woO 2007/109793 A2 |10 0 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T T O O

International Bureau

(43) International Publication Date
27 September 2007 (27.09.2007)

(10) International Publication Number

WO 2007/109793 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2007/064816

(22) International Filing Date: 23 March 2007 (23.03.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/389,443 23 March 2006 (23.03.2006) US
(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; Attn: International
IP Administration, 5775 Morehouse Drive, San Diego, Cal-

ifornia 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ZENG, Mao
[CA/US]; 11250 Taylor Draper Lane, #1022, Austin,
Texas 78759 (US). CODRESCU, Lucian [US/US];
12505 Glacier Parke Cove, Austin, Texas 78726 (US).

(74) Agents: OGROD, Gregory D. et al.; Attn: International
IP Administration, 5775 Morehouse Drive, San Diego, Cal-
ifonia 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: VITERBI PACK INSTRUCTION

150
w

(57) Abstract: A Viterbi pack instruction is disclosed
that masks the contents of a first predicate register
with a first masking value and masks the contents of
a second predicate register with a second masking

7 value. The resulting masked data is written to a
destination register. The Viterbi pack instruction may
d d C C b b a ~=110 be implemented in hardware, firmware, software, or
any combination thereof.
hih|lg|g|f|f|e]| ¢ 120
h{d]lg|lc|f]|b]|e]|alp-130

WO 2007/109793 PCT/US2007/064816

[0001]

[0002]

[0003]

[0004]

[0005]

VITERBI PACK INSTRUCTION

BACKGROUND
L Field
The present disclosure generally relates to a Viterbi pack instruction. More
particularly, the disclosure relates to a Viterbi pack instruction for packing bits from

multiple predicate registers into a single destination register.

11. Description of Related Art

A Viterbi algorithm is an algorithm useful in communications. It may be used to
decode convolutional codes used in wireless communications systems. Such codes are
used in many forms of wireless communications, such as, for example only, code
division multiple access (CDMA), CDMA2000, wideband code division multiple access
(WCDMA), time division synchronous code division multiple access (TD-SCDMA),
and global system for mobile communications (GSM). A Viterbi algorithm may also be
used as an error-correction scheme, in 802.11 wireless local access networks (WLANS),
in speech recognition and for many other purposes.

With a Viterbi algorithm, one finds the most likely sequence of hidden states
(sometimes called the Viterbi path), in a trellis of states where there are multiple states
with multiple paths that lead to each state. To determine which transition between
states is most likely (sometimes called a survivor path), one may compare the likelihood
of different transitions. A survivor path can be determined for each relevant state
transition period across the trellis. In a Viterbi decoder, e.g., a traceback is later
performed along the survivor paths to generate the output bits.

When executing a Viterbi algorithm it is common to generate and compare path
metrics representing the likelihood of different transitions. A flag bit can represent the
output of such a comparison. This output may be stored in memory, ¢.g., to be used
later when performing the traceback. Having the results of several compares written
into memory from separate registers takes up more memory.

For example, in a 3G wireless communications system, such as WCDMA and
CDMAZ2000, if each flag representing the output of a comparison of two path metrics
were stored in a separate byte of memory, it would take 268x256bytes = 68 kbytes of

WO 2007/109793 PCT/US2007/064816

[0006]

[0007]

[0008]

[0009]

[0010]

[0011]

[0012]

[0013]

2

memory. However, if these bits could be stored as bits and not as bytes, it would only
take 268x256/8 = § kbytes of memory.

Speed is affected by more save operations being required. This may lead to
more possible cache misses. Additionally, if the flags are not saved in a natural order, it
can take more cycles to perform a traceback.

Because the Viterbi algorithm is critical to, for instance, decoding the
convolutional codes used in many wireless communications systems, the speed of
execution of the algorithm directly affects the performance of , for example, a wireless
communications system.

Accordingly, it would be advantageous to provide a Viterbi pack instruction that
packs the bits within two or more predicate registers into a single destination register to

speed up processing time and save memory space.

SUMMARY

A Viterbi pack instruction is disclosed and includes packing selected bits of one
predicate register and selected bits of another predicate register into a single destination
register.

In a particular embodiment, the Viterbi pack instruction masks the contents of a
first predicate register with a first masking value and masks the contents of a second
predicate register with a second masking value. The resulting masked data is written to
a destination register. In another particular embodiment, the first masking value is a
hexadecimal 55 and the second masking value is a hexadecimal AA. In a further
particular embodiment the resulting masked data is ORed together prior to writing it to
the destination register.

In another particular embodiment, the Viterbi pack instruction comprises a
Viterbi pack circuit. The Viterbi pack circuit comprises a first and second predicate
register, a destination register, memory, a first and second AND gate and an OR gate.

In still another particular embodiment, a digital signal processor is disclosed that
operates the Viterbi pack instruction. In another particular embodiment, a wireless
communications device is disclosed that comprises the Viterbi pack instruction.

An advantage of one or more of the embodiments disclosed herein can include

reducing the time to execute a Viterbi algorithm.

WO 2007/109793 PCT/US2007/064816

[0014]

[0015]

[0016]

[0017]

[0018]

[0019]
[0020]
[0021]
[0022]
[0023]
[0024]

[0025]

[0026]

3

An advantage of one or more of the embodiments disclosed herein can include
saving memory space.

Another advantage can include quicker acquisition time for a wireless
communications device, such as a cellular phone, in a wireless communications system.

Other aspects, advantages, and features of the present disclosure will become
apparent after review of the entire application, including the following sections: Brief

Description of the Drawings, Detailed Description, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The aspects and the attendant advantages of the embodiments described herein
will become more readily apparent by reference to the following detailed description
when taken in conjunction with the accompanying drawings wherein:

FIG. 1 is an exemplary state diagram such as those associated with a Viterbi
algorithm;

FIG. 2 is a vector diagram based on the state diagram of FIG. 1;

FIG. 3 is a functional diagram depicting a vector compare instruction;

FIG. 4 is a functional diagram depicting a Viterbi pack instruction;

FIG. 5 is a flow chart depicting a method of a Viterbi pack instruction;

FIG. 6 is a logic diagram depicting a Viterbi pack instruction circuit;

FIG. 7 is a diagram of a wireless communication device incorporating a Viterbi

pack instruction of any of FIGs 4-6.

DETAILED DESCRIPTION

FIG. 1 illustrates an example of a trellis of states such as those associated with a
Viterbi algorithm. In this example, 16 possible states (0-15) are shown. As shown,
cach state on the right hand side 0-7 can be reached from two different states on the left
side. For example, state 0 can be reached from either state 0 or state 8.

FIG. 2 illustrates a vector diagram depicting the possible transitions between
states shown in FIG. 1. In this example, four vectors are shown, A-D. Vector A
represents the transitions from states 0, 1, 2 and 3 to states 0, 2, 4 and 6. Vector B
represents the transitions from states 8, 9, 10 and 11 to states 0, 2, 4, and 6. Vector C
represents the transitions from states 0, 1, 2 and 3 to states 1, 3, 5 and 7. Vector D

represents the transitions from states 8, 9, 10 and 11 to states 1, 3, 5 and 7.

WO 2007/109793 PCT/US2007/064816

[0027]

[0028]

[0029]

[0030]

[0031]

4

As mentioned earlier, in a Viterbi algorithm, the most likely path is determined.
To determine which path is most likely, a vector comparison may be used that compares
the likelihood of different transition vectors.

It may be desirable to have a compare instruction that can compare contents of
registers. A versatile compare instruction may be one that is capable of performing byte
compares, 16-bit half-word compares, word compares and long word compares so that
the algorithm could be used in various situations. With such a compare instruction , the
comparison of a long word with another, may, for example, generate an output of a
single bit that indicates which long word is greater. A comparison of two words with
two other words may generate an output of two bits, each bit representing the result of
one of the word comparisons. Similarly, four half-word compares may generate four
bits and eight byte compares may generate eight bits. To simplify storage of the results,
cach of the compare results may be written into a byte of data in a destination register,
with a long word compare the resulting bit may be written into all bits of a byte within
the destination register rather than just one bit. For a word comparison, the first
resulting bit could be written into the first four bits of the byte and the second resulting
bit could be written into the other four bits. For a half-word compare, the first resulting
bit can be written into the first two bits, the second could be written into the next two
bits and so on.

FIG. 3 illustrates the functioning of a versatile vector compare instruction 100
that may be useful with a Viterbi algorithm, such as during a Viterbi decoding.

In a vector compare instruction 100 for use in Viterbi decoding, for example, the
A vector stored in register 101 is compared with the B vector stored in register 102 and
the results are stored in predicate register 110. The vectors and registers may be of any
appropriate size. For example, the both the A vector and the B vector may consist of
four 16-bit half-words, 101w-101z and 102w-102z, each half-word representing path
metrics of one of the state transitions shown in FIGs 1 and 2, e.g., state 0 to state 0. The
A vector may be stored in a 64 bit register 101 and the B vector may be stored in a 64
bit register 102. Register 101 and register 102 may alternatively be implemented as a
plurality of registers. For instance, one or both may be comprised of two separate
registers.

Compares 103-106 each compare a respective half-word 101w-101z with a

respective half-word 102w-102z, as shown. As discussed above, a versatile vector

WO 2007/109793 PCT/US2007/064816

[0032]

[0033]

[0034]
[0035]

[0036]

[0037]

[0038]

5

compare instruction may simply store the resulting bit for each compare 103-106 in two
adjacent bits in predicate register 110. Thus, the result of compare 103, bit d, may be
written into both bits 7 and 6 of predicate register 110. Similarly, bits ¢, b and a each
may be written into two bits of predicate register 110.

FIG. 4 illustrates the functioning of an exemplary Viterbi pack instruction 150.
In this non-limiting example, predicate register 110 contains the results of a vector
compare instruction 100 and predicate register 120 contains the results of a vector
compare instruction that may have compared other vectors, C and D, for example.
Rather than leave the results of the two vector compare instructions in two registers, in
Viterbi pack instruction 150 those results are packed into destination register 130.
Destination register 130 may be of any adequate size, for example, 8 bits long or larger.
Viterbi pack instruction 150 can be implemented through software, firmware, hardware
or any combination thereof.

In a non-limiting embodiment, Viterbi pack instruction 150 can be represented
as follows:

Rp= (Po&0x55)|(P1&0xAA)

where Rp is destination register 130, Py is first predicate register 110 and P; is
second predicate register 120.

During the execution of this non-limiting embodiment of Viterbi pack
instruction 150, the even bits of predicate register 110 (d, ¢, b and a) are written into the
even bits of destination register 130 (bits 6, 4, 2 and 0). Additionally, the odd bits of
predicate register 120 (h, g, f and e) are written into the odd bits of destination register
130 (bits 7, 5, 3 and 1). Thus, the bits in destination register 130 will alternate between
the bits stored in the two predicate registers 110 and 120. In this fashion, the bits in
destination register 130 are placed in a more natural order so as to speed up processing.

It should be noted that for vector compares that compare long words or words,
eight or four predicate registers could be packed into a single byte in a destination
register by alternating the bits from each register.

FIG. 5 illustrates a Viterbi pack method. According to a non-limiting
embodiment of the method 300, a first masking value may be applied to the contents of
the first predicate register 110 and a second masking value may be applied to the
contents of the second predicate register 120 in step 310. For example, the first

masking value may be a hexadecimal 55 and the second masking value may be a

WO 2007/109793 PCT/US2007/064816

[0039]

[0040]

[0041]

[0042]

6

hexadecimal AA. For packing more than two registers, such as where long word or
word compares are performed, other different hexadecimal masking values would be
used.

In step 320, the masked data resulting from the two maskings are ORed together.
Then in step 330, the ORed data is written to destination register 130. These steps may
occur on a bitwise basis with steps occurring concurrently for different bits if desired.

FIG. 6 illustrates a non-limiting embodiment of a Viterbi pack circuit 400. The
contents of first predicate register 110 are fed into AND gate 401 and ANDed with a
hexadecimal 55, for example, which may be stored in memory 405 . The contents of
second predicate register 120 are fed into AND gate 402 and ANDed with a
hexadecimal AA, for example, which may be stored in memory 406. For packing more
than 2 registers, other appropriate hexadecimal values would be used. Memory 405 and
memory 406 may be a single memory element or may be separate memory elements of
any appropriate type. AND gates 401 and 402 are coupled to the input of OR gate 410.
The output of OR gate 410 is fed to destination register 130.

FIG. 7 illustrates an exemplary, non-limiting embodiment of a wireless
communication device that is generally designated 520. The wireless communication
device includes a system 522 that includes a digital signal processor 524. Display
controller 526 is coupled to the digital signal processor 524 and a display 528.
Moreover, an input device 530 is coupled to the digital signal processor 524. As shown,
a memory 532 is coupled to the digital signal processor 524. Additionally, a
coder/decoder (CODEC) 534 can be coupled to the digital signal processor 524. A
speaker 536 and a microphone 538 can be coupled to the CODEC 530. Digital signal
processor 524 may include hardware or firmware and/or be capable of executing
software that is capable of performing a Viterbi pack instruction 550, which may be of
the type of any of the examples provided in FIGs. 4-6. If the Viterbi pack instruction
550 is in the form of software, the software may alternatively be stored in memory 532
and merely be executed in digital signal processor 524

FIG. 7 also indicates that a wireless controller 540 can be coupled to the digital
signal processor 524 and a wireless antenna 542. In a particular embodiment, a power
supply 544 is coupled to the system 522. The display 528, the input device 530, the
speaker 536, the microphone 538, the wireless antenna 542, and the power supply 544

WO 2007/109793 PCT/US2007/064816

[0043]

[0044]

[0045]

7

may be external to the system 522. However, each is coupled to a component of the
system 522,

Those of skill would further appreciate that the various illustrative logical
blocks, configurations, modules, circuits, and algorithm steps described in connection
with the embodiments disclosed herein may be implemented as hardware, firmware,
software, or any combination thereof. Skilled artisans may implement the described
functionality in varying ways for each particular application, but such implementation
decisions should not be interpreted as causing a departure from the scope of the present
disclosure.

The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in firmware, in a
software module to be executed by a processor, or in any combination therecof. A
software module may reside in RAM memory, flash memory, ROM memory, PROM
memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a
CD-ROM, or any other form of storage medium known in the art. An exemplary
storage medium is coupled to the processor such that the processor can read information
from, and write information to, the storage medium. In the alternative, the storage
medium may be integral to the processor. The processor and the storage medium may
reside in an ASIC. The ASIC may reside in a computing device or a user terminal. In
the alternative, the processor and the storage medium may reside as discrete
components in a computing device or user terminal.

The previous description of the disclosed embodiments is provided to enable any
person skilled in the art to make or use the present disclosure. Various modifications to
these embodiments will be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other embodiments without departing from
the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be
limited to the embodiments shown herein but is to be accorded the widest scope

consistent with the principles and novel features as defined by the following claims.

WO 2007/109793 PCT/US2007/064816

CLAIMS

1. A Viterbi pack method comprising:
masking contents of a first predicate register with a first masking value to
produce first masked data and masking contents of a second predicate register with a
second masking value to produce second masked data; and
writing the first masked data and the second masked data into a

destination register.

2. The Viterbi pack method of claim 1, wherein the first masked data
comprises the even bits of the contents of the first predicate register and the odd bits of

the contents of the second predicate register.

3. The Viterbi pack method of claim 1, further comprising ORing the first

masked data and the second masked data together prior to the writing.

4. The Viterbi pack method of claim 1, wherein the masking the contents of
a first predicate register comprises ANDing the contents of the first predicate register
with the first masking value and wherein the masking the contents of the second
predicate register comprises ANDing the contents of the second predicate register with

the second masking value.

5. The Viterbi pack method of claim 4, wherein the first masking value

comprises a hexadecimal 55 and the second masking value comprises a hexadecimal

AA.

6. The Viterbi pack method of claim 1, wherein the method operates in a

bitwise manner.

7. A device having a Viterbi pack circuit, the Viterbi pack circuit
comprising:
a first predicate register;

a second predicate register;

WO 2007/109793 PCT/US2007/064816

a destination register;

at least one memory;

a first AND gate having a first input coupled to the first predicate register, a
second input coupled to the at least one memory, and an output;

a second AND gate having a first input coupled to the second predicate register,
a second input coupled to the at least one memory, and an output; and

an OR gate having a first input coupled to the output of the first AND gate, a
second input coupled to the output of the second AND gate, and an output coupled to

the destination register

8. The device of claim 7, wherein the at least one memory stores a first

masking value and a second masking value.

9. The device of claim 8, wherein the first masking value comprises a

hexadecimal 55 and the second masking value comprises a hexadecimal AA.

10. The device of claim 7, further comprising a digital signal processor.

11. The device of claim 7, further comprising a wireless communications
device.

12. A device configured to perform a Viterbi pack, comprising:

means for masking contents of a first predicate register with a first
masking value to produce first masked data and masking contents of a second predicate
register with a second masking value to produce second masked data; and

means for writing the first masked data and the second masked data into

a destination register.

13. The device of claim 12, wherein the first masked data comprises the even
bits of the contents of the first predicate register and the odd bits of the contents of the

second predicate register.

WO 2007/109793 PCT/US2007/064816

10

14. The device of claim 12, further comprising means for ORing the first

masked data and the second masked data together.

15. The device of claim 12, further comprising:

means for ANDing the contents of the first predicate register with the first
masking value; and

means for ANDing the contents of the second predicate register with the second

masking value.

16. The device of claim 15, wherein the first masking value comprises a

hexadecimal 55 and the second masking value comprises a hexadecimal AA.

17. The device of claim 12, further comprising a digital signal processor.

18. The device of claim 12, further comprising a wireless communications

device.

19. A program storage medium readable by a machine, tangibly embodying
a program of instructions executable by the machine to perform steps of a Viterbi pack
method, said method comprising:
masking contents of a first predicate register with a first masking value to
produce first masked data and masking contents of a second predicate register with a
second masking value to produce second masked data; and
writing the first masked data and the second masked data into a

destination register.

20. The program storage medium of claim 19, wherein the first masked data
comprises the even bits of the contents of the first predicate register and the odd bits of

the contents of the second predicate register.

21. The program storage medium of claim 19, wherein the method further
comprises ORing the first masked data and the second masked data together prior to the

writing.

WO 2007/109793 PCT/US2007/064816

11

22. The program storage medium of claim 19, wherein the masking the
contents of a first predicate register comprises ANDing the contents of the first
predicate register with the first masking value and wherein the masking the contents of
the second predicate register comprises ANDing the contents of the second predicate

register with the second masking value.

23. The program storage medium of claim 22, wherein the first masking
value comprises a hexadecimal 55 and the second masking value comprises a

hexadecimal AA.

24. The program storage medium of claim 19, wherein the method operates

in a bitwise manner.

WO 2007/109793

1/4

12 o

I3

14 o

IS e

FIG. 1

PCT/US2007/064816

WO 2007/109793 PCT/US2007/064816

2/4

'S = z!
AN 77
NN -7
OO
S %
RIS
SR
(D)
8 Sz AN
10 £ A ;
11 / W X 7

WO 2007/109793

100
\

3/4

101w | 101x | 101y | 101z [=101
Jo2w | [to2x | 10py | 100z =102

£32%

PCT/US2007/064816

300
\v

/310

APPLY FIRST MASK
TO FIRST PREDICATE
REG. AND SECOND
MASK TO SECOND
PREDICATE REG.

l /320

OR RESULTS OF
MASKINGS

l f330

WRITE TO
DESTINATION
REGISTER

FIG. 5

400

dld]|]clc|b|b]|a]alpl110
7 .. 0
FIG. 3
150\
7 . . 0
dld]|]clc|b|b]|a]alp110
h|h|lgl gl f|lT]el¢ 120
NN
hld|lg|lc|f]|b|le]|al}pl130
FIG. 4
110 401
405)
HEX 55
HEX AA 402
\-406 5
120

FIG. 6

v

PCT/US2007/064816

WO 2007/109793

4/4

Nv.n\.W

A

L OId

ANOHdOYDIN

e

JIAVHdS

ATddNS YIMOd
pps—
MATIOYINOD
SSATIIIM
ops—~ DAA0D
asa
pes’
OVd
[EYALIA
0ss— MATIONINOD
AMOWAN AVIdSIA
zes” s 9z
775
AOIAEA LNdNI AVIdSIA
0’ gz

9

0cs

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - claims
	Page 10 - claims
	Page 11 - claims
	Page 12 - claims
	Page 13 - drawings
	Page 14 - drawings
	Page 15 - drawings
	Page 16 - drawings

