19703 2.24 3.95 7.49
[0148] With the corner detection described above (not the alternate SUSAN

approach,) tests showed some improvement. For the LR-files the statistics shown below

are based on only for those rows that contain no corners. Thus, the statistics reflect the

behavior of pure edges. (The rows included are 27+i+j*32, where 1,j=0,1,2...).

CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -4 3 2112 -0.68 1.31 1.44
+32+32 -6 3 2112 -0.63 1.35 1.53
+64+64 -5 4 2136 -0.63 1.49 1.71
+128+128 | -6 5 1960 ~0.57 1.51 1.76
-16-16 -3 2 1920 0.02 1.16 1.22
-32-32 -4 4 1752 -0.01 1.25 1.38
-64-64 -4 4 1624 -0.14 1.50 1.70
-128-128 | -6 4 1712 0.18 1.70 1.98
+32+96 -4 2 2056 -0.97 1.38 1.51
+32+96 -7 6 2112 ~-0.66 1.55 1.86
-32-96 -3 3 1544 0.32 1.36 1.49
-96-32 -6 5 1864 ~-0.06 1.59 1.87
[0149] For the SQ pattern, the edges in SQ are O or 90 degrees, so edge angle does

do not contribute to the number of differing pixels. Therefore, the averages represent the

errors at corners, with corner detection applied.

CD_X,Y

Minimum

Maximum

Number
of Diff

Average

Average of
absolute

Root-mean-
square
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+16+16 -21 0 3474 -3.87 3.87 5.28
+32+32 -26 0 3916 -6.16 6.16 8.68
+64+64 -39 0 4828 -9.59 9.59 14.06
+128+128 | -57 0 5748 -14.37 14.37 20.55
+324+96 -46 0 4684 -8.50 8.50 12.54
+96+32 -46 0 4748 -8.26 8.26 12.16
~-16-16 -2 5 1202 1.47 1.85 2.10
-32-32 -3 9 1228 2.64 3.18 3.80
-64-64 -2 9 1288 2.97 3.64 4.24
-128-128 | -1 0 252 -1.00 1.00 1.00
-32-96 -4 12 1218 2.30 3.19 4.07
-96-32 -4 12 1222 2.49 3.39 4.26
[0150] The results for the SQRot pattern, with corner detection, were:
CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -24 14 22797 -1.62 1.96 2.71
+32+32 -34 6 24128 -2.03 2.40 3.90
+64+64 -52 4 24768 -2.94 3.34 6.08
+128+128 | -57 6 24807 -4.04 4.42 8.96
+32+96 -52 7 24237 -3.02 3.36 6.87
+96+32 -49 6 24676 -2.99 3.30 6.65
-16-16 -23 9 16820 -0.15 1.28 1.47
-32-32 -41 11 15835 -0.08 1.50 2.02
-64-64 -30 11 15774 -0.20 1.85 2.50
-128-128 | -40 14 16095 -0.73 2.46 4.40
-32-96 -25 12 17184 -0.02 1.72 2.26
-96-32 -44 16 17125 -0.02 1.79 2.58
[0151]  The results for the PlusRot pattern, with corner detection, were:
CD_X,Y | Minimum | Maximum | Number | Average Average of | Root-mean-
of Diff absolute square
+16+16 -42 20 25472 -1.73 2.63 3.57
+32+32 ~-44 19 26769 ~-2.42 3.68 5.53
+64+64 -56 26 27733 -3.73 5.26 8.47
+128+128 | -60 30 26449 -6.23 7.22 12.60
+32+96 -51 19 27881 -4.12 5.25 9.37
+96+32 -52 18 28193 -3.92 5.05 8.86
-16-16 -37 31 19209 0.73 1.83 2.55
-32-32 -25 25 18648 1.40 2.62 4.10
-64-64 -41 45 19277 2.01 3.83 6.52
-128-128 | -38 55 18717 2.36 6.13 10.74
-32-96 -32 49 20100 2.13 3.77 7.03
-96-32 -45 50 20133 2.14 3.81 6.87
[0152] One hardware implementation of edge displacement is illustrated in figure

20 and discussed below.
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Hardware Implementation

[0153] Figure 20 describes a pixel line delay buffer, comprising for example
FIFOs and pixel delay operators on a 5 x 5 neighborhood. Alternate embodiments will
benefit from using symmetry in the convolution kernel to reduce the number of delay
elements, in keeping with conventional image processing algorithms. Pixel data is input
on line 2001. Delay elements 2010, 2020, 2030, 2040 and 2050 control the propagation
of data along lines 2011, 2012, 2022, 2032, 2042 and 2052 to the pixel neighborhood
operator for edge displacement 2060. The modified or displaced pixel neighborhood is
calculated and output 2070. The adjustment processor performs gray scaled edge
displacement on a pixel neighborhood received in an output data stream from the
rendering processor. In one embodiment, the neighborhood size for edge displacement is
5 x 5 grayscale pixels, but the neighborhood size is an implementation detail, not a
limitation on application of methods practicing aspects of the present invention. The
implementation of edge displacement favors parallelism to accommodate the parallel
pixel input and output data streams (2 or 4 pixels per cycle). The notation [Inc Yo-2;Inc
Xo-2] used for the output data image means that there is a two pixel line delay and a two

pixel delay.

Illumination Compensation

[0154] Figure 21 depicts so-called stamp overlap. Rendering or modulator
windows may cover portions of one or more stamps. For instance, stamp 2101 is covered
by six modulator windows 2111-16. In a single pass, stamps overlap near their edges
2102. The overlap zone 2103 is the region of overlap. Overlap analysis also can be
applied to scanned radiation image projectors, where areas of the reticle are printed and
then overlapped with subsequently printed areas of the reticle. The overlap pattern for a
scanning system may include an overlap zone on all sides of a scanned strip or only on

two sides, if the reticle is scanned from one edge to the opposite edge.

Overlap Zones for Overlap and Energy Variation Compensations

[0155] Figure 22 depicts the overlap subzones of a micromirror stamp in a single
pass environment. The stamp 2201 has nine overlap subzones 2220, resulting from

overlap with eight adjacent stamps 2211, the stamp 2201 being in the middle of a 3 x 3
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grid of stamps. The center subzone does not overlap with the adjacent stamps. Projecting
outward from the center subzone to the edges of the rendering zone, along the arms of a
“+” pattern, there are four subzones of single overlap with adjacent stamp exposures. In
each of the four corners of the rendering zone, there are subzones of multiple overlap with
adjacent exposures. For a rectangular rendering zone surrounded by exposures of other
rendering subzones, each of the corner multiple overlap subzones may be exposed four
times. This nine subzone configuration can be adapted to multiple exposures. Four
staggered exposures may result in 81 subzones of a rendering zone, as shown in figure
23B. The same subzone classifications can readily be applied to other shapes of
rendering and guard zones, for instance hexagonal or alternating triangle rendering and
guard zones. Illumination compensation is a method for compensating for overlap
between areas exposed in multiple passes. This method applies with variations to both
micromirror and scanned radiation beam systems. Multiple passes multiply the number
of illumination zones within the corners of a single stamp. In figure 23A, two passes of
stamps are illustrated, the current pass 2301 and overlapping stamps 2311-14 from
another pass. Area codes 2320-26 are among the many overlap subzones created by
multiple pass exposure. One multi-pass pattern consists of four (shifted) layers. Each
layer is made up of overlapping SLM images, as in the figure 23B. The innermost square
shows the geometry of the normal “stamp”. Each such stamp has 81 areas, each of which
being the result of 4 to 7 different exposure pulses. The purpose of the area code
algorithm is to reduce the final dose variation to (almost) one quarter of the variation in
pulse energy, as well as providing dose compensation for stitching in the overlapping
regions. In the stitching regions we have the choice to either use interpolating functions
(in the form of ramps) or constant values over the entire stitching region.

[0156] One use of overlap zones is to keep track of theoretical exposures that
would result from nominal exposure pulses. Figures 24A-B illustrate an illumination
dosing profile for various illumination regions of the stamp 2301. In this example, the
stamp is covered by n modulator windows 2302, each of which is as wide as the stamp.
Each modulator window is assigned six illumination subzones. The center subzones that
do not overlap with other exposures in a single pass have a relatively high dose profile, as
indicated for subzone 0;4 in figure 24B. The single overlap subzones, such as 0;1 and
0;5, have a medium dose profile. The multiple overlap subzones such as 0;2, have a low

dosage profile.
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[0157] Another use of overlap zones is to keep track of variations in flash
intensity. The exposure pulses give an non-deterministic variation or spread in energy.
The spread, relative to the nominal energy, is denoted energy spread. This is particularly
apt for excimer pulse lasers and other sources that may have a significant pulse to pulse
variation in energy output. It also can be applied to scanned radiation, if the energy
delivered by the radiation beam varies over time, for instance, as the radiation source
warms up. Illumination zones can combine information about ideal exposures from
overlapping radiation with information about actual exposure energies produced during
exposure of a particular work piece. Energy spread compensation is a process of
compensating the energy spread by adjusting the SLM modulation values in subsequent
exposure passes. The compensation is done on the illumination value in the modulation
adjustment process. The compensation value, related to the nominal modulation is the so-
called energy spread compensation factor (ESCF). An ESCF table is a table representing
the ESCF codes for one specific modulator window, with one ESCF code for each area
code. An ECT array is a set of ESCF tables containing one table for every modulator
window of an entire substrip or strip. Energy spread compensation calculation is the
process of generating the ESCF table arrays. This process may be performed in a
Mercury computer cluster or other host for the fracturing process, as described below, or
in an offline process simulating the Mercury computer cluster implementation.
[0158] The energy spread compensation takes place in the illumination
conversion process of the adjustment processor block of the overall rasterizing engine
(RASE) (3141 in figure 31.) For each modulator window in the stamp, there is a set of
area codes, each area code representing a segmént of the window. For every flash pulse
in a strip, the stamp illumination values are compensated with an energy spread
compensation factor, individual for each area code and for each pulse. In addition, all of
the areas in a stamp may be compensated by an additional factor by loading a different set
of factors for the areas in the stamp. This may be desirable when compensating for resist
and other systematic factors, such as corner baking, activation and aging effects. The
factor may be given a binary 2 complement fix point coding in the following way:
f=(F+512)/512
where F is the binary ESCF value (-128..4+127) and f is the relative compensation factor

(0.7500..1.2481). An F value of O represents 100%, which means ‘no compensation’.
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[0159] Again, a set of ESCF representing the area codes for a specific flash pulse
is called an ESCF table (ECT). An ESCF table may contain a one-byte entry for each
position, oriented in 32-bit double words. The length of an ESCF may be fixed at 128,
regardless of the number of utilized area codes.

bit 31..24 bit 23..16 bit 15..8 bit 7..0
dword O |ESCF for AC1 |ESCF for AC2 |ESCF for AC3 |ESCF for AC 4
dword 1 |ESCF for AC 5 |ESCF for AC 6 |ESCF for AC 7 |ESCF for AC 8

dword 31 | ESCF for AC ESCF for AC ESCF for AC ESCF for AC
125 126 127 128

[0160] For each strip to be written, an array of ECTs is required (one for each
laser pulse and each modulator window) called an ECT strip array. The array is portioned
in substrips, as shown in figure 23C. The process of generating the ECT strip arrays is
segmented into substrips, so for each GLI channel (corresponding to one substrip) a ECT
substrip array is generated as a separate structure in the Fracturing Engine computer
cluster, as shown in figure 23D. When the ECT strip array is represented in a data file,
such as when it is generated off line, substrips are sequenced in the file 1,1 to 1,n, then
2,1to 2, n, etc.
[0161] Returning to figure 23A, for each area code in a specific modulator
window, there is a set of energy measurement source references. In the figure, stamp
2301 is the exposure area of the present stamp. Stamps 2311-14 are four overlapping
stamps of the previous pass. Modulator window 2302 is outlined in dotted lines. Within
the modulator window (i) are various area codes (i; O through i; 8 in this example, 2320-
2328). Because this is a two pass example, there are nine area codes within the modulator
window.
[0162] In one embodiment, each energy measurement source reference is
represented as a record in a parameter file with two pointers and a weight factor. The
pointers point out the source measurement value or values, and the weight factor
represents the impact from the individual measurements in overlap zones, were multiple
flashes impact the exposure.
[0163] The ESCF is calculated from the following expression:

1

ESCF=—_
2(E(x+dxj;y+dyj)-wj)

J=1
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where x is the stamp number, y is the strip number, w; is the energy weight factor, dx; and
dy; is the relative stamp coordinates and m is the number of source references for the area
code. The variables dx; and dy; have values in the range of (-1..+1), derived from the
portioning of area codes that follows from the multi-pass exposure stamp position offset.
The w; variable has a fixed point representation with an integer interval of [0..32768],
where 0 means a 0% contribution and 32768 means a 100% contribution. The E values
are also fixed point representation values, with range [0..32768] where 32768 means a
nominal energy (100%) and values >32768 means.

[0164] In the example below, a complete set of source references for a stamp is
given. The scan order is first increasing X, then increasing Y. In the overlap zones, the
first exposed stamp has a weight of 0,55 and the second a weight of 0,45. The same
weighting applies for both vertical and horizontal overlaps. When four stamps overlap,
the weights are (0,275; 0,265; 0,240; 0,220) in the sequential order of exposure. The
energy measurements has yielded the following results, which are illustrative of one
embodiment:

E(0;0) E(1:0) E(0:1) E(1:1)

0,970 1,000 1,000 1,030
Area Rel. X Rel. Y Weight Weight ESCF real ESCEF integer
code pointer  pointer realvalue integer value value value
(1;0) 0 0 1,000 32768 1,031 +16
(1;1) 0 0 0,550 19661 1,017 +9
+1 0 0,450 18022
(1:2) +1 0 1,000 32768 1,000 0
(1;3) 0 0 0,550 19661 1,017 +9
0 +1 0,450 18022 R
(1;4) 0 0 0,275 13107 1,002 +1
1 0 0,265 9830
0 1 0,240 8847
1 1 0,220 8192
(1;5) +1 0 0,600 19661 0,987 -7
+1 +1 0,400 18022
(1;8) 0 1 1,000 32768 1,000 0
(1,7) 0 1 0,550 19661 0,987 -7
+1 1 0,450 18022
(1;8) 1 1 1,000 32768 0,971 -15
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[0165] Overlap zones further can take into account the non-linear relationship
between illumination or exposure and edge position, which can be seen from figure 1, in
both ideal and actual exposures.

[0166] A theoretical limit for the correction for exposing energy variation
obtained by a multi-{)ass exposure compensation approach is as follows. Assume that the
exposing radiation is generated four times with a maximum energy within its error
specification. If n denotes how many times the exposure has taken place on the same

spot, then we can write the following recursion for the energy after » times,

En=(n- En)(148) + Eny, Eo=0;

The explanation of the above expression is as follows. Knowing the summed energy after
n-1 flashes, E,.;, we set the area code (AC) compensation factor to (n- E,.;), in order to
obtain the total doze, n, (normalized doze) after n laser flashes. Since we only control the
laser to the accuracy (I+9), the resulting doze will be given by the previously ;given
(recursive) expression.

[0167] We summarize this recursion formula in the following table:

Laser Pulse Energy Accuracy 4*(E,—4)

10% 11.1%
5% 5.26%
2% 2.04%
1% 1.01%

The factor 4 in the last column was included to highlight the fact that the improvement
using 4-pass writing is almost 4 times, but not quite. The expression used here only
applies to regions do not overlap other regions in the same layer.

[0168] A useful area code compensation factor can be calculated as follows. The
notation in the following is a follows:

a = Area Code. Range (0,0) to (8,8)
I =layer. Range 1..4
s = stamp code. Range (0,0) .. (N,M), where NxM*4 = 10’

0 = exposure compensation factor (depends on area code), range = 0.25 — 1
(depending of the pulse energy stability of the laser)

E(l,s) = the recorded laser pulse energy for stamp s and layer I.
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In the same fashion as in the previous section, we derive the exposure compensation
factor as follows. For each area (or area code), the sum of the total laser pulse energy
previously deposited into that area code (including the compensation factor) and K times
the compensation factor should equal [Ey . Ej is the nominal laser pulse energy). The
factor K is the number of times we will write the area code, a, within a layer and depends

on a. Thus,
Kpa'l"\. t+ 2 pﬂ'l',f’El’,s" = lEO

(Note the Ep may be set to unity in some ases). This is, again, a recursive equation that
we will have to solve for each stamp. The recursion runs over the stamps (and area

codes) that has been written in the current layer and, later, the stamps in the layers below.

Implementation

[0169] Figure 25 is a block diagram of one process flow for illumination
conversion. This is a full version of illumination conversion; partial implementations also
have utility, for instance when only one pass is used, a scanned radiation source is used or
the pulse-to-pulse or pass-to-pass variation in exposure energy can be ignored. The task
of the illumination conversion mechanism is to produce an image of pixel data with l
desired illumination calculated from the input grayscale values (representing the virtual
grid). The relationship between virtual grid and illumination is non-linear, as can be seen
from figure 25. The process includes compensation for overlap by altering the grayscale-
to-illumination conversion tables. This is used to compensate for non-linear energy
accumulation characteristics in the photo resist. The process also accounts for the
compensation of illumination necessary to compensate for the spread or variation in flash
energy in previous passes of a multi-pass exposure.

[0170] The area code section database 2511 includes both one or more area code
image maps and an overlap zone look-up table. An area code map contains entries for the
pixels in a modulator or rendering window. The entries define area codes. In one
embodiment, the area codes range from 0..127. In a single pass embodiment, as few as 9
area codes might be used. The number of area codes is properly adapted to the number of
illumination subzones resulting from all exposure passes, overlap patterns and special
cases. Handling of area code maps may take into account special cases, such as
modulator windows at ends of a rendering window, as opposed to modulator windows in

the middle of a rendering window, modulator windows that span rendering windows and
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modulator windows for stamps applied at the edge of a work piece. Different area code
image maps may be employed to handle different cases or different indexes may be used
to address rows or columns of a comprehensive area code map. Resist issues including
surface bake characteristics, resist activation and resist aging may result in specially
adapted area code image maps. However an area code image map is stored, an area code
can be looked up for a particular pixel or larger region of a modulator or rendering
window.

[0171] An area code 2522 may serve as an index to an overlap zone look-up table
2523. For area codes having a range of 0..127, an overlap zone look-up table would have
128 entries. Entries in an overlap zone look-up table may be overlap zone Ids (OZ Ids)
having a range such as 0..14 (2533). A wider or narrower range of OZ Ids may be used,
depending on the desired number of illumination tables 2524. The OZ Ids are used to
drive an illumination table selector 2535. Alternatively, the area code image map could
be loaded directly with OZ Ids 2533, so that image map entries for pixels in a modulator
or rendering window would directly access OZ Ids, without the intermediate step of using
area codes 2522 to access a look-up table 2523.

[0172] The illumination section database 2512 includes a table for allowable gray
scale values and for valid OZ Ids, in this case, 0..64 by 0..14 entries. Data is loaded into
illumination tables 2524 for each allowable gray scale value. The data provides a range
(e.g., 0..14) of values for realizing the desired gray scale value, depending on the
illumination overlap zone Id, Anincoming gray scale value 2513 invokes a particular
illumination table 2524, which makes available a range of illumination values 2534. The
illumination table selector 2535 uses the OZ Id value 2533 to select an applicable
illumination value. The values in the illumination table may take into account non-
linearities in dose accumulation from multiple exposures and may take into account non-
linearity in illumination levels required to produce radiation dosings that can be
represented as equal fractions of a fully bright pixel. Issues of resist surface bake
characteristics, resist activation and resist aging can be addressed by having specially
adapted illumination tables 2524 stored in the database 2512. A wide range of
illumination values 2544 may be used, such as 0..820, to express the radiation dose
required to accomplish a relatively smaller (e.g., 0..65) range of gray values across a

range of exposure overlap conditions.
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[0173] Another aspect of illumination conversion that may have utility by itself or
in combination with overlap conversion is energy variation compensation. A database of
energy variation compensation factors 2541 may be accumulated as portions of a work
piece are exposed to radiation in multiple passes. Micromirror systems using pulsed
excimer laser radiation sources, for instance, may experience pulse-to-pulse variations in
energy output. These variations can be monitored and recorded. It may be useful to
accumulate energy variation factors in a broad range, such as 75 to 125 percent of ideal,
the range being broad enough to capture accumulated variations through multiple passes.
For each pulse of a radiation source illuminating a micromirror system, energy variations
can be accumulated on a area code by area code basis, within a larger map of stamp
locations corresponding to pulses. Then, area codes 2522 from the area code image map
2521 can be used to index an energy variation compensation factor table 2532. A
compensation factor, such as 75 to 125 percent (384..639 / 512) 2542 can be used to
compensate for observed variations from ideal energy exposures. This compensation
factor 2542 can be multiplied 2545 by the illumination value 2544 to produce a multi-
pass compensated illumination value 2546 having a range such as 0..1023. This energy
variation compensation may be particularly useful if radiation doses are scaled from one
pass to the next, for instance scaled 80/20 in a two pass printing process or 40/30/20/10 in
a four pass process. Multipass scaling has the potential for applying improving the
precision of a particular dynamic range by applying the same scale from low to high
energy to a smaller maximum dose (e.g., 1024 gradations of an energy dose of 10, instead
of an energy dose of 40.)

[0174] The illumination function corrects not only for resist non-linearity, but has
a fundamentally optical ground in a pattern generator based on partially coherent imaging
of an SLM. Theoretical studies has shown that the partial coherence makes the
displacement of an edge a non-linear function of the gray-level, and the non-linearity
depends on the spatial distribution of light illuminating the SLM, in the simplest case on
the so called sigma value of the illumination system. The transfer function from gray
value to edge displacement dx is typically a function that lies between g and sqrt(g) where
g is the gray level in the range 0.00 to 1.00. The gray level is that obtained for a large area
containing many pixels set to the same deflection. When multiple passes (4 or more) are
printed the exact shape of the illumination function is less critical and a single function

based on the transfer function dx = g**0.75 can be used with good accuracy.
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Mirror Compensation Process

[0175] The mirror compensation function converts the illumination values
calculated in the illumination conversion function to mirror voltage values. The
compensation function uses data from the mirror calibration file stored in a compensation
coefficient map to calculate a voltage value for the SLM mirrors. The compensation
coefficient map contains one entry with four coefficients (C1..C4) for every mirror in the
modulator window. The compensation coefficients C1..C4 each go through a scale/offset
mechanism including a binary shift operation with Cn2 and the addition of an offset value
Cnl. These scale/offset constants are common to all mirrors in the modulator window
and are loaded from mirror table section of the AP parameter file. The output voltage U
as a function of the illumination value x is generated from the following equations for
mirror driving voltages:

Csl = C11+C1#2¢1?
Cs2 = round((C21+C2%2%)#x/128)
Cs3 = round((C31+C3%2°%)*F3(x))/128)
Cs4 = round((C31+C3%2%*)*F4(x))/128)
U(x) = round(Cs1+Cs2+Cg3+Cs4/128)
In one embodiment, the parameter ranges for these equations are:

Parameter Range

Cl.C4 0..255

C11,C21, C31,C41 -4096..4095

C12,C22,C32,C42 0.7
[0176] The compensation function uses two primitive functions defined by lookup
tables. These lookup tables are loaded from the mirror function section 2625 of the AP
parameter file 2621. One hardware implementation of these equations is shown in figure
27.
[0177] The hardware in figure 27 is one efficient implementation of the equations
above. The coefficients C1..C4 are stored in the compensation coefficient map 2701,
which may be stored in the mirror calibration file 2626. More than one set of coefficients
may be stored for each pixel, to take into account aging of mirrors, time between mirror
rest periods, number of mirror cycles between mirror rest periods, or other characteristics
of the individual micromirrors that change over time. The desired illumination value (x)
2702 is an input. The calculation block 2711-2713 implements the first equation, Csl =
C11+C1*¥2¢", The coefficient C1 is loaded in a shift register 2711. The exponent C12 is
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used to activate the shift function of register 2711, accomplishing the multiplication and
exponentiation relatively quickly. The adder 2712 sums the result of the shift register
2711 and the coefficient C11. The overflow detector 2713 responds to a value out of
range. The response may be an error or to set the result to a predetermined value, such as
the maximum allowable value for the data path. The calculation blocks 2721-2723, 2731-
2733 and 2741-2743 operate similarly to partially calculate Cs2, Cs3 and Cg4.
Calculating these values requires multiplication of the block results times the desired
illumination value (x), times F3(x) and times F4(x), respectively. The multipliers 2753-
2755 accomplish these multiplications. The down-shift and round-off logic 2761-2764
scales the results to the desired range, having preserved the precision of calculations in
initial stages of calculation. The logic 2761-2764 also implements division by 128, which
can be implemented as a shift register operation. The adder 2765 combines the results
Csl, Cs2, Cs3 and Cs4. Overflow detector 2766 checks the result, similar to 2713, and
down-shift and round-off logic 2768 scales, rounds and divides by 128, as appropriate to
produce U(x) in the desired dynamic range. Depending on the functions used for mirror
compensation and the type of processor used, different hardware logic will produce
results equivalent to the hardware logic in figure 27, always transforming a desired
illumination value into a desired modulation or voltage driver, using pre-stored
coefficients and functions and digital logic, to produce a digital value that drives a
modulator or micromirror.

[0178] The goal of the calibration procedure is: given M (where M may be 10%
mirrors, find a reflectance range common to all mirrors and a finite (small) set of
functions (two or three is preferred, for convenient storage) which can be used in the
compensation routines for all the mirrors. That is, given the reflectance as a function of
voltage for each mirror, find the maximum and the minimum (common) reflectance
attainable by all mirrors. Between those values, the inverse, i.e., voltage as a function of
reflectance, is well defined for all mirrors. Find approximate expressions for those
inverses using 32 bits of storage for each mirror, in addition to a small set of static
functions that can be stored in tables. For the micromirrors in the array to have common
white and dark level (at least as seen by the CCD), the dynamic reflectance range for the
whole array will be limited by levels attainable by all mirrors, which may be half or less
of the dynamic range of most of the mirrors. Depending on the required on dynamic

range, some mirrors that are not defective may be excluded from use or treated specially
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because they have a limited dynamic range. When the mirrors are treated specially, they
are still used, with a larger compensation error in black or white. Once “black”™ and
“white” levels are selected, individual mirror are calibrated, within that reflectance range.
The calibration procedure is the subject of the concurrent patent application, referenced
above.

[0179] One approach to defining the functions is to use functions that are readily
represented by a Fourier expansion, such as the base functions sin(n x) and sin(2 tx ). A
characteristic error form resembling sin(3 7 x ) can be expected when using these base
functions. A second method of deriving the functions is a mixture of linear interpolation
and interpolation using characteristic functions. The characteristic functions are
(essentially) eigen-functions of the covariance matrix for the interpolation error using
linear interpolation. A direct calculation of the covariance matrix for M mirrors would
require diagonalization of an MxM matrix. Alternatively, one can project the M
functions onto N sine-Fourier components and calculate the covariance of an NxN
covariance matrix instead. The procedure is as follows: 1) The difference between the
straight line that interpolates the reflectance functions at the end points and the response
function is expanded a sufficiently large number of Fourier components (e.g., 60 sin
functions); 2) Having M mirrors (and consequently M functions) and expanding into N
components gives us a matrix A having dimension NxM; and 3) The base functions are
now chosen by selecting the two eigenvectors of (the square matrix) AA" (t for transpose)
with largest eigen values. The base functions obtained in this way are still sine-like and
fit the data without systematic errors of the form sin(3 7 x ). Figure 28, functions 2801-
2802, illustrates a pair of base functions generated using 60 sine terms in a Fourier
expansion. These base functions are sine-like without the systematic errors expected
when using the other base functions described above.

[0180] Fourier methods and least square fits are among the available calibration
procedures for the equations above. By the Fourier method, one finds the coefficients by

inte grating,

1 N
¢ =[sin(me(x)dx = Y, w,e(b,)sin(27b,)|1-b,
0 n=1
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where e(x) is the difference between the straight line that interpolates the data at the end
points, w, and b, are weights and abscissas from the quadrature. One also integrates
similarly for sin(27zx). This integral is easily solved by a Gauss-Chebyshev quadrature.

A quadrature with as few as four points in the interval can produce satisfactory results.
[0181] One difference between the least square fit and the Fourier method is that
the former is (by design) exact at the end points, while the least square fit minimizes the
variance of the error (at least when the weight function equals 1). Calibration coefficients

c,to c, are found by solving,

Ac=Y

where A is a4 x 4 matrix and Y is a4 x 1 vector. The elements of the matrix are,

Ay = Fwx,) fi(5,) f;(5)

and

Y= YW, )yt 0)
where Y is the voltage at some (normalized) reflectance sample x,, .

[0182] Two of the functions ( fiand f,) are the constant function and the linear
function f(x)=x. The remaining two that were used are those derived from the sin(x) or
(essentially) eigen-functions. If the weight function, w(x), is chosen to unity we will
obtain calibration coefficients (c) that minimize the variance. If we also choose two of
the base functions to be sin(zx) and sin(27x), we will obtain solutions very similar to the
Fourier expansion. The difference between these two originates only from the
requirement that the constant and the linear functions are used to interpolate calibration
data (at the end points) exactly in the Fourier case while they are chosen freely by the
least square algorithm. Consequently, the least square fit produces the smallest average
error but is not guarantied to be exact at the endpoints.

[0183] The algorithm for the compensation the very simple, namely

Ux)=c +ex+e fi(x)+e,f(x)

There are four (4) unique coefficients for each mirror and two supporting functions

(f3(x) and f,(x)) common to all mirrors. These two functions can be put into tables as a
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result of the calibration procedure. The parameter, X, was in this case normalized to range
(0..1), though other normalizations can be used in the final implementation.

[0184] It is useful to minimize the storage and bandwidth required for mirror
compensation coefficients, e.g., to 32 bits per mirror. This will introduce “round-off”
errors in the compensation. For example, consider coefficients rounded to 9, 9, 7 and 7
bits respectively. The round-off is done with each set of numbers first transformed into
the range 0...1 by

Xx—min(x)

= : , ( X the belongs to the (closed) range [0...1])
max(x) — min(x)

and then truncated to N bit precision by

x, = Round (X 2"/ 2" (max(x) — min(x)) + min(x)

The function “ROUND” simply rounds towards the nearest integer. “1/2AN” shifts the
result back to the [0..1] range and the last multiplication restores the original calibration
parameters that are now in N-bit precision. The remaining calculations are done in
floating point (64 bit, IEEE) precision. For the methods presented here, storing 9,9,7,7 (7
bits for the constants that multiply the tabled functions) bits for compensation
components is not always the optimal choice. If the base function is changed, then
another storage may become optimal. Simulations indicate though that choosing the
storage in this ways will produce sufficiently accurate results.

[0185] In 32 bits storage, it may be necessary also to store a 7 bit area code. Tests
show that the storage of coefficients with 7, 7, 5, 6 bit precision, respectively, makes
room for the area code, still fitting in 32 bits storage per micromirror.

[0186] »_ Alternative scalings of coefficients affect the computation required, e.g., in
figure 27. The recovery of the coefficients from stored values by multiplying with the
range (maxvalue — minvalue) may turn out to be computationally too expensive. If the
range is replaced by the nearest multiple of 2 that exceeds the range, coefficients can be
recovered by a simple shift operation, with some sacrifice of accuracy. The two
alternative ways of recovering coefficient the are: 1) As before, multiplying the scaled
value to recover the range from maximal value to minimal value; and 2) As above, but
exclude the smallest and the largest values for individual micromirrors. (Variations on
this approach include excluding just the smallest or just the largest value, or excluding a

plurality of smallest or largest values for individual micromirrors.) Excluding outlying
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values has the effect that two of the values may not fall within the range 0... 1-2". If that
is the case, the excluded values are stored as 0 and 2™ respectively. The second
procedure may introduce substantial errors to the compensation error of the excluded
micromirrors (e.g., in two out of 1000 micromirrors), while potentially, having the
possibility to store the remaining coefficients more efficiently. The table below
represents simulated errors of various methods. The first alternative scaling method is

called “all” and the second “loose2”.

Method No round-off Optimal All Loose2
Standard dev. 0.13% 0.23% 0.32% 0.25%

As the table shows, “loose2” is almost as accurate as a “optimal” on average but some
mirrors have compensation errors as large as 5% while “all” keeps the compensation error
for all mirrors below 1.5% at the expense of the average error.

[0187] Different scaling methods can be selected for the coefficients c1 .. ¢4,
depending on their distributions. For instance, in simulations, most of the time c1 is
normally distributed, so excluding 0.2% of the most extreme calibration coefficients may
not change the range much. In the same simulation, c4 has a few extreme values and

excluding those does seems to improve to storage efficiency for the remaining values.

Multiple SLM Configurations

[0188] SLMs can be manufactured with a large number of pixels and a high
refresh rate to. print many pixels per second. Still, it may be advantageous to use more
than one SLM in the same system. Figures 54A-C shows three different configurations
for multiple SLMs. In figure 54, the circles depict an optical field on the work piece of
the projection optics. The rectangles correspond to projections from multiple SLMs.
They can be either mounted on a single support, e.g. a PC board or multi-chip module, or
they can be on different supports and have their optical projections combined into the
field of the projection lens by mirrors, prisms, holographic elements etc. The parallel thin
vertical lines in the figure depict stripes printed by the individual SLMs. In figure 54A,
the projections are optically stitched together, e.g., by semitransparent mirrors or other
beam splitters or combiners, so that they create a contiguous area with a small overlap
between the images. The use of overlap zones, as described above, feathers together the
seams between the SLM images. In figure 54B, the images are separated in two

directions. This configuration is suitable for an embodiment with all SLMs mounted to a
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single support, since the space between the SLMs provides room for the driving
electronics and interconnections. In the configuration of figure 54B, the SLMs are at
different positions along the stripe and the data has either to be buffered or produced with
account taken of the offset. In figure 54C, the SLMs are print partly overlapping stripes,
thereby creating two offset passes in one physical pass. The configurations in figures
54A-C are printed with a stripe offset, i.e., sideways movement between writing swaths,
of four SLM widths and the area is printed once. In figure 54C, the offset is only one
SLM width but the area is printed twice.

[0189] A complication of using several SLMs is accurate alignment to reduce
small pattern errors and invisible boundaries. Figure 55 shows the images of two SLMs
5503 and 5504 in relation to the ideal geometrical grid 5501 as defined by the stage. The
picture shows exaggerated alignment errors between the pixels of the SLM and the ideal
grid. The input data for the feature to be printed 5502 is given in relation to the ideal
grid. The parts of the pattern element 5502 that is to be printed by the top SLM 5503 are
misaligned relative to the local coordinate system of the SLM. The pattern is rasterized
with account taken of this misalignment. For one or more SLM, a set of misalignment
parameters, in this case one rotation 5507 and two translations 5505 and 5506, are stored
as correction factors 2635 to be applied in a correction transform 2665 before printing.
[0190] The SLM image 5504 does not lend itself to be described in the simple
manner of a rotation and two translations, because it is distorted. In an alternative
embodiment, a higher accuracy in the representation of the misalignment is achieved by a
map of the distortion and misalignment of each SLM. This is of great value with the
configurations in figure 54A-C, since the larger optical field of makes it more difficult to
make a distortion-free projection system.

[0191] The misalignment and/or distortion of each SLM image is characterized by
projection of an partial images onto a fiducial on the stage and measurement of the
position relative to the fiducial. This is done by an automatic calibration procedure which
measures the SLM misalignments and/or distortions and creates the SLM misalignment
data sets.

[0192] The transformation of the data according to the SLM misalignment data
sets can be done in three different ways. First, the corrections can be applied to the data
during fracturing. When the data is cut to rendering windows the coordinate values of the

vortices are corrected for the misalignment, or when applicable for the distortion. The
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second place where the transformation can be done is in the rasterizing step where the
coordinates of the elements can be modified during or immediately before the bitmap is
created. A third possibility is to convolve the bitmap, preferably before the illumination
function is applied, with a translation kernel. See figure 26, 2635. The following is a

translation kernel for a small displacement dx in the x direction.

[0193] For small displacements, a fraction of a pixel, the loss in image quality is
negligible. Furthermore, the convolution kernel has of only two non-zero coefficients and
can easily be implemented in hardware. For other translation directions, the kernel is also
simple and a general hardware implementation that translates the image up to one pixel in
any direction is simple and fast. The same method of correction can also include other
effects, such as correction for stage position errors and image distortion. The correction to
the bitmap which may include lens distortion, multi-SLM alignment errors, stage position
errors is done in the block 2665 of Figure 26 and the correction factors or parameters are
stored in the block 2635. In the case of multiple SLMs there may be several sets of
parameters in the block 2635 and for distortion control the block 2635 contains a
correction map. These corrections can be applied to a single SLM; they are not limited to
multiple SLM configurations.

[0194] Another aspect of using several SLMs is the opportunity to add another
level of parallelism to the data path. The SLMs in 55A can be fractured and rasterized as
a contiguous area, but each SLM can also be fractured and/or rasterized independent of
the other SLMs. Where each SLM has its own complete data path, and a minimum of
communications between the data paths can ensure that they are synchronized. With an
extensively parallel computing scheme, with even the input data channels separate the
system becomes truly scalable to very high capacity. Complete writing channels with
fracturing, rasterization and SLM can be combined to create any throughput that may be
needed. The SLMs may be integrated in the optical projection system and remain

electronically autonomous. Their combined capacity is proportional to the number of
SLMs.
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Useful Hardware Configurations Overview

[0195] Figures 29-42 are block diagrams at various levels of detail that depict
hardware which may be used to practice aspects of the present invention. Figure 30 is a
high level block diagram of fracturing hardware 3001 A-E, control logic 3010, rendering
modules 3011A-E, scheduling and control logic 3020, buffers 3030A-B, digital-to-analog
converters (DACs) and control logic 3040, and a micromirror array. Fracturing may be
supported by a Mercury cluster of processors or any other suitable geometry fracturing
engine(s). The cluster may have one fractioning processor per rendering module, as
illustrated. Alternatively, fracturing may be an off-line process resulting in a data file. A
so-called FRAC-S format may be used to convey data from the fracturing processes to the
rendering processes. Useful characteristics of the fractured data include: all fractured
geometries may be smaller than a rectangle able to fit entirely anywhere in the guard
zone; all fractured geometries may be smaller than a rectangle able to fit anywhere in the
rendering window; all fractured geometries; all fractured geometries may be smaller than
a rectangle with side having a maximum dimension measured in pixels, such as 255 or
253 pixels, or 511 or 509 pixels; and all fractured geometries must be at least ¥2 pixel
high and Y2 pixel wide. These characteristics can be modified, depending on the
combination of aspects of this invention that are used in a particular embodiment.

[0196] The SDU performs a process which from a logical standpoint is a raster
domain re-fracturing, translating the window division in the fracturing/rasterization
domain to a window division matching the partitioning of the SLM. From a physical
standpoint it also performs a concentration process, but from a modulation point of view,
the actual concentration does not take place until in the SLM. Theoretically, the pixel
transfer and digital-to-analog conversion could take place in completely separated
devices, not connected until at the SLM, but due to the different scaling properties with
the pixel processing and the modulator, and due to signal integrity and other reasons, the
data is physically concentrated in the SDU.

[0197] In a first embodiment, buffering is limited. Figure 29 depicts a
configuration that variously polls for line input, utilizes one or more buffers between the
rendering modules and the SDU, or could be adapted to utilize one or more buffers
between the SDU and the DACs. The rendering modules 2911A-E are connected to the
SRMs 2921A-E. The SRMs are SDU receiver modules, which provide the SDU with an
interface to receive data from the RMs. The SLM link interface (SLI) connects the SRMs
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to the SDU 2940. This interface may suffer from relatively weak signal integrity. In the
line-by-line variation on the configuration in figure 29, without the buffers 2931,
requiring a complex protocol is required for ack/nack and send-resend of lines. The
SRM-SDU CABS interface handles clock domain skew line synchronization with ”wait
until all lines are available, then proceed” protocol. Synchronizes the frame processing
on the RM, with significant loss for latency and flash rate uncertainty. The output of the
SDU is to pairs of DACs connected to the SLM.

[0198] In a second embodiment, a ring buffer is connected to each SRM 2931.
The aggregate ring buffer bandwidth, and size, will be linearly proportional to the number
of SRM’s. The number of SRM’s is roughly proportional to pixel throughput. The ring
buffer eliminates the need for line synchronization between SRM-SDU and frame
synchronization between SRM-SDU. If the buffer is large enough, it will also support
rasterization of a complete strip before exposure start. An SDRAM based ring buffer
already exists on the RT-fract side of the SRM, and the design can be reused together
with its testing tools and interfaces. Bandwidth and size is not critical, the main purpose
is to change synchronization method from line-by-line to strip-by-strip. SLM link
interface is synchronized on a strip-to-strip basis. SRM-SDU CABS interface does not
have to handle available-proceed’ events other than on a strip-to-strip basis. This
increases the robustness of the SLM link interface and the SRM-SDU interface
considerably, and removes design and integration tasks for the full featured send-resend
SRM. The reliability requirement of the infrastructure is relaxed, is only guided by the
retrace intensity. Handling all exceptions on a strip level causes SRM-SDU interface
becomes a completely synchronous system. Alternatively, buffers 2931 could be placed
between the SDU and the DACs.

[0199] A third embodiment is depicted in figure 30. One or more SDU buffers
3030A-B and related control logic make the number of rendering 3011A-E units used
independent of the number of segments 3052A-D in the micromirror array 3050. It is
useful for the number of processors generating the rasterized image to be independent of
the number of mirror segments. For applications with particularly complex geometries,
the number of fracturing and rendering units can be increased. As the units act in parallel,
the more units involved, the more processing power available. For applications with

particularly simple geometries, the number of fracturing and rendering units can be

73



10

15

20

25

30

WO 03/023488 PCT/SE02/01609

decreased. Scheduling and control logic 3020 permits asynchronous delivery of data
from the rendering modules to the buffer.

[0200] The buffer itself is differently segmented for input and for read out. The
input modulator windows 3031A-E correspond to rendering units. The modulator
windows are depicted in this diagram as being of equal size, but they can be unequal in
size and may divide the memory array both row- and column-wise. Memory locations in
the buffers 3030A-B correspond to micromirrors in a micromirror array or a rasterized
image map for a scanning system. The memory may be dual ported, so that results from
rending processors can be loaded without disrupting readout to load the DACs. In a
micromirror flash system, the mirror array is loaded with data before each flash. In the
embodiment illustrated, 128 DACs 3040 and control logic are used to load data into the
micromirror array. Multiplexing circuiting in the micromirror array or external to the
micromirror array can distribute analog signals from the DACs to the many micromirrors.
An 8mhz can perform conversions for approximately 8,192 micromirrors at a 1khz
frequency. This, 128 DAC each can handle 32 lines of 256 micromirrors. Analog
voltages are generated by 8-bit DACs to create electrostatic charges, which deflect
individual micromirrors. Greater precision, such as 10 or 14 bits in the analog voltage
may be useful in some embodiments. A micromirror array such as the one described by
the commonly owned applications by Micronic Laser System, Inventor Torbjorn
Sandstrom, “Improved Modulator Design for Pattern Generator, WO 99/45441 (priority
to 2 March 1998) or the simultaneously filed provisional application reference above, can
suitably be used as a projection device. Alternatively, scanning devices based on
micromirrors or modulated radiation may be used. For a scanning device based on
micromirrors, a large enough set of DACs might be used to transfer data to all of the
micromirrors in one pass. For modulated radiation, it is customary to have one modulator
for each radiation beam.

[0201] One, two or more buffer units 3030A-B can be used. Asynchronous
receipt of data from and variations in time for processing by rendering modules is better
supported by a plurality of buffer units. With some lithographic equipment, the flashing
of the micromirror array cannot be delayed during the sweep of a strip, due to inertia of a
moving stage on which the work piece rests, Some delay can be accommodated between
strips. Therefore, operation of the DACs can only be delayed to the extent that the order

of segment loading could be based on completion of writing data from rendering modules
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3011 to modulator windows 3031. If any rendering module 3011 were to take longer than
one flash cycle to load its modulator window in the buffer, it would cause a data fault and
potentially waste the work piece. Use of two or more buffers 3030 would allow
additional latitude for exceptional rendering cycles in particular modulator windows.
[0202] Figure 31 is a block diagram of a rendering module 3011. In one
implementation, five field programmable gate arrays (FPGAs) are used to implement the
logic, 3100, 3110, 3120A-B and 3140. A current generation FPGA suitable for logic
implementation is a Xilinx Virtex XCV1600E-6 BG560 C FPGA. The announced, but
pending delivery Xilinx-II XC2V product line is anticipated to offer additional
functionality, including on-board SRAM, which may allow consolidation of functional
blocks into fewer modules. Alternatively, a RISC processor, an ASIC processor or a
custom or semi-custom processor could be used. The choice of FPGAs is convenient and
reduced product lead time and up front costs. A variety of other processors could just as
well be used to practice aspects of the present invention.

[0203] The purpose of RMPL-1 3300 is to provide interfaces to PCI, CABS and
other bus structures. The interfaces 3103 are available to configure the FPGAs in the
field. All or part of the FPGA can be reconfigured or reloaded. For instance, weight
coefficients for sub-pixel weighting can be field reconfigured and reloaded. These
interfaces allow measurement of the operating temperature of the board. They further

support programming of the clock frequency at which the board operates.

Geometry Pre-Processor Overview

[0204] The purpose of the RMPL-2 3110 is to provide an interface between the
geometry input fiber channel and the rendering processor. The main task is to receive and
buffer complex geometry data, flatten the data into primitive geometries and, on request,
output data to rendering processor. RMPL_2 thus comprises: an interface for the on-
board 256 Mbyte SDRAM,; an interface for the on-board 2*8 Mbit ZBT RAM; a chain
access bus structure (CABS) unit that manages the CABS protocol against external
devices; a reception unit, the so-called geometry input controller (GIC) 3113, that
receives geometry data from a geometry line interface (GLI) and stores the data in the
SDRAM; a pre-processor (PP) 3111, that flattens geometry data and performs coordinate
conversions; and a geometry buffer interface (GBI) 3112 between CABS, GIC, PP and
SDRAM, which also implements an SDRAM-controller. The CABS block of RMPL-2
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3110 acts as an interface between the internal blocks, zero bus turnaround (ZBT) SRAMs

| 3115 and other FPGAs or, more generally, other processors or functional components.

CABS is a general bus structure used for intra-device communication. It is based on a
chain like structure of devices, and eliminates the board level complexity of a general
multi node bus structure. Sampling rates on the CABS may be 25-50 MHz. It is clocked
with a board level system clock. The CABS block may be coupled to mode control pins
for default configuration of the device from a bootstrap area of memory. Alternatively,
other bus structures and protocols could be used to implement aspects of the present
invention.

[0205] The GIC block is an interface between the GLI link and GBI. It comprises
a FIFO buffer that is used for grouping received 32-bit double words (DSs) into bursts of
16 words. One burst at a time is sent to GBI for storage in SDRAM. The words on GLI
may arrive in bursts of any size. The GBI block serves as an interface between GIC and
PP. It includes logic to receive burst of data from GIC, store it in SDRAM, and on
request read data from SDRAM and send it to PP. The GBI also may handle read and
write requests from CABS. At the CABS-GBI interface, data is written in burst lengths
of n*16 double words at a time, where n is 1 to 64. No indication of the actual transfer
length is needed, apart from the enable signal for data transfer. Data may be read in
bursts of 16 double words at a time.

[0206] The geometry pre-processor (PP) block serves as an interface between the
GBI and the FPGAs 3120A-B. The pre-processor flattens the incoming fractured data
stream and outputs simple geometries with coordinate offsets relative to the current
rendering window. Fractured data is received form the GLI channel and stored into
geometry buffer memory (GBM) 3116. A raw data mode may be available through the
pre-processor to read out whatever is stored in GBM, for test purposes. Further detail
regarding the pre-processor core is given in figure 40.

[0207] Memory controllers include ZBT-SRAM controllers and an SDRAM top
module. The ZBT-SRAM controllers interface with SDRAM, such as standard PC 100 or
PC 133 compliant 256 MB memory. ZBT SRAM devices are synchronous SRAMs that
provide maximum system throughput by utilizing every bus cycle. As the name implies,
there are no turnaround cycles required when switching between read and write cycles.
Consequentially there are no wasted cycles and the system actually delivers the stated

bandwidth. A snooze mode may be available for rendering module ZBT SRAMS, which,
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when activated, puts the memories in low power standby mode, retaining data and
ignoring inputs. This may be useful during reconfiguration of FPGAs. To decrease
latency, the ZBT-SRAM controller may be clocked by a doubled-frequency clock. The
SDRAM top module comprises logic to generates signals required to perform memory
write, read, refresh and internal built in self tests. At various ZBT-SRAM controllers
used in the FPGA, single and double 32 and 64 bit data paths may be used. For instance,
the interface between the pre-processor 3111 and the work memories 3115 may be a pair
of independent 32 bit data paths. The interface between the rendering processor 3121 and

the frame buffers may be a pair of 64 bit data paths.

Rendering Processor Overview

[0208] In Figure 31, a pair of rendering processors are indicated, 3120A-B. Each
of these rendering processors may be implemented in an FPGA, or alternatively, with a
RISC or ASIC processor, or a custom or semi-custom processor. Two processors may be
used so that one receives data from the pre-processor 3111 while the other writes data to
the adjustment processor 3141. The data path from the pre-processor 3111 to the
rendering processors 3120A-B may be controlled by a mux or similar device, or the
rendering processors may disregard sets of signals intended for the complementary
processor. A additional rendering processors could be used. Rendering processor 3120A
is illustrated as having data paths to a pair of frame buffers 3122. These two memories
are illustrated as having separate data paths, that is, independent channels for memory
access. One is used for pixel map memory and the other for gray value super-sampling
intermediate storage. The rendering processor 3121 also is illustrated as having another
independent data path or channel to an additional frame buffer 3123, which may hold a
micro pixel frame buffer. One or more frame buffers 3123 may be used for micro pixels.
In an implementation with 64 micro pixels per pixel, the data path from the processor to
the frame buffers 3123 may be 64 bits wide. A pair of frame buffers 3123 may be used so
that memory clear functions can be carried out in one frame buffer while reads, writes or
read/modify/writes are carried out with the other memory. Not illustrated in this figure is
a gray value summary buffer. While these memories are illustrated as external to an
FPGA, they may be incorporated internally to an appropriate FPGA, custom or semi-

custom processor.
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[0209] Figure 32 provides additional detail regarding functional blocks of the
rendering processor that may be used to implement aspects of the present invention. The
rendering processor 3120 includes several functional blocks. The CABS interface 3211 is
common to components of a system that are connected by a bus structure. The fractured
geometry converter 3212 is coupled to the CABS interface by a data path that conveys
renderable fixed point geometries. The converter delivers single edge corner coordinates
in a speed of 50 million per second using a clock frequency of 50 MHz. Faster or slower
clock speeds could be used to achieve faster or slower throughput. The output of the
converter 3212 is in corner coordinate geometry format. The data may be delivered to a
pair of micro pixel cache generators (MPCGs) 3213L-R using a pair of data paths. Using
a pair of MPCGs combined with polygon geometries allows division of processing along
right and left edges of the polygons. Fewer or more MPCGs can be used, depending on
design characteristics, such as throughput and geometry used. When the polygon
geometries are trapezoids, the top and parallel bottom of the polygon can be assigned to
different processors, for instance, before they begin processing the opposing, non-parallel -
edges of the trapezoid. Additional detail regarding the converter is depicted in figure 33.
[0210] The MPCGs 3213 of figure 32 deliver micro pixel cache sets in a speed of
50 million MiPxCaWs per second using a clock frequency of SO MHz. Faster or slower
clock speeds could be used to achieve faster or slower throughput. The pair of MPCGs
output cache sets to a micro pixel cache buffer (MPCB) 3214, Additional detail
regarding the MPCG is depicted in figure 34.

[0211] The micro pixel cache buffer 3214 converts rendered micro pixel cache
sets containing single edge information, e.g., left, right, to and bottom of a trapezoid, into
a set of micro pixel caches containing information from one to four single edge caches for
a geometric figure. Contained segments of top and bottom edges may be passed through,
before or after calculating corners, when geometric figures include contained top or
bottom edge segments. Address sets also are generated, as described above. The address
sets implicitly convey the order of micro pixel caches that will be generated. Separate
data paths may be used for conveying the cache sets and address sets. The caches
collectively define the edges of the rendered polygon. Additional detail regarding the
micro pixel cache buffer 3214 is depicted in figure 35.

[0212] The frame buffer interface (FBIF) 3215 may operate in three phases:

rendering, read out and clear. In the rendering phase, the FBIF takes geometries form the
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MPCB and stores them in one or more frame buffer memories. In a first embodiment, the

only memory may be a micro pixel frame buffer (MPFB) 3222. A plurality of MPFBs
may be utilized to permit clearing of one MPFB while operating on the other MPFB.
These memories may be dual ported and may have independent channels for memory
access. In a second embodiment, there may be both the micro pixel frame buffer and the
pixel map frame buffer (PMFB) 3223. There may be a plurality pixel map memories,
preferably with independent channels for memory access, to enhance performance. In yet
a third embodiment, there may be an added gray value frame buffer (GVFB) 3224 to
summarize the values in the micro pixel (MPEFB). Again, a plurality of gray value
memories and independent channels may be used. In a hybrid embodiment, the PMFB
may have sufficient values to serve as a GVFB. The frame buffer memories store a full
rendering window, which may be oriented with X, y coordinates. These memories store
the rendered image in different resolutions. The pixel map PMFB memory stores white,
black, gray information in two bits for all bits. The micro pixel MPFB memory stores
individual micro pixels corresponding to the pixels. For instance, an array of 8 x 8, 16 x
16, 32 x 32 or 64 x 64 micro pixels may correspond to a pixel. These micro pixels may
hold black or white values or, alternatively, gray scale values. The mode of combining
micro pixel caches depends on whether the micro pixels are B/W or gray valued. The
gray value GVFB memory is utilized with the MPFB, to summarize the evaluation of
micro pixel arrays. The micro pixel arrays can be evaluated into gray values either upon ..
read out or when they are written, and the results stored in a GVEB.

[0213] In the read out phase, the gray values are reported for each pixel. In the
first embodiment, with just a MPFB memory, this involves evaluating all of the micro
pixel arrays. In the second embodiment, with MPFB and PMFB memories, some pixel
locations are recorded in the pixel map as black or white. The system can evaluate those
locations to an integer value, such as 0 or 64 or as 0 or 256, without accessing the MPFB
memory, potentially decreasing demand for MPFB memory access bandwidth. In the
third embodiment, the GVFB memory is assigned values each time that an MPFB is
written to. Optionally, the GVFB memory can be assigned a value each time the PMFB
memory is updated. In one mode, the PMFB is evaluated to determine whether to assign
a white or black value or to utilized the GVFB value. In another mode, the GVFB value
is used directly. The gray values from the FBIF 3220 are reported to the CABS interface

3231 as a raster image.
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[0214] In the clear phase, one or memories are set to black/white so that
white/black geometry figures can be rendered on a contracting background. In the first
embodiment, the MPFB memory is cleared. In the second and third embodiments, the
PMFB memories is cleared. With some types of memory, it is less time consuming to
clear the smaller PMFB than the MPFB or GVFB, because a single word of memory can
represent multiple pixels at low resolution. In the second and third embodiments, it is
optional to take the more time consuming step of clearing the MPFB or GVEB memories,
as the pixel map memory controls whether the other memories are used to generate gray
values. That is, if the pixel map memory indicates that the value of a pixel is black or
white, any gray value in the other memories can be ignored, as the other memories may
not have been cleared after prior operations. With a memory configuration that supports
bulk erasing of memory segments in minimal clock cycles, the overhead for clearing
MPEB or GVFB might not slow the process.

[0215] More detail regarding the FBIF is depicted in figures 37-39 and 42.

Adjustment Processor Overview

[0216] An adjustment processor 3140 receives data via the CABS interface 3231
or another suitable bus structure data from the rendering processors 3120A-B. It may be
clocked at twice the frequency of its CABS interface. The adjustment processor includes
blocks for edge displacement, illumination compensation and mirror compensation. It
further may include logic for correction of minor defects in the optical system. Edge
displacement is a method of adjusting the projected image of exposing radiation to adjust
line width, instead of adjusting the processing of exposed resist, as explained above.
[llumination compensation is a method of handling overlap exposures in single and
multiple writing passes and energy variation between desired exposure radiation and
actual exposure radiation, also explained above. Mirror compensation translates desired
illumination values into drive values for individual mirrors. It also may be used to
compensate for changing mirror response as mirrors become aged or between rest cycles
for the system using mirrors. In a system utilizing a micromirror array and flashes of
exposing radiation, mirror compensation may translate illumination values to input for
DAG:s that charge the individual micromirrors.

[0217] The adjustment processor 3141 accesses coefficient memory 3143 via a

data path. This memory holds coefficients for mirror compensation and also may hold
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coefficients for area maps used in illumination compensation. A ZBT-SRAM memory
can be used as external memory. Alternatively, an internal memory can be used. The
adjustment processor further accesses frame buffer memories 3142. One or more ZBT-
SRAM memories can be used as work memory for edge displacement and to hold final
values awaiting output on one or more back plane channels 3144-45.

[0218] The pixel output controller (POC), provides a format conversion, to adapt
data to a physical layer.

Geometry Pre-Processor

[0219] Geometry descriptions are received at the geometry pre-processor in so-
called FRAC-S format. Below is the BNF grammar of a FRAC-S stream shown. The
FRAC-S stream may be stored in a so-called FRAC file that contains various process-
dependent header parameters. These parameters, once loaded, may be available to the

geometry pre-processor through control registers.

FRAC_S_FILE ::= SUBSTRIP
[SUBSTRIP]*
SUBSTRIP ::= <SUBSTRIP_START>

SUBSTRIP_BODY
<SUBSTRIP_END>

SUBSTRIP_BODY ::= RENDERING_WINDOW
[RENDERING_WINDOWT*

RENDERING_WINDOW ::=<RENDERING_WINDOW_START>
[REND_WIN_BODY]*
<RENDERING_WINDOW_END>

REND_WIN_BODY ::= GEOMETRY
[GEOMETRYT*
[LAYER]*

LAYER ::= <BEGIN_LAYER>
[GEOMETRY]*
<END>

GEOMETRY ::= <RECTANGLE>
<SMALL_RECTANGLE>
<REPEAT_RECTANGLE_X>
<REPEAT_RECTANGLE_XY>
<TRAPEZOID>
<REPEAT_TRAPEZOID X>
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| <REPEAT_TRAPEZOID_XY>
| <BEGIN_X_REPEAT> [GEOMETRY]*

<END>

| <BEGIN_XY_REPEAT> [GEOMETRY]*
<END>

| <BEGIN_Y_REPEAT> [GEOMETRY]*
<END>

| <BEGIN_INSERT> [GEOMETRY]* <END>

The notation [x]* denotes “zero or more occurrences of x”. An input stream in this
format is converted into an output stream in a subset of this format, in which complex
geometry descriptions, such as hierarchical and repeated descriptions, are simplified. The
record types in the output stream are rectangle, small rectangle, trapezoid, begin layer and
end layer. In one implementation, the number of repetition levels is five. One rendering
window at a time is pre-processed. Data may be processed with a precision greater than a
sub-pixel or micro pixel. A so-called soft pixel is one half of a micro pixel.
[0220] The processing rate of a real-time geometry pre-processor depends, in part,
on the complexity of the geometry. For a flash exposing radiation system with a flash
rate of 1,000 per second and an array of 2048 x 512 pixels (micromirrors), the overall
system processes 104.8 * 10° pixels per second. This corresponds, for a metal layer
pattern of a semi-conductor, to an average geometry rate of 7,000,000 geometries per
second. At an average of four records per geometry, the required record output rate
would be 28,000,000 records per second.
[0221] The geometry pre-processor interfaces to three other modules, namely an
SDRAM from which it reads FRAC-S data, a ZBT RAM used for temporary storage and
a CABS unit that handles data addressing and framing.
[0222] The overall operation of PP is as follows:
1) At RESET, PP awaits a STRIP_SYNC event.
2) At STRIP_SYNC, the first two rendering windows are read in, transformed
into the corresponding FRAC-L sequences and transmitted to the two rendering
processors. The pre-processor then awaits an RP_DONE event.
3) At RP_DONE, the next rendering window is read in, processed and sent to a
first rendering processor. The pre-processor then awaits a new RP_DONE event.

4) At RP_DONE, the next rendering window is read in, processed and sent to a
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second rendering processor. The pre-processor then awaits a new RP_DONE

event and proceeds at 3).
[0223] To be noted, from when a STRIP_SYNC event is received until a
SUBSTRIP_END record is encountered, FRAC-S data is pre-fetched into a local input
cache. This effectively minimizes the latency contributed from SDRAM accesses. The
FRAC-L output is performed in consecutive bursts of double words. Therefore, the pre-
processor stores output records into an internal buffer until at least 10 complete FRAC L
blocks has been stored, or an RENDERING_WINDOW end block has been encountered.
This 10 block rule implies that the average burst length to RP will be about 32 double

words. At the end of each rendering window, a trailing END record is transmitted. The
pre-processor keeps track of LAYER record parameters as follows: Layer numbers shall
be in consecutive order, starting at 1 for the first LAYER record, 2 for next etc. If this
ordering fails, an error is issued. And, if layer operation = IGNORE, the entire layer is
discarded.

[0224] The various FRAC records and its corresponding block structures that may
appear within one rendering window are shown below. For hierarchical structures,
{G1..Gn} denotes the parsed geometries inside the hierarchy. That is, a block always

encloses the outermost repetition level and may contain any number of underlying levels.

FRAC Sequence Block Structure
<RECTANGLE> RECT(x,y,dx,dy)
<SMALL_RECTANGLE> SMALL_RECT(x,y,dx,dy)
<TRAPEZOID> TRAP(x,y,dx,dy,dx1,dx2)

<REPEAT_RECTANGLE_X> REPEAT_X(xrep,xdist, RECT(x,y,dx,dy));

<REPEAT-RECTANGLE_XY> REPEAT_XY (xrep,xdist,yrep,ydist,
RECT(x,y,dx,dy))

<REPEAT_TRAPEZOID_X> REPEAT_X(xrep,xdist, TRAP(x,y,dx,dy,
dx1,dx2))

<REPEAT_TRAPEZOID_XY> REPEAT_XY (xrep,xdist,yrep,ydist,
TRAP(x,y,dx,dy,dx1,dx2))

<BEGIN_LAYER> LAYER(layer_no,oper)

<END> END

<BEGIN_X_REPEAT>

[GEOMETRY1*

<END> REPEAT_X(xrep,xdist,{G1..Gn})

<BEGIN_Y_REPEAT>
[GEOMETRY}*
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<END> REPEAT_Y(yrep,ydist,{G1..Gn})

<BEGIN_XY_REPEAT>
[GEOMETRY]*
<END> REPEAT_XY (xrep,xdist,yrep,ydist,{ G1..Gn})

<BEGIN_INSERT>
[GEOMETRY]*
<END> INSERT ({xoffs1..xoffsm},{G1..Gn})

<SUBSTRIP_START> -
<SUBSTRIP_END> -
<RENDERING_WIN_START> -
<RENDERING_WINDOW_END> REND_WIN_END(CPC)
[0225] For each rendering window, the two memory areas will be used

interchangeably. Geometry blocks that arrive are temporarily stored one by one in
current memory area while being traversed. If a block is not needed in succeeding
rendering windows (RWs), it is removed from memory after being fully traversed.
Blocks that are further needed are queued in memory for use in succeeding RWs. In the
example in of, a REPEAT_X 4103 and REPEAT_Y 4105 block remain saved 4113, 4115
from a first RW. For next RW, the REPEAT_X block 4113 from previous RW is saved
4131, along with an INSERT block 4142, 4122 from the input FRAC-S stream.
[0226] Traversing a block differs, depending on the type of geometry represented
by the block. Blocks that represent simple geometries may be converted to FRAC-L
records directly, whereas repeated geometry blocks have to be traversed recursively. The
traversing procedure is as follows:
1) If the block type is {RECT, SMALL_RECT, TRAP, LAYER, END,
REND_WIN_END}, then convert the block to a record sequence.
2) If the block type is {REPEAT_X, REPEAT_Y, REPEAT_XY, INSERT}, then:
Push start address and repetition parameters on stack;
Traverse the sub-blocks recursively, starting at 1, above; and

When all repetitions are done, pop stack to previous level.

[0227] Figure 40 is a block diagram of the pre-processor core. The FRAC-S input
buffer 4101 avoids or minimizes overflow due to propagation time in the flow control
mechanism. New FRAC-S records are requested by setting the DRQ signal high. For
every cycle where the DAYV signal is set high, a new record is written into the buffer. As

long as the CTS input signal is high, records are read out from the buffer and sent to the
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parser. Setting CTS low stops the output stream. Each of the rendering windows
received are associated with a Cyclic Parity Check (CRC) code that is stored in the
RENDERING_WINDOW_END record. The CPC control block 4102 recalculates this
check sum and issues an error signal if the sum differs from the reference value. Various
recovery scheme can be used in case of an error signal.

[0228] The parser module 4103 reads FRAC-S records from the buffer and groups
the records into geometry blocks. When setting the get_block signal high, the parser
outputs an entire block that will be stored in memory. Repeated geometries (i.e.,
REPEAT_RECTANGLE and REPEAT_TRAPEZOID) are translated into REPEAT
blocks to simplify further processing.

[0229] If the parser 4103 is unable to generate a block due to error in the FRAC-S
stream syntax, the exception signal syntax_err is asserted and operation on the current
rendering window may be aborted. Syntax errors include the following: a
<BEGIN_REPEAT>, <BEGIN_INSERT> or <BEGIN_LAYER> without an <END>, or
<END> without <BEGIN_REPEAT>, <BEGIN_INSERT> or <BEGIN_LAYER>; a
<BEGIN_LAYER> inside a REPEAT or INSERT block; or a <BEGIN_LAYER> inside
a layer description.

[0230] The memory 4104 comprises two ZBT RAMs organized in 32-bit words
4105A-B, which are used as described above. The memory control 4106 controls
whether a new block should be read from memory or from the parser. It selects the
memory area and address to read from and write to and performs the read/write
operations. To decrease memory read latency, the interface towards the ZBT SRAM
modules, may be clocked with double clock frequency.

[0231] The traverse and generate module 4107 traverses a geometry block in
memory and generates primitive geometries (shapes). A stack 4108 is used for handling
multiple hierarchy levels. When entering a new level (i.e., REPEAT..END statement),
the repeat parameters are pushed on the stack and the stack pointer is incremented. When
all repetitions on current level are done, the stack 4108 is popped to the previous level. If
a geometry is rejected by the coordinate adder block, the stack is also popped, and the
current block will remain in memory for next RW. The stack handler 4108 contains the
stack read/write mechanism and logic for incrementing coordinates in repeat loops. It
controls whether to save the current block, jump back to the beginning of a loop or

proceed with next instruction. The coordinate adder 4109 adds the cumulative Zdx and
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2dy increments, stored in the stack, to the current x and y coordinates of the arriving
geometry. If a geometry falls outside the current rendering window coordinates, the

reject signal is set to indicate that this repetition level should be popped.

Fractured Geometry Converter

[0232] Figure 33 is a block diagram of a fractured geometry converter (FCON).
The fractured geometry converter 3212 comprises two main blocks 3321, 3323 and a
FIFO memory 3322. The FRAC-L Record Handler block, FLRH 3321, works as an
interface towards the CABS block 3211. Its main task is to retrieve geometry information
from the FRAC-L records. FRAC records are received as 32-bit words from CABS. The
information is analyzed for the type of geometry and stored in records. The Geometry to
Corner Converter; GCCON 3323, converts the FRAC representation of a geometry into
geometry corner representation. It also splits the data into left and right data stream. The
FIFO memory 3322, included in FLRH 3321, ensures that CABS data transfer flows
evenly. This FIFO memory can contain up to 255 FRAC-L words. FCON will use
control signals to indicate when the buffer is nearly full or needs to be refilled.

[0233] In the GCCON block 3323, the geometry start coordinate and length
specification are converted into a geometry corner description and divided into top, left
and bottom, right coordinate pairs. To simplify the functions of down stream process
blocks, top and bottom geometry information is conveniently transmitted first for each
new geometry. Thus, top information is present, even if the geometry is a triangle. A
FCON fault indication will be initiated if geometry edge coordinates lie outside or on the

top or left border of the guard window.

Micro pixel Cache Generator

[0234] Figure 34 is a block diagram illustrating one embodiment of rendering
212, which is part of the rendering engine in figure 2. Sub-pixel arrays or grids are
sometimes referred to as micro pixel caches. The micro pixel cache generator includes
four blocks: initiation; rendering; table lookup; and translation. The input 3401 may be a
renderable fixed-point geometry or, more generally, a polygon to be rendered. The
initiation block 3402 calculates starting parameters for application of the Bresenham
rendering algorithm to the polygon. Application of the Bresenham algorithm is described

in connection with figures 8 through 11. The rendering block 3403 carries out the
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Bresenham algorithm. The table lookup block 3404 contains a lookup table for
converting micro pixel cache coordinates into a sub-pixel image. This process is
described in connection with figures 12-14. The last block, translation 3403, translates
values for sub-pixel bar values into shaded sub-pixels in the sub-pixel grid. In some
instances, rotation or inversion of values in the lookup table may be necessary to shade
sub-pixels in the sub-pixel grid. Translation of sub-pixel bar values from the lookup table
and rotation of the bars, if necessary, can be performed in hardware using an array of flip-
flops that can be addressed both horizontally and vertically. The output 3406 from the

micro pixel cache generator is a micro pixel cache set.

Micro pixel Cache Buffer

[0235] The Micro Pixel Cache Buffer 3214 consists of five main blocks, seen in
figure 35. The FIFO memories left (L) 3512 and right (R) 3514 receive MiPxCaW
information from the two MPCGs 3213L-R. The first pair of MiPxCaW received for
each new geometry, which include top and bottom edge information, are stored in the top
(T) 3511 and bottom (B) 3513 FIFOs. The four MiPxCaW FIFOs are connected to a
combined multiplexer and logical and function 3521, generating the final rendered
MiPxCaW. There is one Micro Pixel Cache Set Generator, MPCSG, divided in three
blocks 3501, 3502, 3504 generating the micro pixel cache set used to control the logical
and function 3521 and the information used by the Frame Buffer Interface, FBIF 3215,

which describes how the rendered MiPxCaWs are organized on the output.

Frame Buffer Interface

[0236] Figure 36 is a block diagram of one embodiment of the frame buffer
interface 3220. As depicted, processing flows from the micro pixel cache generator 3213
to the micro pixel cache buffer 3214 and onto the FBIF 3220. The first element of the
FBIF is a guard zone filter 3641, which is one hardware implementation of the guard zone
described above. Figure 37 illustrates the operation of this filter. Consider the geometric
figure 3763. It straddles the boundary 3761 between the rendering window and the guard
zone 3762. Portions of the left and bottom edges that are in the guard zone are indicated
by shading. The guard zone filter 3641 receives in input data set 3751 and generates an
output data set 3752. For the portion of figure 3763 in row 6 of the grid, the data 3751

includes an edge start in column 2, an edge end in column 3 and micro pixel caches for
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pixels 6, 2 and 6, 3. The filter detects that 6, 2 and 6, 3 are in the guard zone. It generates
new address sets and a new micro pixel cache 3752. The start and end of the row 6 edge
segment are set to 6, 4 and a single, white micro pixel cache MiPxCaW_X4 replaces the
input pair of micro pixel caches. The interfaces 3643, 3642 control access to the
respective memories 3223, 3222. Read out logic 3644 passes the values from the
respective memories to the CABS 3231 interface. The logic depends on the embodiment
of the memories, as described above. One read out logic is depicted in figure 7. Further
detail of one embodiment appears in figures 38-39.

[0237] Figures 38 and 39 are a block diagram of the first embodiment of FBIF
3220, utilizing MPCB memory 3222, but not PMCB memory 3223. Two subunits
3803A-B are provided for throughput, operating in an interleaved fashion as explained
below, to efficiently utilize bandwidth. Fewer or more subunits could be employed,
depending on the performance of the subunits and the desired throughput. As described
above, the FBIF generation two has three phases: 1) the rendering phase; 2) the read out
phase; and 3) the clear phase. A schedule block 3802 schedules the 3 phases. In one
embodiment, supersampling is performed as a part of the readout phase. (In another
embodiment, supersampling may take place each time a micro pixel array is written.)
Supersampling is executed just before the data is written 3821 to the CABS_agent 3801.
The CABS_agent 3801 can abort the current operation in all blocks. When the abort
signal 3825 is set, FBIF will abort the current function until either: the MPCB signals
3214 new data, then the FBIF 3220 will start in rendering phase and the current memory
content will be used in the new rendering operations; or the CABS orders FBIF to readout

data with the send_frame_cabs-signal 3822. In general, the FBIF-block may be double

clocked.
[0238] In figures 38 and 39, the scheduler 3802 schedules the three phases for the
two sub_units in a 4-phase interleave schedule:
Eocessor Buffer Phase 1 Phase 2 Phase 3 Phase 4
RP A MPFB A1 | Clear Rendering | Readout/ Idle
super-
sampling
MPFB A2 |ldie Clear Rendering | Readout/
super-
B sampling
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RPB MPFB B1 | Readout/ Idle Clear Rendering
super-
sampling
MPFB B1 |Rendering |Readout/ |ldle Clear
super-
sampling

The scheduler 3802 sends the signals 3827 Render, Clear and Read_out to the sub_units
3803A-B. When the data and control 3822, 3823, 3824 from MPCB 3214 &
CABS_agent 3801 is received by the sub_units 8303A-B, they respond consistent with
the phase that they are in. The scheduler uses signals from other logic units. From
MPCB 3214, it uses downward_ready, and WEND. From the CABS_agent 3801, it uses
send_frame_CABS. From the sub_units, it uses frame_done_CABS, clear_done. If an
abort signal is received, the scheduler goes to phase 1 and sub_unit_A waits for
downward_ready to start render; at the same time, a clear memory process is started in
sub_unit_B. If abort is received, all data current processed in FBIF will be lost, but the
content of the memory will not be changed due to abort.

[0239] The control logic 3904 also responds consistent with the phase that it is in.
During the rendering phase, the downward_ready and upward_req signals control the data
flow from MPCB 3214 to FBIF 3220. The rendering phase starts when the MPCB signal
Downward_ready goes active, indicating that is data available. The FBIF will receive
data until there is no more data for the current rendering window and the WEnd signal
goes active. As long as the Downward_ready is active there are MiPxCaW to receive
from the MPCB-block. If the Downward_ready signal goes in-active and no WEnd
signal is received, there are still more MiPxCaWs for this rendering window, but, at the
moment, the MPCB-buffer is empty. As long as the FBIF is ready to receive new data, it
holds upward_req active. The rendering phase is finiéhed when the Wend signal goes
active. FBIF will then send frame_ready_CABS to the CABS_agent so the CABS_agent
can fetch data. Downward ready can only go inactive after an active WEnd or GEnd
pulse. After an active WEnd or GEnd pulse the pipeline in FBIF is flushed. When new
MiPxCaW’s come from MPCB from a new geometry, there will not be any unprocessed
old MiPxCaW’s from the old geometry in the pipe. As the address sets are processed the
control block checks if the address in the memory has to be increased or decreased and
gives up or down count orders to the address generator. When white MiPxCaW are

rendered data is only written to memory, no reads are performed.
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[0240] The read out phase is invoked from CABS_agent 3801 with
send_frame_CABS. Data is then sent to the CABS_agent until the frame buffer is
emptied. Once the last frame data was sent to the CABS_agent, FBIF sets
frame_done_CABS signal active. Also in the read out phase, the controller 3904 gives a
start signal to the clear & readout address generator 3902 and the data handler 3905. The
data is written to the CABS interface 3801 via the supersampling block 3901.

[0241] The clear phase invoked from the scheduler 3802. The controller sends a
start signal to the clear & readout address generator 3902 which generates all addresses
for the memory. All memory positions will be written with zero (0) for black.

[0242] The data handler 3905 includes logic to recognize the three phases and act
accordingly. During the rendering phase, MiPxCaW comes from its interface. A new
MiPxCaW comes only if the MiPxCaW is gray. If a MiPxCaW is white, this is as
implicit information of the address set, and no micro pixel cache is sent along the data
path. The control block 3904 tells the data handler 3905 if the current data is white or
gray. The data handler executes one or more logical OR/NAND operations, utilizing the
logic described above. In general, memory is read to see if stored data is white, gray or
black; a logical OR/NAND is performed, and new data is written into memory. To
compensate for the delay in the ZBT-memory 3805 and the pipeline in the ZBT-memory
controller 3804 when the data from the memory is read, there is a delay function 3906 in
the data path and in the control path in the data handler. During the read out phase, the
delay is disabled. During the clear phase, the data handler writes 0 to the memory.
[0243] The address generator 3903 is responsive to the current phase of execution.
In the rendering phase the address is given by the address sets sent from the MPCB to the
FBIF. The address sets are read by the control block and then it sends information to the
address generator about: x and y information about the current position in the window;
and the address sets from MPCB can be orientated in an up/down or in an down/up
orientation. The control block tells the address generator if it should count up or down.
A full rendering window is Rend_win_In_x * Rend_win_In_y MiPxCaW. The rendering
window is stored into the frame buffer in a row after row orientation. For example,

Rend_win_In_y =400 or Rend_win_In_x = 200.
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Adr01234567891011...199200201 202 ...

Data| Row 1 Row 2

In rendering phase a new address is generated each second clock cycle when gray data is
rendered. When white data is rendered data is only written to memory and not read,
therefore a new address is generated each clock cycle. The control signals
Rend_win_offs_x, Rend_win_offs_y contains information about the position of the
rendering window in the guard window and the Rend_win_In_x and Rend_win_In_y tells
the about the size of the rendering window. These are used to determine if a MiPxCaW is
positioned in the guard window or in the rendering window. All MiPxCaW are handled
equal by FBIF, both in guard and rendering window. But if the address generator detects
addresses outside the rendering window the memory enable signal will not be active and
thus the corresponding MiPxCaW will not be written into memory. During the read out
and clear phases, this logic block is not used.

[0244] The clear & readout address generator 3902 is not used during the
rendering phase. During the read out phase, data is written to the CABS interface line by
line, i.e., the address increment for two consecutive data will be Rend_win_In_x, except
when a new line starts. When a new line starts, the current_line_pointer will be
incremented with 1. Between two consecutive lines in the case of blanking the address
will be halted according to the blanking parameter, see the below example. With the

parameters Rend_win_In_y =400, Rend_win_In_x = 200 and Blanking = 2:

Adr o 1 J2 I3 J.. [199 T199 [199 {200 ...

Line Line 1 Blanking |Line2

Data |DO IDI D2 |D3 ID199 D19 |D19 | D20 l
9 19 o

In readout phase a new address is generated each clock cycle for the 100 Mpixel/s readout
rate and for the 50 Mpixel/s readout rate one address per two clock cycles is generated.
To generate addresses in interleaved mode, with two sub_units functioning, an offset will
be added to the address: Address_1 = adr_gen; Address_2 = adr_gen +
rend_win_length_x/2. In interleaved mode, memory access will be alternate between
address_1 and address_2, starting with address_1. If an extension zone is used, address_2

will have the following expression: Address_2 = adr_gen + rend_win_length_x/2 - 2. In
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clear phase all memory addresses are generated from O to 256 k, for clearing. (This
function may not be needed for a memory design that allows for a bulk clear function.)
[0245] The address delay logic 3906 is enabled during the rendering phase. Old
stored data has to be read in order to perform OR/NAND with new MiPxCaW-data. To
compensate for the delay in the ZBT-memory and the pipeline in the ZBT-memory
controller in the read process, both data and address has to be delayed. The address delay
block delays the address. The delay of data is integrated in the data handler. The address
delay logic is disabled during the read out and clear phases.

[0246] The super sample logic 3901, in this embodiment, is used during the read
out phase, as depicted in figure 7.

[0247] Second and third embodiments of the FBIF utilize logic adapted to having
PMFB and GVFB memories, respectively. As figure 32 depicts, a plurality pixel map
3223 and gray scale 3224 memories may be advantageous. The impact of added
memories and independent channels for memory access is evident from the following
interleave discussions. The pixel map PMFB memory serves as an access qualifier,
qualifying the need to access the micro pixel memory for particular pixels. The truth
table for pixel map symbol modification is depending on the required rendering operator,
which can be either “or” or “and-not”. An “*” in the tables denotes any symbol value,
meaning ‘don’t care" or “wildcard”.

OR-operation
Before B |* B |6 W
Modify G W B B [* ¢
After G W B 6 W G

G

AND NOT-operation
Before W * W |6 B G
Modify & W B B [* (G
After G B W G B 6

[0248] Access qualifiers can be either write, which denotes a single write
operation, or modify write, which denotes a read-modify-write operation. For the OR-
operation, when the after value for a pixel is W or B, the micro pixel array does not need
to be read or written. Instead, the pixel map PMFB memory is set to the appropriate
value. When the after value is gray and the before or modify value is black, then either a
single write or no write at all will produce the correct gray value in the micro pixel MPFB

memory. When a pixel has before and modify values that are gray, the micro pixel array
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needs to be read, operated on by applying a logical OR- or AND NOT-operation to the
before and modify values, followed by a write of the resulting value to the MPFB.
Essentially the same access qualifiers can be applied to the AND NOT-operation as to the
OR-operation. Figure 16D illustrates the operation of the access qualifiers. A rectangle
is the before value for the pixels. A parallelogram is the modify value for the pixels. A
shaded map indicates resulting pixel map values (black, white, gray) after the modify
operator. It shows whether the micro pixel MPFB memory was subject to a single write
operation, a read-modify-write operation, or was unchanged after the logical OR-
operation was applied to modify the rectangle with the parallelogram.

[0249] The interleave diagram for the second embodiment is:

Processor | Buffer Phase 1 Phase 2
RP A MPFB A Rendering Readout/
super-sampling
PMFB A | Rendering Readout/
Clear
RP B MPFB B |Readout/ Rendering
super-sampling
PMFB B |Readout/ Rendering
Clear
[0250] The third embodiment, mentioned above, would involve supersampling

each time a write or read-modify-write operation was carried out. One or more gray
GVFB summary memories would hold the result. Two variations of the third
embodiment use pixel map and gray value memories on the same or separate data paths.
The first interleave diagram is for two shared PMFB memories (two buffers in same
memory, on the same data path) and two shared GVFB memories (two buffers in same
memory and data path.) (subphases interleaved on a line-by-line bases, one set of four

subphases for each readout line, 512 readout lines per overall phase)

Phase 1 Phase 2
Pro- | Buffer Subphase 1 Subphase 2..4 | Subphase 1 Subphase 2..4
cessor
RPA [MPFBA Idle (que end) |Rendering Idie (que end) |Rendering
PMFB A1 |- Rendering Readout/clear |-
PMFB A2 | Readout/clear |- - Rendering
GVFB A1 |- Supersampling | Readout -
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GVFB A2 |Readout - - Supersampling
RP B |MPFBB Idle (que end) |Rendering Idle (que end) |Rendering

PMFB B1 |- Rendering Readout/clear |-

PMFB B2 | Readout/clear |- . - Rendering

GVFB B1 |- Supersampling | Readout -

GVFB B2 |Readout - - Supersampling

Que end means that the FIFO buffer prior to the MPFB agent can still be emptied, even

though the PM agent is busy reading. This provides load sharing.

[0251]

In the second variation on the third embodiment, two separate PMFB and

two separate GVFB are used, each memory having its own data path or independent

channel for memory access.

Processor | Buffer Phase 1 Phase 2

RP A MPFB A | Rendering Rendering
PMFB A1 | Rendering Readout/clear
PMFB A2 |Readout/clear Rendering
GVFB A1 |Supersampling |Readout
GVFB A2 |Readout Supersampling

RP B MPFB B | Rendering Rendering
PMFB B1 | Rendering Readout/clear
PMFB B2 |Readout/clear Rendering
GVFB B1 | Supersampling |Readout
GVFB B2 |Readout Supersampling

[0252] In the second and third embodiments, the read out and clear phases are

combined. The pixel map is cleared when the PMFB and MPFB memories are read. This
happens quickly, as the pixel map represents pixels in as few as two bits. There is no
need for separate read out and clear phases.

[0253] Figure 42 depicts a rough block structure of the frame buffer interface in
the second embodiment. The structural view, in contrast to the functional views, suggests
how to incorporate interleaving and pipelining algorithms in order to speed execution. It
is useful to separate huge data-buses and to process data in parallel in several smaller

logic blocks that not interconnected. Partitioning data into several smaller blocks
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facilitates physical implementation in a high speed digital device. Block segmentation
lends itself to pipelining. The functions of the MPCB 3214 in generating address sets
4201 and micro pixel caches 4202 is as explained above. The guard zone filter, as one
embodiment of a guard zone, is 3641. The pixel map frame buffer interface 3643
accesses the PMIFB memory 3223 (see figure 36.) The micro pixel frame buffer interface
3642 accesses the MPFB memory 3222 (also see figure 36.)

[0254] In this configuration, the guard zone filter block 3641 shares signals with
the MPCB (Micro Pixel Cache Buffer) 3214, the Pixel Map Frame Buffer Access
Sequence Generator (PMFB AccSeqGen) 4221, the Micro Pixel Frame Buffer
AccSeqGen 4222 and the MiPxCaW Buffer 4223. The following signals are required to
determine whether a MiPxCaW is located inside the rendering window or not:
Interior_info, MPCS_Y, MPCS_X1S, MPCS_XI1E, MPCS_X2S and MPCS_X2E are the
coordinates relative to the left corner of the guard window in x- and y-direction;
Rend_win_offs_x and rend_win_offs_y indicate the position of the origin of the
rendering window; Rend_win_In_x and rend_win_In_y indicate the dimension of the
rendering window; and a pair of handshake signals (Downward_Ready/Up_Request) in
order to arbitrate the data flow between this block and the MPCB (Micro Pixel Cache
Buffer) 4202.

[0255] The pixel map frame buffer access sequence generator 4221 shares signals
with the guard zone filter 3641 and the PMFB Agent 4231. It receives including address
Sets from (XY, interior_info) from Guard zone filter; a pair of handshake signals
(Downward_Ready/Up_Request) that arbitrate the data flow between this block and the
Guard zone filter; Address and Byte Enable corresponding to the Pixel Map Set to be
processed in the PMFB Agent; and a signal used to indicate the presence of data available
for processing (PMFB AccSeqGen -> PMFB Agent) and a signal used to indicate that
PMFB Agent is ready to receive data from PMFB AccSeqGen.

[0256] The PMFB agent 4231 reads one Address Set (AS) at a time and generates
a sequence of PMFB (Pixel Map Frame Buffer) accesses. For each AS of X1S, X1E,
X2S, X2E, Y a sequence of PMFB accesses will be generated. A PMFB access consists
of a PM Set access addressed by word position [(0...Xsize/4-1), (0...Ysize/4-1)] and set
number [0...3]. The set number will be used as a byte enable signal in the PMFB Agent.
[0257] Figure 43 illustrates one memory organization that can be used to practice

aspects of the present invention. In this organization, a Pixel Map Symbol has a value of
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W = White, G = Grey, B = Black, a Pixel Map Set includes four Pixel Map Symbols
arranged as an 8-bit word, and a Pixel Map Word includes four Pixel Map Sets, arranged
as a 32-bit word. The following RMW procedures are supported in this memory
organization: Read of 8-bit word (24 remaining bits discarded), Write using a mask (byte
enable), and Read of 32-bit word, write of 32-bit word. Referring again to figure 43,
assume that row number eight is processed by the PMFB AccSeqGen 4221. A sequence

of three memory accesses will be generated.

Sequence 1 Sequence 2 Sequence 3
PM Set GGWW WWWW GGBB
Byte Enable 0 0 0
corresponding
Memory Word (1,2) (2,2) (3,2)
Position
[0258] The PMFB agent 4231 constructs a generic pixel map container to handle

intermediate storage of either a PM Set or a PM Word. The container contains one to

four symbol sets and a word address. The container has one pixel map set entry:

Set array | Set valid | Operator
Set 0| ssss \ op
Set 1]ssss v op_
Set 2| ssss \ op_
Set 3 | ssss v op

s = pixel map symbol [W, G, B]
v = validity state [True,False]
op = operator [Or,AndNot]

Examples:
Set array | Set valid | Comment
Set 0] ---- False No modification on set 0
Set 1)|---— False No modification on set 1
Set 2| WWWG | True v
Set3|--—-- False v

Set array | Set valid | Comment

Set 0 ---- False No modification on set 0

Set 1 | WWGG | True Set 1 is modified with symbols WWGG
Set 2| WWWG | True Set 2 is modified with symbols WWWG
Set 3| ---- False 14
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[0259] The PMFB agent 4231 shares signals with the ZBT-controller 3804 A,
PMFB-AccSeqGen 4231 and the Access Qualifier FIFO 4232. The interface between
PMFB AccSeqGen and PMFEB-Agent is mentioned above. The interface between
AccQua FiFo 4232 and PMFB-Agent 4231 includes sending Access Qualifiers to the
FiFo. To allow new data to be written, a Write Enable is needed as well as a FiFo status
flag, e.g., fifo_full or fifo_overrun. The Interface between PMFB-Agent 4231 and the
ZBT-controller 3804 A includes: Address, data in, data out, read_write, and byte enable
signals. In addition, the Rendering Window Logical Operator (RWLOper), included in
the generic container, is needed to determine which logical operator to use to perform the
rendering process.
[0260] The purpose of the MPFB AccSeqGen 4222 is to generate addresses
corresponding to the MiPxCaW stored in the MiPxCaW-buffer 4223. Addresses are
generated outgoing from the Y-value, X1S, X1E, X2S and X2E. S indicates start and E
indicates end. Below are logical rules for the address set:

X1S <X1E: MiPxCaW are stored in MPCB with the lowest address data first in

a region from X1S to X1E. (Left edge)

X1S > X1E: MiPxCaW are stored in MPCB with the highest address data first

in the region from X18S to X1E. (Left edge)

X2S < X2E: MiPxCaW are stored in MPCB with the lowest address data first in

a region from X2S to X2E. (Right edge)

X2S > X2E: MiPxCaW are stored in MPCB with the highest address data first

in the region from X2S to X2E. (Right edge)
Moreover, this block must indicate upward, i.e., to the guard zone filter, that it is ready to
receive a new address set as soon as it has sent the last address to the MPFB-Agent 4233,
corresponding to the previously received address set.
[0261] The MPFB AccSeqGen 4222 has a common interface with the Guard Zone
Filter 3641 and with the Micro Pixel Frame Buffer Agent 4233. The Guard Zone Filter
sends address sets on request: X1S, X1E, X2S, X2E and the interior_info flag. A pair of
handshake signals (Downward_Ready/Up_Request) arbitrate the data flow between this
logic block and the Guard zone filter. At the interface between the MPFB-Agent and the
MFB access sequence generator block 4222, the address to be used for the corresponding
MiPxCaW (stored in the MiPxCaW-buffer) as well as dataflow arbitration signals are

transferred.
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[0262] The MiPxCaW-buffer 4223 is nothing more than a FIFO-buffer. It
accommodates a high clock frequency required in this design (100 MHz) and is generally
FloorPlanner-friendly. Four DPRAM blocks are provided required to store the largest
geometry (253 MiPxCaW), i.e., the 64-bit word is split up in four 16-bit words. The
MiPxCaW-buffer 4223 has a common interface with the Guard zone filter and the MPFB-
Agent. At the interface between the Guard Zone Filter and this block, the MiPxCaW
flow to the buffer and a write enable signal are necessary to supply the FiFo. At the
interface between the MPFB-Agent and this block, the MiPxCaW flow from the buffer
and a read enable signal are necessary to fetch data from the FiFo.

[0263] The MP frame buffer agent 4233 performs operations on the MPFB 3222
on a MiPxCaW by MiPxCaW basis, i.e., one 64-bit word at a time. The Agent performs
write or read-modify-write operations depending on the value of the access qualifier,
AccQua. The truth table for MiPxCaW modification depends on the logical rendering
operator, which can be either “OR” or “AND-NOT”. If the AccQua for, a given couple
(address, MiPxCaW), is Write, then the MiPxCaW has just to be written to the
corresponding address. But if the AccQua is Modify-Write, then the value stored in the
MPFB must first be fetched from the position pointed out by the address. After that the
data can be modified according to the rendering window operator. However, the data and
the address must be stored in a queue while waiting for the data to be retrieved. There is
a latency (approximately 10 clock cycles) between the moment the Agent sends address
and control signals to the ZBT-controller 3804B and the moment the corresponding data
is available on the Dout-bus. This implies that a cache coherency contention can occur if,
for instance, two overlapping geometries are written after each other in the MPFB. This
can be solved with a CAM structure that monitors the addresses used to access the
memory. A possible implementation is to store the last 10 addresses a to issue a match
indicator if an address is present twice in the CAM-structure. This implies a temporary
interruption in operations until the match indicator disappears.

[0264] The micro pixel frame buffer agent 4233 logic block has a common
interface with the AccQua FiFo 4232, the MPFB AccSeqGen 4222, the MiPxCaW buffer
4223 and the ZBT controller 3804B. A read enable signal that is common to the FiFo, the
buffer and the address generator triggers the release of a new AccQua, address and
MiPxCaW. At the interface between the FiFo and this block, there are AccQua and a
FiFo-status indicator, for example FiFo-empty flag. At the interface between the MPFB
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AccSeqGen and this block, there are an address bus and a pair of arbitration signals, for
example ready/proceed. At the interface between the MiPxCaW buffer and this block,
there are MiPxCaW bus and a pair of arbitration signals, for example ready/proceed. It is
possible that the pair of arbitration signals are the same as the ones used between this
block and the MPFB AccSeqGen. Finally, the interface between the ZBT-controller and
this block is as discussed above, for the PMFB agent.

[0265] The read out logic 3644 has This block has a common interface with both
frame buffers (via the ZBT-controllers) and the CABS bus.
[0266] The clocking strategy calls for the logic blocks of the FBIF to be clocked

with clk_c2 clock, at a doubled frequency of 100 MHz. The read out logic is to be
clocked with the clk_c1 clock as well, which has the base frequency of S0 MHz. Two
clock frequencies can be used to drive the CABS interface, which uses the clk_c1 clock,
and the ZBT-controller, which uses the clk_c2 clock. Both clocks are generated of the
same DLL, which means that the skew should be negligible. That is, both clocks can be
considered as synchronous clocks. Wherever a transition is to be made between those
two clock domains two approaches can be considered: either use only the clk_c2 clock
and use multi clock cycle path wherever needed or use both clk_c2 and clk_cl1.

[0267] While the present invention is disclosed by reference to the preferred
embodiments and examples detailed above, it is understood that these examples are
intended in an illustrative rather than in a limiting sense. It is contemplated that
modifications and combinations will readily occur to those skilled in the art, which
modifications and combinations will be within the spirit of the invention and the scope of

the following claims.

[0268] We claim as follows:
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CLAIMS

1. A method of converting geometry into driving voltages for individual mirrors in a

micromirror array, including

mapping a work piece into overlap regions, corresponding to patterns of intended
energy contributions from a plurality of overlapping exposures of regions of the work

piece;

rendering many polygons to gray scaled pixel values using a plurality of rendering

engines operating in parallel;

calculating exposure values for the gray scaled pixel values, taking into account the

overlap regions;
contouring the exposure values based on individual micromirror characteristics; and
outputting the contoured exposure values to one or more mirror pixel drivers.

2. The method of claim 1, wherein the mapping step produces 81 overlap regions

in the irradiated area in one step.

3. The method of claim 1, wherein the calculating step uses the overlap regions to

take into account overlap between successive exposures.

4. The method of claim I, wherein the calculating step uses the overlap regions to

take into account irradiation energy applied in successive exposures.

5. The method of claim 3, wherein the calculating step uses the overlap regions to

take into account irradiation energy applied in successive exposures.

6.  The method of claim 1, further including buffering the output of the rendering,
calculating and contouring steps in at least one segmented buffer, wherein the outputting
step includes repeatedly coupling one of the buffer segments to a set of mirror pixel

drivers.
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1 7. The method of claim 6, wherein the mirror pixel drivers are digital to analog

2 converters switchably coupled to individual mirrors of a micromirror array.

1 8. The method of claim 6, wherein the segmented buffer accepts input from a

[\

number of rendering engines different from the number of buffer segments.

1 9.  The method of claim 1, further including buffering the output of the rendering,
2 calculating and contouring steps in at least two segmented buffers, wherein the outputting
3 step includes repeatedly coupling one of the buffer segments to a set of mirror pixel
4 drivers.
1 10. The method of claim 9, wherein the mirror pixel drivers are digital to analog
2 converters switchably coupled to individual mirrors of a micromirror array.
1 11.  The method of claim 9, wherein the segmented buffer accepts input from a
2 number of rendering engines different from the number of buffer segments
1 12. A method of rendering, including:
2 providing a smaller addressing window, corresponding to a memory;
providing a larger addressing window, comprising the smaller addressing
4 window and a guard zone outside the smaller addressing window, the guard zone
5 being addressable but not corresponding to the memory;
6 receiving a polygon contained within the larger addressing window;
7 rendering at least sections of the polygon into the larger addressing window; and
8 writing data for the rendered sections of the polygon within the smaller
9 addressing window to the memory and discarding said data for the rendered
10 sections of the polygon outside the smaller addressing window.
1 13. The method of claim 12, wherein the rendering step is carried out without

2 distinction between portions of the polygon inside and outside the smaller addressing

3 window.
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14. The method of claim 12, wherein the method is carried out without clipping

the polygon to fit the smaller addressing window.

15. The method of claim 12, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

16. The method of claim 12, wherein the discarding said data is carried out by a
filter before the writing the data for the rendered sections to a memory controller,

thereby reducing memory bandwidth loads.

17. The method of claim 12, wherein the discarding said data is carried out by
comparing memory address signals with valid addresses of the smaller addressing
window and using a result of the comparison to control one or more memory

arbitration signals.

18. The method of claim 13, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

19. The method of claim 14, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

20. A method of rendering polygons to a larger addressing window, the larger
addressing window comprising a smaller addressing window corresponding to a
memory and a guard zone outside the smaller addressing window, the guard zone

being addressable but not corresponding to the memory, the method including:
receiving a polygon contained within the larger addressing window,
repeatedly selecting a section of the polygon;
converting the section into rasterized representation data;

processing the rasterized representation data to write portions of said rasterized

representation data within the smaller addressing window to the memory, and not
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to write portions of said rasterized representation data outside the smaller

addressing window to the memory.

21. The method of claim 20, wherein the converting step is carried out without
distinction between portions of the polygon inside and outside the smaller addressing

window.

22. The method of claim 20, wherein the method is carried out without clipping

the polygon to fit the smaller addressing window.

23. The method of claim 20, further including filtering the rasterized
representation data before the writing to the memory, thereby reducing memory
bandwidth loads.

24. The method of claim 20, further including comparing memory address signals
with valid addresses of the smaller addressing window and using a result of the

comparison to control one or more memory arbitration signals.

25. The method of claim 20, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

26. The method of claim 21, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

27. The method of claim 22, further including the step of filtering a set of
polygons so that at least a portion of the polygon lies inside the smaller addressing

window.

28. The method of claim 20, further including the step of decomposing a

geometric feature into a set of polygons that are sized to fit within the guard zone.

29. The method of claim 21, further including the step of decomposing a

geometric feature into a set of polygons that are sized to fit within the guard zone.

30. The method of claim 22, further including the step of decomposing a

geometric feature into a set of polygons that are sized to fit within the guard zone.
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31. A device to render a polygon contained within a larger addressing window,
the larger addressing window comprising a smaller addressing window and a guard

zone outside the smaller addressing window, the device including;:
input lines;

a renderer connected to the input lines, adapted to receive a polygon contained
within the larger addressing window and repeatedly to convert a section of the

polygon into one or more addressing instructions and data;
a memory, coincident with the smaller addressing window;

a memory controller, connected to the renderer, adapted to process the addressing
instructions and the data, to write portions of the data inside the smaller
addressing window to the memory, and to disregard portions of the data outside

the smaller addressing window.

32. The method of claim 31, wherein the renderer is adapted to convert the
section without distinction between portions of the section inside and outside the

smaller addressing window.

33. The method of claim 31, wherein the device does not clip the polygon to fit

the smaller addressing window.

34. A device for writing to memory a section of a polygon contained within a larger
addressing window, the larger addressing window comprising a smaller addressing
window and a guard zone outside the smaller addressing window, the section represented

by one or more addressing instructions and data, the device including:
input lines;
a memory coincident with the smaller addressing window;

a memory controller connected to the input lines and the memory, adapted to receive
addressing instructions and data referencing the larger addressing window, to write
portions of the data within the smaller addressing window to the memory, and to

disregard portions of the data within the guard zone.
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35. A method of representing an area of an image utilizing at least two levels of

resolution, including:
receiving a polygon representation bounded by edges;

repeatedly selecting a section of the polygon for rendering, the section corresponding

to pixels;

representing the pixels in a first data structure as filled, empty or partially filled,

based on the edges of the polygon representation;

representing the partially filled pixels in a second data structure by arrays of sub-
pixels that are filled or empty, defining the edges of the polygon representation, said

arrays including at least 3 x 3 sub-pixels.

36. The method of claim 35, wherein the array further includes at least 4 x 4 sub-

pixels.

37. The method of claim 35, wherein the array further includes at least 8 x 8 sub-

pixels.
38. The method of claim 37, wherein the polygon is a quadrangle.
39. The method of claim 38, wherein the quadrangle is convex.

40. The method of claim 38, wherein one side of the quadfangle may have a zero

length.
41. The method of claim 37, wherein the polygon is a trapezoid.

42. The method of claim 41, wherein one side of the trapezoid may have a zero

length.

43. The method of claim 37, further including representing the filled and empty

pixels as filled or empty.

44. The method of claim 37, further including representing the pixels as filled, empty
or partially filled in two bits.
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45. The method of claim 37, further including maintaining summaries of the partially

filled pixels corresponding to filled or empty sub-pixels in the arrays.

46. The method of claim 45, wherein the summaries are counts of the sub-pixels in

the arrays.

47. The method of claim 45, wherein the summaries are weighted evaluations of the

sub-pixels in the arrays.

48, A method of representing an area in an image utilizing at least two levels of

resolution, including:
receiving a polygon representation bounded by edges;

repeatedly selecting a section of the polygon for rendering, the section corresponding

to pixels;

classifying the pixels as filled, empty or partially filled, based on the edges of the

polygon representation;

representing partially filled pixels by arrays of sub-pixels that are assigned an
intensity level, defining the edge of the polygon representation, said arrays including

at least 3 x 3 sub-pixels.

49. The method of claim 48, wherein the array further includes at least 4 x 4 sub-

pixels.

50. The method of claim 48, wherein the array further includes at least 8 x 8 sub-

pixels.
51. The method of claim 50, wherein the polygon is a quadrangle.
52. The method of claim 51, wherein the quadrangle is convex.

53. The method of claim 51, wherein one side of the quadrangle may have a zero

length.

54. The method of claim 50, wherein the polygon is a trapezoid.
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55. The method of claim 54, wherein one side of the trapezoid may have a zero

length.

56. The method of claim 50, further including representing the filled and empty

pixels as on or off.

57. The method of claim 50, further including representing the pixels as filled, empty
or partially filled in two bits.

58. The method of claim 50, further including maintaining summaries of the partially

filled pixels corresponding to the intensity levels of the sub-pixels in the arrays.

59. The method of claim 58, wherein the summaries are summations of the sub-pixel

intensity levels.

60. The method of claim 58, wherein the summaries are weighted evaluations of the

sub-pixel intensity levels.

61. A data structure representing an area having at least one edge, utilizing two

levels of resolution, including;:
at least one memory;

at least one pixel map stored in the memory, representing a pixel as filled, empty or

partially filled;

at least one sub-pixel array stored in the memory, corresponding to the pixel map,
representing the partially filled pixel by an array of sub-pixels that are filled or
empty, defining the edge of the area, said array including at least 3 x 3 sub-pixels,

without representing the filled or empty pixel with sub-pixel values.

62. The data structure of claim 61, wherein the array further includes at least 4 x 4

sub-pixels.

63. The data structure of claim 61, wherein the array further includes at least 8 x 8

sub-pixels.

64. The method of claim 63, wherein the area is a quadrangle.
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65. The method of claim 64, wherein the quadrangle is convex.

66. The method of claim 64, wherein one side of the quadrangle may have a zero

length.
67. The method of claim 63, wherein the area is a trapezoid.

68. The method of claim 67, wherein one side of the trapezoid may have a zero

length.

69. The data structure of claim 61, further including a gray value summary map

summarizing filled or empty sub-pixels in the arrays.

70. The data structure of claim 69, wherein the summaries are counts of the sub-

pixels in the arrays.

71. The data structure of claim 69, wherein the quantity is based on a weighted

summation of the sub-pixels in the arrays.

72. The data structure of claim 61, wherein the sub-pixels are on, off or have an

intermediate intensity level defining the edge of the area.

73. The data structure of claim 72, further including a gray value summary map

summarizing the intensity levels of the sub-pixels in the arrays.

74. The data structure of claim 73, wherein the summary is a summation of the

intensity levels of the sub-pixels in the arrays.

75. The data structure of claim 73, wherein the summary is a weighted summation of

the intensity levels of the sub-pixels in the arrays.

76. The data structure of claim 61, wherein the pixel map and the sub-pixel arrays are

stored in separately addressable memories.

77. The data structure of claim 61, wherein the pixel map and the gray value
summary map are stored in one or more memories that are addressable separately from

one or more memories in which the sub-pixel arrays are stored.
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78. The data structure of claim 61, wherein a plurality of the filled pixels
corresponding to a section bounded by opposing edges of the area is represented by a

count of filled pixels.

79. The data structure of claim 62, wherein a plurality of the filled pixels
corresponding to a section bounded by opposing edges of the area is represented by a

count of filled pixels.

80. The data structure of claim 61, wherein particular pixels are represented by

particular memory locations containing a value corresponding to filled, empty or partially

filled.

81. The data structure of claim 62, wherein particular pixels are represented by

particular memory locations containing a value corresponding to filled, empty or partially
filled.

82. A data structure representing at least one trapezoid utilizing two levels of
resolution, the trapezoid having first and third parallel edges that are parallel to each other

and to a reference axis and having second and fourth opposing edges, including:
at least one memory;

at least one pixel map stored in the memory, representing pixels as filled, empty,

parallel edge, or opposing edge;

at least one sub-pixel array stored in the memory, corresponding to the pixel map,
representing the parallel edge pixel and the opposing edge pixel by an array of sub-

pixels that are filled or empty, said array including at least format 3 x 3 sub-pixels.

83. The data structure of claim 82, wherein the array further includes at least 4 x 4

sub-pixels.

84. The data structure of claim 82, wherein the array further includes at least 8 x 8

sub-pixels.

85. The data structure of claim 82, wherein a plurality of first or third parallel edge

pixels are represented by one array of sub-pixels.
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86. The data structure of claim 82, further including a gray value summary map

summarizing a quantity of sub-pixels that are filled or empty.

87. The data structure of claim 86, wherein the quantity is based on a count of sub-

pixels that are filled or empty.

88. The data structure of claim 86, wherein the quantity is based on a weighted

summation of sub-pixels that are filled or empty.

89. The data structure of claim 82, wherein the sub-pixels are on, off or have an

intermediate intensity level defining the edge of the area.

90. The data structure of claim 89, wherein the quantity is based on a weighted

summation of sub-pixels that are filled or empty.

91. The data structure of claim 89, wherein the quantity is based on a weighted

summation of sub-pixels that are filled or empty.

92. The data structure of claim 82, wherein the pixel map and the sub-pixel array are

stored in separately addressable memory.

93. The data structure of claim 82, wherein the adjacent parallel edge pixels are

represented by the same sub-pixel array.
94. The data structure of claim 82, wherein the parallel edges can have zero length.

95. A protocol for transmitting graphic data representing a polygon having a

plurality of edges, utilizing two levels of resolution, including:

representing a section of the polygon by an array of pixels, the pixels being assigned

a value of filled, empty or partially filled;

representing the partially filled pixel by a sub-pixel array, the sub-pixels being
assigned a value of filled or empty defining the edges, the array including at least 3 x

3 sub-pixels;

transmitting a representation of the array of pixels and a plurality of arrays of sub-

pixels using at least a first channel and an independent second channel, the first
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channel being used for the representation of the array of pixels and the second

channel being used for the arrays of sub-pixels.

96. The protocol of claim 95, wherein the sub-pixel array further includes at least 4 x

4 sub-pixels.

97. The protocol of claim 95, wherein the sub-pixel array further includes at least 8 x

8 sub-pixels.

98. The protocol of claim 95, wherein the representation of the array of pixels is run

length encoded.
99. The protocol of claim 95, wherein:
the convex polygon is a trapezoid;
the trapezoid has first and third parallel sides being parallel to a reference axis; and

a plurality of partially filled pixels corresponding the a first or third parallel side are

represented by a single sub-pixel array.

100. The protocol of claim 95, further including a gray value summary map

summarizing filled or empty sub-pixels in the array.

101. The data structure of claim 100, wherein the summary is a count of the sub-

pixels in the array.

102. The data structure of claim 100, wherein the summary is based on a weighted

evaluation of the sub-pixels in the array.

103. The protocol of claim 95, wherein the sub-pixels are on, off or have an

intermediate intensity level defining the edge of the convex polygon.

104. The data structure of claim 100, wherein the quantity is based on a weighted

summation of sub-pixels that are filled or empty.

105. The data structure of claim 100, wherein the quantity is based on a count of sub-

pixels that are filled or empty.
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106. The protocol of claim 95, wherein the pixel map and the sub-pixel array are

stored in separately addressable memory.

107. A method of calculating a value for a multi-valued pixel corresponding to

part of an edge of a polygon, including:
providing an array of sub-pixels;

providing a set of pre-calculated sub-pixel bar maps corresponding to edges having

particular orientations;

representing the part of the edge of the polygon by sub-pixels that are filled or empty,
by applying the pre-calculated sub-pixel bar maps;

super-sampling a set of sub-pixels corresponding to a pixel and assigning a value to
the pixel corresponding to the number of sub-pixels in the set that are either filled or

empty.

108. The method of claim 107, wherein the pre-calculated sub-pixel bar map is
represented as an array of fill bars; and applying the pre-calculated sub-pixel bar map
further includes applying an offset value to the fill bars corresponding to an intersection

of the edge and a boundary of an area represented by the array of sub-pixels.

109. A method of defining an edge of a polygon within an area having sides,

the area being subdivided into sub-pixels, including:

providing a plurality of pre-calculated sub-pixel bar maps corresponding to potential

intercepts and orientations of the polygon edge with the sides of the area;

wherein the potential intercepts are limited to discrete positions along edges of the

area,

wherein the potential orientations are limited to orientations that connect the discrete

positions;
determining two intercepts of the polygon edge with the edges of the area;

determining an orientation of the polygon edge; and
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applying one of the pre-calculated sub-pixel bar maps corresponding to at least one

of the two intercepts and the orientation.

110. The method of claim 109, further including super-sampling one or more
sets of sub-pixels to which one or more of the pre-calculated sub-pixel bar maps have

been applied.

I11. The method of claim 109, wherein the first area is subdivided by no more
than 256 sub-pixels and the discrete positions are limited to no more than 65 positions per

sub-pixel.

112. The method of claim 109, wherein the area is subdivided by no more than
64 sub-pixels and the discrete positions are limited to no more than 33 positions per sub-

pixel.

113. The method of claim 109, wherein the area is subdivided into no more than

32 by 16 sub-pixels and there are 17 discrete positions along an edge of the sub-pixel.

114, The method of claim 109, wherein the area is subdivided into no more than

16 by 8 sub-pixels and there are 9 discrete positions along an edge of the sub-pixel.

115. The method of claim 109, wherein the pre-calculated sub-pixel bar maps
are limited to a set of the potential orientations forming a range of approximately 45
degrees and the pre-calculated sub-pixel bar maps are transformed to cover a range of

approximately 180 degrees.

116. The method of claim 109, wherein the pre-calculated sub-pixel bar maps
include a combination of the potential orientations forming a range of approximately 45
degrees from one of the potential intercepts across a range of the discrete positions along

an edge of one pixel.

117. The method of claim 109, wherein the pre-calculated sub-pixel bar maps
are limited to a set of the potential orientations forming a range of approximately 45
degrees from one of the potential intercepts across a range of the discrete positions along

an edge of one pixel.
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118. The method of claim 117, wherein the pre-calculated bar maps are

transformed to cover a range of the potential orientations of approximately 180 degrees.

119. The method of claim 109, wherein the first and second sides are opposing.
120. The method of claim 109, wherein the first and second sides are adjacent.
121. A method of defining an edge of a polygon within an area having sides,

the area being subdivided into sub-pixels, including:

providing a plurality of pre-calculated sub-pixel bar maps corresponding to potential

intercepts and orientations of the polygon edge with the area;

wherein the potential intercepts are limited to discrete positions along the sides of the

area;

wherein the potential orientations are limited to orientations that connect the discrete

' positions;

determining two intercepts of the polygon edge and an extension of the polygon edge

with the edges of the rectangular area;
determining an orientation of the polygon edge; and

applying one of the pre-calculated sub-pixel bar maps corresponding to at least one

of the two intercepts and the orientation.

122. A method of defining an edge of a polygon within a rectangular area, the

rectangular area being subdivided into sub-pixels, including:

providing a plurality pre-calculated sub-pixel bar maps corresponding to potential

intercepts of the polygon edge with the rectangular area;

wherein the potential intercepts are limited to discrete positions along edges of the

rectangular area;
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determining two intercepts of the polygon edge with the edges of the rectangular

area; and
applying one of pre-calculated sub-pixel bar maps based on the two intercepts.

123. A method of defining an edge of a polygon within a rectangular area, the

rectangular area being subdivided into sub-pixels, including:

providing a plurality of pre-calculated sub-pixel bar maps corresponding to potential

intercepts of the polygon edge with the rectangular area;

wherein the potential intercepts are limited to discrete positions along edges of the

rectangular area;

determining two intercepts of the polygon edge and an extension of the polygon edge

with the edges of the rectangular area; and

applying one of the pre-calculated sub-pixel bar maps corresponding to the two

intercepts.

124. The method of claim 123, further including super-sampling one or more
sets of sub-pixels to which one or more of the pre-calculated sub-pixel bar maps have

been applied.

125. The method of claim 123, wherein two opposing edges of the rectangular
area are subdivided by no more than 64 sub-pixels and the discrete positions are limited

to no more than 33 positions per sub-pixel.

126.The method of claim 123, wherein the rectangular area is subdivided into 32 by

16 sub-pixels and there are 17 discrete positions from along one edge of the sub-pixel.

127.The method of claim 123, wherein the rectangular area is subdivided into 16 by 8

sub-pixels and there are 9 discrete positions from along one edge of the sub-pixel.

128. The method of claim 123, wherein the pre-calculated sub-pixel bar maps
are limited to a set of potential orientations between the discrete positions forming a range
of approximately 45 degrees and the pre-calculated sub-pixel bar maps are translated to

cover a range of approximately 180 degrees.
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129. The method of claim 123, wherein the pre-calculated sub-pixel bar maps
include a combination of potential orientations between the discrete positions forming a
range of approximately 45 degrees with one of the potential intercepts across a range of

the discrete positions along one edge of one sub-pixel.

130. The method of claim 123, wherein the pre-calculated sub-pixel bar maps
are limited to a combination of potential orientations between the discrete positions
forming a range of approximately 45 degrees with one of the potential intercepts across a

range of the discrete positions along one edge of one sub-pixel.

131. The method of claim 130, wherein the pre-calculated sub-pixel bar maps

are translated to cover a range of the potential orientations of approximately 180 degrees.

132. A method of selecting a sub-pixel bar map to represent an edge
intersecting an area, the area having at least first and second edges, the area being

subdivided into sub-pixels, the method including:

constructing a segment between intercepts along the first and second edges, the

segment defining first and second regions of the area;
wherein the intercepts are limited to discrete positions along edges of the area;

forming candidate sets of sub-pixels to represent the first region, the sub-pixels in the

set being completely or partially within the first region;

determining a variance between area coverage of the candidate subsets and area

coverage of the first region;

evaluating corners formed by combining the candidate subsets with sub-pixel bar

maps for other segments;

selecting from among the candidate subsets based on the determination of variance

and the evaluation of corners; and
storing the selected subset in a memory.

133. The method of claim 132, further including:
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repeating the method for a set of segments defining potential intercepts along the first

and second edges; and
culling redundant subsets.

134. The method of claim 133, wherein the culling takes into account a

maximum number of subsets to represent the set of segments defining potential

intercepts.

135. The method of claim 133, wherein the culling takes into account a maximum

acceptable error from using the subsets to represent the set of segments defining potential

intercepts.

136. A method of pre-calculating sub-pixel bar maps for sub-pixels

corresponding to pixels, to define part of a polygon edge, including:

providing potential first intercepts for a line corresponding to the polygon edge along

an edge of one of the sub-pixels on a first side of a pixel pair;

providing potential second intercepts for the line along a second side of the pixel pair

opposed to the first side;
wherein the potential first and second intercepts are limited to discrete positions;

providing segments connecting the first potential intercepts and the second potential

intercepts spanning a predetermined range of angles;

for the segments, selecting sub-pixel bar maps to define regions bounded by the

segments;
wherein the selection of the sub-pixel bar maps takes into account

137. The method of claim 136, wherein the range of angles is approximately 45

degrees.

138. The method of claim 136, wherein the range of angles is approximately 90

degrees.
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139. The method of claim 136, further including providing translations to apply the
sub-pixel maps to a range of potential orientations of the line spanning a range of

approximately 180 degrees.

140. The method of claim 136, further including providing translations to apply the

sub-pixel maps to a range of potential orientations of the line spanning a range of 360

degrees.
141. The method of claim 136, further including
142. A method of calculating a value of a pixel corresponding to a corner at an

intersection of first and second edges of a polygon, including:

providing a memory including a first array of sub-pixels and a second array of sub-

pixels, both first and second arrays corresponding to a pixel;
extending the first and second edges into first and second lines;

setting the sub-pixels of the first array to filled or empty, corresponding to a first

region defined by the first line;

setting the sub-pixels of the second array to filled or empty, corresponding to a

second region defined by the second line;
calculating an intersection of the first array and the second array;

super-sampling from the calculated intersection a set of sub-pixels corresponding to a

pixel and assigning a value to the pixel corresponding to the sub-pixels.

143. The method of claim 142, wherein the arrays of sub-pixels correspond to
rectangles and setting the sub-pixels corresponding to the regions further includes
providing a plurality of pre-calculated sub-pixel bar maps corresponding to potential

intercepts and potential orientations of the lines with the rectangles.

144.The method of claim 143, wherein the potential intercepts are limited to discrete
positions along edges of the rectangles and the potential orientations are limited to

orientations that connect the discrete positions,
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145. The method of claim 143, wherein two opposing edges of the rectangles
are subdivided by no more than 64 sub-pixels and the discrete positions are limited to no

more than 33 positions per sub-pixel.

146. The method of claim 143, wherein the rectangles are subdivided into 32 by

16 sub-pixels and there are 17 discrete positions from along one edge of the sub-pixel.

The method of claim 143, wherein the rectangles are subdivided into 16 by 8 sub-

pixels and there are 9 discrete positions from along one edge of the sub-pixel.
147. A method for loading segments of a micromirror array, including:

rendering a plurality of polygons, utilizing a plurality of rendering processors

operating in parallel;

writing digital values corresponding to the rendered polygons to a buffer, the buffer
having a plurality of regions corresponding to the plurality of rendering processors

and having a plurality of segments;

repeatedly writing the digital values from one of the buffer segments to a set of

digital to analog converters having analog outputs; and
repeatedly switching the analog outputs among the micromirror array segments.

148.The method of claim 147, wherein the digital values from the plurality of
rendering processors are queued, as rendering cycles are completed by the rendering

processors, for the writing to the buffer regions.
149. A method for loading segments of a micromirror array, including:

rendering a plurality of polygons, utilizing a plurality of rendering processors

operating in parallel;

writing digital values corresponding to the rendered polygons to a first buffer of a
plurality of buffers, the buffers having a plurality of regions corresponding to the

plurality of rendering processors and having a plurality of segments;
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repeatedly transferring the digital values from one of the segments of the first buffer

to a set of digital to analog converters having analog outputs;
repeatedly switching the analog outputs among the micromirror array segments;

wherein the rendering and writing steps proceed, utilizing a second buffer, while the

transferring and switching steps proceed, utilizing the first buffer.

150.The method of claim 149, wherein the digital values from the plurality of

rendering processors are queued, as rendering cycles are completed by the rendering

processors, for the writing to the buffer regions.

151. A method of adjusting a size of a geometric feature in a rasterized image,

the feature having edges represented by gray scaled pixels, the method including;

receiving at least one size adjustment parameter;
accessing a memory that stores the rasterized image;

applying a convolution kernel to a neighborhood of pixels in the memory, a center
pixel of the neighborhood including an edge, to classify the edge as horizontal,
vertical or 45 degrees with respect to the neighborhood of pixels and to estimate the

orientation of the edge;

modifying gray scale values of the pixels in the neighborhood to apply the size
adjustment parameter consistent with the estimated orientation, without modifying

the placement of the geometric figure in the rasterized image, including:

for a horizontal edge, sliding gray values of a horizontal row of central pixels of
the neighborhood in a vertical direction, followed by filling up from the center

pixel in a horizontal direction;

for a vertical edge, sliding gray values of a vertical row of central pixels of the
neighborhood in the horizontal direction, followed by filling up from the center

pixel in the vertical direction; and

for a 45 degree edge, translating the gray scale value of the center pixel into a

distance between the edge and an inside corner of the center pixel, applying the
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adjustment parameter and translating a resulting modified distance back to gray

scale values of the center pixel and of neighboring pixels.
152. The method of claim 151, further including:
detecting a corner of the feature by applying a convolution kernel; and

modifying gray values of the pixels in the neighborhood of the detected corner to

displace the detected corner anisotropically inwards or outwards from the feature.

153. A method of adjusting widths of geometric feature in a gray scale image

stored in a memory, the method including;

detecting an edge of a feature in a gray scale image, the edge represented by gray

scaled pixels;
estimating an orientation of the detected edge;

classifying the orientation of the edge, from classes including at least horizontal,

vertical and 45 degree orientations;

displacing the detected edge anisotropically inwards or outwards from the feature,

consistent with the classification of the orientation.

154. The method of claim 153, wherein the detecting and estimating steps
include application of at least one convolution kernel to a neighborhood of pixels

including the edge.

155. The method of claim 153, wherein the displacing step for the horizontal

and vertical orientations includes:

displacing a row or column of central pixels in a convolution kernel in a vertical or

horizontal direction, respectively, followed by

displacing a center pixel of the convolution kernel in a horizontal or vertical

direction, respectively.
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156. The method of claim 153, wherein the displacing step for the 45 degree

orientation includes:

translating the gray scale value of a center pixel of a convolution kernel into a

distance between the edge and an inside corner of the center pixel;
displacing the detected edge inwards or outwards from inside corner of the pixel; and

translating a resulting modified distance to gray scale values of the center pixel and

of neighboring pixels.

157. The method of claim 153, further including:

detecting a corner of the feature; and

displacing the detected corner anisotropically inwards or outwards from the feature.

158. A method of compensating for energy variation in a multi-pass, stepped

irradiation of a high contrast layer on a work piece, the method including:

mapping a work piece into overlap regions, corresponding to patterns of intended

energy contributions in multiple passes of irradiation;
irradiating an area of the work piece with energy;
recording the energy applied to the area for the overlap regions in the area; and

adjusting irradiation of particular overlap regions of the area during subsequent
exposure passes based on the recorded energy applied to the particular overlap

regions.

159. The method of claim 158, wherein the energy applied to the area is measured

during the irradiating step.

160. The method of claim 159, wherein the energy applied is measured by sensing

output of a source of the energy.

161. The method of claim 159, wherein the energy applied is measured by sensing

scattering of the energy back from the work piece.
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162. The method of claim 158, wherein four exposure passes are used and at least 81

overlap regions in an area are irradiated at once.

163. The method of claim 158, wherein the energy applied is at least partially

reflected from an energy source by a micromirror array to the work piece.

164. The method of claim 158, wherein the energy applied is filtered by an LCD

array, between an energy source and the work piece.

165. A method of compensating for response differences among individual

micromirrors in a micromirror array, including:

providing an array of compensation functions are associated with individual
MiCromirrors in a micromirror array, wherein the compensation functions transfer

illumination data values to driving voltages; and

for an individual micromirror, converting illumination data values to driving voltages

by applying the compensation function corresponding to the individual micromirror.

166. The method of claim 165, further including selecting one array of the
compensation functions from a plurality of arrays of the compensation functions based on

a recent operating history of the micromirror array.
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