发明名称
具有含氨脂环式骨架的单链核酸分子

摘要
本发明的目的在于提供一种能够容易且高效地制造、能够抑制基因表达的新的核酸分子。所述分子的特征在于，其为包含抑制靶基因表达的表达抑制序列的单链核酸分子，包含区域 (X)、连接子区域 (Lx) 和区域 (Xc)，在上述区域 (Xc) 与上述区域 (X) 之间连结有上述连接子区域 (Lx)。上述区域 (Xc) 与上述区域 (X) 互为，上述区域 (X) 和上述区域 (Xc) 中的至少一者包含上述表达抑制序列，上述连接子区域 (Lx) 具有包含吡咯烷骨架和哌啶骨架中的至少一者的非核苷酸结构。根据该单链核酸分子，能够抑制上述靶基因的表达。
1. 一种单链核酸分子，其特征在于，其为包含抑制靶基因表达的表达抑制序列的单链核酸分子，
包含区域 (X)、连接子区域 (Lx) 和区域 (Xc)，
在所述区域 (X) 与所述区域 (Xc) 之间连接有所述连接子区域 (Lx)，
所述区域 (Xc) 与所述区域 (X) 互补，
所述区域 (X) 和所述区域 (Xc) 中的至少一者包含所述表达抑制序列。
所述连接子区域 (Lx) 具有包含吡咯烷骨架和哌啶骨架中的至少一者的非核苷酸结构。

2. 根据权利要求 1 所述的单链核酸分子，其中，所述连接子区域 (Lx) 由下述式 (I) 表示，

![化学式](image)

式 (I)

所述式中，
X¹ 和 X² 各自独立地为 H₂、O、S 或 NH；
Y¹ 和 Y² 各自独立地为单键、CH₂、NH、O 或 S；
R³ 为与环 A 上的 C-3、C-4、C-5 或 C-6 键合的氢原子或取代基；
L¹ 为由 n 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR³、NH₂、
NHR³、NR³R³、SH 或 SR³ 取代，也可以不被取代，或者，
L¹ 为所述烷基链的一个以上碳原子被氧原子取代的聚醚链，
其中，Y¹ 为 NH、O 或 S 的情况下，与 Y¹ 键合的 L¹ 的原子为碳，与 OR³ 键合的 L¹ 的原子为碳，氧原子彼此不相邻；
L² 为由 m 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR³、NH₂、
NHR³、NR³R³、SH 或 SR³ 取代，也可以不被取代，或者，
L² 为所述烷基链的一个以上碳原子被氧原子取代的聚醚链，
其中，Y² 为 NH、O 或 S 的情况下，与 Y² 键合的 L² 的原子为碳，与 OR² 键合的 L² 的原子为碳，氧原子彼此不相邻；
R³、R⁴、R⁵ 和 R⁶ 各自独立地为取代基或保护基；
m 为 1 或 2；
n 为 0 ～ 30 的范围的整数；
环 A 可以是所述环 A 上的 C-2 以外的 1 个碳原子被氢、氧或硫取代，
所述环 A 内可以包含碳-碳双键或碳-氮双键，
所述区域 (Xc) 和所述区域 (X) 分别介由 -OR¹- 或 -OR²- 与所述连接子区域 (Lx) 结合,
此处，R¹ 和 R² 可以存在，也可以不存在。在存在的情况下，R¹ 和 R² 各自独立地为核苷酸残基或所述结构 (1)。

3. 根据权利要求 1 或 2 所述的单链核酸分子，其中，所述区域 (X) 的碱基数 (X) 和所述 5' 侧区域 (Xc) 的碱基数 (Xc) 满足下述式 (3) 或式 (5) 的条件。
 X=Xc • • • (3)
 X=Xc • • • (5)

4. 根据权利要求 3 所述的单链核酸分子，其中，所述区域 (X) 的碱基数 (X) 和所述 5' 侧区域 (Xc) 的碱基数 (Xc) 满足下述式 (11) 的条件。
 X=Xc=1, 2 或 3 • • • (11)

5. 根据权利要求 1 ～ 4 中任一项所述的单链核酸分子，其中，所述区域 (Xc) 的碱基数 (Xc) 为 19 碱基 ~ 30 碱基。

6. 根据权利要求 1 ～ 5 中任一项所述的单链核酸分子，其还具有区域 (Y) 和区域 (Yc)，所述区域 (Yc) 与所述区域 (Y) 互补，所述区域 (X) 和所述区域 (Y) 连结，形成了内部区域 (Z)。

7. 根据权利要求 6 所述的单链核酸分子，其还具有连接子区域 (Ly)，在所述区域 (Y) 与所述区域 (Yc) 之间连结了所述连接子 (Ly)。

8. 根据权利要求 7 所述的单链核酸，其中，所述连接子区域 (Ly) 具有包含吡啶环骨架或哌啶骨架的非核苷酸结构。

9. 根据权利要求 8 所述的单链核酸分子，其中，所述连接子区域 (Ly) 由下述式 (1) 表示。

 \[
 [\text{化学式 2}]

 \begin{align*}
 \text{所述式中，} \\
 \text{X¹ 和 X² 各自独立地为 O, O 或 NH;} \\
 \text{Y¹ 和 Y² 各自独立地为单键, CH₂, NH₂, O 或 S;} \\
 \text{R³ 为与环 A 上的 C-3, C-4, C-5 或 C-6 基合的氢原子或取代基;} \\
 \text{L¹ 为由 n 个原子构成的亚胺基链，此处，亚胺基碳原子上的氢原子可以被 OH, OR³, NH₂,} \\
 \text{NHR³, NR³R³, SH 或 SR³ 取代，也可以不被取代，或者，} \\
 \text{L¹ 为所述亚胺基链的一个以上碳原子被氧原子取代的聚醚链，} \\
 \text{其中，Y¹ 为 NH, O 或 S 的情况下，与 Y¹ 键合的 L¹ 的原子为碳，与 OR³ 键合的 L¹ 的原子为} \\
 \text{碳，氧原子彼此不相邻；} \\
 \text{L² 为由 m 个原子构成的亚胺基链，此处，亚胺基碳原子上的氢原子可以被 OH, OR³, NH₂,} \\
 \text{NHR³, NR³R³, SH 或 SR³ 取代，也可以不被取代，或者，} \\
 \text{L² 为所述亚胺基链的一个以上碳原子被氧原子取代的聚醚链，} \\
 \end{align*}
\]
其中，Y²为NH₂或S的情况下，与Y²键合的L²的原子为碳，与OR²键合的L²的原子为碳，氧原子彼此不相邻；
R²、R'²、R³和R⁴各自独立地为取代基或保护基；
m为0～30的范围的整数；
n为0～30的范围的整数；
环A可以是所述环A上的C-2以外的1个碳原子被氢或氧取代；
所述环A内可以包含碳碳双键或碳氮双键。
所述区域(Yc)和所述区域(Y)分别介由-OR²-或-OR²-与所述连接子区域(Ly)结合，
此处，R²和R'²可以存在，也可以不存在，在存在的情况下，R²和R³各自独立地为核苷酸残基或所述结构(I)。
10. 根据权利要求9所述的单链核酸分子，其中，
所述区域(Xc)和所述区域(X)与所述连接子区域(Lx)的所述式(I)的结构的结合，以及所述区域(Yc)和所述区域(Y)与所述连接子区域(Ly)的所述式(I)的结构的结合分别满足下述(1)～(4)中的任意一个条件，
条件(1)
所述区域(Xc)介由-OR²-与所述式(I)的结构结合，所述区域(X)介由-OR¹-与所述式(I)的结构结合，
所述区域(Yc)介由-OR¹-与所述式(I)的结构结合，所述区域(Y)介由-OR²-与所述式(I)的结构结合；
条件(2)
所述区域(Xc)介由-OR²-与所述式(I)的结构结合，所述区域(X)介由-OR¹-与所述式(I)的结构结合，
所述区域(Yc)介由-OR¹-与所述式(I)的结构结合，所述区域(Y)介由-OR²-与所述式(I)的结构结合；
条件(3)
所述区域(Xc)介由-OR¹-与所述式(I)的结构结合，所述区域(X)介由-OR²-与所述式(I)的结构结合，
所述区域(Yc)介由-OR¹-与所述式(I)的结构结合，所述区域(Y)介由-OR²-与所述式(I)的结构结合；
条件(4)
所述区域(Xc)介由-OR¹-与所述式(I)的结构结合，所述区域(X)介由-OR²-与所述式(I)的结构结合，
所述区域(Yc)介由-OR²-与所述式(I)的结构结合，所述区域(Y)介由-OR¹-与所述式(I)的结构结合。
11. 根据权利要求2～10中任一项所述的单链核酸分子，其中，所述式(I)中，L¹为所述聚醚键，所述聚醚键为聚乙二醇。
12. 根据权利要求2～11中任一项所述的单链核酸分子，其中，所述式(I)中，L²的原子个数(n)与L²的原子个数(m)的合计(m+n)为0～30的范围。
13. 根据权利要求 2～12 所述的单链核酸分子，其中，所述式 (1) 的结构为下述式 (1-1)～式 (1-9) 中的任意一个，下述式中，\(n = 0 \sim 30 \) 的整数，\(m = 0 \sim 30 \) 的整数，\(q = 0 \sim 10 \) 的整数。

[化学式 3]

\[
\text{(1-1)} \\
\text{(1-2)} \\
\text{(1-3)} \\
\text{(1-4)} \\
\text{(1-5)} \\
\text{(1-6)} \\
\text{(1-7)} \\
\text{(1-8)} \\
\text{(1-9)}
\]

14. 根据权利要求 13 所述的单链核酸分子，其中，所述式 (1-1) 中，\(n = 8 \); 所述 (1-2) 中，\(n = 3 \); 所述 (1-3) 中，\(n = 4 \) 或 \(8 \); 所述 (1-4) 中，\(n = 7 \) 或 \(8 \); 所述 (1-5) 中，\(n = 3 \) 且 \(m = 4 \); 所述 (1-6) 中，\(n = 8 \) 且 \(m = 4 \); 所述 (1-7) 中，\(n = 8 \) 且 \(m = 4 \); 所述 (1-8) 中，\(n = 5 \) 且 \(m = 4 \); 所述 (1-9) 中，\(q = 1 \) 且 \(m = 4 \)。

15. 根据权利要求 14 所述的单链核酸分子，其中，所述式 (1-4) 为下述式 (1-4a)，所述式 (1-8) 为下述式 (1-8a)。

[化学式 4]
16. 根据权利要求 6 ～ 15 中任一项所述的单链核酸分子，其中，所述区域 (X) 的碱基数 (Xc)，所述区域 (Y) 的碱基数 (Yc)，所述区域 (Xc) 的碱基数 (Xc) 和所述区域 (Yc) 的碱基数 (Yc) 满足下述式 (2) 的条件。

\[Z \geq Xc + Yc \quad \ldots (2) \]

17. 根据权利要求 6 ～ 16 中任一项所述的单链核酸分子，其中，所述区域 (X) 的碱基数 (Xc)、所述 (Xc) 的碱基数 (Xc)、所述区域 (Y) 的碱基数 (Yc) 和所述区域 (Yc) 的碱基数 (Yc) 满足下述 (a) ～ (d) 中的任意一个条件。

(a) 满足下述式 (3) 和 (4) 的条件，
\[X \geq Xc \quad \ldots (3) \]
\[Y \leq Yc \quad \ldots (4) \]

(b) 满足下述式 (5) 和 (6) 的条件，
\[X = Xc \quad \ldots (5) \]
\[Y > Yc \quad \ldots (6) \]

(c) 满足下述式 (7) 和 (8) 的条件，
\[X > Xc \quad \ldots (7) \]
\[Y \geq Yc \quad \ldots (8) \]

(d) 满足下述式 (9) 和 (10) 的条件，
\[X = Xc \quad \ldots (9) \]
\[Y = Yc \quad \ldots (10) \]

18. 根据权利要求 17 所述的单链核酸分子，其中，所述 (a) ～ (d) 中，所述区域 (X) 的碱基数 (Xc) 与所述区域 (Xc) 的碱基数 (Xc) 之差，所述区域 (Y) 的碱基数 (Yc) 与所述区域 (Yc) 的碱基数 (Yc) 之差满足下述条件，

(a) 满足下述式 (11) 和 (12) 的条件，
\[X - Xc = 1, 2 \text{ 或 } 3 \quad \ldots (11) \]
\[Y - Yc = 0 \quad \ldots (12) \]

(b) 满足下述式 (13) 和 (14) 的条件，
\[X - Xc = 0 \quad \ldots (13) \]
\[Y - Yc = 1, 2 \text{ 或 } 3 \quad \ldots (14) \]

(c) 满足下述式 (15) 和 (16) 的条件，
X-Xc=1.2 或 3... (15)
Y-Yc=1.2 或 3... (16)

(d) 满足下述式 (17) 和 (18) 的条件。
X-Xc=0... (17)
Y-Yc=0... (18)

19. 根据权利要求 6～18 中任一项所述的单链核酸分子，其中，所述区域 (Xc) 的碱基数 (Xc) 为 1～11 碱基。

20. 根据权利要求 19 所述的单链核酸分子，其中，所述区域 (Xc) 的碱基数 (Xc) 为 1～7 碱基。

21. 根据权利要求 19 所述的单链核酸分子，其中，所述区域 (Xc) 的碱基数 (Xc) 为 1～3 碱基。

22. 根据权利要求 6～21 中任一项所述的单链核酸分子，其中，所述区域 (Yc) 的碱基数 (Yc) 为 1～11 碱基。

23. 根据权利要求 22 所述的单链核酸分子，其中，所述区域 (Yc) 的碱基数 (Yc) 为 1～7 碱基。

24. 根据权利要求 22 所述的单链核酸分子，其中，所述区域 (Yc) 的碱基数 (Yc) 为 1～3 碱基。

25. 根据权利要求 1～24 中任一项所述的单链核酸分子，其包含至少 1 个经修饰的残基。

26. 根据权利要求 1～25 中任一项所述的单链核酸分子，其包含标记物质。

27. 根据权利要求 1～26 中任一项所述的单链核酸分子，其包含稳定同位素。

28. 根据权利要求 1～27 中任一项所述的单链核酸分子，其为 RNA 分子。

29. 根据权利要求 1～28 中任一项所述的单链核酸分子，其中，所述单链核酸分子中，碱基数的合计为 50 碱基以上。

30. 根据权利要求 1～29 中任一项所述的单链核酸分子，其中，所述基因的表达抑制为基于 RNA 干扰的表达抑制。

31. 一种表达抑制用组合物，其特征在于，其为用于抑制靶基因表达的组合物，其包含权利要求 1～30 中任一项所述的单链核酸分子。

32. 一种药学组合物，其特征在于，其包含权利要求 1～30 中任一项所述的单链核酸分子。

33. 根据权利要求 32 所述的药学组合物，其为炎症治疗用。

34. 一种表达抑制方法，其特征在于，其为抑制靶基因表达的方法，其使用权利要求 1～30 中任一项所述的单链核酸分子。

35. 根据权利要求 34 所述的表达抑制方法，其包括将所述单链核酸分子投与至细胞、组织或器官的工序。

36. 根据权利要求 35 所述的表达抑制方法，其中，以体内或体外的方式投与所述单链核酸分子。

37. 根据权利要求 34～36 中任一项所述的表达抑制方法，其中，所述基因的表达抑制为基于 RNA 干扰的表达抑制。
38. 一种表达诱导方法，其特征在于，其为诱导抑制靶基因表达的 RNA 干扰的方法，
 其使用权利要求 1 ～ 30 中任一项所述的单链核酸分子。
39. 一种治疗方法，其特征在于，其为疾病的治疗方法，
 其包括将权利要求 1 ～ 30 中任一项所述的单链核酸分子投与至患者的工序，
 所述单链核酸分子具有抑制成为所述疾病的原因的基因的表达的序列作为所述表达
 抑制序列。
40. 权利要求 1 ～ 30 中任一项所述的单链核酸分子的，用于抑制靶基因表达的用途。
41. 权利要求 1 ～ 30 中任一项所述的单链核酸分子的，用于诱导 RNA 干扰的用途。
42. 一种单链核酸分子，其特征在于，其为用于疾病的治疗的核酸分子，
 所述核酸分子为权利要求 1 ～ 30 中任一项所述的单链核酸分子，
 所述单链核酸分子具有抑制成为所述疾病的原因的基因的表达的序列作为所述表达
 抑制序列。
43. 一种单体，其特征在于，其为核酸分子合成用的单体，
 其具有下述式 (II) 的结构，

 [化学式 5]

 \[\cdots \{1\} \]

 所述式中，
 \(X^1 \) 和 \(X^2 \) 各自独立地为 \(H, O, S \) 或 \(\text{NH} \)；
 \(Y^1 \) 和 \(Y^2 \) 各自独立地为单键、\(\text{CH} \), \(\text{NH} \), \(O \) 或 \(S \)；
 \(R^1 \) 和 \(R^2 \) 各自独立地为 \(H \) 保护基或磷酸保护基；
 \(R^3 \) 为与环 A 上的 C-3, C-4, C-5 或 C-6 键合的氢原子或取代基；
 \(L^1 \) 为由 n 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 \(\text{OH} \), \(\text{OR}^2 \), \(\text{NH}_2 \),
 \(\text{NHR}^3, \text{NR}^2 \text{R}^3 \), \(\text{SH} \) 或 \(\text{SR}^2 \) 取代，也可以不被取代，或者，
 \(L^1 \) 为所述亚烷基链的一个以上碳原子被氢原子取代的聚酰胺链，
 其中，\(Y^1 \) 为 \(\text{NH} \), \(O \) 或 \(S \) 的情况下，与 \(Y^1 \) 键合的 \(L^1 \) 的原子为碳，与 \(OR^2 \) 键合的 \(L^1 \) 的原子为
 碳，氧原子彼此不相邻；
 \(L^2 \) 为由 m 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 \(\text{OH} \), \(\text{OR}^2 \), \(\text{NH}_2 \),
 \(\text{NHR}^3, \text{NR}^2 \text{R}^3 \), \(\text{SH} \) 或 \(\text{SR}^2 \) 取代，也可以不被取代，或者，
 \(L^2 \) 为所述亚烷基链的一个以上碳原子被氢原子取代的聚酰胺链，
 其中，\(Y^2 \) 为 \(\text{NH} \), \(O \) 或 \(S \) 的情况下，与 \(Y^2 \) 键合的 \(L^2 \) 的原子为碳，与 \(OR^2 \) 键合的 \(L^2 \) 的原子为
 碳，氧原子彼此不相邻；
 \(R^1, R^2, R^3 \) 和 \(R^4 \) 各自独立地为取代基或保护基；
 \(1 \) 为 \(1 \) 或 \(2 \)。
m 为 0～30 的范围的整数；
n 为 0～30 的范围的整数；
环 A 可以是所述环 A 上的 C-2 以外的 1 个碳原子被氮、氧或硫取代，
所述环 A 内可以包含碳－碳双键或碳－氮双键。
44. 根据权利要求 43 所述的单体，其中，所述式 (II) 的结构、所述式 (II) 的结构为下述式 (II-1)～式 (II-9) 中的任意一个，下述式中，n 为 0～30 的整数，m 为 0～30 的整数，
q 为 0～10 的整数。

[化学式 6]

45. 根据权利要求 44 所述的单体，其中，所述式 (II-1) 中，n=8；所述式 (II-2) 中，n=3；
所述式 (II-3) 中，n=4 或 8；所述式 (II-4) 中，n=7 或 8；所述式 (II-5) 中，n=3 且 m=4；所述
(II-6) 中，n=8 且 m=4；所述式 (II-7) 中，n=8 且 m=4；所述式 (II-8) 中，n=5 且 m=4；所述式
(11-9) 中，q=1 且 m=4。

46. 根据权利要求 45 所述的单体，其中，所述式 (11-4) 为下述式 (11-4a)，所述式 (11-8) 为下述式 (11-8a)。

[化学式 7]

47. 根据权利要求 43 ～ 46 中任一项所述的单体，其中，所述式 (11) 中，l^1 为所述聚醚链，所述聚醚链为聚乙二醇。

48. 根据权利要求 43 ～ 47 中任一项所述的单体，其中，所述式 (11) 中，l^1 的原子个数 (n) 与 l^2 的原子个数 (m) 的合计 (m+n) 为 0 ～ 30 的范围。

49. 根据权利要求 43 ～ 48 中任一项所述的单体，其包含标记物质。

50. 根据权利要求 43 ～ 49 中任一项所述的单体，其包含稳定同位素。

51. 根据权利要求 43 ～ 50 中任一项所述的单体，其用于自动核酸合成。

52. 一种合成方法，其特征在于，其为核酸分子的合成方法，其使用权利要求 43 ～ 51 中任一项所述的单体。
具有含氮脂环式骨架的单链核酸分子

技术领域
[0001] 本发明涉及抑制基因表达的单链核酸分子，更详细而言，涉及具有含氮脂环式骨架的单链核酸分子、包含该单链核酸分子的组合物及其用途。

背景技术
[0002] 作为抑制基因表达的技术，例如，已知 RNA 干扰（RNAi）（非专利文献 1）。基于 RNA 干扰的基因的表达抑制通常通过例如在细胞等中投与短的双链 RNA 分子来实施。上述双链 RNA 分子通常被称为 siRNA（小干扰 RNA）。除此之外，还报道了一种环状的 RNA 分子，该 RNA 分子通过分子内退而部分地形成了双链，利用该 RNA 分子也能够抑制基因表达（专利文献 1）。但是，这些方法中，诱导基因的表达抑制的 RNA 分子存在以下问题。
[0003] 首先，在制造上述 siRNA 的情况下，需要以下工序：在分别合成正义链和反义链之后，最后将这些链杂交。因此，存在制造效率差的问题。另外，在细胞中投与上述 siRNA 时，需要以抑制了其解离为单链 RNA 的状态投与至细胞中，因而，其操作条件的设定也需要努力。接着，在为环状的 RNA 分子的情况下，存在难以合成的问题。
[0004] 并且，这些 RNA 分子基本上由核苷酸残基构成。而且，现状是，在对上述 RNA 分子赋予某些功能、标记时，例如，只能对作为核苷酸残基的构成要素的碱基、糖残基或磷酸基进行修饰。因此，在利用了 RNA 干扰的医药品等的开发中，极其难以在维持了基因表达的抑制功能的状态下进行赋予进一步的功能、标记的改变。
[0005] 现有技术文献
[0006] 非专利文献
[0007] 非专利文献 1 ; Fire 等，Nature，1998Feb19 ; 391 (6669) ; 806-11
[0008] 专利文献
[0009] 专利文献 1 ; 美国公开公报 2004-058886

发明内容
[0010] 因此，本发明的目的在于提供一种能够容易且高效地制造、能够抑制基因表达的新核酸分子。
[0011] 为了达到上述目的，本发明的核酸分子的特征在于，其为包含抑制靶基因表达的表达抑制序列的单链核酸分子，包含区域 (X)、连接子区域 (Lx) 和区域 (Xc)，在上述区域 (X) 与上述区域 (Xc) 之间连接有上述连接子区域 (Lx)，上述区域 (X) 和上述区域 (Xc) 中的至少一者包含上述表达抑制序列，上述连接子区域 (Lx) 具有包含吡咯烷骨架和嘧啶骨架中的至少一者的非核苷酸结构。
[0012] 本发明的组合物的特征在于，其为用于抑制靶基因表达的组合物，其包含上述本发明的单链核酸分子。
[0013] 本发明的组合物的特征在于，其为药学组合物，其包含上述本发明的单链核酸分子。
[0014] 本发明的表达抑制方法的特征在于，其为抑制靶基因表达的方法，其使用上述本发明的单链核酸分子。

[0015] 本发明的疾病的治疗方法的特征在于，其包括将上述本发明的单链核酸分子投与至患者的工序，上述单链核酸分子具有抑制成为上述疾病的原因的基因的表达的序列作为上述表达抑制序列。

[0016] 本发明的单链核酸分子能够进行基因的表达抑制，并且由于不是环状，因而其合成容易，另外，由于是单链，因此不存在双链的退火工序，能够高效地制造。另外，由于上述连接子区域包含上述非核苷酸残基，因而不限于例如以往那样的改变核苷酸残基，例如，还能够改变上述连接子区域中的修饰等。

[0017] 需要说明的是，本发明人首次发现了本发明的单链核酸分子的结构能够抑制基因表达。本发明的单链核酸分子的基因的表达抑制效果被推测是与基于 RNA 干扰同样的现象，但本发明中的基因表达抑制不限制和限定于 RNA 干扰。

附图说明

[0018] 图 1 是示出本发明的单链核酸分子的一个例子的示意图。

[0019] 图 2 是示出本发明的单链核酸分子的其他例子的示意图。

[0020] 图 3 是示出本发明的单链核酸分子的其他例子的示意图。

[0021] 图 4 是示出本发明的实施例中的 GAPDH 基因表达量的相对值的图表。

[0022] 图 5 是示出本发明的实施例中的 GAPDH 基因表达量的相对值的图表。

[0023] 图 6 是示出本发明的实施例中的 GAPDH 基因表达量的相对值的图表。

[0024] 图 7 是示出本发明的实施例中的切酶 (Dicer) 蛋白质对于 ssRNA 的反应性的电泳的结果。

[0025] 图 8 是示出本发明的实施例中的 A549 细胞的 GAPDH 基因表达量的相对值的图表。

[0026] 图 9 是示出本发明的实施例中的 293 细胞的 GAPDH 基因表达量的相对值的图表。

[0027] 图 10 是示出本发明的实施例中的 HCT116 细胞的 GAPDH 基因表达量的相对值的图表。

[0028] 图 11 是示出本发明的实施例中的 HCT116 细胞的 GAPDH 基因表达量的相对值的图表。

[0029] 图 12 是示出本发明的实施例中的 TGF-β1 基因表达量的相对值的图表。

[0030] 图 13 是示出本发明的实施例中的各投与组中单位重量的肺的 TGF-β1 基因表达量的图表。

[0031] 图 14 的 (A) 是示出本发明的实施例中的各投与组的 BALF 样品中的 TNF-α 量的图表，图 14 的 (B) 是示出本发明的实施例中的各投与组的 BALF 样品中的 IFN-β 量的图表。

[0032] 图 15 是示出本发明的实施例中的核糖核酸酶耐受性的电泳照片。

[0033] 图 16 是示出本发明的实施例中的 S7 核酸酶耐受性的电泳照片。

[0034] 图 17 是示出参考例中使用的 ssRNA 的图。

[0035] 图 18 是示出参考例中的 GAPDH 基因表达量的相对值的图表。

[0036] 图 19 是示出参考例中的 TGF-β1 基因表达量的相对值的图表。

[0037] 图 20 是示出参考例中的 LAMA 基因的表达量的相对值的图表。
具体实施方式

1. ssPN 分子

如上所述，本发明的单链核酸分子的特征在于，其为包含抑制靶基因表达的表达抑制序列的单链核酸分子，包含区域 (X)、连接子区域 (Lx) 和区域 (Xc)，在上述区域 (X) 与上述区域 (Xc) 之间连结有上述连接子区域 (Lx)，上述区域 (X) 和上述区域 (Xc) 中的至少一者包含上述表达抑制序列，上述连接子区域 (Lx) 具有包含配对熔解区和嘌呤骨架中的至少一者的非核苷酸结构。

本发明中，“靶基因的表达抑制”例如是指阻碍上述靶基因的表达。上述抑制的机理没有特别限制，例如，可以为下降调节或沉默。上述靶基因的表达抑制能够通过例如由上述靶基因的转录产物的生成量的减少，上述转录产物的活性的减少，由上述靶基因的翻译产物的生成量的减少或者上述翻译产物的活性的减少等来确认。上述蛋白质可以举出例如成熟蛋白或者接受加工或翻译后修饰之前的前体蛋白等。

以下，将本发明的单链核酸分子也称为本发明的“ssPN 分子”。本发明的 ssPN 分子例如在体内 (in vivo) 或体外 (in vitro) 中能够用于靶基因的表达抑制，因而也称为“靶基因的表达抑制用 ssPN 分子”或“靶基因的表达抑制剂”。另外，本发明的 ssPN 分子例如通过 RNA 干扰而能够抑制上述靶基因的表达，因而也称为“RNA 干扰用 ssPN 分子”、“RNA 干扰诱导用 ssPN 分子”或者“RNA 干扰剂或 RNA 干扰诱导剂”。另外，本发明能够抑制例如干扰素诱导等副作用。

本发明的 ssPN 分子的 5’ 末端和 3’ 末端未连结，还能够称为线状单链核酸分子。

在本发明的 ssPN 分子中，例如，本发明的 ssPN 分子以体内或体外的方式导入到细胞内的情况下，上述表达抑制序列为显示抑制上述靶基因的表达的活性的序列。上述表达抑制序列没有特别限制，能够根据目标靶基因的种类适宜设定。上述表达抑制序列例如能够适宜用于基于 siRNA 的 RNA 干扰的相关序列。RNA 干扰通常为上述现象：长的双链 RNA (dsRNA) 在细胞内被酶解成 3’ 末端突出的 19 ～ 21 碱基对左右的双链 RNA (siRNA：小干扰 RNA)，其中一个单链 RNA 与靶 mRNA 结合，上述 mRNA 分解，由此抑制上述 mRNA 的翻译。与上述靶 mRNA 结合的上述 siRNA 中的单链 RNA 的序列例如根据靶基因的种类被报道了各种种类。本发明可以使用例如上述 siRNA 的单链 RNA 的序列作为上述表达抑制序列。

需要说明的是，本发明的关键点不在于对于上述靶基因的上述表达抑制序列的序列信息，而是涉及用于在例如细胞内使上述表达抑制序列所产生的上述靶基因的表达抑制活性发挥功能的核酸分子的结构。因此，本发明中，例如，除了申请时公知的上述 siRNA 的单链 RNA 序列之外，还能够利用将来所知的序列作为上述表达抑制序列。
充分减轻脱靶。

【0050】作为具体例，在靶基因为 GAPDH 基因的情况下，上述表达抑制序列能够使用例如序列号 4 所示的 19 碱基长的序列；在靶基因为 TGF-β1 的情况下，上述表达抑制序列能够使用例如序列号 18 所示的 21 碱基长的序列；在靶基因为 LAMA1 基因的情况下，上述表达抑制序列能够使用例如序列号 6 所示的 19 碱基长的序列；在靶基因为 LMNA 基因的情况下，能够使用例如序列号 30 所示的 19 碱基长的序列。

【0051】5’-GUUGCUACUUUUCAUGG-3’（序列号 4）
【0052】5’-AAAGUCUAGAUCGCGCUU-3’（序列号 18）
【0053】5’-AUUUGUACAGACAAACAC-3’（序列号 6）
【0054】5’-UUGGCUUUUUUGGUGACCC-3’（序列号 30）

【0055】本发明的 ssPN 分子所产生的上述靶基因的表达抑制被推测是由于例如产生 RNA 干扰。需要说明的是，本发明并不限定于该机理。本发明的 ssPN 分子并不是如例如所谓的 siRNA 那样以由两条单链 RNA 构成的 dsRNA 的形式导入细胞等中，并且，在细胞内未必要上述表达抑制序列的切除。因此，本发明的 ssPN 分子也可以说明为还具有 RNA 干扰样的功能。

【0056】本发明的 ssPN 分子中，上述连接子区域 (Lx) 例如可以具有包含上述吲哚酚骨架的非核苷酸结构，也可以具有包含上述哌啶骨架的非核苷酸结构，还可以具有包含上述吲哚酚骨架的非核苷酸结构和包含上述哌啶骨架的非核苷酸结构两者。本发明的 ssPN 分子例如能够抑制生物体内干扰素诱导等副作用，核酸酶耐受性优异。

【0057】本发明的 ssPN 分子中，上述吲哚酚骨架例如可以是构成吲哚酚的五元环环的碳的 1 个以上被取代了的吲哚酚衍生物的骨架，在被取代的情况下，例如，优选为 C-2 的碳以外的碳原子。上述碳可以被例如氢、氧或硫取代。上述吲哚酚骨架例如可以在吲哚酚的五元环内包含例如碳－碳双键或碳－氮双键。上述吲哚酚骨架中，构成吲哚酚的五元环的碳和氮例如可以键合氢，也可以键合后述的取代基。上述连接子区域 (Lx) 例如可以例由上述吲哚酚骨架中的任意基团而与上述区域 (X) 和上述区域 (Xc) 结合，优选为上述五元环的任意 1 个碳原子和氢。优选为上述五元环的 2 位的碳 (C-2) 和氢。作为上述吲哚酚骨架，可以举出例如脯氨酸骨架、脯氨酸骨架等由于为例如生物体内物质及其还原体，因此安全性也优异。

【0058】本发明的 ssPN 分子中，上述哌啶骨架例如可以是构成哌啶的六元环环的碳的 1 个以上被取代了的哌啶衍生物的骨架，在被取代的情况下，例如，优选为 C-2 的碳以外的碳原子。上述碳可以被例如氢、氧或硫取代。上述哌啶骨架例如可以在哌啶的六元环内包含例如碳－碳双键或碳－氮双键。上述哌啶骨架中，构成哌啶的六元环的碳和氮例如可以键合氢，也可以键合后述的取代基。上述连接子区域 (Lx) 例如可以例由上述哌啶骨架中的任意基团而与上述区域 (X) 和上述区域 (Xc) 结合，优选为上述六元环的任意 1 个碳原子和氢，优选为上述六元环的 2 位的碳 (C-2) 和氢。

【0059】上述连接子区域例如可以仅包含由上述非核苷酸结构构成的非核苷酸残基，也可以包含由上述非核苷酸结构构成的非核苷酸残基与核苷酸残基。

【0060】本发明的 ssPN 分子中，上述连接子区域例如由下述式 (I) 表示。

【0061】[化学式 1]
[0063] 上述式 (1) 中，例如，
[0064] X₁ 和 X² 各自独立地为 H₂、O、S 或 NH；
[0065] Y₁ 和 Y² 各自独立地为单键、CH₂、NH、O 或 S；
[0066] R³ 为与环 A 上的 C-3、C-4、C-5 或 C-6 键合的氢原子或取代基；
[0067] L¹ 为由 n 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR¹、
NH₂、NHR²、NR²R³ 或 SH 或 SR² 取代，也可以不被取代，或者，
[0068] L² 为上述亚烷基链的一个以上碳原子被氢原子取代的聚醚链，
[0069] 其中，Y¹ 为 NH、O 或 S 的情况下，与 Y¹ 键合的 L¹ 的原子为碳，与 OR¹ 键合的 L¹ 的原
子为碳，氢原子彼此不相邻；
[0070] L² 为由 m 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR²、
NH₂、NHR²、NR²R³ 或 SH 或 SR² 取代，也可以不被取代，或者，
[0071] L² 为上述亚烷基链的一个以上碳原子被氢原子取代的聚醚链，
[0072] 其中，Y² 为 NH、O 或 S 的情况下，与 Y² 键合的 L² 的原子为碳，与 OR² 键合的 L² 的原
子为碳，氢原子彼此不相邻；
[0073] R¹、R²、R³ 和 R⁴ 各自独立地为取代基或保护基；
[0074] 1 为 1 或 2；
[0075] m 为 0～30 的范围的整数；
[0076] n 为 0～30 的范围的整数；
[0077] 环 A 可以是上述环 A 上的 C-2 以外的 1 个碳原子被氢、氧、硫取代，
[0078] 上述环 A 内可以包含碳 - 碳双键或碳 - 氮双键，
[0079] 上述区域 (Ye) 和上述区域 (Y) 分别介于 -OR¹- 或 -OR²- 与上述连接子区域 (Ly) 结合，
[0080] 此处，R¹ 和 R² 可以存在，也可以不存在，在存在的情况下，R¹ 和 R² 各自独立地为核
苷酸残基或上述结构 (1)。
[0081] 上述式 (1) 中，X₁ 和 X² 例如各自独立地为 H₂、O、S 或 NH。上述式 (1) 中，X₁ 为 H₂
是指 X₁ 和与 X₁ 键合的碳原子一起形成 CH₂ (亚甲基)。关于 X²，也相同。
[0082] 上述式 (1) 中，Y₁ 和 Y² 各自独立地为单键、CH₂、NH、O 或 S。
[0083] 上述式 (1) 中，在环 A 中，1 为 1 或 2。1=1 的情况下，环 A 为五元环，例如为上述
吡咯烷骨架。上述吡咯烷骨架可以举出例如脯氨酸骨架、脯氨醇骨架等，可例示出它们的二
价的结构。1=2 的情况下，环 A 为六元环，例如为上述哌啶骨架。环 A 可以是环 A 上的 C-2
以外的 1 个碳原子被氢、氧或硫取代。另外，环 A 可以在环 A 内包含碳 - 碳双键或碳 - 氮双
键。环 A 可以为例如 L 型和 D 型中的任意一种。

[0084] 上述式 (1) 中，R² 为与环 A 上的 C-3、C-4、C-5 或 C-6 键合的氢原子或取代基。R² 为上述取代基的情况下，取代基 R² 可以为 1 个，也可以为多个，也可以不存在，在为多个的情况下，可以相同也可以不同。

[0085] 取代基 R² 可以为例如卤素、OH、OR²、NH₂、NHR²、NR²R²、SH、SR² 或氧基 (＝O) 等。

[0086] R² 和 R² 例如各自独立地为取代基或保护基，可以相同，也可以不同。上述取代基可以举出例如卤素、烷基、烯基、炔基、卤代烷基、芳基、杂芳基、芳烷基、环烷基、环烯基、环烷基烷基、环烯基烷基、环烷基烷基、烷氧基烷基、氢烷基烷基、杂环烷基烷基、杂环烷基烷基、芳烷基烷基、甲硅烷基、甲硅烷基氧烷基烷基等。以下相同。取代基 R² 可以为这些列举的取代基。

[0087] 上述保护基例如为将反应性高的官能团转变成非活性的官能团，可以举出公知的保护基等。上述保护基例如能够援引文献 (J. F. W. McOmie, "Protecting Groups in Organic Chemistry" Prenum Press, London and New York, 1973) 的记载。上述保护基没有特别限制，可以举出例如叔丁基苯甲基甲硅烷基 (TBDMS)、双 (2- 乙酰氧基乙氧基) 甲基 (ACE)、三异丙基甲硅烷氧基甲基 (TOM)、1-(2- 氨基乙氧基) 乙基 (CEE)、2- 氨基乙氧基甲基 (CEM) 和甲苯磺酰基乙氧基甲基 (TEM)、二甲氧基三苯甲基 (DMTr) 等。R² 为 OR² 的情况下，上述保护基没有特别限制，可以举出例如 TBDMS 基、ACE 基、TOM 基、CEE 基、CEM 基和 TEM 基等。除此之外，还可以举出后述 (化学式 5) 的含甲硅烷基的基团。以下，同样。

[0088] 上述式 (1) 中，L¹ 为由 n 个原子构成的亚烷基链。上述亚烷基氨基原子上的氢原子可以被例如 OH、OR²、NH₂、NHR²、NR²R²、SH 或 SR² 取代，也可以不被取代。或者，L¹ 可以为上述亚烷基链的 1 以上碳原子被氢原子取代的聚醚链。上述聚醚链例如为聚乙二醇。需要说明的是，Y¹ 为 NH、O 或 S 的情况下，与 Y¹ 键合的 L¹ 的原子为碳，与 OR² 键合的 L¹ 的原子为碳，氧原子彼此不相邻。即，例如 Y¹ 为 0 的情况下，该氧原子与 L¹ 的氧原子不相邻，OR² 的氧原子与 L¹ 的氧原子不相邻。

[0089] 上述式 (1) 中，L² 为由 m 个原子构成的亚烷基链。上述亚烷基碳原子上的氢原子可以被例如 OH、OR²、NH₂、NHR²、NR²R²、SH 或 SR² 取代，也可以不被取代。或者，L² 可以为上述亚烷基链的 1 以上碳原子被氢原子取代的聚醚链。需要说明的是，Y² 为 NH、O 或 S 的情况下，与 Y² 键合的 L² 的原子为碳，与 OR² 键合的 L² 的原子为碳，氧原子彼此不相邻。即，例如 Y² 为 0 的情况下，该氧原子与 L² 的氧原子不相邻，OR² 的氧原子与 L² 的氧原子不相邻。

[0090] L¹ 的 n 和 L² 的 m 没有特别限制，下限例如分别为 0，上限也没有特别限制。n 和 m 例如能够根据上述连接子区域 (Lx) 的期望长度适宜设定。例如，从制造成本和收率等方面出发，n 和 m 分别优选为 0～30，优选为 0～20，进一步优选为 0～15。n 和 m 可以相同 (n=m)，也可以不同。n+m 例如为 0～30，优选为 0～20，更优选为 0～15。

[0091] R²、R³、R⁴ 和 R⁵ 例如各自独立地为取代基或保护基。上述取代基和上述保护基例如与前述相同。

[0092] 上述式 (1) 中，氢原子例如可以各自独立地被 Cl、Br、F 和 I 等卤素取代。

[0093] 上述区域 (Xc) 和上述区域 (X) 例如分别介由 -OR⁵- 或 -OR⁶- 与上述连接子区域 (Lx) 结合。此处，R⁵ 和 R⁶ 可以存在，也可以不存在。R⁵ 和 R⁶ 存在的情况下，R⁵ 和 R⁶ 各自独立地为核苷酸残基或上述式 (1) 的结构。R⁵ 和 / 或 R⁶ 为上述核苷酸残基的情况下，上述连接子区域 (Lx) 例如由除了核苷酸残基 R⁵ 和 / 或 R⁶ 的上述式 (1) 的结构构成的上述非核
苷酸残基以及上述核苷酸残基形成。R₁ 和 / 或 R₂ 为上述式 (I) 的结构的情况，上述连接子区域 (Xc) 例如形成 2 个以上的由上述式 (I) 的结构构成的上述非核苷酸残基连结而成的结构。上述式 (I) 的结构可以包含例如 1 个、2 个、3 个或 4 个。这样，在包含多个上述结构的情况下，上述 (I) 的结构例如可以直接连结，也可以由上述核苷酸残基结合。另一方面，不存在 R₁ 和 R₂ 的情况下，上述连接子区域 (Lx) 例如仅通过由上述式 (I) 的结构构成的上述非核苷酸残基形成。

[0094] 上述区域 (Xc) 和上述区域 (X) 与 -OR₁- 和 -OR₂- 的结合的组合没有特别限制，例如，可以举出以下的任意一种条件。

[0095] 条件 (1)

[0096] 上述区域 (Xc) 介由 -OR₂- 与上述式 (I) 的结构结合，上述区域 (X) 介由 -OR₁- 与上述式 (I) 的结构结合。

[0097] 条件 (2)

[0098] 上述区域 (Xc) 介由 -OR₁- 与上述式 (I) 的结构结合，上述区域 (X) 介由 -OR₂- 与上述式 (I) 的结构结合。

[0099] 上述式 (I) 的结构可例示出例如下述式 (I-1)～式 (I-9)，下述式中，n 和 m 与上述式 (I) 相同。下述式中，q 为 0 ～ 10 的整数。

[0100] [化学式 2]

[0101]
上述式 (I-1) ～ (I-9) 中, n, m 和 q 未有特别限制,如上所述。作为具体例, 可以举出: 上述式 (I-1) 中, n=8 ; 上述 (I-2) 中, n=3 ; 上述式 (I-3) 中, n=4 或 8 ; 上述 (I-4) 中, n=7 或 8 ; 上述式 (I-5) 中, n=3 且 m=4 ; 上述 (I-6) 中, n=8 且 m=4 ; 上述式 (I-7) 中, n=8 且 m=4 ; 上述 (I-8) 中, n=5 且 m=4 ; 上述式 (I-9) 中, q=1 且 m=4。将上述式 (I-4) 的一例 (n=8) 示于下述式 (I-4a), 将上述式 (I-8) 的一例 (n=5, m=4) 示于下述式 (I-8a)。
[0105] 本发明的 ssPN 分子中，上述区域 (Xc) 与上述区域 (X) 互补。因此，本发明的 ssPN 分子中，上述区域 (Xc) 向上述区域 (X) 折回，上述区域 (Xc) 和上述区域 (X) 能够通过自退火形成双链。这样，本发明的 ssPN 分子能够在分子内形成双链，例如，与以往的 RNA 干扰中使用的 siRNA 一样，由分离的两条单链 RNA 通过退火形成的双链 RNA 是明显不同的结构。

[0106] 本发明的 ssPN 分子例如可以是仅上述区域 (Xc) 折回而与上述区域 (X) 形成双链。此外，还可以在其他区域形成新的双链。以下，将前者的 ssPN 分子，即形成一处双链的分子称为“第一 ssPN 分子”，将后者的 ssPN 分子，即形成两处双链的分子称为“第二 ssPN 分子”。以下，示出上述第一 ssPN 分子和上述第二 ssPN 分子，但本发明不限制于此。

[0107] （1）第一 ssPN 分子

[0108] 上述第一 ssPN 分子例如为由上述区域 (X)、上述区域 (Xc) 和上述连接子区域 (Lx) 构成的分子。

[0109] 上述第一 ssPN 分子例如可以从 5’侧至 3’侧依次具有上述区域 (Xc)、上述连接子区域 (Lx) 和上述区域 (X)，也可以从 3’侧至 5’侧依次具有上述区域 (Xc)、上述连接子区域 (Lx) 和上述区域 (X)。

[0110] 上述第一 ssPN 分子中，上述区域 (Xc) 与上述区域 (X) 互补。此处，上述区域 (Xc) 只要具有与上述区域 (X) 的全部区域或其部分区域互补的序列即可，优选包含与上述区域 (X) 的全部区域或其部分区域互补的序列，或者由上述互补的序列构成。上述区域 (Xc) 与上述区域 (X) 的互补的上述全部区域或互补的上述部分区域例如可以完全互补，也可以 1 碱基或数碱基非互补，但优选完全互补。上述 1 碱基或数碱基例如为 1 ～ 3 碱基，优选为 1 碱基或 2 碱基。

[0111] 上述第一 ssPN 分子中，如上所述，上述表达抑制序列包含在上述区域 (Xc) 和上述区域 (X) 的至少一者中。上述第一 ssPN 分子例如可以具有 1 个上述表达抑制序列，也可以具有 2 个以上的上述表达抑制序列。

[0112] 为后者的条件下，上述第一 ssPN 分子例如可以具有 2 个以上的对于相同靶基因的相同表达抑制序列，也可以具有 2 个以上的对于相同靶基因的不同表达抑制序列，还可以具有 2 个以上的对于不同靶基因的不同表达抑制序列。上述第一 ssPN 分子具有 2 个以上的上述表达抑制序列的情况下，各表达抑制序列的配置部位没有特别限制，可以为上述区域 (X) 和上述区域 (Xc) 中的任意一个区域，也可以为不同的区域。上述第一 ssPN 分子具有 2 个以上的对于不同靶基因的上述表达抑制序列的情况下，例如，通过上述第一 ssPN 分
于，能够抑制2种以上不同靶基因的表达。

[0113] 将上述第一ssPN分子的一例示于图1的示意图。图1的(A)是作为一例示出上述ssPN分子的各区域的顺序的概要的示意图，图1的(B)是示出上述ssPN分子在上述分子内形成了双链的状态的示意图。如图1的(B)所示，上述ssPN分子在上述区域(Xc)与上述区域(X)之间形成了双链，上述Lx区域根据其长度而形成环结构。图1仅为示出上述区域的连结顺序和形成双链的各区域的位置关系的图，例如，各区域的长度、上述连接子区域(Lx)的形状等不限于此。

[0114] 上述第一ssPN分子中，上述区域(Xc)和上述区域(X)的碱基数没有特别限制。以下示出各区域的长度，但本发明不限于此。本发明中，“碱基数”例如指“长度”，也可以称为“碱基长”。本发明中，碱基数的数值范围例如公开了属于其范围的全部所述数，作为具体例，“1～4碱基”的记载是指“1、2、3、4碱基”的全部公开（以下同样）。

[0115] 上述区域(Xc)例如可以与上述区域(X)的全部区域完全互补。该情况下，上述区域(Xc)例如指从从上述区域(X)的5’末端至3’末端的全部区域互补的碱基序列构成，即，是指上述区域(Xc)与上述区域(X)为相同的碱基长，并且上述区域(Xc)的全部碱基与上述区域(X)的全部碱基互补。

[0116] 另外，上述区域(Xc)例如可以与上述区域(X)的全部区域完全互补。该情况下，上述区域(Xc)例如指从上述区域(X)的全部区域互补的碱基序列构成，即，是指上述区域(Xc)由上述区域(X)短1碱基以上的碱基长的碱基序列构成，上述区域(Xc)的全部碱基与上述区域(X)的上述部分区域的全部碱基互补。上述区域(X)的上述全部部分区域例如优选为上述区域(X)中的、由从上述区域(Xc)侧的末端的碱基（第1位的碱基）连续的碱基序列构成的区域。

[0117] 上述第一ssPN分子中，上述区域(X)的碱基数(X)与上述区域(Xc)的碱基数(Xc)的关系例如满足下述(3)或(5)的条件，为前者的情况下，具体而言，例如，满足下述(1)的条件。

[0118] X×Xc•••(3)

[0119] X≈Xc=1～10，优选为1、2或3、

[0120] 更优选为1或2•••(11)

[0121] X=Xc•••(5)

[0122] 上述区域(X)和/或上述区域(Xc)包含上述表达抑制序列的情况下，上述区域例如可以仅为由上述表达抑制序列构成的区域，也可以为包含上述表达抑制序列的区域。上述表达抑制序列的碱基数例如为19～30碱基、优选为19、20或21碱基。包含上述表达抑制序列的区域例如可以在上述表达抑制序列的5’侧和/或3’侧进一步具有附加序列。上述附加序列的碱基数例如为1～31碱基，优选为1～21碱基，更优选为1～11碱基。

[0123] 上述区域(X)的碱基数没有特别限制。上述区域(X)包含上述表达抑制序列的情况下，其下限例如为19碱基。其上限例如为50碱基，优选为30碱基，更优选为25碱基。上述区域(X)的碱基数的具体例如例如为19碱基～50碱基，优选为19碱基～30碱基，更优选为19碱基～25碱基。

[0124] 上述区域(Xc)的碱基数没有特别限制。其下限例如为19碱基，优选为20碱基，更优选为21碱基。其上限例如为50碱基，更优选为40碱基，进一步优选为30碱基。
说明书

[0125] 上述 ssPN 分子中，上述连接子区域 (Lx) 的长度没有特别限制。上述连接子区域 (Lx) 例如优选为上述区域 (X) 和上述区域 (Xc) 能够形成双链的长度。上述连接子区域 (Lx) 除了上述非核苷酸残基之外还包含上述核苷酸残基的情况下，上述连接子区域 (Lx) 的碱基数的下限定例如为 1 碱基、优选为 2 碱基、更优选为 3 碱基，其上限例如为 100 碱基、优选为 80 碱基、更优选为 50 碱基。

[0126] 上述第一 ssPN 分子的全长没有特别限制。上述第一 ssPN 分子中，上述碱基数的合计 (全长的碱基数) 的下限定例如为 38 碱基、优选为 42 碱基、更优选为 50 碱基、进一步优选为 51 碱基、特别优选为 52 碱基，其上限例如为 300 碱基、优选为 200 碱基、更优选为 150 碱基、进一步优选为 100 碱基、特别优选为 80 碱基。上述第一 ssPN 分子中，上述连接子区域 (Lx) 以外的碱基数的合计的下限定例如为 38 碱基、优选为 42 碱基、更优选为 50 碱基、进一步优选为 51 碱基，特别优选为 52 碱基，上限例如为 300 碱基、优选为 200 碱基、更优选为 150 碱基、进一步优选为 100 碱基、特别优选为 80 碱基。

[0127] (2) 第二 ssPN 分子

[0128] 上述第二 ssPN 分子例如除了上述区域 (X)、上述连接子区域 (Lx) 和上述区域 (Xc) 以外还具有区域 (Y) 和与上述区域 (Y) 互补的区域 (Yc) 的分子。上述第二 ssPN 分子中，上述区域 (X) 和上述区域 (Y) 连结而形成了内部区域 (Z)。需要说明的是，只要没有特别表示，则上述第二 ssPN 分子能够接纳上述第一 ssPN 分子的记载。

[0129] 上述第二 ssPN 分子例如可以从 5’侧到 3’侧依次具有上述区域 (Xc)、上述连接子区域 (Lx)、上述区域 (X)、上述区域 (Y) 和上述区域 (Yc)。该情况下，将上述区域 (Xc) 也称为 5’侧区域 (Xc)，将上述内部区域 (Z) 中的上述区域 (X) 也称为内部 5’侧区域 (X)，将上述内部区域 (Z) 中的上述区域 (Y) 也称为内部 3’侧区域 (Y)，将上述区域 (Yc) 也称为 3’侧区域 (Yc)。另外，上述第二 ssPN 分子例如也可以从 3’侧到 5’侧依次具有上述区域 (Xc)、上述连接子区域 (Lx)、上述区域 (X)、上述区域 (Y) 和上述区域 (Yc)。该情况下，将上述区域 (Xc) 也称为 3’侧区域 (Xc)，将上述内部区域 (Z) 中的上述区域 (X) 也称为内部 3’侧区域 (X)，将上述内部区域 (Z) 中的上述区域 (Y) 也称为内部 5’侧区域 (Y)，将上述区域 (Yc) 也称为 5’侧区域 (Yc)。

[0130] 如上所述，上述内部区域 (Z) 例如由上述区域 (X) 和上述区域 (Y) 连结而成。上述区域 (X) 和上述区域 (Y) 例如可以直接连结，其间不具有间插序列。为了表示上述内部区域 (Z) 与上述区域 (Xc) 和上述区域 (Yc) 的序列关系，上述内部区域 (Z) 定义为“上述区域 (X) 和上述区域 (Y) 连结而构成”。上述内部区域 (Z) 中，上述区域 (X) 和上述区域 (Y) 在上述 ssPN 分子的使用中不限于各自独立的区域。即，例如，上述内部区域 (Z) 具有上述表达抑制序列的情况下，上述内部区域 (Z) 中，可以跨越上述区域 (X) 和上述区域 (Y) 而配置上述表达抑制序列。

[0131] 上述第二 ssPN 分子中，上述区域 (Xc) 与上述区域 (X) 互补。此处，上述区域 (Xc) 只要具有与上述区域 (X) 的全部区域或其部分区域互补的序列即可，优选包含与上述区域 (X) 的全部区域或其部分区域互补的序列，或者由上述互补的序列构成。上述区域 (Xc) 与上述区域 (X) 的互补的上述全部区域或互补的上述部分区域例如可以完全互补，也可以 1 碱基或数碱基非互补，但优选完全互补。上述 1 碱基或数碱基例如为 1～3 碱基，优选为 1 碱基或 2 碱基。
说明书

[0132] 上述第二 ssPN 分子中，上述区域 (Yc) 与上述区域 (Y) 互补。此处，上述区域 (Yc) 只要具有与上述区域 (Y) 的全部区域或其部分区域互补的序列即可，优选包含上述区域 (Y) 的全部区域或其部分区域互补的序列，或者由上述互补的序列构成。上述区域 (Yc) 与上述区域 (Y) 的互补的上述全部区域或互补的上述部分区域例如可以完全互补，也可以 1 碱基或数碱基非互补，但优选完全互补。上述 1 碱基或数碱基例如为 1 ～ 3 碱基，优选为 1 碱基或 2 碱基。

[0133] 上述第二 ssPN 分子中，上述表达抑制序列例如包含在由上述区域 (X) 和上述区域 (Y) 形成的上述内部区域 (Z) 以及上述区域 (Xc) 的至少一者中，此外，还可以包含在上述区域 (Yc) 中。上述内部区域 (Z) 具有上述表达抑制序列的情况下，例如，可以是上述区域 (X) 和上述区域 (Y) 中的任意一者具有上述表达抑制序列，另外，也可以是跨越上述区域 (X) 和上述区域 (Y) 中具有上述表达抑制序列。上述第二 ssPN 分子例如可以具有 1 个上述表达抑制序列，也可以具有 2 个以上的上述表达抑制序列。

[0134] 上述第二 ssPN 分子具有 2 个以上的上述表达抑制序列的情况下，各表达抑制序列的配置部位没有特别限制，可以为上述内部区域 (Z) 和上述区域 (Xc) 中的任意一者，也可以为上述内部区域 (Z) 和上述区域 (Xc) 中的任意一者以及其他不同的区域。

[0135] 上述第二 ssPN 分子中，上述区域 (Yc) 和上述区域 (Y) 例如可以直接连接，也可以间接连接。为前者的情况下，直接连接可以举出例如基于磷酸二酯键的连结等。为后者的情况下，例如，可以举例以下形态；在上述区域 (Yc) 与上述区域 (Y) 之间具有连接子区域 (Ly)，介由上述连接子区域 (Ly) 连结了上述区域 (Yc) 和上述区域 (Y)；等等。

[0136] 上述第二 ssPN 分子具有上述连接子区域 (Ly) 情况下，上述连接子区域 (Ly) 例如可以为上述核苷酸残基构成的连接子，也可以为前述的具有包含吡咯烷骨架和嘧啶骨架中的至少一者的非核苷酸结构的连接子。为后者的情况下，上述连接子区域 (Ly) 例如能够由上述式 (1) 表示，能够授引上述连接子区域 (Lx) 中的上述式 (1) 的全部说明。

[0137] 上述区域 (Yc) 和上述区域 (Y) 例如分别介由 -OR1- 或 -OR2- 与上述连接子区域 (Ly) 结合。此处，R1 和 R2 与前述的连接子区域 (Lx) 同样地可以存在，也可以不存在。

[0138] 上述区域 (Xc) 和上述区域 (X) 与上述 -OR1- 和 -OR2- 的结合的组合，以及上述区域 (Yc) 和上述 (Y) 与上述 -OR1- 和 -OR2- 的结合的组合没有特别限制，例如，可以举出以下的任意一个条件。

[0139] 条件 (1)

[0140] 上述区域 (Xc) 介由 -OR2- 与上述式 (1) 的结构结合，上述区域 (X) 介由 -OR1- 与上述式 (1) 的结构结合。

[0141] 上述区域 (Yc) 介由 -OR1- 与上述式 (1) 的结构结合，上述区域 (Y) 介由 -OR2- 与上述式 (1) 的结构结合。

[0142] 条件 (2)

[0143] 上述区域 (Xc) 介由 -OR2- 与上述式 (1) 的结构结合，上述区域 (X) 介由 -OR1- 与上述式 (1) 的结构结合。

[0144] 上述区域 (Yc) 介由 -OR2- 与上述式 (1) 的结构结合，上述区域 (Y) 介由 -OR1- 与上述式 (1) 的结构结合。

[0145] 条件 (3)

22
[0146] 上述区域（Xc）介由 -OR¹- 与上述式（I）的结构结合，上述区域（X）介由 -OR²- 与上述式（I）的结构结合，
[0147] 上述区域（Yc）介由 -OR¹- 与上述式（I）的结构结合，上述区域（Y）介由 -OR²- 与上述式（I）的结构结合。
[0148] 条件（4）
[0149] 上述区域（Xc）介由 -OR¹- 与上述式（I）的结构结合，上述区域（X）介由 -OR²- 与上述式（I）的结构结合，
[0150] 上述区域（Yc）介由 -OR¹- 与上述式（I）的结构结合，上述区域（Y）介由 -OR¹- 与上述式（I）的结构结合。
[0151] 关于上述第二 ssPN 分子，具有上述连接于区域（Ly）的 ssPN 分子的一例示于图 2 的示意图。图 2 的（A）为作为一例示出上述 ssPN 分子从 5’侧向 3’侧的各区域的顺序的概要的示意图，图 2 的（B）为示出上述 ssPN 分子在上述分子内形成了双链的状态的示意图。如图 2 的（B）所示，上述 ssPN 分子在上述区域（Xc）与上述区域（X）之间，在上述区域（Y）与上述区域（Yc）之间形成双链，上述 Lx 区域和上述 Ly 区域根据其长度而形成环结构。图 2 仅为示出各区域的连结顺序和形成双链的各区域的位置关系的图，例如，各区域的长度、连接子区域的形状等不限于此。另外，图 2 将上述区域（Xc）示于 5’侧，但不限于此，上述区域（Xc）也可以位于 3’侧。
[0152] 上述第二 ssPN 分子中，上述区域（Xc）、上述区域（X）、上述区域（Y）和上述区域（Yc）的碱基数没有特别限制。以下示例各区域的长度，但本发明不限于此。
[0153] 如上所述，上述区域（Xc）例如可以与上述区域（X）的全部区域互补。该情况下，优选上述区域（Xc）例如上述区域（X）为相同碱基长，由与上述区域（X）的全部区域互补的碱基序列构成。上述区域（Xc）更优选上述区域（X）为相同碱基长，并且上述区域（Xc）的全部碱基与上述区域（X）的全部碱基互补，即，例如完全互补。需要说明的是，并不限于此，例如，如上所述，可以 1 碱基或数碱基非互补。
[0154] 另外，如上所述，上述区域（Xc）例如可以与上述区域（X）的全部区域互补。该情况下，优选上述区域（Xc）例如上述区域（X）的全部区域为相同碱基长，即，由上述区域（X）的上述区域为相同碱基长，并且上述区域（Xc）的全部碱基与上述区域（X）的上述部分区域的全部碱基互补，即，例如完全互补。上述区域（X）的上述部分区域例如优选为由上述区域（X）中的从上述区域（Xc）侧的末端的碱基（第 1 位的碱基）连续的碱基序列构成的区域。
[0155] 如上所述，上述区域（Yc）例如可以与上述区域（Y）的全部区域互补。该情况下，优选上述区域（Yc）例如上述区域（Y）为相同碱基长，由上述区域（Y）的全部区域互补的碱基序列构成。上述区域（Yc）更优选上述区域（Y）为相同碱基长，并且上述区域（Yc）的全部碱基与上述区域（Y）的全部碱基互补，即，例如完全互补。需要说明的是，并不限于此，例如，如上所述，可以 1 碱基或数碱基非互补。
[0156] 另外，如上所述，上述区域（Yc）例如可以与上述区域（Y）的全部区域互补。该情况下，优选上述区域（Yc）例如上述区域（Y）的全部区域为相同碱基长，即，由上述区域（Y）的上述区域为相同碱基长，并且上述区域（Yc）的上述部分区域的全部碱基与上述区域（Y）的上述部分区域
的全部碱基互补，即，例如完全互补。上述区域 (Y) 的上述部分区域例如优选为由上述区域 (Y) 中的从上述区域 (Yc) 侧的末端的碱基（第 1 位的碱基）连续的碱基序列构成的区域。

[0157] 上述第二 ssPN 分子中，上述区域 (Z) 的碱基数 (Z) 与上述区域 (X) 的碱基数 (X) 和上述区域 (Y) 的碱基数 (Y) 的关系，上述区域 (Z) 的碱基数 (Z) 与上述区域 (X) 的碱基数 (X) 和上述区域 (Xc) 的碱基数 (Xc) 的关系例如满足下述式 (1) 和 (2) 的条件。

[0158] Z=X+Y+... (1)

[0159] Z ≥ Xc+Yc+... (2)

[0160] 上述第二 ssPN 分子中，上述区域 (X) 的碱基数 (X) 与上述区域 (Y) 的碱基数 (Y) 的关系没有特别限制，例如满足下式中的任一条件。

[0161] X=Y+... (19)

[0162] X≤Y+... (20)

[0163] X≥Y+... (21)

[0164] 第二 ssPN 分子中，上述区域 (X) 的碱基数 (X)、上述区域 (Xc) 的碱基数 (Xc)、上述区域 (Y) 的碱基数 (Y) 和上述区域 (Yc) 的碱基数 (Yc) 的关系例如满足下述 (a)～(d) 中的任一条件。

[0165] (a) 满足下述式 (3) 和 (4) 的条件。

[0166] X≤Xc+... (3)

[0167] Y=Yc+... (4)

[0168] (b) 满足下述式 (5) 和 (6) 的条件。

[0169] X=Xc+... (5)

[0170] Y=Yc+... (6)

[0171] (c) 满足下述式 (7) 和 (8) 的条件。

[0172] X≤Xc+... (7)

[0173] Y=Yc+... (8)

[0174] (d) 满足下述式 (9) 和 (10) 的条件。

[0175] X=Xc+... (9)

[0176] Y=Yc+... (10)

[0177] 上述 (a)～(d) 中，上述区域 (X) 的碱基数 (X) 与上述区域 (Xc) 的碱基数 (Xc) 之差、上述区域 (Y) 的碱基数 (Y) 与上述区域 (Yc) 的碱基数 (Yc) 之差例如优选满足下述条件。

[0178] (a) 满足下述式 (11) 和 (12) 的条件。

[0179] X-Xc=1～10，优选为 1, 2, 3 或 4，

[0180] 更优选为 1, 2 或 3+... (11)

[0181] Y-Yc=0+... (12)

[0182] (b) 满足下述式 (13) 和 (14) 的条件。

[0183] X-Xc=0+... (13)

[0184] Y-Yc=1～10，优选为 1, 2, 3 或 4，

[0185] 更优选为 1, 2 或 3+... (14)

[0186] (c) 满足下述式 (15) 和 (16) 的条件。

24
[0187] X-Xc=1 ∼ 10,优选为1,2或3，
[0188] 更优选为1或2···(15)
[0189] Y-Yc=1 ∼ 10,优选为1,2或3，
[0190] 更优选为1或2···(16)
[0191] (d)满足下述式 (17) 和 (18) 的条件。
[0192] X-Xc=0···(17)
[0193] Y-Yc=0···(18)
[0194] 关于上述 (a) ∼ (d) 的第二 ssPN 分子,将各结构的一例示于图 3 的示意图。图 3 是包含上述连接子区域 (Lx) 和上述连接子区域 (Ly) 的 ssPN, (A) 是上述 (a) 的 ssPN 分子的例子, (B) 是上述 (b) 的 ssPN 分子的例子, (C) 是上述 (c) 的 ssPN 分子的例子, (D) 是上述 (d) 的 ssPN 分子的例子。图 3 中,虚线表示通过自回火而形成了双链的状态。图 3 的 ssPN 分子将上述区域 (X) 的碱基数 (X) 和上述区域 (Y) 的碱基数 (Y) 表示为上述式 (20) 的 “X < Y”, 但不限于此, 如上所述, 可认为上述式 (19) 的 “X = Y”, 也可以为上述式 (21) 的 “X < Y”。另外, 图 3 仅为示出上述区域 (Xc) 与上述区域 (Xe) 的关系、上述区域 (Ye) 与上述区域 (Yc) 的关系的示意图, 例如, 各区域的长度、形状、有无连接子区域 (Ly) 等不限于此。
[0195] 上述 (a) ∼ (c) 的 ssPN 分子例如为: 通过上述区域 (Xc) 和上述区域 (Xe)、以及上述区域 (Ye) 和上述区域 (Yc) 分别形成双链, 在上述内部区域 (Z) 中具有与上述区域 (Xc) 和上述区域 (Ye) 均不匹配的碱基的结构, 也称为具有不形成双链的碱基的结构。以下, 也将在上述内部区域 (Z) 中的上述不匹配的碱基 (也称为不形成双链的碱基) 称为 “自由碱基”。图 3 中, 用 “F” 表示上述自由碱基的区域。上述区域 (F) 的碱基数没有特别限制。关于上述区域 (F) 的碱基数 (F), 例如, 在上述 (a) 的 ssPN 分子的情况下, 为 “X-Xc”的碱基数 ; 在上述 (b) 的 ssPN 分子的情况下, 为 “Y-Yc”的碱基数 ; 在上述 (c) 的 ssPN 分子的情况下, 为 “X-Xc” 的碱基数与 “Y-Yc” 的碱基数的总数。
[0196] 另一方面, 上述 (d) 的 ssPN 分子例如为上述内部区域 (Z) 的全部区域与上述区域 (Xe) 和上述区域 (Ye) 匹配的结构, 也称为上述内部区域 (Z) 的全部区域形成双链的结构。需要说明的是, 上述 (d) 的 ssPN 分子中, 上述区域 (Xc) 的 5’ 末端与上述区域 (Ye) 的 3’ 末端为未连结。
[0197] 上述区域 (Xc)、上述区域 (Ye) 和上述内部区域 (Z) 中的上述自由碱基 (F) 的碱基数的合计为上述区域 (Z) 的碱基数。因此, 上述区域 (Xc) 和上述区域 (Ye) 的长度更容易可以根据上述内部区域 (Z) 的长度、上述自由碱基的数量及其位置而适宜选择。
[0198] 上述内部区域 (Z) 的碱基数例如为 19 碱基以上。上述碱基数的下限例如为 19 碱基、优选为 20 碱基、更优选为 21 碱基。上述碱基数的上限例如为 50 碱基、优选为 40 碱基、更优选为 30 碱基。上述内部区域 (Z) 的碱基数的具体例例如为 19 碱基、20 碱基、21 碱基、22 碱基、23 碱基、24 碱基、25 碱基、26 碱基、27 碱基、28 碱基、29 碱基或 30 碱基。上述内部区域 (Z) 具有上述表达抑制序列的情况下, 例如, 优选为该条件。
[0199] 上述内部区域 (Z) 包含上述表达抑制序列的情况下, 上述内部区域 (Z) 例如可以为仅由上述表达抑制序列构成的区域, 也可以为包含上述表达抑制序列的区域。上述表达抑制序列的碱基数例如为 19 ∼ 30 碱基、优选为 19,20 或 21 碱基。上述内部区域 (Z) 包含上述表达抑制序列的情况下, 在上述表达抑制序列的 5’ 侧和 / 或 3’ 侧还可以具有附加序
列。上述附加序列的碱基数例如为 1～31 碱基：优选为 1～21 碱基，更优选为 1～11 碱基，进一步优选为 1～7 碱基。

[0200] 上述区域 (Xc) 的碱基数例如为 1～29 碱基：优选为 1～11 碱基，优选为 1～7 碱基，更优选为 1～4 碱基，进一步优选为 1 碱基，2 碱基，3 碱基。上述内部区域 (Z) 或上述区域 (Yc) 包含上述表达抑制序列的情况下，例如，优选为这样的碱基数。作为具体例，在上述内部区域 (Z) 的碱基数为 19～30 碱基（例如，19 碱基）的情况下，上述区域 (Xc) 的碱基数例如为 1～11 碱基，优选为 1～7 碱基，更优选为 1～4 碱基，进一步优选为 1 碱基，2 碱基，3 碱基。

[0201] 上述区域 (Xc) 包含上述表达抑制序列的情况下，上述区域 (Xc) 例如可以为仅由上述表达抑制序列构成的区域，也可以为包含上述表达抑制序列的区域。上述表达抑制序列的长度例如如前所述。上述区域 (Xc) 包含上述表达抑制序列的情况下，在上述表达抑制序列的 5' 侧和 / 或 3' 侧还可以具有附加序列。上述附加序列的碱基数例如为 1～11 碱基，优选为 1～7 碱基。

[0202] 上述区域 (Yc) 的碱基数例如为 1～29 碱基，优选为 1～11 碱基，优选为 1～7 碱基，更优选为 1～4 碱基，进一步优选为 1 碱基，2 碱基，3 碱基。上述内部区域 (Z) 或上述区域 (Xc) 包含上述表达抑制序列的情况下，例如，优选为这样的碱基数。作为具体例，在上述内部区域 (Z) 的碱基数为 19～30 碱基（例如，19 碱基）的情况下，上述区域 (Yc) 的碱基数例如为 1～11 碱基，优选为 1～7 碱基，更优选为 1 碱基，2 碱基，3 碱基或 4 碱基，进一步优选为 1 碱基，2 碱基，3 碱基。

[0203] 上述区域 (Yc) 包含上述表达抑制序列的情况下，上述区域 (Yc) 例如可以为仅由上述表达抑制序列构成的区域，还可以为包含上述表达抑制序列的区域。上述表达抑制序列的长度例如如前所述。上述区域 (Yc) 包含上述表达抑制序列的情况下，在上述表达抑制序列的 5' 侧和 / 或 3' 侧还可以具有附加序列。上述附加序列的碱基数例如为 1～11 碱基，优选为 1～7 碱基。

[0204] 如上述所述，上述内部区域 (Z)、上述区域 (Xc) 和上述区域 (Yc) 的碱基数例如能够以上述式 (2) 的“Z \geq Xc+Yc”表示。作为具体例，“Xc+Yc” 的碱基数例如与上述内部区域 (Z) 相同，或者小于上述内部区域 (Z)。为后者的例下，“Z-(Xc+Yc)”例如为 1～10，优选为 1～4，更优选为 1.2 或 3。上述“Z-(Xc+Yc)”例如相当于上述内部区域 (Z) 中的自由区域 (F) 的碱基数 (F)。

[0205] 上述第二 ssPN 分子中，上述连接子区域 (Lx) 和上述连接子区域 (Ly) 的长度没有特别限制。上述连接子区域 (Lx) 如前所述。上述连接子区域 (Ly) 的构成单元包含碱基的情况下，上述连接子区域 (Ly) 的碱基数的下限例如为 1 碱基，优选为 2 碱基，更优选为 3 碱基，其上限例如为 100 碱基，优选为 80 碱基，更优选为 50 碱基。关于上述各连接子区域的碱基数，作为具体例，可以例示出例如 1～50 碱基，1～30 碱基，1～20 碱基，1～10 碱基，1～7 碱基，1～4 碱基等，但不限于此。

[0206] 上述连接子区域 (Ly) 例如可以与上述连接子区域 (Lx) 相同，也可以不同。

[0207] 上述第二 ssPN 分子的全长没有特别限制。上述第二 ssPN 分子中，上述碱基数的合计（全长的碱基数）的下限例如为 38 碱基，优选为 42 碱基，更优选为 50 碱基，进一步优选为 51 碱基，特别优选为 52 碱基，其上限例如为 300 碱基，优选为 200 碱基，更优选为 150
碱基，进一步优选为 100 碱基，特别优选为 80 碱基。上述第二 ssPN 分子中，除上述连接子区域 (Lx) 和连接子区域 (Ly) 以外的碱基数的合计的下限例如为 38 碱基，优选为 42 碱基、更优选为 50 碱基、进一步优选为 51 碱基、特别优选为 52 碱基，上限例如为 300 碱基，优选为 200 碱基，更优选为 150 碱基、进一步优选为 100 碱基，特别优选为 80 碱基。

【0208】如上所述，本发明的 ssPN 分子只要上述连接子区域 (Lx) 具有上述非核苷酸结构即可，其他构成单元没有特别限制。上述构成单元可以举出例如核苷酸残基等。上述核苷酸残基可以举出例如核糖核苷酸残基和脱氧核糖核苷酸残基等。上述核苷酸残基可以举出例如未经修饰的非修饰核苷酸残基和经修饰的修饰核苷酸残基等。本发明的 ssPN 分子例如通过包含上述修饰核苷酸残基，能够提高核酶耐受性，能够提高稳定性。另外，本发明的 ssPN 分子除了例如上述核苷酸残基外，还可以包含非核苷酸残基。

【0209】上述区域 (Xc)、上述区域 (X)、上述区域 (Y) 和上述区域 (Yc) 的构成单元分别优选为上述核苷酸残基。上述各区域例如由下述 (1) ～ (3) 的残基构成。

【0210】(1) 非修饰核苷酸残基

【0211】(2) 修饰核苷酸残基

【0212】(3) 修饰核苷酸残基和修饰核苷酸残基

【0213】上述连接子区域 (Lx) 例如可以由上述非核苷酸残基构成，也可以由上述非核苷酸和上述核苷酸残基构成。上述连接子区域 (Lx) 例如由下述 (4) ～ (7) 的残基构成。

【0214】(4) 非核苷酸残基

【0215】(5) 修饰核苷酸残基和非修饰核苷酸残基

【0216】(6) 修饰核苷酸残基和修饰核苷酸残基

【0217】(7) 修饰核苷酸残基和修饰核苷酸残基和修饰核苷酸残基

【0218】上述连接子区域 (Ly) 的构成单元没有特别限制，例如，如上所述，可以举出上述核苷酸残基和上述非核苷酸残基等。上述连接子区域例如可以由上述核苷酸残基构成，也可以由上述非核苷酸残基构成，还可以由上述核苷酸残基和上述非核苷酸残基构成。上述连接子区域例如由下述 (1) ～ (7) 的残基构成。

【0219】(1) 非修饰核苷酸残基

【0220】(2) 修饰核苷酸残基

【0221】(3) 非修饰核苷酸残基和修饰核苷酸残基

【0222】(4) 修饰核苷酸残基

【0223】(5) 修饰核苷酸残基和非修饰核苷酸残基

【0224】(6) 修饰核苷酸残基和修饰核苷酸残基

【0225】(7) 修饰核苷酸残基，非修饰核苷酸残基和修饰核苷酸残基

【0226】本发明的 ssPN 分子可以举出例如上述连接子区域 (Lx) 以外仅由上述核苷酸残基构成的分子，除上述核苷酸残基以外还包含上述非核苷酸残基的分子等。本发明的 ssPN 分子中，如上所述，上述核苷酸残基例如可以仅为上述非修饰核苷酸残基，也可以仅为上述修饰核苷酸残基，还可以为上述非修饰核苷酸残基和上述修饰核苷酸残基两者。上述 ssPN 分子包含上述非修饰核苷酸残基和上述修饰核苷酸残基的情况下，上述修饰核苷酸残基的个数没有特别限制，例如为 “1 个或数个”，具体而言，例如为 1 个、优选为 1 ～ 4 个、更优选为 1 ～ 3 个、最优选为 1 个或 2 个。本发明的 ssPN 分子包含上述非核苷酸残基的情况
下，上述非核苷酸残基的个数没有特别限制，例如为“1个或数个”，具体而言，例如为1个或2个。

[0227] 本发明的ssPN分子中，上述核苷酸残基例如优选为核糖核苷酸残基。该情况下，本发明的ssPN分子例文“ssRNA分子”或“P-sRNA分子”。上述ssRNA分子可以举出例如除去上述连接子区域（Lx）以外仅由上述核糖核苷酸残基构成的分子、除上述核糖核苷酸残基以外还包含上述核苷酸残基的分子等。上述ssRNA分子中，如上所述，上述核糖核苷酸残基例如可以仅为上述非修饰核糖核苷酸残基，也可以仅为上述修饰核糖核苷酸残基，还可以包含上述非修饰核糖核苷酸残基和上述修饰核糖核苷酸残基两者。

[0228] 上述ssRNA分子例如在除上述非修饰核糖核苷酸残基以外还包含上述修饰核糖核苷酸残基的情况下，上述修饰核糖核苷酸残基的个数没有特别限制，例如为“1个或数个”，具体而言，例如为1～5个、优选为1～4个、更优选为1～3个、最优选为1或2个。

与上述非修饰核糖核苷酸残基相对的上述修饰核糖核苷酸残基可以举出例如核糖核苷酸残基脱氧核糖核苷酸残基等。上述ssRNA分子例如在上述非修饰核糖核苷酸残基以外还包含上述脱氧核糖核苷酸残基的情况下，上述脱氧核糖核苷酸残基的个数没有特别限制，例如为“1个或数个”，具体而言，例如为1～5个、优选为1～4个、更优选为1～3个、最优选为1个或2个。

[0229] 本发明的ssPN分子例如包含标记物质，可以被上述标记物质标记化。上述标记物质没有特别限制，可以举出例如荧光物质、素同位素等。上述标记物质可以举出例如花、TAMRA、荧光素、Cy3素、Cy5素等荧光染料，上述色素可以举出例如Alexa488等Alexa色素等。上述色素可以举出例如稳定同位素和放射性同位素，优选为稳定同位素。上述稳定同位素例如由于暴露的危险性低、不需要专用的设施，因而操作性优异，另外还能够降低成本。另外，上述稳定同位素由于不存在标记的化合物的物性变化，作为示踪物的性质也优异。上述稳定同位素是否有特别限制，可以举出例如H、^{15}O、^{17}O、^{18}O、^{33}S、^{34}S和^{35}S等。

[0230] 如上所述，本发明的ssPN分子例如优选在上述核苷酸结构中导入上述标记物质，优选在上述连接子区域（Lx）的上述核苷酸残基中导入上述标记物质。上述核苷酸残基中的标记物质的导入例如能够简便且廉价地进行。

[0231] 如上所述，本发明的ssPN分子能够抑制上述靶基因的表达。因此，本发明的ssPN分子例如能够用作基因成为原因的疾病的治疗剂。作为上述表达抑制序列，只要是包含抑制成为上述疾病的原因的基因的表达的序列的上述ssPN分子，例如，通过抑制上述靶基因的表达，即能够治疗上述疾病。本发明中，“治疗”包含例如上述疾病的预防、疾病的改善、预防的改善的含义，可以为任意一种。

[0232] 本发明的ssPN分子的使用方法没有特别限制，例如，对具有上述靶基因的投与对象投与上述ssPN分子即可。

[0233] 上述投与对象可以举出例如细胞、组织或器官等。上述投与对象可以举出例如人、除人以外的非人哺乳类等非人动物等。上述投与对象可以为体内，也可以为体外。上述细胞没有特别限制，可以举出例如HeLa细胞、293细胞、NIH3T3细胞、COS细胞等各种培养细胞、ES细胞、造血干细胞等干细胞、初代培养细胞等由生物体分离的细胞等。

[0234] 本发明中，作为表达抑制的对象的上述靶基因没有特别限制，能够设定期望基因，根据上述基因适宜设计上述表达抑制序列即可。
[0235] 以下示出本发明的ssPN分子的具体例，但本发明不受其任何限制。上述ssPN分子的碱基序列可以示出例如序列号3、11、14～17和23的碱基序列，另外，也可以为上述碱基序列中例如缺失、被取代和/或附加1个或数个的碱基序列。上述靶基因为GAPDH基因的情况下，可以举出例如序列号3和11的碱基序列，靶基因为TGF-β1的情况下，可以举出例如序列号14～17和23的碱基序列。

[0236] 关于本发明的ssPN分子的使用，能够援引后述的本发明的组物、表达抑制方法和治疗方法等的记载。

[0237] 如上所述，本发明的ssPN分子能够抑制靶基因表达，因此作为例如医药品、诊断药和农药、以及农药、医药、生物科学等的研究工具有用。

[0238] 本发明中，“烷基”例如包含直链状或支链状的烷基。上述烷基的碳原子数没有特别限制，例如，为1～30，优选为1～6或1～4。上述烷基可以举出例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、正己基、异己基、正庚基、正辛基、正壬基、正癸基等。优选可以举出例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、正己基、异己基等。

[0239] 本发明中，“烯基”例如包含直链状或支链状的烯基。上述烯基可以举出上述烷基中具有1个或多个双键的烯基等。上述烯基的碳原子数没有特别限制，例如，与上述烷基相同，优选为2～8。上述烯基可以举出例如乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1,3-二烯基、3-甲基-2-丁烯基等。

[0240] 本发明中，“炔基”例如包含直链状或支链状的炔基。上述炔基可以举出上述烷基中具有1个或多个三键的炔基等。上述炔基的碳原子数没有特别限制，例如，与上述烷基相同，优选为2～8。上述炔基可以举出例如乙炔基、丙炔基、丁炔基等。上述炔基例如还可以具有1个或多个双键。

[0241] 本发明中，“芳基”例如包含单环芳香烃烃基和多环芳香烃烃基。上述单环芳香烃烃基可以举出例如苯基等。上述多环芳香烃烃基可以举出例如1-萘基、2-萘基、1-蒽基、2-蒽基、9-葸基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基等。优选可以举出例如苯基、1-萘基和2-萘基等芳基等。

[0242] 本发明中，“杂芳基”例如包含单环芳香族杂环式基团和稠环芳香族杂环式基团。上述杂芳基可以举出例如呋喃基（例如：2-呋喃基、3-呋喃基）、噻吩基（例如：2-噻吩基、3-噻吩基）、吡咯基（例如：1-吡咯基、2-吡咯基、3-吡咯基）、喹啉基（例如：1-喹啉基、2-喹啉基、3-喹啉基）、异喹啉基（例如：3-异喹啉基、4-异喹啉基、5-异喹啉基）、异噻唑基（例如：3-异噻唑基、4-异噻唑基、5-异噻唑基）、噻唑基（例如：2-噻唑基、4-噻唑基、5-噻唑基）、三唑基（例如：2-三唑基、3-三唑基、4-三唑基）、四唑基（例如：1-四唑基、2-四唑基、5-四唑基）、噁唑基（例如：2-噁唑基、4-噁唑基、5-噁唑基）、嘧啶基（例如：2-嘧啶基、3-嘧啶基、4-嘧啶基）、吡啶基（例如：2-吡啶基、3-吡啶基、4-吡啶基）、吡嗪基（例如：2-吡嗪基、3-吡嗪基、4-吡嗪基）、噻嗪基（例如：2-噻嗪基、4-噻嗪基、5-噻嗪基）、呋喃基（例如：2-呋喃基、3-呋喃基、4-呋喃基）、苯并呋喃基（例如：2-苯并[b]呋喃基、3-苯并[b]呋喃基、4-苯并[b]呋喃基、5-苯并[b]呋喃基、6-苯并[b]呋喃基、7-苯并[b]呋喃基）、苯并噁唑基（例如：2-苯并[b]噁唑基、3-苯并[b]噁唑基、4-苯并[b]噁唑基、5-苯并[b]噁唑基、6-苯并[b]呋喃基、7-苯并[b]呋喃基）。
和环烷基，可以举出例如三甲基甲硅烷基、叔丁基二甲基甲硅烷基等，“甲硅烷氧基”可以举出例如三甲基甲硅烷氧基等，“甲硅烷胺基烷基”可以举出例如三甲基甲硅烷胺基甲基等。

【0253】本发明中，“亚烷基”可以举出例如亚甲基、亚乙基和亚丙基等。

【0254】本发明中，上述各种基团可以被取代。上述取代基可以举出例如羟基、羧基、卤素、卤代烷基（例如：CF₃，CH₃CF₂，CH₂CCl₃）硝基、亚硝基、氰基、烷基（例如：甲基、乙基、异丙基、叔丁基）、烯基（例如：乙烯基）、炔基（例如：乙炔基）、环烷基（例如：环丙基、金刚烷基）、环烷基烷基（例如：环己基甲基、金刚烷基甲基）、环烯基（例如：环丙烯基甲基）、芳基（例如：苯基、萘基）、芳烷基（例如：苄基、苯乙基）、杂芳基（例如：吡啶基、呋喃基）、杂芳烷基（例如：吡啶基甲基）、杂环基（例如：喹啉基）、杂环烷基（例如：吗啉基甲基）、烷氧基（例如：甲氧基、乙氧基、丙氧基、丁氧基）、卤代烷氧基（例如：OCF₃）、烯氧基（例如：乙烯氧基、乙烯氧基）、芳氧基（例如：苯氧基）、烷氧基羰基（例如：甲氧基羰基、乙氧基羰基、叔丁氧基羰基）、芳氧基羰基（例如：苄氧基）、氨基（例如：氨基氧基、氨基氧基）、烷氧基氨基（例如：二甲氧基氨基）、酰氨基（例如：乙酰氨基、苯甲酰氨基）、烷基氨基（例如：苯基氨基、三苯甲基氨基）、羟基氨基）、烷基氧基烷基（例如：乙氧基甲基）、氨磺酰氧基、氨代氧基等。

【0255】2．核苷酸残基

【0256】上述核苷酸残基例如包含糖、碱基和磷酸基作为构成要素。如上所述，上述核苷酸残基可以举出例如核糖核苷酸残基和脱氧核糖核苷酸残基等。上述核糖核苷酸残基例如具有核糖残基作为糖，具有腺嘌呤（A）、鸟嘌呤（G）、胞嘧啶（C）和U（尿嘧啶）作为碱基，上述脱氧核糖核苷酸残基如具有脱氧核糖残基作为糖，具有腺嘌呤（A）、鸟嘌呤（G）、胞嘧啶（C）和胸腺嘧啶（T）作为碱基。

【0257】上述核苷酸残基可以举出未修饰核苷酸残基和修饰核苷酸残基等。上述修饰核苷酸残基中，上述各构成要素例如与天然存在的构成要素相同或实质上相同，优选与人体中天然存在的构成要素相同或实质上相同。

【0258】上述修饰核苷酸残基例如为对上述未修饰核苷酸残基进行了修饰的核苷酸残基。上述修饰核苷酸残基例如可以对上述未修饰核苷酸残基的构成要素的任意一者进行了修饰。本发明中，“修饰”例如为上述构成要素的取代、附加和/或缺失；上述构成要素中的原子和/或官能团的取代、附加和/或缺失，能够称为“改变”。上述修饰核苷酸残基可以举出例如天然存在的核苷酸残基，人工修饰的核苷酸残基等。上述天然来源的修饰核苷酸残基可以参照例如Limbach等（Limbach et al.，1994；Summary of the modified nucleosides of DNA，Nucleic Acids Res.22：2183～2196）。另外，上述修饰核苷酸残基例如可以为上述核苷酸的代替物的残基。

【0259】上述核苷酸残基的修饰可以举出例如核糖-磷酸骨架（以下，核糖磷酸骨架）的修饰等。

【0260】上述核糖磷酸骨架中，例如，能够修饰核糖残基。上述核糖残基例如能够修饰2’位碳，具体而言，例如，能够将2’位碳上键合的羟基取代为氢或氟等。通过将上述2’位碳的羟基取代为氢，能够将核糖残基取代为脱氧核糖。上述核糖残基例如能够取代为立体异构体，例如，可以取代为阿拉伯糖残基。

【0261】上述核糖磷酸骨架例如可以取代为具有非核糖残基和/或非磷酸的非核糖磷酸骨架。上述非核糖磷酸骨架例如可以举出例如上述核糖磷酸骨架的非带电体等。被取代为上
述非核糖磷酸骨架的上述核苷酸的代替物可以举出例如吗啉代、环丁基、呋咯烷等。除此之外，上述代替物可以举出例如人工核酸单体残基等。作为具体例，可以举出例如 PNA（肽核酸）、LNA（锁核酸，Locked Nucleic Acid）、ENA（2’-0, 4’-C- 亚乙基桥联核酸, 2’-0, 4’-C-Ethylenebridged Nucleic Acids）等，优选为 PNA。

[0262] 上述核糖磷酸骨架中，例如，能够修饰磷酸基。上述核糖磷酸骨架中，与糖残基最近的磷酸基被称为 α 磷酸基。上述 α 磷酸基带负电，其电荷均匀分布在不与糖残基键合的 2 个氧原子。在上述 α 磷酸基的 4 个氧原子之中，其中不在核苷酸残基间的磷酸二酯键中与糖残基键合的 2 个氧原子称为“非键合 (non-linking) 氧”。另一方面，以下将在上述核苷酸残基间的磷酸二酯键中与糖残基键合的 2 个氧原子称为“键合 (linking) 氧”。上述 α 磷酸基例如优选进行成为非带电的修饰，或者上述非键合原子中的电荷分布成为非对称的修饰。

[0263] 上述磷酸基中，例如可以取代上述非键合氧。上述氧能够用例如 S（硫）、Se（硒）、B（硼）、C（碳）、H（氢）、N（氮）和 OR（例如为烷基或芳基）中的任一原子取代，优选用 S 取代。上述非键合氧例如优选两者被取代，更优选两者用 S 取代。上述修饰磷酸基可以举出例如磷酸酯、二磷酸酯磷酸酯、磷酸二酯磷酸酯、硼酸磷酸酯（Borano phosphate esters）、氨膦酸酯（Hydrogen phosphonates）、氯磷酸酯、烷基磷酸酯或芳基磷酸酯以及磷酸三酯等，其中，优选上述 2 个非键合氧两者均为被 S 取代的二硫代磷酸酯。

[0264] 上述磷酸基中，例如可以取代上述键合氧。上述氧能够用例如 S（硫）、C（碳）和 N（氮）中的任一原子取代。上述修饰磷酸基可以举出例如用 N 取代的交联磷酸酯醇、用 S 取代的交联磷酸酯酯和用 C 取代的交联亚甲基磷酸酯等。上述键合氧的取代例如优选在本发明的 ssPN 分子的 5’ 末端核苷酸残基和 3’ 末端核苷酸残基的至少一者进行，在 5’ 侧的情况下，优选利用 C 取代，在 3’ 侧的情况下，优选利用 N 取代。

[0265] 上述磷酸基例如可以取代为上述非含磷的连接子。上述连接子包含例如硅氧烷、磷酸酯、羧甲基、氨基甲酸酯、酰胺、硫醚、环氧乙烷连接子、磺酸酯、磺酰胺、硫甲缩醛、甲缩醛、肟、亚甲基亚氨基、亚甲基亚氨基亚氨基、亚甲基肽基和亚甲基二肽基和亚甲基亚氨基等，优选包含亚甲基亚氨基和亚甲基亚氨基。

[0266] 本发明的 ssPN 分子例如可以 3’ 末端和 5’ 末端的至少一者的核苷酸残基被修饰。上述修饰例如可以是 3’ 末端和 5’ 末端中的任一者，也可以是两者。如上所述，上述修饰例如优选对末端的磷酸基进行。上述磷酸基例如可以修饰整体，也可以修饰上述磷酸基中的 1 个以上原子。在前者的情况下，例如，可以为磷酸基整体的取代，也可以为缺失。

[0267] 上述末端的核苷酸残基的修饰可以举出例如其他分子的附加等。上述其他分子可以举出例如上述那样的标记物质、保护基等功能性分子等。上述保护基可以举出例如 S（硫）、Si（硅）、B（硼）、含酯基团等。上述标记物质等功能性分子例如能够用于本发明的 ssPN 分子的检测等。

[0268] 上述其他分子例如可以附加于上述核苷酸残基的磷酸基，也可以通过间隔附加上述磷酸基或上述糖残基。上述间隔附着的末端分子例如能够附加上述磷酸基的上述键合氧或者糖残基的 O、N、S 或 C 或进行取代。上述糖残基的键合部位例如优选为 3’ 位的 C 或 5’ 位的 C，或者与之键合的原子。上述间隔附着例如还能够附加上述 PNA 等核苷酸代替物的末端原子或进行取代。
[0269] 上述间隔臂没有特别限制，可以包含例如 \(-\text{CH}_2\) \(_n\)\(^-\)，\(-\text{CH}_3\)\(^n\)N\(-\)，\(-\text{CH}_2\)\(^n\)O\(-\)，\(-\text{CH}_2\)\(^n\)S\(-\)，\(\text{O(\text{CH}_2\text{CH}_2})_n\text{Cl}\)\(_n\)Cl，\(\text{C}_2\text{H}_5\text{OH}\)无碱基糖、酰胺、羧基、胺、羟基胺、羟基胺的亚胺、硫醚、二硫醚、硫脲、磺酰胺和吗啡代等，以及生物素试剂和荧光素试剂等。上述式中，n 为正整数，优选 n=3 或 6。

[0270] 除了这些之外，附加在上述末端的分子可以举出例如色素、嵌合剂（例如，吖啶）、交联剂（例如，补骨脂素、丝裂霉素 C）和卟啉（TPPC4、Texaphyrin、Sapphyrin）等多环芳烃族烃（例如，酚嗪、二氢酚嗪）、人工核酸内切酶（例如，EDTA）、亲油性载体（例如，胆固醇、胆酸、金刚烷乙酸、1-花丁酸、二氢睾酮，1-双-O（十六烷基）甘油、牻牛儿醇基乙基、十六烷基甘油、苯甲酸，1-丙二醇，十七烷基，棕榈酸，肉豆蔻酸，03-（油酰基）石胆酸，03-（油酰基）胆酸，二甲基氧化苯基甲基或乙酰胺）和肽复合体（例如，黑腹果蝇触足肽、Tat 序列）、烷基化剂，磷酸，氨基，聚基，PEG（例如，PEG-40K）、MPEG，聚氨酯，苯甲酸，取代烷基，放射性标记物，酶递质，环氧（例如，生物素），输送/吸收促进剂（例如，阿司匹林、维生素 E、叶酸）、合成糖基磷酸酯（例如，腺苷，二磷酸，组胺，咪唑，咔唑，咔唑复合体，四氮杂环的乙胺基复合体）等。

[0271] 本发明的 ssPN 分子的上述 5’末端可以用例如磷酸 Folding 基或磷酸基类似物修饰。上述磷酸基可以举出例如，5’单磷酸（\(\text{HO}_2\)\(_0\)P-0-5’），5’二磷酸（\(\text{HO}_2\)\(_0\)P-0-P(HO)\(_0\)-0-5’），5’三磷酸（\(\text{HO}_2\)\(_0\)P-0-P(HO)\(_0\)-0-P(HO)\(_0\)-0-5’），5’鸟苷帽（7-甲基化或非甲基化，7m-G-0-5’-（\(\text{HO}_2\)\(_0\)P-0-（\(\text{HO}_2\)\(_0\)P-0-P（\(\text{HO}_2\)\(_0\)P-0-5’），5’腺苷帽（Appp），任意的修饰或非修饰核苷酸帽结构（N-0-5’-（\(\text{HO}_0\)P-0-P（\(\text{HO}_0\)P-0-P（\(\text{HO}_0\)P-0-5’），5’-硫代磷酸（硫代磷酸酯：\(\text{HO}_2\)\(_S\)P-0-5’），5’-硫代磷酸（硫代磷酸酯；\(\text{HO}_2\)\(_S\)P-0-5’），5’-硫代磷酸（硫代磷酸酯；\(\text{HO}_2\)\(_S\)P-0-S-5’），硫代的单磷酸；二磷酸和三磷酸（例如，5’-a-硫代三磷酸，5’-y-硫代三磷酸等），5’-磷酸酰胺酯（\(\text{HO}_2\)\(_0\)P-NH-5’，\(\text{HO}_2\)\(_0\)P-0-5’），5’-烷基磷酸酯（例如，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’），5’-烷基磷酸酯（例如，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’），\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’，\(\text{HO}_2\)\(_0\)P-0-5’）等。

[0272] 上述核苷酸残基中，上述碱基没有特别限制，上述碱基例如可以为天然的碱基，也可以为非天然的碱基。上述碱基例如可以为天然来源，也可以为合成品。上述碱基例如能够使用一般碱基的其修饰类似物等。

[0273] 上述碱基可以举出例如腺嘌呤和鸟嘌呤等嘌呤碱基；胞嘧啶、尿嘧啶和胸腺嘧啶等嘧啶碱基等。除此之外，上述碱基还可以举出肌苷、胸腺嘧啶、黄嘌呤、次黄嘌呤、nubularine、isoguanine、卡氏核苷酸（tubercidine）等。上述碱基可以举出例如2-氨基腺嘌呤、6-甲基化嘌呤等烷基衍生物；2-丙基化嘌呤等烷基衍生物；5-卤代尿嘧啶和5-卤代胞嘧啶；5-丙炔尿嘧啶和5-丙炔基胞嘧啶；6-偶氮尿嘧啶、6-偶氮胞嘧啶和6-偶氮胸腺嘧啶；5-尿嘧啶（假尿嘧啶）；4-硫尿嘧啶；5-甲基尿嘧啶；5-（2-氨基丙基）尿嘧啶；5-氨基烯丙基尿嘧啶；8-卤化、氨基化、硫醇化、硫代烷基化、羟基化和其他的8-取代嘌呤；5-三氟甲基化和其他的5-取代嘧啶；7-甲基鸟嘌呤；5-取代嘧啶；6-氯杂腺嘧啶；N-2，N-6和0-6取代嘧啶（包含2-氨基丙基腺嘌呤）；5-丙炔尿嘧啶和5-丙炔基胞嘧啶；二氢尿嘧啶；3-去氧；5-氯杂胞嘧啶；2-氨基嘌呤；5-硫尿嘧啶；7-硫尿嘧啶；5-硫尿嘧啶；7-去氧腺嘌呤；N6，N6-二甲基腺嘌呤；2，6-二氨基嘌呤；5-氨基-烯丙基-尿嘧啶；
N3-甲基尿嘧啶；取代1, 2, 4-三唑；2-吡啶酮；5-硝基吲哚；3-硝基吡咯；5-甲氧基尿嘧啶；尿嘧啶；5-氧基乙酸；5-甲氧基醚基甲基尿嘧啶；5-甲基-2-硫尿嘧啶；5-甲氧基醚基甲基-2-硫尿嘧啶；5-甲基甲基-2-硫尿嘧啶；3-(3-氨基-3-羧基丙基) 尿嘧啶；3-甲基胞嘧啶；5-甲基胞嘧啶；N1-乙酰基胞嘧啶；2-硫胞嘧啶；N6-甲基腺嘌呤；N6-异戊基腺嘌呤；2-甲硫基-N6-异戊烯基腺嘌呤；N7-甲基鸟嘌呤；O-烷基化碱基等。另外，嘌呤和嘧啶包含例如美国专利第3,687,808号、“Concise Encyclopedia Of Polymer Science And Engineering”、858～859页、Kroschwitz J. I.编、John Wiley&Sons、1990、和Englisch等、Angewandte Chemie、International Edition、1991、30卷、p.613所公开的物质。

[0275] 3. 本发明的ssPN分子的合成方法

[0276] 本发明的ssPN分子的合成方法没有特别限制，可以采用现有公知的方法。上述合成方法可以举出例如基于基因工程学方法的合成法、化学合成法等。基因工程学方法可以举出例如体外转换合成法、使用载体的方法、基于PCR盒的方法等。上述载体没有特别限制，可以举出质粒等非病毒载体、病毒载体等。不限于此。上述化学合成法没有特别限制，可以举出例如亚磷酸胺法和H-膦酸酯法等。上述化学合成法能够使用例如市售的自动核酸合成机。上述化学合成法通常使用amidite。上述amidite没有特别限制，作为市售的amidite，可以举出例如RNA亚磷酸胺（2'-O-TBDMSi、商品名，三千里制药）、ACE amidite、TOM amidite、CEE amidite、CEM amidite、TEM amidite等。关于本发明的ssPN分子，例如，在合成上述式（1）表示的连接子区域时，优选使用后述的本发明的单体。

[0277] 4. 组合物

[0278] 如上所述，本发明的表达抑制用组合物的特征在于，其用于抑制靶基因表达的组合物，其包含上述本发明的ssPN分子。本发明的组合物的特征在于包含上述本发明的ssPN分子，其他构成没有任何限制。本发明的表达抑制用组合物例如还能够称为表达抑制用试剂。

[0279] 根据本发明，例如，通过投与至存在上述靶基因的对象，能够进行上述靶基因的表达抑制。

[0280] 另外，如上所述，本发明的药学组合物的特征在于，其包含上述本发明的ssPN分子。本发明的组合物的特征在于包含上述本发明的ssPN分子，其他构成没有任何限制。本发明的药学组合物例如还能够称为药品。本发明的药学组合物例如还能够称为药制品。

[0281] 根据本发明，例如，通过投与到基因成为原因的疾病的患者，能够抑制上述基因的表达，能够治疗上述疾病。本发明中，如上所述，“治疗”例如包含上述疾病的预防、疾病的改善、预后的改善的含义，可以为任意一种。

[0282] 本发明中，作为治疗对象的疾病没有特别限制，例如，可以举出基因的表达为原因的疾病等。根据上述疾病的种类，将作为该疾病的原因的基因设定为上述靶基因，进而，根据上述靶基因，适宜设定上述表达抑制序列即可。

[0283] 作为具体例，若将上述靶基因设定为上述TGF-β1基因，将针对上述基因的表达
抑制序列为存在于上述 ssPNA 分子，则能够用于例如炎症疾病、具体而言能够用于急性肺损伤等的治疗。

[0284] 本发明的表达抑制用组合物和药学组合物（下文称为组合物）的使用方法没有特别限定，例如，只要对具有上述靶基因的投与对象投与上述 ssPNA 分子即可。

[0285] 上述投与对象可以举出例如细胞、组织或器官等。上述投与对象可以举出如人、除人以外的非人哺乳类等非人动物等。上述投与例可以为体内、也可以为体外。上述细胞没有特别限制，可以举出例如 HeLa 细胞、293 细胞、NH3T3 细胞、COS 细胞等培养细胞；ES 细胞、造血干细胞等干细胞；初代培养细胞等从生物体分离的细胞等等。

[0286] 上述投与方法没有特别限制，例如，可以根投与对象适宜决定。上述投与对象为培养细胞的情况下，可以举出例如使用转染试剂的方法、电穿孔法等。上述投与为体内的情况下，例如，可以为经口投与，也可以为非经口投与。上述非经口投与可以举出例如注射、皮下投与、局部投与等。

[0287] 本发明的组合物例如可以仅包含本发明的 ssPNA 分子，也可以还包含其他添加物。上述添加物没有特别限制，例如，优选药学上可接受的添加物。上述添加物的种类没有特别限制，例如，可以根据投与对象的种类适宜选择。

[0288] 本发明的组合物中，上述 ssPNA 例如可以与上述添加物形成复合体。上述添加物例如还能够称为复合化剂。通过上述复合体，例如能够有效地传送上述 ssPNA 分子。上述 ssPNA 分子与上述复合化剂的结合没有特别限制，可以举出例如非共价结合等。上述复合体可以举出例如包裹等。

[0289] 上述复合化剂没有特别限制，可以举出聚合物、环糊精、金刚烷胺等。上述环糊精可以举出例如线状环糊精共聚物、线状酸化环糊精共聚物等。

[0290] 除此之外，上述添加剂还可以举出例如载体、与靶细胞的结合物质、溶剂化剂、融合剂等。

[0291] 上述载体例如优选为高分子，更优选为生物体高分子。上述载体例如优选为生物降解性。上述载体可以举出例如人血清白蛋白（HSA）、低密度脂蛋白（LDL）、球蛋白等蛋白质；例如葡聚糖、普鲁兰多糖、几丁质、壳聚糖、葡糖、环糊精、透明质酸等糖质；脂质等。上述载体还能够使用例如合成聚氨基酸等合成聚合物。上述聚氨基酸可以举出例如聚赖氨酸（PLL）、聚 L-天冬氨酸、聚 L-谷氨酸、苯乙烯-马来酸酐共聚物、聚（L-丙交酯-co-乙交酯）共聚物、二乙烯基醚-马来酸酐共聚物、N-(2-羟基丙基) 甲基丙烯酰胺共聚物 (HPMA)、聚乙二醇 (PEG)、聚乙烯醇 (PVA)、聚氨酯、聚 (2-乙基丙烯酸)、N-丙烯酰胺酰胺聚合物或者聚磷嗪 (polyphosphazene) 等。

[0292] 上述结合物质可以举出例如促甲状腺激素、促黑素细胞激素、外源凝集素、糖蛋白、表面活性蛋白 A、粘蛋白等成分，多价乳糖、多价半乳糖、N、乙酰基半乳糖胺、N-乙酰基葡萄糖胺、多价甘露糖、多价海藻糖、糖基化聚氨基酸、多价半乳糖、转铁蛋白、二膦酸酯、氯化氨基、聚天冬氨酸、脂质、胆固醇、类固醇、胆汁酸、叶酸的氨基酸盐、维生 B12、生物素、Neproxin、RGD 肽、PGD 肽类似物等。

[0293] 上述融合剂和溶剂化剂可以举出例如聚乙烯亚胺 (PEI) 等聚氨基链等。PEI 例如可以为直链状和支链状中的任意一种，另外，可以为合成物和天然物中的任意一种。上述 PEI 例如可以进行烷基取代，也可以进行脂质取代。另外，除此之外，上述融合剂能够使用例如
聚组氨酸、聚咪唑、聚胱氨酸、聚丙烯酰胺、蜂毒肽、聚缩醛物质（例如，阳离子性聚缩醛等）等。上述融合剂例如可以具有 α 螺旋结构。上述融合剂例如可以为蜂毒肽等膜崩解剂。

对本发明的组合物而言，例如，关于上述复合体的形成等，能够援引美国专利第 6,509,323 号、美国专利公报第 2003/0008818 号、PCT/US04/07070 号等。

除此之外，上述添加剂可以举出例如两亲分子等。上述两亲分子例如为具有疏水性区域和亲水性区域的分子。上述分子例如优选为聚合物。上述聚合物例如为具有二级结构的聚合物，优选为具有重复性二级结构的聚合物。作为具体例，例如，优选为多肽，更优选为 α 螺旋状多肽等。

上述两亲聚合物例如可以为具有两个以上两亲亚单位的聚合物。上述亚单位可以举出例如具有包括至少一个亲水性基团和一个疏水性基团的环状结构的亚单位等。上述亚单位可以具有例如胆酸等类固醇，芳香族结构等。上述聚合物例如可以具有芳香族亚单位等环状结构亚单位和氨基酸两者。

5. 表达抑制方法

如上所述，本发明的表达抑制方法的特征在于，其为抑制靶基因表达的方法。其使用上述本发明的 ssPN 分子。本发明的表达抑制方法的特征在于使用上述本发明的 ssPN 分子，其他工序和条件没有任何限制。

本发明的表达抑制方法中，上述基因的表达抑制机理没有特别限制，可以举出例如基于 RNA 干扰的表达抑制等。此处，本发明的表达抑制方法例如为诱导抑制上述靶基因的表达的 RNA 干扰的方法，也能够称为其特征在于使用上述本发明的 ssPN 分子的表达诱导方法。

本发明的表达抑制方法例如包括对存在上述靶基因的对象投与上述 ssPN 分子的工序。通过上述投与工序，例如，使上述 ssPN 分子与上述投与对象接触。上述投与对象可以举出例如细胞、组织或器官等。上述投与对象可以举出例如人、除人以外的非人哺乳类等非人动物等。上述投与例如可以为体内，也可以为体外。

本发明的表达抑制方法例如可以单独投与上述 ssPN 分子，也可以投与包含上述 ssPN 分子的上述本发明的组合物。上述投与方法没有特别限制，例如，可以根据投与对象的种类适宜选择。

6. 治疗方法

如上所述，本发明的疾病的治疗方法的特征在于，其包括将上述本发明的 ssPN 分子投与至患者的工序，上述 ssPN 分子具有抑制成为上述疾病的基因的基因的表达的序列作为上述表达抑制序列。本发明的治疗方法的特征在于使用上述本发明的 ssPN 分子，其他工序和条件没有任何限制。本发明的治疗方法例如能够援引上述本发明的表达抑制方法。

7. ssPN 分子的用途

本发明的用途为上述本发明的 ssPN 分子的用于抑制上述靶基因表达的用途。另外，本发明的用途为上述本发明的 ssPN 分子的用于诱导 RNA 干扰的用途。

本发明的核酸分子的特征在于，其为用于治疗疾病的核酸分子。上述核酸分子为上述本发明的 ssPN 分子，上述 ssPN 分子具有抑制成为上述疾病的基因的表达的序列作为上述表达抑制序列。

8. 单体
本发明的单体的特征在于，其为核酸合成用的单体，其具有下述式 (II) 的结构。只要没有特别表示，则本发明的单体能够援引上述本发明的 ssPN 分子的说明。

[化学式 4]

本发明的单体例如在上述本发明的 ssPN 分子的合成中能够容易地合成上述式 (I) 表示的连接子区域 (Lx) 和连接子区域 (Ly)。本发明的单体例如能够用作自动核酸合成用的 amidite，例如，能够适用于一般的核酸自动合成装置。上述合成方法可以举出例如亚磷酰胺法和 H- 磷酸酯法等。

上述式中，

X' 和 X^2 各自独立为 H_2、O、S 或 NH；

Y' 和 Y^2 各自独立为单键、CH_2、NH、O 或 S；

R' 和 R^2 各自独立为 H、保护基或磷酸保护基；

R^3 为与环 A 上的 C-3、C-4、C-5 或 C-6 键合的氢原子或取代基；

L^1 为由 n 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR^a、NH^a、NHR^a、NR^aR^a、SH 或 SR^a 取代，也可以不被取代，或者，

L^1 为上述亚烷基链的一个以上碳原子被氢原子取代的聚醚链，

其中，Y^1 为 NH、O 或 S 的情况下，与 Y^1 键合的 L^1 的原子为碳，与 OR^1 键合的 L^1 的原子为碳，氧原子彼此不相邻；

L^2 为由 m 个原子构成的亚烷基链，此处，亚烷基碳原子上的氢原子可以被 OH、OR^a、NH^a、NHR^a、NR^aR^a、SH 或 SR^a 取代，也可以不被取代，或者，

L^2 为上述亚烷基链的一个以上碳原子被氢原子取代的聚醚链，

其中，Y^2 为 NH、O 或 S 的情况下，与 Y^2 键合的 L^2 的原子为碳，与 OR^2 键合的 L^2 的原子为碳，氧原子彼此不相邻；

R^a、R^b、R^c 和 R^d 各自独立地为取代基或保护基；

1 为 1 或 2；

m 为 0 ～ 30 的范围的整数；

n 为 0 ～ 30 的范围的整数；

环 A 可以是上述环 A 上的 C-2 以外的 1 个碳原子被氢、氧或硫取代，

上述环 A 内可以包含碳 - 碳双键或碳 - 氮双键。

上述式 (II) 中，与上述式 (I) 相同的部位能够援引上述式 (I) 的说明。具体而言，上述式 (II) 中，例如，X'、X^2、Y'、Y^2、R^3、L^1、L^2、1、m、n 和环 A 能够全部援引上述式 (I) 的说
明。
[0330] 如上所述，上述式 (II) 中，R₁ 和 R² 分别独立地为 H、保护基或磷酸保护基。
[0331] 上述保护基例如与上述式 (I) 中的说明相同，作为具体例，例如，能够选自组 I。上述组 I 可以举出例如二甲氧基三苯甲基(DMTr)、TBDMS 基、ACE 基、TOM 基、CEE 基、CEM 基、
TEM 基和下式所示的含甲硅烷基的基团，其中，优选 DMTr 基和上述含甲硅烷基的基团中的任
意一种。
[0332] [化学式 5]

[0333] 上述磷酸保护基例如能够由下式表示。
[0334] [化学式 6]

[0335] R₁ 和 R² 分别为氢原子或任意的取代基，可以相同，也可以不同。取代基 R₁ 和 R² 例
如优选为烃基，上述烃基可以被吸电子基团取代，也可以不被取代。取代基 R₁ 和 R² 例
如优选为烃基，上述烃基还可以被任意的取代基取代，也可以不被取代。上述烃基例如与上
述 R₁ 中列举的相同，优选为甲基、乙基、异丙基。该情况下，NR₁R² 例如可以举出例如二
异丙氨基、二乙氨基、乙基甲氨基等。或者，取代基 R₁ 和 R² 也可以形成一体，与它们键合的
氮原子一起（即，NR₁R² 形成一体）形成含氮环（例如，哌啶基、吗啉基等）。
[0336] 作为上述磷酸保护基的具体例，例如，能够选自下述组 II。组 II 可以举出例如
-P(OCH₂CH₂CN) (N(i-Pr)₂)、-P(OCH₂) (N(i-Pr)₂) 等。上述式中，i-Pr 表示异丙基。
[0337] 上述式 (II) 中，例如，R₁ 和 R² 中的任意一者为 H 或保护基，另一者为 H 或磷酸保护
基。优选的是，例如，R₁ 为上述保护基的情况下，R² 优选为 H 或上述磷酸保护基。具体而言，
R₁ 选自上述组 I 的情况下，R² 优选选自 H 或上述组 II。另外，优选的是，例如，R₁ 为上述磷
酸保护基的情况下，R² 优选为 H 或上述保护基，具体而言，R₁ 选自上述组 II 的情况下，R² 优
选选自 H 或上述组 I。
[0338] 上述式 (II) 的结构可以例如举出例如下述式 (II-1)～式 (II-9)，下述式中，n 和 m
与上述式 (II) 相同。下述式中，q 为 0 ～ 10 的整数。
上述式 (II-1) ～ (II-9) 中，n, m 和 q 没有特别限制，如前所述。作为具体例，可以举出上述式 (II-1) 中，n=8 ；上述 (II-2) 中，n=3 ；上述式 (II-3) 中，n=4 或 8 ；上述 (II-4) 中，n=7 或 8 ；上述式 (II-5) 中，n=3 且 m=4 ；上述 (II-6) 中，n=8 且 m=4 ；上述式 (II-7) 中，n=8 且 m=4 ；上述 (II-8) 中，n=5 且 m=4 ；上述式 (II-9) 中，q=1 且 m=4。将上述式 (II-4) 的一例 (n=8) 示于下述式 (II-4a)，将上述式 (II-8) 的一例 (n=5, m=4) 示于下述式 (II-8a)。

[0344] [化学式 7]

[0345]
[0346] 本发明的单体例如优选包含上述标记物质，其中，优选包含上述稳定同位素。上述标记物质如前所述。
[0347] 本发明的单体包含上述稳定同位素等同位素的情况下，例如，能够简便地在上述本发明的ssPN分子中导入上述同位素。具有同位素的上述单体例如能够由导入了上述同位素的吡咯烷骨架的原料和哌啶骨架的原料合成。上述吡咯烷骨架的原料可以举出例如脯氨酸和脯氨酸等。
[0348] 以下，例示出将导入了稳定同位素的脯氨酸和脯氨酸作为原料，对导入了稳定同位素的本发明的单体进行合成的方案。以下的方案为例示，本发明并不限定于此。
[0349] [化学式 8]

[0350]

[0351] 作为导入了稳定同位素的脯氨酸，例如，导入了氘 (D) 的脯氨酸能够如下制备：例如，如下式所示，通过用 LiAlD₄ 处理脯氨酸来制备。
[0352] [化学式 9]

[0353]
[0354] 作为导入了稳定同位素的脯氨酸，例如，导入了重氧（18O）的脯氨酸能够如下制备；例如，如下式所示，通过在碱性条件下使脯氨酸甲酯与H218O反应来制备。

[0355] [化学式 10]

[0356]

[0358] [化学式 11]

[0359]

[0361] [化学式 12]

[0362]
[0363] 这样，能够合成导入了稳定同位素的单体。另外，通过使用上述单体作为合成用
amidite，能够合成在上述连接子区域导入了稳定同位素的核酸分子。
[0364] 以下，通过实施例等详细地说明本发明，但本发明并不限定于此。
[0365] 实施例
[0366] (实施例 A1)
[0367] 1. 脯氨醇的合成
[0368] 根据下式所示的方案 1，合成用二甲氧基三苯甲基进行了保护的脯氨醇。
[0369] [化学式 13]
[0370]

方案 1

[0371] (1) Fmoc-L-脯氨醇（化合物 2）
[0372] 将 L-脯氨醇（化合物 1）（0.61g, 6.0mmol）溶解于纯水 70mL 中，制备 L-脯氨醇水
溶液。将 N-(9-芴甲氧羰酰) 琥珀酰亚胺 (Fmoc-OSu)（2.0g, 6.0mmol）溶解于 THF10mL 中。将
该 THF 溶液加入到上述 L-脯氨醇水溶液中，搅拌 1 小时，使两者反应。将该反应液分离
为液体组分和沉淀组分，用乙酸乙酯提取各个组分，分别回收有机层。然后，将各个有机层合并后，添加无水硫酸钠，吸收水分（下文中称为干燥）。过滤上述有机层，回收滤液，将上述滤液减压浓缩。通过硅胶柱层析（展开溶剂乙烷：乙酸乙酯=1:1）精制所得到的残渣，得到化合物2（1.4g，收率74%）。以下，示出化合物的NMR的结果。

[0373] ¹H-NMR (CDCl₃)：δ 7.77 (2H, d, J=7.7 Hz, Ar-H), 7.60 (2H, d, J=7.3 Hz, Ar-H), 7.40 (2H, t, J=7・5 Hz, Ar-H), 7.31 (2H, t, J=7・6 Hz, Ar-H), 4.40~4.50 (2H, m, COOCH₃), 4.22 (1H, t, J = 605 Hz, Ar-CH), 3.20~3.80 (5H, m, H-5, H-6), 1.75 (3H, m, H-3, H-4), 1.40 (1H, m, H-3)。

[0374] （2）Fmoc-DTr-L-脯氨酸（化合物3）
[0375] 将Fmoc-DTr-L-脯氨酸（化合物2）（1.4g，4.3mmol）溶解于吡啶20mL中，共沸3次。将所得的残留物溶解于吡啶20mL中。将该溶液一边在氯气下，冰浴中搅拌，一边添加4,4’-二甲氧基三苯基甲基氯化物（DTr-C1）（1.8g，5.3mmol）。关于该反应液，通过氯仿/甲醇的TLC来追踪反应，直至Fmoc-L-脯氨酸的点消失为止反应4小时。并且，为了使过剩的DTr-C1泽灭，在上述反应液中加入甲醇3mL并搅拌10分钟后，向上述反应液中进一步加入氯仿后，回收有机层。对于所回收的上述有机层，进行利用饱和盐水的清洗，利用5%碳酸氢钠水溶液的清洗，再进行一次利用饱和盐水的清洗。用无水硫酸钠使清洗后的有机层干燥。过滤上述有机层，所得的滤液减压浓缩。通过硅胶柱层析（展开溶剂氯仿/1%吡啶）精制所得到的残渣，得到化合物3（2.0g，收率74%）。以下，示出化合物的NMR的结果。

[0376] ¹H-NMR (CDCl₃)：δ 7.77 (2H, d, J=7.7 Hz, Ar-H), 7.60 (2H, d, J=7.3 Hz, Ar-H), 7.40~7.18 (13H, m, Ar-H), 6.89 (4H, d, J=8.6 Hz, Ar-H), 4.20~4.40 (2H, m, COOCH₃), 4.02 (1H, t, J = 6.5 Hz, Ar-CH), 3.80~3.10 (5H, m, H-5, H-6), 3.73 (S, 6H, OCH₃), 1.84 (3H, m, H-3, H-4), 1.58 (1H, m, H-3)。

[0377] （3）DTr-L-脯氨酸（化合物4）
[0378] 将上述Fmoc-DTr-L-脯氨酸（化合物3）（2.0g，3.2mmol）溶解于包含20%吡啶的DMF溶液25mL中，搅拌12小时。将该溶液减压浓缩，通过硅胶柱层析（氯仿/甲醇=85：15，含有1%吡啶）精制所得到的残渣，得到化合物4（1.0g，收率78%）。以下，示出化合物的NMR的结果。

[0379] ¹H-NMR (CDCl₃)：δ 7.40~7.14 (9H, m, Ar-H), 6.82 (4H, d, J = 8.6 Hz, Ar-H), 3.78 (6H, s, OCH₃), 3.31 (1H, m, H-6), 3.07 (1H, m, H-2, H-6), 2.90 (2H, m, H-5), 1.84 (3H, m, H-3, H-4), 1.40 (1H, m, H-3)。

[0380] 2. amidite 衍生物的合成
[0381] 接着，根据下式所示的方案2，合成具有脯氨酸的amidite衍生物。以下，将1-乙基-3-（3-二甲氨基丙基）磷二亚胺盐酸盐称为“EDC”，将N,N-二甲氨基吡啶（4-二甲氨基吡啶）称为“DMAP”。

[0382] ［化学式 14］

[0383]
方案 2

(1) DMTr- 酰胺 -L- 脯氨醇（化合物 5）

将上述 DMTr-L- 脯氨醇（化合物 4）(0.80g, 2.0mmol)、EDC(0.46g, 2.4mmol) 和 DMAP (0.29g, 2.4mmol) 溶解于二氯甲烷 20mL 中并搅拌。在该溶液中添加 10- 羟基癸酸 (0.45g, 2.4mmol) 并搅拌。关于该反应液，通过乙酸乙酯的 TLC 来追踪反应，直至 DMTr-L- 脯氨醇的点消失为止反应 20 小时。并且，在上述反应液中加入二氯甲烷后，回收有机层。用饱和盐水清洗所回收的上述有机层后，用无水硫酸钠干燥。过滤上述有机层，将所得到的滤液减压浓缩，通过硅胶柱层析（乙酸乙酯，含有 1% 丙酮）精制其残渣，得到化合物 5 (0.71g, 收率 62%)。以下，示出化合物的 NMR 的结果。

[0386] 1H-NMR (CDCl₃): δ 7.40 - 7.14 (9H, m, Ar-H), 6.92 (4H, d, J = 8.6 Hz, Ar-H), 3.78 (6H, s, OCH₃), 3.68 - 2.93 (7H, m, H-2, H-5, H-6), 2.27 - 1.72 (6H, m, 烷基, H-3, H-4), 1.58 (4H, s, 烷基), 1.30 (10H, s, 烷基)。

(2) DMTr- 烷基 -L- 脯氨醇（化合物 6）

[0387] 将上述 DMTr-L- 脯氨醇（化合物 4）(0.80g, 2.0mmol) 溶解于甲醇 15mL 中，加入 5- 羟基戊酸 (0.31g, 3.0mmol) 并搅拌。在该溶液中加入氯基硼氢化钠 (0.25g, 4.0mmol)，进而进行搅拌。关于该反应液，通过乙酸乙酯 / 己烷的 TLC 来追踪反应，直至 DMTr-L- 脯氨醇的点消失为止反应 24 小时。并且，在上述反应液中加入乙酸乙酯，回收有机层。用饱和盐水清洗所回收的上述有机层后，用无水硫酸钠干燥。过滤上述有机层，将所得到的滤液减压浓缩，通过硅胶柱层析（己烷：乙酸乙酯=1:1，含有 1% 丙酮）精制其残渣，得到化合物 6 (0.62g, 收率 63%)。以下，示出化合物的 NMR 的结果。

[0389] 1H-NMR (CDCl₃): δ 7.40 - 7.14 (9H, m, Ar-H), 6.92 (4H, d, J = 8.6 Hz, Ar-H), 3.78 (6H, s, OCH₃), 3.70 - 2.86 (4H, m, CH₂OH, H-6), 2.06 - 1.79 (5H, m, 烷基, H-3, H-5), 1.74 - 1.49 (6H, m, 烷基, H-3, H-4), 1.45 - 1.27 (4H, m, 烷基)。

(3) DMTr- 氧基甲酸酯 -L- 脯氨醇（化合物 7）
将1,4-丁二醇（0.90g, 10mmol）溶解于二氯甲烷30mL中，进而加入羰二咪唑（1.4g, 8.6mmol）并搅拌3小时。用饱和盐水清洗该反应液的有机层后，用无水硫酸钠干燥。过滤上述有机层，将所得滤液减压浓缩，通过硅胶柱层析（氯仿：甲醇=9:1）纯制该残渣。由此，得到1,4-丁二醇的一个末端被羰二咪唑活化的化合物（0.25g, 1.5mmol）。将该化合物溶解于二氯甲烷15mL中，添加上述DMTr-L-脯氨酸（化合物4）（0.6g, 1.5mmol）并搅拌24小时。在该混合液中加入乙酸乙酯，回收有机层。用饱和盐水清洗所回收的上述有机层后，用无水硫酸钠干燥。过滤上述有机层，将所得滤液减压浓缩，通过硅胶柱层析（己烷：乙酸乙酯=1:1, 含有1%吡啶）精制其残渣，得到化合物7（0.61g, 收率77%）。

以下，出示化合物的NMR的结果。

'H-NMR (CDCl₃): 6 7.40-7.14 (9H, m, Ar H), 6.82 (4H, d, J = 8.6Hz, Ar H), 4.24-3.94 (2H, m, GooCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, 烷基, H = 2, H = 5, H = 6), 2.10-1.30 (8H, m, 烷基, H = 3, H = 4).

以下，出示化合物的NMR的结果。

'H-NMR (CDCl₃): 6 7.40-7.14 (9H, m, Ar H), 6.82 (4H, d, J = 8.6Hz, Ar H), 4.24-3.94 (2H, m, GooCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, 烷基, H = 2, H = 5, H = 6), 2.10-1.30 (8H, m, 烷基, H = 3, H = 4).

以下，出示化合物的NMR的结果。

'H-NMR (CDCl₃): 6 7.40-7.14 (9H, m, Ar H), 6.82 (4H, d, J = 8.6Hz, Ar H), 4.24-3.94 (2H, m, GooCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, 烷基, H = 2, H = 5, H = 6), 2.10-1.30 (8H, m, 烷基, H = 3, H = 4).

以下，出示化合物的NMR的结果。

'H-NMR (CDCl₃): 6 7.40-7.14 (9H, m, Ar H), 6.82 (4H, d, J = 8.6Hz, Ar H), 4.24-3.94 (2H, m, GooCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, 烷基, H = 2, H = 5, H = 6), 2.10-1.30 (8H, m, 烷基, H = 3, H = 4).

以下，出示化合物的NMR的结果。

'H-NMR (CDCl₃): 6 7.40-7.14 (9H, m, Ar H), 6.82 (4H, d, J = 8.6Hz, Ar H), 4.24-3.94 (2H, m, GooCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, 烷基, H = 2, H = 5, H = 6), 2.10-1.30 (8H, m, 烷基, H = 3, H = 4).

以下，出示化合物的NMR的结果。
1.58 (4H, s, 烷基), 1.30 (22H, s, 烷基, CH₂₂)。

[0399] DMTr- 烷基 -L- 腺氨醇 amidite (化合物 10, 0.71g, 收率 60%)

[0400] 'H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, d, J = 8.6 Hz, Ar-H), 3.78 (6H, s, OCH₃), 3.70-2.86 (8H, m, CH₂₂, POCH₂, CHCH₂, H-6), 2.58 (2H, m, CH₂CN), 2.06-1.79 (5H, m, 烷基, H-2, H-5), 1.74-1.49 (6H, m, 烷基, H-3, H-4), 1.37-1.10 (16H, m, 烷基, CH₂₂)。

[0401] DMTr- 氨基甲酸酯 -L- 腺氨醇 amidite (化合物 11, 0.67g, 收率 52%)

[0402] 'H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, d, J = 8.6 Hz, Ar-H), 4.24-3.94 (2H, m, COOCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (11H, m, CH₂₂, POCH₂, CHCH₂, H-2, H-5, H-6), 2.58 (2H, m, CH₂CN), 2.10-1.46 (8H, m, 烷基, H-3, H-4), 1.34-1.10 (12H, m, CH₂₂)。

[0403] DMTr- 腺基 -L- 腺氨醇 amidite (化合物 12, 0.20g, 收率 61%) 'H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, m, Ar-H), 3.78 (s, 6H, OCH₃), 3.65-3.25 (13H, m, CH₂₂, POCH₂, CHCH₂, H-2, CH₃NH, CH₂OH, H-2, H-5, H-6), 2.73 (2H, m, CH₂CN), 2.10-1.48 (16H, m, 烷基, H-3, H-4), 1.35-1.10 (12H, m, CH₂₂)。

[0404] （实施例 A2）

[0405] 接着，根据下式所示的方案 3, 合成具有 L- 腺氨酸的 amidite 衍生物。

[0406] [化学式 15]

[0407]
方案 3

[0408] (1) DMTTr-羟基酰胺氨基-L-脯氨酸（化合物11）

[0409] 在包含 DMTTr-酰胺-L-脯氨酸（化合物6）(1.00g, 2.05mmol) 和 5-羟基戊醛 (0.33g, 3.07mmol) 的乙醇溶液 (7mL) 中，在冰冷却条件下加入乙酸缓冲液 (7mL)。将该混合液在冰冷却下搅拌 20 分钟后，加入氨基硼氢化钠 (0.77g, 12.28mmol)，进而在室温下搅拌 7 小时。用二氯甲烷稀释上述混合液，并用水清洗后，进而用饱和盐水清洗，并且回收上述有机层，用硫酸钠干燥。过滤上述有机层，对于滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于硅胶柱层析（展开溶剂 CH2Cl2 : CH3OH=98 : 2，含有 0.05% 吡啶）。接着将所得到的产物供于硅胶柱层析（展开溶剂 CH2Cl2 : CH3OH=98 : 2，含有 0.05% 吡啶），进而将所得到的产物供于硅胶柱层析（展开溶剂二氯甲烷 :丙酮 =7 : 3，含有 0.05% 吡啶）。由此得到无色糖浆状的化合物 11 (0.49g, 收率 41%)。
将所得到的上述 DMTAr-羟基酰胺基-L-脯氨酸 amidite (化合物 12) 与无水乙腈混合，在室温下共沸干燥。在所得到的残留物中加入四氯唑二异丙胺 (178mg、1.04mmol)。在减压下脱气，并填充氮气。对于上述混合物加入无水乙腈 (1ml)，逐级加入2-氨基乙基-N,N',N''-四异丙基亚磷酰二胺 (313mg、1.04mmol) 的无水乙腈溶液 (1ml)。将该混合物在氮气气氛下于室温搅拌 4 小时。并且用二氯甲烷稀释上述混合物，并用饱和碳酸氢钠溶液和饱和盐水依次清洗。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的上述滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于使用氨基化硅胶作为填充剂的柱层析 (展开溶剂乙醚；丙酮 =7:3, 含有 0.05% 吡啶)。得到无色糖浆状的化合物 12 (0.57g, 纯度 93%, 收率 79%)。通过 HPLC 测定上述纯度 (以下同样)。以下，示出化合物的 NMR 的结果。

H-NMR (CDCl₃): δ 7.41-7.43 (m, 2H, Ar-H), 7.28-7.32 (m, 4H, Ar-H), 7.25-7.27 (m, 2H, Ar-H), 7.18-7.21 (m, 1H, Ar-H), 6.80-6.84 (m, 4H, Ar-H), 3.73-3.84 (m, 11H), 3.79 (s, 6H, OCH₃), 3.47-3.64 (m, 3H), 3.12-3.26 (m, 2H), 3.05 (t, J = 6.4Hz, 2H, CH₂), 2.98-2.02 (m, 2H), 2.61 (t, J = 5.8Hz, 2H, CH₂), 2.55-2.63 (m, 2H), 2.27-2.43 (m, 1H, CH), 2.31 (t, 7.8Hz, 2H, CH₂), 2.03-2.19 (m, 1H, CH), 1.40-1.90 (m, 8H), 1.23-1.33 (m, 5H), 1.14-1.20 (m, 12H, CH₂).

P-MNR (CDCl₃): δ 146.91; Ms (FAB+): m/z 774 (M')，303 (DMTr⁺)，201 (C₈H₉N₂OP⁺).

NMR (CDCl₃): δ 7.40-7.42 (m, 2H, Ar-H), 7.27-7.31 (m, 6H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.79-6.82 (m, 4H, Ar-H), 4.23-4.30 (m, 1H), 4.05-4.10 (m, 2H), 3.79 (s, 6H, OCH₃), 3.60-3.65 (m, 2H), 3.32-3.55 (m, 2H), 3.16-3.29 (m, 2H), 3.01-3.07 (m, 2H), 2.38-2.40 (m, 1H, CH), 1.83-1.90 (m, 2H), 1.57-1.69 (m, 8H), 1.26-1.36 (m, 2H).

NMR (CDCl₃): δ 7.40-7.42 (m, 2H, Ar-H), 7.27-7.31 (m, 6H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.79-6.82 (m, 4H, Ar-H), 4.23-4.30 (m, 1H), 4.05-4.10 (m, 2H), 3.79 (s, 6H, OCH₃), 3.60-3.65 (m, 2H), 3.32-3.55 (m, 2H), 3.16-3.29 (m, 2H), 3.01-3.07 (m, 2H), 2.38-2.40 (m, 1H, CH), 1.83-1.90 (m, 2H), 1.57-1.69 (m, 8H), 1.26-1.36 (m, 2H).

NMR (CDCl₃): δ 7.40-7.42 (m, 2H, Ar-H), 7.27-7.31 (m, 6H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.79-6.82 (m, 4H, Ar-H), 4.23-4.30 (m, 1H), 4.05-4.10 (m, 2H), 3.79 (s, 6H, OCH₃), 3.60-3.65 (m, 2H), 3.32-3.55 (m, 2H), 3.16-3.29 (m, 2H), 3.01-3.07 (m, 2H), 2.38-2.40 (m, 1H, CH), 1.83-1.90 (m, 2H), 1.57-1.69 (m, 8H), 1.26-1.36 (m, 2H).
层。对于所得到的滤液，在减压下蒸馏除去溶剂。将所得到的残渣用于氢氧化硅胶作为填充剂的柱层析（展开溶剂已烷：丙酮=7：3，含有0.5%吡啶），得到无色糖浆状的化合物14(0.74g，产率100%，收率87%)。以下，示出化合物的NMR的结果。

[0422] P-NMR (DCDCl3)：δ 147.19；

[0423] MS (FAB)+：m/z 860 (M')，303 (DMTr')，201 (C6H13MgOP')。

[0424] (5) DMTr-叔丁基二甲基硅烷氧基酰胺胺基-L-脯氨酸（化合物15）

[0425] 在氢气气氛和冰冷却条件下向三光气 (1.22g, 4.10mmol) 中加入无水四氢呋喃溶液 (10mL)。在氢气气氛和冰冷却条件下，用30分钟向该混合液中滴加溶解有DMTr-酰胺-L-脯氨酸（化合物6）(1.00g, 2.05mmol)和DIEA (0.80g, 7.58mmol)的无水四氢呋喃溶液 (10mL)后，再在室温下搅拌1小时。在氢气气氛和冰冷却条件下，用45分钟向上述混合液中滴加溶解有10-氨基-L-叔丁基二甲基硅烷氧基癸烷 (2.66g, 10.25mmol)和DIEA (3.20g, 24.76mmol)的无水四氢呋喃溶液 (20mL)。并且，将上述混合物在氢气气氛下于室温搅拌一晚。用乙酸乙酯 (200mL) 稀释该混合液，回收有机层。将上述有机层用饱和碳酸氢钠水溶液清洗后，进而用饱和盐水清洗。并且，回收有机层，用硫酸钠干燥。过滤上述有机层，对于滤液，在减压下蒸馏除去溶剂。将所得到的残渣用于硅胶柱层析（展开溶剂二氯甲烷：丙酮=4：1，含有0.05%吡啶）。由此，得到无色糖浆状的化合物15 (0.87g，产率55%)。

[0426] (6) DMTr-羟基酰胺胺基-L-脯氨酸化合物（16）

[0427] 在氢气气氛下于室温向所得到的上述DMTr-叔丁基二甲基硅烷氧基酰胺胺基-L-脯氨酸 (15) (0.87g, 1.12mmol) 中加入无水四氢呋喃二氯甲烷溶液 (10mL)。在氢气气氛下将上述混合液中加入含有1mol/L氢基氯化钠的四氢呋喃溶液 (4.69mL, 0.0164mol)于室温搅拌2天。用二氯甲烷 (150mL) 稀释上述混合液，用水洗涤后，进而用饱和盐水洗涤。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。将所得到的残渣用于硅胶柱层析（展开溶剂二氯甲烷：丙酮=1：1，含有0.05%吡啶），得到无色糖浆状的化合物16 (0.68g，产率92%)。以下，示出化合物的NMR的结果。

[0428] 1H-NMR (CDCl3)：δ 7.41–7.43 (m, 2H, Ar-H), 7.27–7.31 (m, 4H, Ar-H), 7.19–7.26 (m, 2H, Ar-H), 7.19–7.21 (m, 1H, Ar-H), 6.80–6.83 (m, 4H, Ar-H), 4.34 (t, 2H, CH2), 3.79 (s, 6H, OCH3), 3.63 (d, 1H, J = 6.4Hz, CH3), 3.61 (d, 1H, J = 6.4Hz, CH3), 3.34–3.37 (m, 1H, CH), 3.16–3.17 (m, 5H), 3.04 (t, J = 5.9Hz, 2H, CH2), 2.38–2.45 (m, 1H, CH), 1.83–2.05 (m, 3H), 1.45–1.64 (m, 8H), 1.25–1.38 (m, 7H)。

[0429] (7) DMTr-酰胺胺基-L-脯氨酸 amidite（化合物17）

[0430] 将所得到的上述DMTr-羟基酰胺胺基-L-脯氨酸化合物 (16) (0.62g, 0.94mmol) 与无水乙醚混合，在室温下冷干。在所得到的残留物中加入四甲氯四二丙胺 (192mg, 1.12mmol)，在减压下脱气，填充氯气。对于上述混合物加入无水乙醚 (1mL)，进而加入2-氯基乙基-N,N',N'-四丙基亚磷酸二乙酰 (282mg, 1.12mmol)的无水乙醚溶液 (1mL)。将该混合物在氢气气氛下于室温搅拌4小时。并且，将上述混合物用氯甲烷稀释，用饱和碳酸氢钠水溶液和饱和盐水依次清洗。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的上述滤液，在减压下蒸馏除去溶剂。将所得到的残渣用于使用氢氧化硅胶作为填充剂的柱层析（展开溶剂己烷：丙酮=1：1，含有0.05%吡啶），得到无色糖浆状的化合物
17 (0.77g, 纯度 88%, 收率 84%)。以下,示出化合物的 NMR 的结果。

[0431] P=ΨNMR (CDCl₃): δ 147.27;

[0432] Ms (FAB+): m/z 860 (M+1), 303 (DMTr⁺), 201 (C₃H₇,Cl⁺).

[0433] 为了生成包含甲氧基酸氨基的连接子的本发明的核酸分子,通过上述方案 3 合成 L- 脯氨酸二酰胺 amidite 和 D- 脯氨酸二酰胺 amidite

[0435] (B3-1)L- 脯氨酸二酰胺 amidite

[0436] (1) Fmoc-羟基酰胺 -L- 脯氨酸 (化合物 4)

[0437] 将上述方案 3 的化合物 2 (Fmoc-L- 脯氨酸) 作为起始原料。混合上述化合物 2 (10.00g, 29.64mmol), L- 丁醇 (3.18g, 35.56mmol) 和 L- 脯氨酸苯并三唑 (10.90g, 70.72mmol)。对于上述混合物,在减压下脱气,填充氮气。在室温下向上述混合物中加入水乙腈 (140mL), 甲醇添加二环己基碳二亚胺 (7.34g, 35.56mmol) 的无水乙腈溶液 (70mL) 后, 在氮气气氛下于室温搅拌 15 小时。反应结束后, 将所生成的沉淀, 对于所回收的滤液, 在减压下蒸馏除去溶剂。在所得到的残渣中加入二氯甲烷 (200mL), 用饱和碳酸氢钠水溶液 (200mL) 清洗。并且, 回收有机层, 用硫酸镁干燥, 过滤上述有机层。对于所得到的滤液, 在减压下蒸馏除去溶剂, 在其残渣中加入乙醇 (200mL) 并粉末化。滤取所生成的粉末, 得到白色粉末状的化合物 4 (10.34g, 收率 84%)。以下, 示出上述化合物的 NMR 的结果。

[0438] ⁴H-NMR (CDCl₃): δ 7.76-7.83 (m, 2H, Ar-H), 7.50-7.63 (m, 2H, Ar-H), 7.38-7.43 (m, 2H, Ar-H), 7.28-7.33 (m, 2H, Ar-H), 4.40-4.46 (m, 1H, CH), 4.15-4.31 (m, 2H, CH₂), 3.67-3.73 (m, 2H, CH₂), 3.35-3.52 (m, 2H, CH₂), 3.18-3.30 (m, 2H, CH₂), 2.20-2.50 (m, 4H), 1.81-2.03 (m, 3H), 1.47-1.54 (m, 2H);

[0439] Ms (FAB+): m/z 409 (M+H⁺).

[0440] (2) DMTr- 酰胺 -L- 脯氨酸 (化合物 6)

[0441] 将 Fmoc-羟基酰胺 -L- 脯氨酸 (化合物 4) (7.80g, 19.09mmol) 与无水吡啶 (5mL) 混合, 在室温下共沸干燥 2 次。在所得到的残留物中加入 4,4'- 二甲氧基三苯基氯化物 (8.20g, 24.20mmol)、DMAP (23mg, 0.19mmol) 和无水吡啶 (39mL)。将该混合物在室温下搅拌 1 小时后, 加入甲醇 (7.8mL), 在室温下搅拌 30 分钟。将该混合物用二氯甲烷 (100mL) 稀释, 并用饱和碳酸氢钠水溶液 (150mL) 清洗后, 分离有机层。将上述有机层用硫酸钠干燥后, 过滤上述有机层。对于所得到的滤液, 在减压下蒸馏除去溶剂。在所得到的未精制的残渣中加入无水二甲基甲酰胺 (39mL) 和吡啶 (18.7mL, 119mmol), 在室温下搅拌 1 小时。反应结束后, 对于上述混合液, 在减压下于室温蒸馏除去溶剂。将所得到的残渣供给硅胶柱层析 (商品名 Wakogel C-300, 展开溶剂 CH₂Cl₂:CH₃OH=9:1; 含有 0.05% 吡啶), 得到浅黄色油状的化合物 6 (9.11g, 收率 98%)。以下, 示出上述化合物的 NMR 的结果。

[0442] ¹H-NMR (CDCl₃): δ 7.39-7.43 (m, 2H, Ar-H), 7.30 (d, J=8.8Hz, 4H, Ar-H), 7.21 (tt, 1H, 4.9.1.3Hz, Ar-H), 6.81 (d, J=8.8Hz, 4H, Ar-H), 3.78 (s, 6H, OCH₃), 3.71 (dd, 4H, J=6.3Hz, 5.4Hz, CH₃), 3.21 (2H, 12.9.6.3Hz, 2H, CH₂), 3.05 (t, J=6.3Hz, 2H, CH₂), 2.85-2.91 (m, 2H, CH₂), 2.08-2.17 (m, 1H, CH), 1.85-2.00 (m, 3H), 1.55-1.65 (m, 5H);

[0443] Ms (FAB+): m/z 489 (M+H⁺), 303 (DMT⁻).
【0444】(3) DMTr-羟基二酰胺-L-脯氨酸（化合物8）
【0445】将所得到的上述DMTr-酰胺-L-脯氨酸（化合物6）（6.01g，12.28mmol）、
EDC（2.83g，14.74mmol）、L-羟基苯并三唑（3.98g，29.47mmol）和三乙胺（4.47g，
44.21mmol）的无水二氯甲烷溶液（120mL）混合。在氩气气氛下于室温向该混合液中进一步
加入6-羟基乙酸（1.95g，14.74mmol），之后，在氩气气氛下于室温搅拌1小时。将上述混合
液用二氯甲烷（600mL）稀释，用饱和盐水（800mL）清洗3次。回收有机层，将上述有机层用
硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。由此，得到
淡黄色泡状的上述化合物8（6.29g，收率85%）。以下，示出上述化合物的NMR的结果。
【0446】^1H-NMR（CDCl_3）：δ7.41-7.43（m，2H，Ar-H）、7.27-7.31（m，4H，Ar-H）、7.19-7.26（m，
2H，Ar-H）、7.17-7.21（m，1H，Ar-H）、6.79-6.82（m，4H，Ar-H）、4.51-4.53（m，1H，CH）、
3.79（s，6H，OCH_3）、3.61（t，2H，J=6.4Hz，CH_2）、3.50-3.55（m，1H，CH）3.36-3.43（m，1H，CH）、
3.15-3.24（m，2H，CH_2）、3.04（t，J=6.3Hz，2H，CH_2）、2.88-2.45（m，1H，CH）、2.31（t，6.8Hz，
2H，CH_2）、2.05-2.20（m，1H，CH）、1.92-2.00（m，1H，CH）、1.75-1.83（m，1H，CH）、1.48-1.71（m，
8H）、1.35-1.44（m，2H，CH_2）。
【0447】Ms（FAB+）：m/z602（M^+）、303（DMTr+）。
【0448】(4) DMTr-二酰胺-L-脯氨酸 amidite（化合物10）
【0449】将所得到的上述DMTr-羟基二酰胺-L-脯氨酸（化合物8）（8.55g，14.18mmol）与
无水乙腈混合，在室温下共沸干燥3次。在所得到的残留物中加入四氯唑二异丙胺（2.91g，
17.02mmol），在减压下脱气，填充氮气。对于上述混合物加入无水乙腈（10mL），进而加入
2-氯基乙基双-N，N，N’，N’-四异丙基亚磷酰二胺（5.13g，17.02mmol）的无水乙腈溶液
（7mL）。将该混合物在氩气气氛下于室温搅拌2小时。并且，将上述混合物用二氯甲烷稀释，
并用饱和碳酸氢钠水溶液（200mL）清洗3次后，用饱和盐水（200mL）清洗。回收有机层，用
硫酸钠干燥后，过滤上述有机层。对于所得到的上述滤液，在减压下蒸馏除去溶剂。将所得到
的残渣用于吸附氢化硅胶作为填充剂的柱层析（展开溶剂乙烷：乙酸乙酯=1:3，含有
0.05%吡啶），得到无色糖浆状的化合物10（10.25g，纯度92%，收率83%）。以下，示出上述化
合物的NMR的结果。
【0450】^1H-NMR（CDCl_3）：δ7.40-7.42（m，2H，Ar-H）、7.29-7.31（m，4H，Ar-H）、
7.25-7.27（m，2H，Ar-H）、7.17-7.21（m，1H，Ar-H）、6.80-6.82（m，4H，Ar-H）、4.51-4.53（m，
1H，CH）、3.75-3.93（m，4H）、3.79（s，6H，OCH_3）、3.45-3.60（m，4H）、3.35-3.45（m，1H，
CH）、3.20-3.29（m，1H，CH）、3.04（t，J=6.4Hz，2H，CH_2）、2.62（t，J=5.8Hz，2H，CH_2）、
2.40-2.44（m，1H，CH）、2.31（t，7.8Hz，2H，CH_2）、2.03-2.19（m，1H，CH）、1.92-2.02（m，1H，
CH）、1.70-1.83（m，1H，CH）、1.51-1.71（m，8H）、1.35-1.44（m，2H，CH_2）、1.18（d，J=6.8Hz，
6H，CH_3）、1.16（d，J=6.8Hz，6H，CH_3）：P-NMR（CDCl_3）：Ms δ147.17。
【0451】Ms（FAB+）：m/z802（M^+）、303（DMTr^+），201（C_{9}H_{19}O_{3}P）。
【0452】(B3-2)-脯氨酸二酰胺 amidite
【0453】(1) Fmoc-羟基酰胺-D-脯氨酸（化合物3）
【0454】将上述方案3的化合物1（Fmoc-D-脯氨酸）作为起始原料。对于上述化合物1（1.5g，
4.45mmol），二环己基碳二亚胺（1.1g，5.34mmol）和L-羟基苯并三唑（1.5g，
10.69mmol）的混合物，在减压下脱气，填充氮气。在室温下向上述混合物中加入无水乙腈

51
（24mL），进而添加4-氨基-1-丁醇（0.48g，5.34mmol）的无水乙腈溶液（6mL）后，在氮气气氛下室温搅拌15小时。反应结束后，滤除所生成的沉淀，对于所回收的滤液，在减压下蒸馏除去溶剂。在所得的残渣中加入二氯甲烷/乙酸乙酯（3:1, v/v）清洗3次，用饱和碳酸氢钠水溶液洗涤3次。并，回收有机层，用硫酸镁干燥，过滤上述有机层。对于所得的滤液，在减压下蒸馏除去溶剂，在其残渣中加入二乙醚（50mL）并粉末化。滤取所生成的粉末，得到白色粉末状的化合物3。以下，示出上述化合物的NMR的结果。

[0455] ^1^H-NMR (400 MHz, CDCl3): δ 7.77 (d, J = 7.3 Hz, 2H); 7.58 (br, 2H); 7.41 (t, J = 7.3 Hz, 2H); 7.32 (t, J = 7.3 Hz, 2H). 4.25–4.43 (m, 4H); 3.25–3.61 (m, 6H); 1.57–1.92 (m, 8H).

[0456] MS (FAB+): m/z 409 (M+H)^+.

[0457] (2) DMTr-酰胺-D-脯氨酸（化合物5）

[0458] 将Fmoc-羟基酰胺-D-脯氨酸（化合物3）（1.0g，2.45mmol）与无水吡啶（5mL）混合，在室温下共沸干燥2次。在所得的残留物中加入4，4′-二甲氧基三苯甲基氯化物（1.05g，3.10mmol）, DMAP（3mg, 0.024mmol）和无水吡啶（5mL）。将该混合物在室温下搅拌1小时后，加入甲醇（1mL），在室温下搅拌30分钟。将该混合物用二氯甲烷稀释，并用饱和碳酸氢钠水溶液清洗后，分离有机层。将上述有机层用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。在所得的残余物中加入无水二甲基酰胺（5mL）和环己烷（2.4mL，2.4mmol），在室温下搅拌1小时。反应结束后，对于上述混合液，在减压下于室温蒸馏除去溶剂。将所得的残渣溶于硅胶柱层析（商品名为Wakogel C-300，展开溶剂CH2Cl2:CH3OH=9:1，含有0.05%吡啶），得到淡黄色油状的化合物5（1.26g，收率96%）。以下，示出上述化合物的NMR的结果。

[0459] ^1^H-NMR (400 MHz, CDCl3): δ 7.62 (br, 1H); 7.41–7.44 (m, 2H); 7.26–7.33 (m, 6H); 7.17–7.22 (m, 1H); 6.80–6.84 (m, 4H); 3.78 (s, 3H); 3.71 (dd, J=8.8, 5.4 Hz, 1H); 3.22 (q, 6.5 Hz, 2H); 3.07 (t, J=6.1 Hz, 2H); 2.97–3.03 (m, 1H); 2.85–2.91 (m, 1H); 1.85–2.15 (m, 3H); 1.55–1.73 (m, 6H).

[0460] MS (FAB+): m/z 489 (M+H)^+.

[0461] (3) DMTr-羟基二酰胺-D-脯氨酸（化合物7）

[0462] 将所得的上述DMTr-酰胺-D-脯氨酸（化合物5）（1.2g，2.45mmol）, EDC（566mg, 2.95mmol）, 1-羟基苯并三唑（796mg, 5.89mmol）和三乙胺（1.2mL，8.4mmol）的无水二氯甲烷溶液（24mL）混合。在氮气气氛下于室温向该混合液中进一步加入6-羟基苯甲酸（390mg, 2.95mmol）, 之后，在氮气气氛下于室温搅拌1小时。将上述混合液用乙酸乙酯稀释，并用饱和碳酸氢钠水溶液清洗3次。回收有机层，将上述有机层用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。由此，得到淡黄色油状的化合物7（1.4g，收率95%）。以下，示出上述化合物的NMR的结果。

[0463] ^1^H-NMR (400 MHz, CDCl3): δ 7.40–7.43 (m, 2H); 7.25–7.32 (m, 6H); 7.17–7.22 (m, 1H); 6.79–6.83 (m, 4H); 3.79 (s, 3H); 3.58–3.63 (m, 2H); 3.49–3.55 (m, 1H); 3.15–3.26 (m, 2H); 3.02–3.07 (m, 2H); 2.30–2.33 (m, 2H); 2.11–2.20 (m, 1H); 1.50–1.99 (m, 13H); 1.36–1.43 (m, 2H).

[0464] MS (FAB+): m/z 602 (M^+), 303 (DMTr^+).
[0465] (4) DMTr—二酰胺—D—脯氨酸 amidite (化合物 9)

[0466] 将所得到的上述 DMTr—羟基二酰胺—D—脯氨酸 (化合物 7) (1.2g, 1.99mmol) 与无
水乙腈混合，在室温下共沸干燥 3 次。在所得到的残留物中加入四氯唑二异丙胺 (410mg,
2.40mmol)，在减压下脱气，填充氯气。对于上述混合物加入无水乙腈 (2.4mL)，进而加入
2- 氨基乙氧基 -N,N,N’,N’- 四异丙基亚磷酸二胺 (722mg, 2.40mmol)。将该混合物在氯气
气氛下于室温搅拌 2 小时。并且，将上述混合物用二氯甲烷稀释，并用饱和碳酸氢钠水溶液
清洗 3 次后，用饱和盐水清洗。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到
的滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于使用氨基化硅胶作为填充剂的柱层
析 (展开溶剂己烷：乙酸乙酯 =1:3)，得到无色油状的化合物 9 (1.4g, 纯度 95%, 收率 83%)。

以下，示出上述化合物的 NMR 的结果。

[0467] 1H-NMR (400MHz, CDC1$_3$): δ 7.40-7.43 (m, 2H); 7.25-7.32 (m, 6H); 7.14-7.21 (m,
1H); 6.80-6.83 (m, 4H); 3.80-3.85 (m, 2H); 3.79 (s, 6H); 3.49-3.65 (m, 5H); 3.02-3.06 (m,
2H); 2.60-2.63 (m, 2H); 2.29-2.33 (m, 2H); 1.77-1.82 (m, 2H); 1.56-1.68 (m,
8H); 1.38-1.43 (m, 2H); 1.15-1.29 (m, 18H);

[0468] 31P-NMR (162MHZ, CDC1$_3$): δ 146.94;

[0469] MS (FAB+): m/z 802 (M$^+$), 303 (DMTr$^+$), 201 (C$_8$H$_{18}$M$_2$OP$^+$)。

[0470] (实施例 A4)

[0471] 为了生成包含具有脯氨酸骨架的连接子的本发明的核酸分子，通过下述方案 4 合
成 L-脯氨酸二酰胺 amidite B 型。

[0472] [化学式 16]

[0473]
方案 4

[0474] (1) Fmoc- 叔丁基- 二甲基甲硅烷氧基酰胺 -L- 脯氨酸（化合物 18）

[0475] 将 Fmoc- 羟基酰胺 -L- 脯氨酸（化合物 4）(2.00g,30mmol)、叔丁基二甲基甲硅烷基氯化物 (1.11g,35mmol) 和嘧啶 (10.90g,71mmol) 混合。对于上述混合物, 在减压下脱气, 填充氮气。在室温下向上述混合物中加入无水乙腈 (20mL), 在氮气气氛下于室温搅拌整夜。反应结束后, 在上述混合物中加入二氯甲烷 (150mL), 用水清洗 3 次, 并用饱和盐水清洗。回收有机层, 用硫酸镁干燥后, 过滤油状有机层。对于所得到的滤液, 在减压下蒸馏除去溶剂, 将其残渣供于硅胶柱层析 (展开溶剂 CH2Cl2 : CH3OH=95:5), 得到无色糖浆状的化合物 18 (2.35g, 收率 92%)。以下, 截出上述化合物的 NMR 的结果。

[0476] 1H-NMR (CDCl3): δ 7.76-7.78 (m, 2H, Ar-H), 7.50-7.63 (m, 2H, Ar-H), 7.38-7.42 (m, 2H, Ar-H), 7.29-7.34 (m, 2H, Ar-H), 4.10-4.46 (m, 4H, CH2), 3.47-3.59 (m, 4H, CH2), 3.20-3.26 (m, 2H, CH), 1.85-1.95 (m, 2H), 1.42-1.55 (m, 6H), 0.96 (s, 9H, t-Bu), 0.02 (s, 6 片, SiCH3);

[0477] Ms (FAB+): m/z 523 (M+H)。

[0478] (2) 叔丁基二甲基甲硅烷氧基酰胺 -L- 脯氨酸（化合物 19）

[0479] 对于所得到的上述 Fmoc- 叔丁基- 二甲基甲硅烷氧基酰胺 -L- 脯氨酸（化合物 18) (1.18g,2.5mmol), 加入无水乙腈 (5mL) 和嘧啶 (2.4mL), 在室温下搅拌 1 小时。反应结束后, 在上述混合物中加入乙腈 (50mL), 滤除不溶物。对于所得到的滤液, 在减压下蒸馏除
去溶剂，将所得的残渣供于硅胶柱层析（展开溶剂\text{CH}_{3}Cl_{2}:CH_{3}OH=9:1），得到无色糖浆状的化合物19（0.61g，收率90%）。以下，示出上述化合物的\text{NMR}的结果。

\text{[0480]} \quad ^1\text{H-NMR} (\text{CDCl}_3): \delta 3.71 (d, 1H, J=9.0Hz, 5.2Hz, CH), 3.61-3.64 (m, 2H, CH_2), 3.22-3.28 (m, 2H, CH_2), 2.98-3.04 (m, 1H, CH), 2.86-2.91 (m, 1H, CH), 2.08-2.17 (m, 1H, CH), 1.86-1.93 (m, 1H, CH), 1.66-1.75 (m, 2H, CH_2), 1.52-1.57 (m, 4H), 0.89 (s, 9H, t-Bu), 0.05 (s, 6H, SiCH_3).

\text{[0481]} \quad \text{Ms (FAB+): m/z 301 (M+H)}^+.

\text{[0482]} \quad (3) 叔丁基二甲基硅烷氧基酰胺酰胺- L-脯氨酸（化合物20）

\text{[0483]} \quad 将所得到的上述叔丁基二甲基硅烷氧基酰胺酰胺- L-脯氨酸（化合物19）(550mg, 1.8mmol), 6-羟基己酸（300mg, 2.3mmol）, EDC（434mg, 2.3mmol）和1-羟基苯并三唑（695mg, 4.5mmol）的二氯甲烷溶液（20mL）混合。在氢气气氛下于室温下搅拌混合物中加入三乙胺（689mg, 6.8mmol）,之后，在氢气气氛下于室温搅拌整夜。将上述混合液用饱和盐水清洗。回收有机层, 将上述有机层用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于硅胶柱层析（展开溶剂\text{CH}_{3}Cl_{2}:CH_{3}OH=9:1），得到无色糖浆状的化合物20（696mg，收率92%）。以下，示出上述化合物的\text{NMR}的结果。

\text{[0484]} \quad ^1\text{H-NMR} (\text{CDCl}_3): \delta 4.54 (d, 1H, CH), 3.58-3.67 (m, 5H), 3.52-3.56 (m, 1H, CH), 3.32-3.39 (m, 1H), 2.05-2.25 (m, 2H), 2.40-2.43 (m, 1H, CH), 2.33 (t, J=7.3Hz, 2H, CH_2), 1.93-2.03 (m, 1H, GH), 1.75-1.85 (m, 1H, GH), 1.50-1.73 (m, 8H), 1.37-1.46 (m, 2H, CH_2), 0.87 (s, 9H, t-Bu), 0.04 (s, 6H, SiCH_3).

\text{[0485]} \quad \text{Ms (FAB+): m/z 415 (M^+)}^+.

\text{[0486]} \quad (4) DMTr-羟基二酰胺- L-脯氨酸 B 型（化合物21）

\text{[0487]} \quad 将所得到的上述叔丁基二甲基硅烷氧基酰胺酰胺- L-脯氨酸（化合物20）(640mg, 1.54mmol) 与无水吡啶（1mL）混合，在室温下共沸干燥。在所得的残余物中加入4,4’-二甲氧基苯甲酰氯化物（657mg, 1.85mmol），DMAP（2mg）和无水吡啶（5mL），在室温下搅拌4小时后，加入甲醇（1mL），在室温下搅拌30分钟。将上述混合物用二氯甲烷稀释，用饱和碳酸氢钠水溶液清洗。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。在所得的残渣中加入无水乙腈（5mL）和含有1mol/L四丁基氯化铵的四氢呋喃溶液（1.42mL, 四丁基氯化铵 1.42mmol），在室温下搅拌整夜。反应结束后，在上述混合物中加入乙酸乙酯（100mL），用水清洗后，用饱和盐水洗洗。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于硅胶柱层析（展开溶剂\text{CH}_{3}Cl_{2}:CH_{3}OH=9:5；含有0.05%吡啶），得到无色糖浆状的化合物21（680mg，收率73%）。以下，示出上述化合物的\text{NMR}的结果。

\text{[0488]} \quad ^1\text{H-NMR} (\text{CDCl}_3): \delta 7.41-7.44 (m, 2H, Ar-H), 7.26-7.33 (m, 4H, Ar-H), 7.18-7.21 (m, 2H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.80-6.84 (m, 4H, Ar-H), 4.51-4.53 (d, 6.8Hz, 1H, CH), 3.79 (s, 6H, OCH_3), 3.61 (dd, 2H, J=11Hz, 5.4Hz, CH_2), 3.50-3.54 (m, 1H, CH), 3.36-3.43 (m, 1H, CH), 3.20-3.26 (m, 2H, CH_2), 3.05 (t, J=6.4Hz, 2H, CH_2), 2.38-2.45 (m, 1H, CH), 2.30 (t, J=7.8Hz, 2H, CH_2), 2.05-2.25 (m, 1H, GH), 1.92-2.300 (m, 1H, CH), 1.75-1.83 (m, 1H, CH), 1.52-1.67 (m, 8H), 1.35-1.45 (m, 2H, CH_2);

\text{[0489]} \quad \text{Ms (FAB+): m/z 620 (M^+), 303 (DMMTr^+).}
(5) DMTr-二酰胺-L-脯氨酸 amidite B 型（化合物 22）

将所得的上述 DMTr-羟基二酰胺-L-脯氨酸 B 型（化合物 21）(637mg,1.06mmol) 与无水乙腈混合，在室温下共沸干燥。在所得的残留物中加入四氯化二异丙胺 (201mg, 1.16mmol)，在减压下脱水，填充氮气。对于上述混合物加入无水乙腈 (1mL)，进而加入 2-氟基乙氧基-N,N,N’,N’-四异丙基亚磷酸三烷 (350mg, 1.16mmol) 的无水乙腈溶液 (1mL)。将该混合物在氮气气氛下于室温搅拌 4 小时。将上述混合物用二氯甲烷稀释，用饱和碳酸氢钠水溶液和饱和盐水清洗。回收有机层用硫酸钠干燥后，过柱上述有机层。对于所得到的滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于使用氨基化硅胶作为填充剂的柱层析（展开溶剂已烷:丙酮=7:3），得到无色糖浆状的化合物 22 (680mg, 纯度 95%, 收率 76%)。

以下，示出上述化合物的 NMR 的结果。

[0492] H-NMR (CDCl₃): δ 7.41-7.43 (m, 2H, Ar-H)、7.25-7.32 (m, 4H, Ar-H)、7.17-7.22 (m, 2H, Ar-H)、6.80-6.83 (m, 4H, Ar-H)、4.53 (d, J=7.8Hz, 1H, CH)、3.75-3.93 (m, 3H)、3.79 (s, 6H, OCH₃)、3.46-3.68 (m, 5H)、3.34-3.41 (m, 1H, CH)、3.10-3.31 (m, 1H, CH)、3.05 (t, J=6.3Hz, 2H, CH₂)、2.62 (t, J=6.3Hz, 2H, CH₂)、2.39-2.46 (m, 1H, CH)、2.29 (t, 7.3Hz, 2H, CH₂)、2.03-2.19 (m, 1H, CH)、1.90-2.00 (m, 1H, CH)、1.70-1.83 (m, 1H, CH)、1.51-1.71 (m, 8H)、1.35-1.45 (m, 2H, CH₂)、1.18 (d, J=6.4Hz, 6H, CH₃)、1.16 (d, J = 6.4Hz, 6H, CH₃)

[0493] 1H-NMR (CDCl₃) δ 146.90；

[0494] MS (FAB+): m/z 803 (M+1)、303 (DMTr⁺)。

[0495] (实施例 A5)

[0496] 为了生成包含具有脯氨酸骨架的连接子的本发明的核酸分子，通过下述方案 5 合成 DMTr-酰胺亚乙氧基乙氨基-L-脯氨酸 amidite（以下，称为 PEG 间隔臂型）。

[0497] [化学式 17]

[0498] ！

方案 5

[0499] (1) DMTr-酰胺羟基乙氧基乙氨基-L-脯氨酸 (化合物 23)

[0500] 将 DMTr-酰胺-L-脯氨酸 (化合物 6) (1.00g, 2.05mmol)、4-甲磺酰胺 2-(2-羟基
乙氧基)乙酯 (3.10g, 12.30mmol) 和碳酸钾 (0.85g, 6.15mmol) 的无水二甲基甲酰胺溶液 (10mL) 混合，在氮气气氛下于室温搅拌 4 天。对于上述混合物，在减压下于室温蒸馏除去溶剂后，加入二氯甲烷 (20mL) 并过滤。浓缩滤液，所得得到的残渣供于硅胶柱层析。关于上述硅胶柱层析的展开溶剂，首先，使用含有 0.05% 吡啶的乙酸乙酯，然后使用含有 0.05% 吡啶的 CHCl₃ 和 CH₂OH 的混合液 (CHCl₃:CH₂OH=9:1)。其结果，得到无色糖浆状的化合物 23 (1.15g, 收率 97%)。以下，示出上述化合物的 NMR 的结果。

[0501] ¹H-NMR (CDCl₃) : δ 7.41-7.45 (m, 2H, Ar-H)、7.27-7.31 (m, 6H, Ar-H)、7.17-7.21 (m, 1H, Ar-H)、6.79-6.82 (m, 4H, Ar-H)、3.79 (s, 6H, OCH₃)、3.60-3.70 (m, 2H)、3.39-3.57 (m, 4H)、3.13-3.27 (m, 3H)、3.07-3.08 (m, 2H)、2.71-2.84 (m, 1H)、2.38-2.46 (m, 1H)、2.14-2.19 (m, 1H)、1.84-1.87 (m, 1H)、1.57-1.76 (m, 8H)。

[0502] (2) DMT-酰胺亚乙氧基乙氨基-L-脯氨酸 amidite（化合物 24）

[0503] 将所得到的上述 DMT-酰胺羟基乙氧基乙氨基-L-脯氨酸（化合物 23）(0.63g, 1.00mmol) 与无水吡啶混合，在室温下共沸干燥。在所得到的残留物中加入四氢唑二乙丙胺 (206mg, 1.20mmol)，在减压下脱气，填充氮气。对于上述混合物加入无水乙醇 (1mL)，进一步加入 2-氨基乙氧基-Ν,Ν′-四乙酸亚硝酸二胺 (282mg, 1.12mmol) 的无水乙醇溶液 (1mL)。将该混合物在氮气气氛下于室温搅拌 4 小时。并且，将上述混合物用二氯甲烷稀释，用饱和碳酸氢钠水溶液和饱和盐水洗涤。回收有机层，用硫酸钠干燥后，过滤上述有机层。对于所得到的上述滤液，在减压下蒸馏除去溶剂。将所得到的残渣供于使用氨基化硅胶作为填充剂的柱层析 (展开剂为己烷:丙酮 =7:3，含有 0.05% 吡啶)，得到无色糖浆状的化合物 24 (0.74g, 纯度 100%, 收率 87%)。以下，示出上述化合物的 NMR 的结果。

[0504] ¹H-NMR (CD₂CN) : δ 7.41-7.43 (m, 2H, Ar-H)、7.28-7.31 (m, 6H, Ar-H)、7.18-7.22 (m, 1H, Ar-H)、6.84-6.86 (m, 4H, Ar-H)、3.73-3.84 (m, 2H, CH₂)、3.79 (s, 6H, OCH₃)、3.47-3.64 (m, 7H)、3.15-3.23 (m, 1H)、3.11 (t, J=6.4Hz, 2H, CH₂)、3.01 (t, J=5.9Hz, 2H, CH₂)、2.95-2.99 (m, 1H)、2.58-2.63 (m, 2H)、2.31-2.35 (m, 1H, CH)、2.03-2.19 (m, 1H, CH)、1.48-1.78 (m, 10H)、1.12-1.57 (m, 12H, CH₂);

[0505] P-NMR (CD₂CN) : δ 148.00;

[0506] Ms (FAB+): m/z 776 (M⁺)、303 (DMTr⁺) 201 (C₉H₁₉N₂OP⁺)。

[0507] （实施例 A6）

[0508] 1. 保护脯氨酸的合成

[0509] 根据以下所示的方案 6, 合成用二甲氧基三苯甲基进行了保护的脯氨酸 (化合物 3)。

[0510] [化学式 18]

[0511] 57
方案 6

[0512] （1）三氟乙酰基-L-脯氨酸（化合物1）

[0513] 将L-脯氨酸（2.0g，20mmol）溶于THF20mL中。另一方面，将三氟乙酰乙酯（3.0g，21mmol）溶于THF20mL中。并且，将前者的THF溶液滴加到前者的含有L-脯氨酸的THF溶液中，搅拌12小时。将该反应液减压浓缩，得到化合物1（3.7g，收率97%）。以下，示出上述化合物的NMR的结果。

[0514] \(^1\)H-NMR (CDCl\(_3\))：δ4.28-4.23 (1.0H, m, OH)，3.50-3.41 (5H, H-2, H-5, H-6, m)，2.77-1.77 (4H, H-3, H-4, m)。

[0515] （2）三氟乙酰基-DMTr-L-脯氨酸（化合物2）

[0516] 将所得到的上述三氟乙酰基-L-脯氨酸（化合物1）（3.7g，19mmol）溶于吡啶中，在室温下共沸干燥3次。将所得到的残渣溶解于吡啶15mL中，在冰水浴下在一边搅拌一边加入4,4’-二甲氧基三苯甲基氯化物（DMTr-Cl）（8.1g，24mmol），而使在室温下反应4小时。并以，将试剂DMTr-Cl锌化物，在上述反应液中进一步加入甲醇10mL并搅拌10分钟。之后，在上述反应液中加入二氯甲烷，并用饱和碳酸氢钠溶液和饱和盐水清洗。将清洗后的所回收的有机层用硫酸钠干燥。过滤上述有机层，所得到的滤液减压浓缩，将其残渣溶于氟氯甲烷中（展开溶剂CH\(_2\)Cl\(_2\)：CH\(_3\)OH=95：5，含有0.1%吡啶），得到精制的化合物2（8.5g，收率89%）。以下，示出上述化合物的NMR的结果。

[0517] \(^1\)H-NMR (CDCl\(_3\))：δ7.39-7.18 (9H, m, Ar-H)，6.82 (4H, d, J=8.6Hz, Ar-H)，3.78 (6H, s, OCH\(_3\))，3.70-3.41 (5H, H-2, H-5, H-6, m)，2.19-1.85 (4H, H-3, H-4, m)。

[0518] （3）DMTr-L-脯氨酸（化合物3）

[0519] 将所得到的上述三氟乙酰基-DMTr-L-脯氨酸（化合物2）（5g，10mmol）溶于THF100mL中。在该THF溶液中加入5%氢氧化钠水溶液100mL并搅拌。在该溶液中加入1M四正丁基氯化铵（TBAF）溶液5mL，在室温下搅拌12小时。将该反应液用饱和碳酸氢钠溶液和饱和盐水清洗。将清洗后的所回收的有机层用硫酸钠干燥。过滤上述有机层，所得到的滤液减压浓缩，得到化合物3（3.6g，收率90%）。以下，示出上述化合物的NMR的结果。

[0520] \(^1\)H-NMR (CDCl\(_3\))：δ7.40-7.14 (9H, m, Ar-H)，6.82 (4H, d, J=8.6Hz, Ar-H)，
3.78 (6H, s, OCH₃), 3.31 (1H, m, H-6) 3.07 (2H, m, H-2, H-6); 2.90 (2H, m, H-5), 1.84 (3H, m, H-3, H-4), 1.40 (1H, m, H-3).

[0521] 2. amidite 衍生物的合成
[0522] 使用上述“1.”中合成的保护脯氨醇（化合物 3），通过下述方案 7，合成键合形式不同的具有脯氨醇的 amidite 衍生物。
[0523] [化学式 19]
[0524]

方案 7

[0525] (1) DMTTr- 氨基甲酸酯 -L- 脯氨醇（化合物 4）
[0526] 将 1,8-辛二醇 (9.0g, 62mmol) 溶解于 THF90mL 中，放置于氷下。另一方面，将羰二咪唑 (2.0g, 12mmol) 溶解于 THF10mL 中。将两者的 THF 溶液加入到前者的 THF 溶液中，在温室下搅拌 1 小时。用水清洗该反应液，直至 1,8-辛二醇的 TLC 点消失为止。进而，将清洗后回收的有机层用饱和盐水清洗，将回收的有机层用无水硫酸钠干燥。过滤上述有机层，将所得到的滤液减压浓缩。将其中残渣清洗于硅胶柱层析（展开溶剂 CH₂Cl₂:CH₃OH=95:5），得到精制的化合物。该化合物是 1,8-辛二醇的单末端被羰二咪唑活化的化合物 (2.3g, 收率 77%)。
[0527] 将上述化合物 0.9g 用乙腈 10mL 溶解，放置于氷下。另一方面，将 DMTTr-L-脯氨醇（化合物 3） (1.9g, 4.8mmol) 溶解于乙腈 20mL 中。将两者的乙腈溶液加入到上述前者的乙腈溶液中，在温室下搅拌 24 小时。并且，将该反应液用饱和碳酸氢钠水溶液和饱和盐水清洗，将回收的有机层用无水硫酸钠干燥。过滤上述有机层，将所得到的滤液减压浓缩。将其残渣清洗于硅胶柱层析（展开溶剂二氯甲烷:丙酮=9:1, 含有 0.1%吡啶），得到精制的化合物 4（脯氨醇氨基甲酸酯 amidite） (1.5g, 收率 65%)。以下，示出上述化合物的 NMR 的结果。
[0528] ¹H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-Ⅱ), 6.82 (4H, d, J = 8.6Hz, Ar-Ⅱ), 4.24-3.94 (2H, m, COOCH₃), 3.78 (s, 6H, OCH₃), 3.72-2.96 (7H, m, alkyl, H-2, H-5, H-6), 2.10-1.30 (16H, m, alkyl, H-3, H-4);
[0529] FAB-MS:576 [M+H]⁺。
[0530] (2) DMTTr- 脯基 -L- 脯氨醇（化合物 5）
[0531] 在氷下将三光气 (2.0g, 6.7mmol) 溶解于 THF10mL 中，于 0°C 进行搅拌。另一方面，将 DMTTr-L-脯氨醇（化合物 3） (1.3g, 3.2mmol) 和 N,N-二异丙基乙胺 (16g, 124mmol) 溶
解于THF10mL中，滴加到上述三光气的THF溶液中。将该反应液在0℃搅拌1小时，接着在室温下搅拌2小时。然后，将8-氨基-1-辛醇 (2.3g, 16mmol) 和N,N-二丙基丙烯胺 (5.0g, 38mmol) 溶解于THF30mL中。在该THF溶液中滴加上述搅拌后的反应液，在0℃搅拌1小时，接着在室温下搅拌48小时。将该反应液减压浓缩，将其残渣溶解于二氯甲烷中。将该溶液用饱和碳酸氢钠水溶液和饱和盐水洗涤，将回收的有机层用无水硫酸钠干燥。过滤上述有机层，将所得的滤液减压浓缩，将其残渣供于反相硅胶柱层析进行精制。此时，展开溶剂使用含有0.1%吡啶的丙酮和水的混合溶剂，上述丙酮和水的混合比例是进料式的，具体而言，使丙酮：水的摩尔比以2:8, 3:7, 4:6 和 5:5 的顺序变化。用二氯甲烷提取包含目标化合物5的组分，将该有机层用无水硫酸钠干燥。过滤上述有机层，将所得的滤液减压浓缩，得到化合物5 (脯氨醇胺基 amidite) (0.9g, 收率 49%)。以下，给出上述化合物的NMR的结果。

[0532] 1H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, m, Ar-H), 3.78 (s, 6H, OCH₃), 3.68-3.25 (9H, m, CH₂NH, CH₂OH, H-2, H-5, H-6), 1.74-1.18 (16H, m, alkyl, H-3, H-4); FAB-MS: 575 [M+H]+.

[0533] （3）具有脯氨醇的 amidite 衍生物（化合物6和7）

[0534] 将作为修饰脯氨醇的所得到的上述化合物4 (0.80g, 1.4mmol) 溶解于乙醇中，在室温下共沸干燥3次。将所得到的残留物溶解于乙醇1mL中，放置于氮气下。在该乙醇溶液中添加四氢唑二异丙胺 (0.24g, 1.4mmol)，作为反应液。另一方面，将2-氟乙基-N,N,N',N'-四异丙基亚磷酰二胺 (0.50g, 1.7mmol) 溶解于乙醇1mL中。将其添加到上述反应液中，在室温下搅拌4小时。在上述反应液中加入二氯甲烷，用饱和碳酸氢钠水溶液和饱和盐水清洗。将清洗后的所回收的有机层用无水硫酸钠干燥，过滤上述有机层，将所得到的滤液减压浓缩。将其残渣供于硅胶柱层析（展开溶剂己烷:丙酮 = 10:1，含有0.1%吡啶），得到精制的化合物6 (DMTr-氨基甲酸酯-L-脯氨醇 amidite) (0.90g, 收率 83%)。以下，给出上述化合物的NMR的结果。

[0535] 1H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, d, J=8.6Hz, Ar-H), 4.24-3.94 (2H, m, COOCH₂), 3.78 (s, 6H, OCH₃), 3.72-2.96 (11H, m, CH₂O, POCH₂, CHCH₂, H-2, H-5, H-6), 2.58 (2H, m, CH₂CN), 2.10-1.46 (16H, m, alkyl, H-3, H-4), 1.34-1.10 (12H, m, CHCH₂);

[0536] 23P-NMR (CD₃CN): δ 146.82;

[0538] 作为上述修饰脯氨醇，代替上述化合物4而使用上述化合物5，除此之外同样地进行处理，得到精制的化合物7 (DMTr-脯氨基-L-脯氨醇 amidite) (0.80g, 收率 74%)。以下，给出上述化合物的NMR的结果。

[0539] 1H-NMR (CDCl₃): δ 7.40-7.14 (9H, m, Ar-H), 6.82 (4H, m, Ar-H), 3.78 (s, 6H, OCH₃), 3.65-3.25 (13H, m, CH₂O, POCH₂, CHCH₂, H-2, CH₂NH, CH₂OH, H-2, H-5, H-6), 2.73 (2H, m, CH₂CN), 2.10-1.48 (16H, m, alkyl, H-3, H-4), 1.35-1.10 (12H, m, CHCH₂);

[0540] 23P-NMR (CD₃CN): δ 146.83;

[0541] FAB-MS: 775 [M+H]+.

[0542] （实施例 B1）RNA 的固相合成
合成具有本发明的连接子的 RNA。根据亚磷酸胺法，利用核酸合成机（商品名 ABI Expedite（注册商标）8909Nucleic Acid Synthesis System、Applied Biosystems）从 3’侧向 5’侧合成 RNA。上述合成中使用 RNA Phosphoramidites（2’-O-TBDMSi、商品名，三千里制药）作为 RNA amide（以下同样）。上述 amide 的脱保护根据常规方法，合成的 RNA 通过 HPLC 精制。在以下的实施例中，只要没有特别声明，则 RNA 的合成同样进行。

具体而言，作为本实施例的 RNA（EX），合成具有上述方案 2 的上述化合物 12 作为连接子的 ssRNA（PH-0001）。首先，合成下述序列号 1 所示的序列的 RNA。并且，在上述 RNA 的 5’末端连结上述化合物 12。进而，在上述序列号 1 所示的 RNA 的 5’侧，通过上述化合物 12 合成下述序列号 2 所示的序列的 RNA。

5’-GCCUGUGCAUACUUCCUAGGUA-3’（序列号 1）
5’-CCAGGAAGUAGCAACAGCC-3’（序列号 2）

将这样合成的 ssRNA 称为实施例的 ssRNA（PH-0001）。如下序列号 3 所示，上述 PH-0001 具有以下结构：在 5’侧具有上述序列号 2 的 RNA 序列，在 3’侧具有上述序列号 1 的 RNA 序列，上述 RNA 序列通过连接子 Lx（即上述化合物 12）连结。另外，如上序列号所示，上述序列号 2 的 RNA 序列和上述序列号 1 的 RNA 序列具有互补的序列。因此，如下式所示，上述 PH-0001 自退火而形成茎结构。需要说明的是，上述序列中，下划线部分 GUUGAGUACUUCCUAGG（序列号 4）是与 GAPDH 基因的表达抑制相关的区域。

EX:PH-0001（序列号 3）
5’-CCAGGAAGUAGCAACAGCC-Lx-GCCUGUGCAUACUUCCUAGGUA-3’

[化学式 20]

另一方面，作为不具有本发明的连接子的比较例的 RNA，作为合成 RNAi 阳性对照（PC）的下述 shRNA（NH-0001）。如下所示，关于上述 NH-0001，5’区域的大写字母所示的序列与上述 PH-0001 同样地为序列号 2 的 RNA 序列，3’区域的大写字母所示的序列与上述 PH-0001 同样地为序列号 1 的 RNA 序列。并且，上述 NH-0001 在序列号 2 的 RNA 序列与序列号 1 的 RNA 序列之间具有小写字母所示的 RNA 序列作为连接子，以代替上述化合物 12。上述 NH-0001 与上述 PH-0001 同样地，如下式所示，自退火而形成茎，形成 shRNA 的结构。需要说明的是，上述序列中，下划线部分 GUUGAGUACUUCCUAGG（序列号 4）是与表达抑制相关的区域。

NH-0001（序列号 5）
5’-CCAGGAAGUAGCAACAGCCccacaccGCCUGUGCAUACUUCCUAGGUA-3’

[化学式 21]

（实施例 B2）HCT116 细胞中的 GAPDH 基因的表达抑制效果

使用本发明的 RNAi 确认体外的 GAPDH 基因的表达抑制。
[0559] (1) 材料和方法
[0560] 作为实施例的 RNA（Ex）, 使用上述实施例 B1 的 ssRNA (PH-0001)。将上述 RNA 溶解于注射用蒸馏水（大塚制药、以下同样）中，以达到期望浓度 (1 μmol/L, 5 μmol/L, 25 μmol/L), 制备 RNA 溶液。
[0561] 细胞使用 HCT116 细胞 (DS Pharma Biomedical), 培养基使用含有 10%FBS 的 McCoy’s 5A (Invitrogen) 培养基, 培养条件为 37 ℃, 5% CO₂ 下。
[0562] 首先，在上述培养基中培养 HCT116 细胞，将其培养液分别以 400 μL, 1.2 × 10⁴ 细胞/孔的方式分注到 24 孔板。进而，将上述孔中的细胞培养 24 小时后，使用转染试剂 Lipofectamine2000 (Invitrogen) 根据上述转染试剂的所附方案对上述 RNA 进行转染。具体而言，如下设定上述每孔的组成，进行转染。需要说明的是，上述孔中，上述 RNA 的最终浓度为 1 nmol/L, 5 nmol/L, 0.25 nmol/L。
[0563] [表 1]
[0564] (每孔的组成: μL)

<table>
<thead>
<tr>
<th>培养液</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipofectamine2000</td>
<td>1.5</td>
</tr>
<tr>
<td>Opti-MEM(Invitrogen)</td>
<td>98</td>
</tr>
<tr>
<td>RNA溶液</td>
<td>0.5</td>
</tr>
<tr>
<td>合计</td>
<td>500</td>
</tr>
</tbody>
</table>

[0566] 转染后，将上述孔中的细胞培养 24 小时后，使用 RNeasy Mini Kit (Qiagen, 荷兰), 根据所附方案回收 RNA。接着，使用逆转录酶（商品名 SuperScript III, Invitrogen), 根据所附方案，由上述 RNA 合成 cDNA。然后，如下所示，以所合成的上述 cDNA 为模板进行 PCR, 测定 GAPDH 基因的表达量和作为内标的 β - 肌动蛋白基因的表达量。上述 GAPDH 基因的表达量由上述 β - 肌动蛋白基因的表达量进行校正。

[0567] 上述 PCR 中, 作为试剂, 使用 LightCycler FastStart DNA Master SYBR Green I (商品名, Roche), 作为设备, 使用 Light Cycler DX400 (商品名, Roche) (以下, 同样)。上述 GAPDH 基因和 β - 肌动蛋白基因的扩增分别使用以下的引物对。

<table>
<thead>
<tr>
<th>GAPDH 基因用 PCR 引物对</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’-GGAGAGACGCTGGGACCTTTG-3'（序列号 7）</td>
</tr>
<tr>
<td>5’-TGCCGAGGTGTCAAGGAGT-3'（序列号 8）</td>
</tr>
<tr>
<td>β - 肌动蛋白基因用引物对</td>
</tr>
<tr>
<td>5’-GCCACGGCTGTCCAGCCCTC-3'（序列号 9）</td>
</tr>
<tr>
<td>5’-AGGTCTTTGGGATGTCAGGTAC-3'（序列号 10）</td>
</tr>
</tbody>
</table>

[0574] 需要说明的是，作为对照 1, 对于仅添加了上述 (B) 液 100 μL 的细胞也测定基因表达量 (→)。另外，作为对照 2, 在转染中不添加上述 RNA 溶液，添加合作为 100 μL 的上述 (A) 1.5 μL 和上述 (B), 除此以外同样地进行处理，对于所得到的细胞也测定基因表达量 (mock)。

[0575] 关于校正后的 GAPDH 基因表达量, 将对照 (→) 的细胞的表达量设为 1, 求出导入了
各RNA的细胞的表达量的相对值。

[0576] (2) 结果

[0577] 将这些结果示于图4。图4是示出GAPDH基因表达量的相对值的图表，纵轴为相对基因表达量。各图4所示，上述实施例B1的PH-0001不损害表达抑制活性。另外，认为上述PH-0001被作为本发明的连接子的上述化合物12所稳定化。

[0578] 实施例B3在人血清中的稳定性

[0579] 对于本发明的RNA，确认了在人血清中的稳定性。

[0580] (1) 材料和方法

[0581] 作为实施例的RNA(Ex)，使用作为上述实施例B1的ssRNA(PH-0001)。作为比较例的RNA，使用上述实施例B1所示的RNAi阳性对照(Pc)的上述shRNA(NH-0001)。

[0582] 首先，于37℃孵育在1X PBS中混合了上述RNA和正常人血清(MP Biomedicals)的混合液30μl。上述混合液30μl中，上述RNA的添加量为60pmol，上述正常人血清的添加量终浓度为10%。并且，从孵育开始0小时后，0.5小时后，1小时后和2小时后，通过苯酚-氯仿提取停止反应。用5%聚丙烯酰胺凝胶将所得到的提取液电泳后，用SYBR Green I(商品名，Lonza)染色，使用E-BOX-VX2(M&S Instruments，东京)进行分析。

[0583] (2) 结果

[0584] 将该结果示于图5。图5是表示稳定性的电泳照片。图5中，泳道“M”为分子量标记物，(h)表示孵育时间。

[0585] 如图5所示，由天然的核苷酸构成的比较例的NH-0001在孵育0.5小时后快速的分解反应已经开始，其结果确认，在0.5小时～2小时的全部结果中，与0小时的结果相比RNA尺寸变小。与此相对，含有本发明的连接子的实施例的PH-0001中，基本上没有确认到与孵育时间的经过相伴的泳动度的变化，即分解所致的分子量的减少。由该结果可以证实：通过使用具有本发明的连接子的RNA，在人血清中的稳定性提高。

[0586] 实施例B4HCT116细胞中的GAPDH基因的表达抑制效果

[0587] 合成具有包含脯氨酸的下式的连接子的ssRNA，确认了GAPDH基因的表达抑制效果。

[0588] 【化学式22】

\[
\begin{align*}
\text{(CH}_2\text{)}_4\text{O} & \quad \text{N} \\
\text{O} & \quad \text{H}_2\text{O}
\end{align*}
\]

[0589] (1) 材料和方法

[0590] (1.1) ssRNA的固相合成

[0591] 与上述实施例B1同样地，基于亚磷酸胺法合成上述RNA。

[0592] 作为实施例的RNA(Ex)，使用以下所示的ssRNA(PK-0004)。下述序列中，“Lx”和“Ly”分别为包含脯氨酸的上式(化学式22)的连接子。合成上述ssRNA时，根据序列号11，使用上述RNAamidite(商品名RNA Phosphoramidites，三千里制药)，从3’侧合成RNA，“Lx”
和“Ly”的部位连接了上述实施例 A3-1 中合成的 DMTr-二酰胺-L-脯氨酸 amidite（方案 3 的化合物 10）。需要说明的是，上述序列中，GUUGCAUUCUCAUGG（序列号 4）的序列是与表达抑制有关的区域。

0594 [化学式 23]
0595

Exs sRNA（序列号 11）

$5' - \text{caugagaagauagcaacagcc}-L_x-\text{GGCUUGUGUCAUUCUCUCAUGGUUC}-Ly\text{-gaa}-3'$

0596 比较例的 RNA 使用 RNAi 阳性对照（Nc）的 ssRNA（PK-0003）。下述序列中，“Lx”和“Ly”分别包含脯氨酸的上式（化学式 22）的连接子。合成上述 ssRNA 时，根据序列号 12，使用上述 RNA/amidite（商品名 RNA Phosphoramidites、三千里制药）、从 3'侧合成 RNA，“Lx”和“Ly”的部位连接了上述实施例 A3 中合成的 DMTr-二酰胺-L-脯氨酸 amidite（方案 3 的化合物 10）。另外，代替上述与表达抑制有关的序列，为随机序列。

0597 [化学式 24]
0598

NC ssRNA（序列号 12）

$5' - \text{ccaucacgguaggaagccc}-L_x-\text{GGCUUUCUACUAUCUUGAUGGCUUC}-Ly\text{-gaa}-3'$

0599 （1, 2）基因的表达抑制
0600 将冷冻保存的上述 RNA 以达到 20 μmol/L 的方式溶解于注射用蒸馏水（大冢制药）中，制备 RNA 溶液。

0601 使用上述 RNA 溶液，与上述实施例 B2 同样地确认了 HCT116 细胞中的 GAPDH 基因的表达量。需要说明的是，在转染中，每个孔的组成如下设定。下述组成中，（B）为 Opti-MEM（Invitrogen），（C）为 20 μmol/L 的上述 RNA 溶液，两者一共添加 98.5 μL。上述孔中，上述 RNA 的最终浓度为 1nmol/L、3nmol/L、10nmol/L。

0602 [表 2]
0603 （每孔的组成：μL）
0604

<table>
<thead>
<tr>
<th>培养液</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Lipofectamine2000</td>
<td>1.5</td>
</tr>
<tr>
<td>(B)+(C)</td>
<td>98.5</td>
</tr>
<tr>
<td>合计</td>
<td>500</td>
</tr>
</tbody>
</table>

0605 （2）结果
0606 将这些结果示于图 6。图 6 是表示 GAPDH 基因表达量的相对值的图表。如图 6 所示，具有本发明的连接子的实施例的 PK-0004 显示出强烈的基因表达抑制活性，其活性依赖于投与量。另一方面，阴性对照 PK-0003 没有观察到抑制效果。

0607 （实施例 B5）切酶蛋白质的反应性
确认了重组人切酶蛋白质对于用具有脯氨酸的连接子取代的 ssRNA 的反应性。

作为实施例的 RNA(Ex)，使用上述实施例 B4 的 ssRNA(PK-0004)。作为比较例的 RNA，使用上述实施例 B4 所示的 RNAi 阴性对照 (Ne) 的 ssRNA(PK-0003)、以下所示的 RNAi 阳性对照(Pc) 的 ssRNA(NK-0016)。上述 NK-0016 的结构为：上述 5’侧区域 (Xc) 和上述内 5’侧区域 (X)、上述 3’侧区域 (Yc) 和上述内 3’侧区域 (Y) 是与上述 PK-0004 相同的序列，在上述 Xc 与 X 之间，Yc 与 Y 之间，具有多核苷酸作为连接子以代替上述 PK-0004 的上述式 (化学式 22) 的连接子 (X,Y)。

Pc : NK-0016 (序列号 13)

5’-caugagaauaugacaacgccCACACG GCCUGUGUUCUAUUGUCAGUGUGUCUUCGCAA-3’

Xc X Y Yc

作为试剂，使用 Coldshock-DICER(商品名：宝物)，根据所附方案制备包含上述切酶蛋白质和上述 RNA 的反应液，将其于 37°C 孵育。孵育时间为 0.3、6、9 小时。在孵育规定时间后的上述反应液中加入上述试剂的反应停止液，进行 15% 聚丙烯酰胺凝胶电泳。之后，使用 SYBR Green II（商品名，Lonza）染色上述聚丙烯酰胺凝胶，使用 E-BOX-VX2(商品名，M&ES Instruments) 进行分析。

(结果与考察)

[0613] 作为试剂，使用 Coldshock-DICER(商品名：宝物)，根据所附方案制备包含上述切酶蛋白质和上述 RNA 的反应液，将其于 37°C 孵育。孵育时间为 0.3、6、9 小时。在孵育规定时间后的上述反应液中加入上述试剂的反应停止液，进行 15% 聚丙烯酰胺凝胶电泳。之后，使用 SYBR Green II（商品名，Lonza）染色上述聚丙烯酰胺凝胶，使用 E-BOX-VX2(商品名，M&ES Instruments) 进行分析。

将这些结果示于图 7。图 7 是示出切酶蛋白质对于 ssRNA 的反应性的电泳结果。

图 7 中，泳道“M”为分子量标记物 (20bp, 30bp, 40bp 和 50bp)，(b) 表示上述孵育的时间。

由天然的核苷酸构成的比较例的 NK-0016 与上述切酶蛋白质迅速反应，在截止至 9 小时后消失。与此相对，具有包含脯氨酸的连接子的 RNA、即实施例的 PK-0004 和阴性对照的 PK-0003 与上述切酶缓慢地反应，因而在 9 小时后也没有完全消失。由该结果可知，通过具有包含脯氨酸的连接子，细胞内的稳定性提高。即，若一并考虑基因表达抑制效果的结果，则认为具有包含脯氨酸的连接子的本发明的 RNA 具有提高细胞内的 RNA 干扰效果的持续性效果。

实施例 B6) A549 细胞和 293 细胞中的 GAPDH 基因的表达抑制效果

使用用具有脯氨酸的连接子取代的 ssRNA，确认了体外的 GAPDH 基因的表达抑制。

(1) 材料和方法

作为实施例的 RNA(Ex)，使用上述实施例 B4 的 ssRNA(PK-0004)。作为比较例的 RNA，使用上述实施例 B4 所示的 RNAi 阴性对照 (Ne) 的 ssRNA(PK-0003)。将上述 RNA 以达到 20 μmol/L 的方式溶解于注射用蒸馏水（大冢制药）中，制备 RNA 溶液。

细胞使用 A549 细胞和 293 细胞 (DS Pharma Biomedical)。前者的培养基使用包含 10%FBS 的 DMEM(Invitrogen)，后者的培养基使用包含 10%FBS 的 MEM(Invitrogen) 培养基。培养条件为 37°C、5%CO2 下。

首先，在上述培养基中培养细胞，将其培养液分别以 400 μl, 1.5×10^4 细胞/孔的方式分注到 24 孔板。进而，将上述孔中的细胞培养 24 小时后，使用转染试剂 Lipofectamine 2000(Invitrogen)，根据上述转染试剂的所附方案对上述 RNA 进行转染。具
体而言，对于 A549 细胞和 293 细胞，分别如下设定上述每孔的组成，进行转染。下述组成中，
(B) 为 Opti-MEM (Invitrogen)，(C) 为 20 μmol/L 的上述 RNA 溶液，两者一共添加 98.5 μl
或 99 μl。需要说明的是，在上述孔中，上述 RNA 的最终浓度为 1nmol/L, 3nmol/L, 10nmol/L。

<table>
<thead>
<tr>
<th></th>
<th>A549细胞</th>
<th>293细胞</th>
</tr>
</thead>
<tbody>
<tr>
<td>培养液</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>(A) Lipofectamine2000</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>(B)+(C)</td>
<td>98.5</td>
<td>99</td>
</tr>
<tr>
<td>合计</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

转染后，与上述实施例 B4 同样地进行上述细胞的培养、RNA 回收、cDNA 合成和 PCR，
测定 GAPDH 基因的相对表达量。

(2) 结果

将这些结果示于图 8 和图 9。图 8 是 A549 细胞的结果，图 9 是 293 细胞的结果。
图 8 和图 9 是示出 GAPDH 基因表达量的相对值的图表。如图 8 和图 9 所示，可知实施例的
PK-0004 显示出强烈的基因表达抑制活性，以依赖于浓度的方式显示出效果。另一方面，作为
阴性对照的 PK-0003 没有观察到抑制效果。

(实施例 B7) HCT116 细胞中的 GAPDH 基因的表达抑制效果

使用用具有脯氨酸或脯氨酸的连接子取代的 ssRNA，确认了 HCT116 细胞中的
GAPDH 表达抑制效果。

(1) 材料和方法

(1.1) ssRNA 的固相合成

作为实施例的 RNA (Ex ssRNA)，合成了与上述实施例 B4 相同的 Ex ssRNA。只要没有
特别声明，则上述 RNA 的合成基于上述实施例 B4。

化学式 26

![化学式](attachment:image.png)

连接子用 amidite 使用上述实施例 A3-1 中合成的 L-脯氨酸二酰胺 amidite (方案
3 的化合物 10)、上述实施例 A6 中合成的脯氨酸氨基甲酸酯 amidite (方案 7 的化合物
6)、脯氨酸肽基 amidite (方案 7 的化合物 7)、脯氨酸酰胺 amidite (方案 3 的化合物 12)
和脯氨酸酰胺肽基 amidite (方案 3 的化合物 17)。关于所合成的各 RNA，将连接子部的合
成中使用的 amidite 示于下表。
<table>
<thead>
<tr>
<th>ssRNA</th>
<th>用于 Lx和 Ly的 amidite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-0004</td>
<td>L-脯氨酸二酰胺 amidite (方案 3 的化合物 10)</td>
</tr>
<tr>
<td>PK-0006</td>
<td>脯氨酰氨基甲酸酯 amidite (方案 7 的化合物 6)</td>
</tr>
<tr>
<td>PK-0010</td>
<td>脯氨酰酰胺基 amidite (方案 3 的化合物 12)</td>
</tr>
<tr>
<td>PK-0012</td>
<td>脯氨酰酰胺基 amidite (方案 3 的化合物 17)</td>
</tr>
<tr>
<td>PK-0016</td>
<td>脯氨酰氨基 amidite (方案 7 的化合物 7)</td>
</tr>
</tbody>
</table>

[0638] (1.2) 基因的表达抑制
[0639] 除了使用上述 RNA 以外，与上述实施例 B4 同样地进行向 HCT116 细胞的转染、培养、RNA 回收、cDNA 合成和 PCR，测定了 GAPDH 基因的相对表达量。

[0640] (2) 结果
[0641] 将这些结果示于图 10。图 10 是示出 HCT116 细胞的 GAPDH 基因表达量的相对值的图表。如图 10 所示，可知包含脯氨酸或脯氨酰的 ssRNA (PK-0004、PK-0006、PK-0010、PK-0012、PK-0016) 显示出强烈的基因表达抑制活性，以依赖于浓度的方式显示出效果。

[0642] (实施例 B8) HCT116 细胞中的 GAPDH 基因的表达抑制效果
[0643] 使用用具有脯氨酸的连接子取代的 ssRNA，确认了 HCT116 细胞中的 GAPDH 表达抑制效果。

[0644] (1) 材料和方法
[0645] (1.1) ssRNA 的固相合成
[0646] 作为实施例的 RNA (Ex ssRNA)，合成了与上述实施例 B4 相同的 Ex ssRNA。只要没有特别声明，则上述 RNA 的合成基于上述实施例 B4。

[0647] [化学式 27]

\[
\text{Ex ssRNA (序号 11)} \\
5' - \text{caugagaaquagacaacagcc-Lx-GGCGUGUGUCAIACUUCUCAUGGUUC-Ly-gaa-3', Xc} \\
\]

[0650] 作为连接子用 amidite，使用上述实施例 A3-1 中合成的 D-脯氨酸二酰胺 amidite (方案 3 的化合物 9) 和上述实施例 A4 中合成的脯氨酸二酰胺 amidite B 型（方案 4 的化合物 22）。关于所合成的各 RNA，将连接子部的合成中使用的 amidite 示于下表。

[0651] [表 5]

67
<table>
<thead>
<tr>
<th>ssRNA</th>
<th>用于Lx和Ly的amidite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-0034</td>
<td>D-脯氨酸二酰胺amidite</td>
</tr>
<tr>
<td></td>
<td>(方案3的化合物9)</td>
</tr>
<tr>
<td>PK-0036</td>
<td>脯氨酸二酰胺amidite B型</td>
</tr>
<tr>
<td></td>
<td>(方案4的化合物22)</td>
</tr>
<tr>
<td>PK-0004</td>
<td>L-脯氨酸二酰胺amidite</td>
</tr>
<tr>
<td></td>
<td>(方案3的化合物10)</td>
</tr>
</tbody>
</table>

[0653] (1.2) 基因的表达抑制

[0654] 除了使用上述 RNA 以外，与上述实施例 B4 同样地进行向 HCT116 细胞的转染、培养、RNA 回收、cDNA 合成和 PCR，测定了 GAPDH 基因的相对表达量。

[0655] (2) 结果

[0656] 将这些结果示于图 11。图 11 是示出 HCT116 细胞的 GAPDH 基因表达量的相对值的图表。如图 11 所示，可知包含脯氨酸的 ssRNA(PK-0004、PK-0034、PK-0036) 显示出强烈的基因表达抑制活性，以依赖于浓度的方式显示出效果。

[0657] (实施例 B9) 体外的 TGF-β1 基因的表达抑制效果

[0658] 使用用具有脯氨酸的连接子取代的 ssRNA，确认了 Hepa1-6 细胞中的 TGF 表达抑制效果。

[0659] (1) 材料和方法

[0660] (1.1) ssRNA 的固相合成

[0661] 作为实施例的 RNA, 合成了以下所示的 PK-0007、PK-0026、PK-0027、PK-0028。只要没有特别声明, 则上述 RNA 的合成基于上述实施例 B4。作为连接子用 amidite, 使用上述实施例 A3-1 中合成的 L-脯氨酸二酰胺 amidite(方案3的化合物10)。各 RNA 具有抑制 TGF-β1 基因表达的 21 碱基长的下述序列。该序列基于 Cheng 等使用的 siRNA(Mol. Pharm. , 2009, 6, 772-779) 来设计。下述序列中, “*” 表示自由碱基。

[0662] TGF-β1 基因表达抑制序列（序列号18）

[0663] 5’-AAGUCAUGACAGCUU-3’

[0664] 5’-AAAGUCAUGACAGCUU-5’

[0665] [化学式 28]
PK-0007（序列号14）

\[5\prime-\text{agcugucaauucuaauagcc-Lx-GGCUGUAAGCUAUGACGCUUCC-Ly-gaa}-3\prime\]

PK-0026（序列号15）

\[5\prime-\text{agcugucaaaugacuugc-Lx-GGCUGUAAGCUAUGACGCUUCC-Ly-gaa}-3\prime\]

PK-0027（序列号16）

\[5\prime-\text{agcugucaauucuaauagcc-Lx-GGCUGUAAGCUAUGACGCUUCC-Ly-gaa}-3\prime\]

PK-0028（序列号17）

\[5\prime-\text{agcugucaauucuaauagcc-Lx-GGCUGUAAGCUAUGACGCUUCC-Ly-gaa}-3\prime\]

[0666]（1.2）基因的表达抑制
[0667]将冷冻保存的上述RNA以达到20μmol/L的方式溶解于注射用蒸馏水（大梁制药）中，制备RNA溶液。
[0668]细胞使用Hepl-6细胞（理化学研究所生物资源中心）。培养基使用含有10%FBS的DMEM（Invitrogen）培养基。培养条件为37℃,5%CO2下。
[0669]在上述培养基中培养Hepl-6细胞，将其培养液分别以400μL,1.3×10^5细胞/孔的方式分注到24孔板。并且，除了使用上述RNA溶液以外，与上述实施例B4同样地进行向Hepl-6细胞的上述ssRNA的转染，RNA回收和cDNA合成。需要说明的是，关于上述转染，上述孔中的上述RNA的终浓度为1nmol/L，并且，作为引物，使用上述TGF-β1基因用PCR引物对和β-肌动蛋白基因用引物对，除此以外与上述实施例B4同样地进行PCR，测定TGF-β1基因的表达量和作为内标的β-肌动蛋白基因的表达量。利用作为内标的β-肌动蛋白基因的表达量校正上述TGF-β1基因的表达量。
[0670]TGF-β1基因用PCR引物对
[0671]5'-CCATTGCCTCCGGTGCCAGAGCTG-3'（序列号19）
[0672]5'-ATGGAAGCCCTTGGGCTGCTGATC-3'（序列号20）
[0673]β-肌动蛋白基因用引物对
[0674]5'-GTCGTACCACAGGCCATTGTAGGG-3'（序列号21）
[0675]5'-GCAATGGCTGGTACATGGTG-3'（序列号22）
[0676]另外，与上述实施例B4同样地，对于对照(-)和对照(mock)，测定基因表达量。并且，关于校正后的TGF-β1基因表达量，将对照(-)的细胞的表达量设为1，求出导入了各RNA的细胞的表达量的相对值。
[0677]（2）结果
[0678]将这些结果示于图12。图12是示出TGF-β1基因表达量的相对值的图表。如图12所示，包含脯氨酸的ssRNA全部显示出强烈的基因表达抑制活性。
[0679]其中，与自由碱基的位置在上述内部区域(Z)中的从3’端起第4位和第5位的PK-0007和PK-0026相比，自由碱基的位置在上述内部区域(Z)中的从3’端起第2位和
第3位的PK-0027和PK-0028显示出更高的表达抑制活性。由该结果可知，与上述内部区域的中位相比，上述内部区域（2）中的自由碱基的位置配于3’侧，则越能够提高上述表达抑制活性。需要说明的是，还已经确认：例如，与上述内部区域的中位相比，上述自由碱基的位置配于5’侧，则越能够提高上述表达抑制活性。这样的自由碱基的位置与表达抑制活性的关系显示于与后述的参考例的结果同样的动向。

[0680]（实施例B10）体内的TGF-β1基因表达抑制效果和急性肺损伤抑制效果
[0681]使用用具有脯氨酸的连接子取代的ssRNA，确认了体内的基因表达抑制和急性肺损伤抑制的效果。上述效果的确认根据Takagi等（J.Thrump Hemoost2009;7:2053-2063）记载的方法进行。

[0682]（B10-1）体内的TGF-β1基因的表达抑制效果
[0683]使用用具有脯氨酸的连接子取代的ssRNA，确认了体内的TGF-β1基因的表达抑制效果。

[0684]（1）材料和方法
[0685]（1.1）急性肺损伤小鼠投与RNA
[0686]实施例的RNA（Ex）使用上述实施例B9中的ssRNA（PK-0007）。比较例的RNA使用以下所示的作为阴性对照（Nc）的ssRNA（PK-0008），作为阳性对照（Pc）的ssRNA（NK-0033）及其作为阴性对照（Nc）的ssRNA（NK-0035），作为阳性对照（Pc）的dsRNA（NI-0030）及其作为阴性对照（Nc）的dsRNA（NI-0031）。

[0687][化学式29]

[0688]

PK-0007（序列号14）

5’-caccagaaaaacacauuuag-3’

PK-0008（序列号23）

5’-tggcaccagaaaaacacauuuag-3’

NK-0033（序列号24）

5’-tcaccacacccacacagg-3’

NK-0035（序列号25）

5’-ttcaccacacccacacagg-3’

NI-0030

5’-GCACCAAGACAGACUUAAG-3’（序列号26）

3’-UUGCGCAAGACAGACUUAAG-5’（序列号27）

NI-0031

5’-GUGACUGCCCAUUACACAG-3’（序列号28）

3’-UCUACUGCCCAUUACACAG-5’（序列号29）

[0689]将上述RNA100μg溶解于灭菌生理盐水75μl中，制备RNA溶液。另一方面，将100μg的脂多糖（LPS）溶解于灭菌生理盐水50μl中，制备LPS溶液。

[0690]首先，将上述RNA溶液80μl滴加到小鼠的气管内。滴加后1小时后，在上述小鼠
的气管内滴加上述 LPS 溶液 50 μl，诱发肺损伤。

[0691] 作为相对于上述 LPS 的阳性对照，代替上述 LPS 溶液而使用未添加 LPS 的灭菌生理盐水 50 μl。另外，作为相对于上述 RNA 溶液的阴性对照，使用灭菌生理盐水 80 μl。

[0692] 以下，示出各投与组。各投与组中，使用 4 ～ 6 只小鼠。

[0693] • 投与组 1

[0694] 投与灭菌生理盐水 75 μl 15 分钟后，投与灭菌生理盐水 50 μl

[0695] • 投与组 2

[0696] 投与灭菌生理盐水 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0697] • 投与组 3

[0698] 投与 RNA 溶液 (PK-0007) 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0699] • 投与组 4

[0700] 投与 RNA 溶液 (PK-0008) 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0701] • 投与组 5

[0702] 投与 RNA 溶液 (NK-0033) 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0703] • 投与组 6

[0704] 投与 RNA 溶液 (NK-0035) 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0705] • 投与组 7

[0706] 投与 RNA 溶液 (NI-0030) 75 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0707] • 投与组 8

[0708] 投与 RNA 溶液 (NI-0031) 50 μl 15 分钟后，投与上述 LPS 溶液 50 μl

[0709] （1，2）支气管肺泡灌洗液（BALF）的取样

[0710] 在滴加上述 LPS 溶液或灭菌生理盐水（相对于 LPS 的阴性对照）24 小时后，向上述小鼠的腹腔投与过量的戊巴比妥，使其安乐死。然后，采集肺，作为样品。

[0711] 关于上述小鼠的肺样品，使用 TGF-β1 Quantikine Colorimetric Sandwich ELISA（商品名，R&D Systems 公司），测定单位重量的肺的 TGF-β1 表达量。

[0712] （2）结果

[0713] 将其结果示于图 13。图 13 是示出各投与组中的单位重量的肺的 TGF-β1 基因表达量的图，横轴表示 TGF-β1 蛋白质的表达量。与 LPS (+)/ssRNA (−) 的投与组 2 相比，LPS (+)/PK-0007 (+) 的投与组 3 显著抑制了 TGF-β1 蛋白质的表达量。可知该抑制效果比 LPS (+)/ 阳性对照 NK-0033 (+) 的投与组 5 和 LPS (+)/ 阳性对照 NI-0030 的投与组 7 更强。需要说明的是，在阴性对照 PK-0008 (+) 的投与组 4，阴性对照 NK-0035 (+) 的投与组 6、阴性对照 NI-0031 (+) 的投与组 8 中，没有确认到抑制效果。

[0714] （B10-2）体内的脱靶效果

[0715] 使用用具有脯氨酸的连接子取代的 ssRNA，确认体内的脱靶效果，评价副作用。

[0716] 实施例的 RNA 使用上述实施例 B9 的 ssRNA (PK-0007)。比较例的 RNA 使用上述实施例 B10-1 所示的作为 RNAi 阴性对照（Ne）的上述 ssRNA (PK-0008)。将上述 RNA100 μg 溶解于灭菌生理盐水 75 μl 中，制备各 RNA 溶液。

[0717] 以下，示出各投与组。各投与组中，使用 2 ～ 4 只小鼠。

[0718] • 投与组 1
说明书

[0719] 投与灭菌生理盐水 75 μl

[0720] • 投与组 2

[0721] 投与 ssRNA 溶液 (PK-0007) 75 μl

[0722] • 投与组 3

[0723] 投与 ssRNA 溶液 (PK-0008) 75 μl

[0724] 然后，在投与 24 小时后，与上述实施例 B10-1 同样地使小鼠安乐死。对上述小鼠的心脏进行穿刺，回收血液样品，添加到含有 3.8% 柠檬酸钠水溶液的试管中。上述柠檬酸钠水溶液的量（体积）为上述血液样品的 1/10。根据 Yasui 等 (Am J Respir Crit Care Med 2001 :163 ;1660-8) 的记载，从该混合液回收 BALF（支气管肺泡灌洗液）样品。然后，对于上述 BALF 样品的上清，测定了 TNF-α 量和 INF-β 量。

[0725] 使用商品名 Mouse TNF set II (Beckton Dickinson and Company), 根据其使用说明书对上述 TNF-α 量进行定量。另外，使用利用商品名 Rabbit Anti-Mouse Interferon β (PBL InterferonSource) 和商品名 Biotin Labeling Kit-NH2（同化化学研究所）制作的 ELISA 板，根据它们的使用说明书对上述 INF-β 量进行定量。

[0726] 将其结果示于图 14。图 14 的 (A) 是示出各投与组的 BALF 样品中的 TNF-α 量的图表，图 14 中的 (B) 是示出各投与组的 BALF 样品中的 INF-β 量的图表。图 14 中，横轴表示各组的投与组 1 相比，上述 PK-0007 (+) 的实施例投与组 2 没有引起 TNF-α 和 INF-β 的表达。

[0727] （实施例 B11）核糖核酸酶耐受性

[0728] 对于本发明的 ssRNA，确认了核糖核酸酶耐受性。

[0729] （1）材料和方法

[0730] 作为实施例的 RNA (Ex)，使用上述实施例 B9 的 ssRNA (PK-0007)。作为比较例的 RNA，使用上述实施例 B10-1 所示的阳性对照 (Pc) 的 dsRNA (NI-0030)。

[0731] 首先，在 20mmol/L Tris-HCl (pH8) 中混合 60pmol 的上述 RNA、5×10^{-5} 单位的 RNase A (Roche) 和 5×10^{-5} 单位的 RNase T1（商品名,Roche），于 37℃ 进行孵育。孵育开始 10 分钟、20 分钟、30 分钟后，根据常规方法停止 RNase 的反应。然后，将上述反应液用 15% 聚丙烯酰胺凝胶电泳后，用 SYBR Green II（商品名,Lonza）染色，使用 E-BOX-VX2（商品名，M&S Instruments,东京）进行分析。

[0732] （2）结果

[0733] 将该结果示于图 15。图 15 是示出核糖核酸酶耐受性的电泳照片。图 15 中，泳道 “M” 为分子量标准物, (min) 表示孵育时间。

[0734] 如图 15 所示，由天然的核苷酸构成的比较例的 NI-0030 在孵育 10 分钟后基本上全部被分解。与此相对，实施例的 PK-0007 即使孵育 10 分钟后也残存。由该结果可知，与 dsRNA 相比，本发明的 ssRNA 的核糖核酸酶耐受性更优异。

[0735] （实施例 B12）核酸酶耐受性

[0736] 对于本发明的 ssRNA，确认了核酸酶耐受性。

[0737] （1）材料和方法

[0738] 作为实施例的 RNA (Ex)，使用上述实施例 B9 的 ssRNA (PK-0007)。作为比较例的 RNA，使用上述实施例 B10-1 所示的 RNAi 阳性对照 (Pc) 的 dsRNA (NI-0030)。
[0739] 首先，在含有 5 mmol/L CaCl₂ 的 50 mmol/L Tris-HCl (pH8) 中混合 60 pmol 的 ssRNA 0.5 单位的 S7 核酶酶 (Roche)，于 37°C 进行孵育。孵育开始 (0 小时) 0.5 小时后，根据常规方法停止 S7 核酶酶的反应。然后，根据常规方法将上述反应液用 7M 尿素 -15% 聚丙烯酰胺凝胶电泳后，用 SYBR Green II (商品名, Lonzza) 染色，使用 E-BOX-VX2 (商品名, M&S Instruments) 进行分析。

[0740] (2) 结果

[0741] 将该结果示于图 16。图 16 是示出 S7 核酶酶耐受性的电泳照片。图 16 中，泳道 “M” 为分子量标记物，(h) 表示孵育时间。

[0742] 如图 16 所示，由天然的核苷酸构成的小分子的 DNA 分子与 dsRNA 相比，本发明的 ssRNA 的 S7 核酶酶耐受性更优异。

[0743] 由此，可证实本发明的 ssRNA 分子是实现的表达抑制中能够不依赖于靶基因的种类而使用的通用性高的新型工具。

[0744] (参考例 1)

[0745] 使用自由碱基的位置不同的 ssRNA，确认了体外的 GAPDH 基因的表达抑制。

[0746] (1) 材料和方法

[0747] 作为 RNA，使用图 17 所示的 ssRNA。图 17 中，从 5' 侧起，小写字母下划线的区域表示上述区域 (Sc)，大写字母下划线的区域表示上述内部区域 (Z)，小写字母下划线的区域表示上述区域 (Yc)。上述 Xc 与上述 Z 之间为连接子区域 (Lx)，上述 Z 与上述 Yc 之间为连接子区域 (Ly)。另外，“Xc/Yc” 表示上述区域 (Xc) 的碱基长 (Xc) 与上述区域 (Yc) 的碱基长 (Yc) 之比。图 17 中，“*” 表示自由碱基。

[0748] 各 ssRNA 均使内部区域 (Z) 的碱基长为 26 碱基，使连接子区域 (Lx) 的碱基长为 7 碱基，使连接子区域 (Ly) 的碱基长为 4 碱基。另外，NK-0036 和 NK-0040 使上述区域 (Xc) 与上述区域 (Yc) 的总碱基数 (Xc+Yc) 为 26 碱基。除此以外，使上述区域 (Xc) 与上述区域 (Yc) 的总碱基数 (Xc+Yc) 为 25 碱基。并且，在该条件下，变化上述区域 (Xc) 与上述区域 (Yc) 的碱基长。由此，NK-0036 和 NK-0040 为不具有自由碱基的分子。另外，这些以外的各 ssRNA 使上述内部区域 (Z) 中的不形成双链的自由碱基全为 1 碱基，并且使上述内部区域 (Z) 中的上述自由碱基的位置从 3' 侧变动到 5' 侧。

[0749] 除了使用上述 RNA 以外，与上述实施例 B2 同样地进行向 HCT116 细胞的染色、培养、RNA 回收、cDNA 合成和 PCR，测定了 GAPDH 基因的相对表达量。染色时的 RNA 浓度为 10 nmol/L。

[0750] (2) 结果和考察

[0751] 将这些结果示于图 18。图 18 是示出使用终浓度为 10 nmol/L 的 RNA 时的 GAPDH 基因表达量的相对值的图表。如图 18 所示，关于使上述 5' 侧区域 (Xc) 和上述 3' 侧区域 (Yc) 的长度变化的任意 ssRNA，均能够确认 GAPDH 基因的表达抑制。

[0752] 特别是，随着上述区域 (Xc) 的碱基长与上述区域 (Yc) 的碱基长之差变大，确认到相对地基因的表达量降低、表达抑制活性增加。即，可知：与上述内部区域的中央相比，上述内部区域 (Z) 中的自由碱基的位置越配于 5' 侧或 3' 侧，则越能够提高上述表达抑制活性。
性。

[0753]（参考例 2）

[0754]使用自由碱基的位置不同的 ssRNA，确认了体外的 TGF-β 1 基因的表达抑制效果。

[0755]（1）材料和方法

[0756]作为 RNA，使用以下所示的 ssRNA。下述序列中，“*”表示自由碱基。

[0757]【化学式 30】

[0758]NK-0033（序列号 49）

\[\begin{align*}
5' & - \text{cagcuguacauugacuuagcCGCCACGCUCUCUGGaa}-3' \\
& \text{Xc} & \text{Zc} & \text{Yc}
\end{align*}\]

NK-0061（序列号 50）

\[\begin{align*}
5' & - \text{agcuguacauugacuuagcCGCCACGCUCUCUGGaa}-3' \\
& \text{Xc} & \text{Zc} & \text{Yc}
\end{align*}\]

NK-0055（序列号 51）

\[\begin{align*}
5' & - \text{agcaguguacauugacuuagcCGCCACGCUCUCUGGaa}-3' \\
& \text{Xc} & \text{Zc} & \text{Yc}
\end{align*}\]

NK-0062（序列号 52）

\[\begin{align*}
5' & - \text{gacguguacauugacuuagcCGCCACGCUCUCUGGaa}-3' \\
& \text{Xc} & \text{Zc} & \text{Yc}
\end{align*}\]

[0759]（1.2）基因的表达抑制

[0760]将冷冻保存的上述 RNA 以达到 20 μmol/L 的方式溶解于注射用蒸馏水中，制备 RNA 溶液。并且，除了使用上述 RNA 溶液以外，与上述实施例 B9 同样地进行向 Hepal-6 细胞的上述 ssRNA 的染色、RNA 回收、cDNA 合成和 PCR。测定 TGF-β 1 基因的相对表达量。转染后 RNA 浓度为 1nmol/L。

[0761]（2）结果

[0762]将这些结果示于图 19。图 19 是示出 TGF-β 1 基因表达量的相对值的图表。如图 19 所示，所有 ssRNA 均表现出基因表达抑制活性。另外，与自由碱基的位置在上述内部区域（Z）中的从 3' 末端起第 4 位和第 5 位的 NK-0033 和 NK-0061 相比，使自由碱基的位置在上述内部区域（Z）中的从 3' 末端起第 2 位和第 3 位的 NK-0055 和 NK-0062 显示出更高的表达抑制活性。该结果是与以不同基因的靶标的上位参考例 1 相同的动向。

[0763]（参考例 3）

[0764]使用自由碱基的位置不同的 ssRNA，确认了体外的 LAMA1 基因的表达抑制。

[0765]（1）材料和方法

[0766]作为 RNA，使用以下所示的 ssRNA。下述序列中，“*”表示自由碱基。

[0767]【化学式 31】

[0768]
NK-0043 (序列号53)

5'-guuungucgucgucaaaauuconccGCACCCGGAUUGUACGAGACAAACTUCGUUGGGg-3'

NK-0064 (序列号54)

5'-aguungucgucgucaaaauuconccGCACCCGGAUUGUACGAGACAAACTUCGUUGGGg-3'

[0769] 除了使用上述RNA以外，与上述实施例B6同样地进行向293细胞的转染，将上述细胞培养48小时。转染时的RNA浓度为10nmol/l。并且，作为引物，使用以下的LAMA1基因用引物对，除此以外与上述实施例B2同样地进行RNA回收、cDNA合成和PCR，测定LAMA1基因的表达量和作为内标的β-肌动蛋白基因的表达量。利用作为内标的β-肌动蛋白基因的表达量校正上述LAMA1基因的表达量。

[0770] LAMA1基因用引物对

[0771] 5'-AAACGTGGCAATGCCCCCTCGACAC-3'（序列号55）

[0772] 5'-TAGGTGGGTCGCCCCCTCCGCTTG-3'（序列号56）

[0773] 另外，与上述实施例B2同样地，对于对照1(-)和对照2(mock)也测定了表达量。并且，关于校正后的LAMA1基因表达量，将对照(-)的细胞的表达量设为1，求出导入了各RNA的细胞的表达量的相对值。

[0774] (2) 结果

[0775] 将这些结果示于图20。图20是示出293细胞中的LAMA1基因的表达量的相对值的图表。如图20所示，所有ssRNA均显示出基因表达抑制活性。另外，与使相同碱基的位置在上述内部区域(Z)中的从3'末端起第4位的NK-0043相比，使使自由碱基的位置在上述内部区域(Z)中的从3'末端起第2位的NK-0064显示出更高的表达抑制活性。该结果是与以不同碱基为靶标的上述实施例1和实施例2同样的动向。

[0776] (参考例4)

[0777] 使用自由碱基的位置不同的ssRNA，确认了体外的LMNA基因的表达抑制。

[0778] (1) 材料和方法

[0779] 作为RNA，使用以下所示的ssRNA。下述序列中，"*"表示自由碱基。

[0780] [化学式32]

[0781]

NK-0063 (序列号57)

5'-uacacaaaagcgcaauuconccGCACCCGGAUUGUACGAGACAAACTUCGUUGGGg-3'

NK-0066 (序列号58)

5'-uacacaaaagcgcaauuconccGCACCCGGAUUGUACGAGACAAACTUCGUUGGGg-3'

[0782] 除了使用上述RNA以外，与上述实施例B6同样地进行向A549细胞的转染，将上述细胞培养48小时。转染时的RNA浓度为3nmol/l。并且，作为引物，使用以下的LMNA基因
用引物对，除此以外与上述实施例 B2 同样地进行 RNA 回收、cDNA 合成和 PCR，测定 LMNA 基因的表达量和作为内标的 β-肌动蛋白基因的表达量。利用作为内标的 β-肌动蛋白基因的表达量校正上述 LMNA 基因的表达量。

[0783] LMNA 基因用引物对

[0784] 5’-CTGGACATCAAGCTGCCCCGAGAC-3’（序列号 59）

[0785] 5’-CACCACTTGCGCATGGCCACCTTC-3’（序列号 60）

[0786] 另外，与上述实施例 B2 同样地，对于对照 1 （-） 和对照 2（mock）也测定了表达量。并且，关于校正后的 LMNA 基因表达量，将对照（-）的细胞的表达量设为 1，求出导入了各 RNA 的细胞的表达量的相对值。

[0787] （2）结果

[0788] 将这些结果示于图 21。图 21 是示出 A549 细胞中的 LMNA 基因的表达量的相对值的图表。如图 21 所示，所有 ssRNA 均显示出基因表达抑制活性。另外，与使自由碱基的位置在上述内部区域 (Z) 中的从 3’末端起第 4 位的 NK-0063 相比，使自由碱基的位置在上述内部区域 (Z) 中的从 3’末端起第 2 位的 NK-0066 显示出更高的表达抑制活性。该结果是与以不同的基因为靶标的上述参考例 1 ～参考例 3 同样的动向。

[0789] 由参考例 1 ～参考例 4 的结果可知，例如，关于自由碱基的位置，与靶基因的种类以及针对的表达抑制序列无关，显示出同样的动向。并且，上述实施例 B9 中，如上所述，显示出与这些参考例同向的动向。

[0790] （参考例 5）

[0791] 使用改变了上述内部 5’侧区域 (X)、上述 5’侧区域 (Xc)、上述内部 3’侧区域 (Y) 和上述 3’侧区域 (Yc) 的各长度的 ssRNA，确认了体外的 GAPDH 基因的表达抑制。

[0792] （1）材料和方法

[0793] 作为 RNA，使用图 22 所示的 ssRNA。图 22 中，右端的编号表示序列号。图 22 中，从 5’侧起，小写字母下划线的区域表示上述区域 (Xc)，大写字母下划线的区域表示上述内部区域 (Z)，小写字母下划线的区域表示上述区域 (Yc)，另外，“Xc + Yc / X + Y”表示上述区域 (Xc) 和上述区域 (Yc) 的碱基长的合计与上述区域 (X) 和上述区域 (Y) 的碱基长的合计之比。图 22 中，“*”表示自由碱基。

[0794] 各 ssRNA 均使连接子区域 (Lx) 的碱基长为 7 碱基，使连接子区域 (Ly) 的碱基长为 4 碱基，使上述区域 (Yc) 的碱基长为 1 碱基，使从上述内部区域 (Z) 的 3’侧起第 2 位的碱基为自由碱基。并且，改变上述内部区域 (Z) 的碱基长和上述区域 (Xc) 的碱基长。

[0795] 只要没有特别声明，与上述实施例 B2 同样地对上述 RNA 进行向 HT1716 细胞的转染、培养、RNA 回收、cDNA 合成和 PCR，计算出 GAPDH 基因的表达量的相对值。关于上述转染的条件，使上述每孔的组成与上述实施例 B4 的表 2 相同。

[0796] （2）结果和考察

[0797] 将这些结果示于图 23。图 23 是示出使用终浓度为 1nmol/L 的 RNA 时的 GAPDH 基因表达量的相对值的图表。如图 23 所示，对于改变了上述区域 (X)、上述区域 (Xc)、上述区域 (Y) 和上述区域 (Yc) 的长度的任意 ssRNA，均能够确认 GAPDH 基因的表达抑制。

[0798] 以上，参照实施方式对本申请发明进行了说明，但本申请发明不限定于上述实施方式。可以在本申请发明的范围内对本申请发明的构成、详细内容进行本领域技术人员能
够理解的各种变更。
[0800] 产业上的可利用性
[0801] 根据本发明的 ssPN 分子，能够进行基因的表达抑制，并且由于不是环状，因而其合成容易，另外，由于是单链，因此不存在双链的退火工序，能够高效地制造。另外，由于上述连接子区域包含上述非核苷酸残基，因而不限于例如以往那样的改变核苷酸残基，例如，还能够改变上述连接子区域中的修饰等。这样，如上所述，本发明的 ssPN 分子能够抑制靶基因表达，因此作为例如医药品、诊断药和农药，以及农药、医学、生命科学等的研究工具有用。
序列表

（110） 博纳克株式会社

（120） 具有含氨脂环式骨架的单链核酸分子

（130） TF11004#0

（150） JP 2010-174915

（151） 2010-08-03

（150） JP 2010-230806

（151） 2010-10-13

（150） JP 2010-269823

（151） 2010-12-02

（150） JP 2011-152381

（151） 2011-07-08

（160） 69

（170） PatentIn version 3.1

（210） 1

（211） 25

（212） RNA

（213） 人工序列

（220）

（223） 核酸分子

（400） 1
gcuguguca aucumccua uggau

（210） 2

（211） 23

（212） RNA

（213） 人工序列

（220）

（223） 核酸分子

[0002]
<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>2ceauagaag uangacaaca gec</td>
<td>23</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>211</td>
<td>RNA</td>
<td>19</td>
</tr>
<tr>
<td>212</td>
<td>RNA</td>
<td>55</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>3ceauagaag uangacaaca geoggeugui gucauanucu ucauanggu</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>211</td>
<td>RNA</td>
<td>55</td>
</tr>
<tr>
<td>212</td>
<td>RNA</td>
<td>19</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>4guuguceuac unacuacagg</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>211</td>
<td>RNA</td>
<td>19</td>
</tr>
<tr>
<td>212</td>
<td>RNA</td>
<td>55</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>序列长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>5ceauagaag uangacaaca gececeace ggoogugui anacuincua uanggu</td>
<td>55</td>
</tr>
</tbody>
</table>

[0003]
<220>
<223> 核酸分子

<400> 6
auuguaacga gcaaaacac 19

<210> 7
<211> 23
<212> DNA
<213> 人工序列

<220>
<223> 引物

<400> 7
ggagaaggt ggggtcatt tgc 23

<210> 8
<211> 23
<212> DNA
<213> 人工序列

<220>
<223> 引物

<400> 8
tggccaggg gtciaagcg ttg 23

<210> 9
<211> 23
<212> DNA
<213> 人工序列

<220>
<223> 引物

<400> 9
gccacggtcg ctcccagctc etc 23

[0004]
<210> 10
<211> 25
<212> DNA
<213> 人工序列

<220>
<223> 引物

<400> 10
aggttttgc ggttgccac gtcac

<210> 11
<211> 51
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 11
cugugagcu augacucag cegguugug ucuauacucu caugguucga a

<210> 12
<211> 51
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 12
ccaucaacga uagugaaag cegguuucua ccuaucugug augguucga a

<210> 13
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

[0005]
<400> 13
caguagaagucagaacacag ceccecaacg ccgugugucag uucucaucuau gguuuucuucuugg 60

an 62

<210> 14
<211> 51
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 14
cacgccuaac acucuaacag ccgguacaaag ucaaugucaac aguguuucuugga a 51

<210> 15
<211> 50
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 15
cacgccuaac acucuaacag ccgguacaaaa ucaaugucaac aguguuucuugga 50

<210> 16
<211> 51
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 16
agcgugunacag uugagcauag caugacuuaag acgguuuaa agcucgcuuucag uuguuccug 51

<210> 17
<211> 50

[0006]
<212> RNA

<213> 人工序列

<220>

<223> 核酸分子

<400> 17
geacguuca aucagcuaa gecggcuaaa gucaauguac ageugcmucg 50

<210> 18
<211> 21
<212> RNA
<213> 人工序列

<220>

<223> 核酸分子

<400> 18
aaagcuaaug uacagcguu ii 21

<210> 19
<211> 24
<212> DNA
<213> 人工序列

<220>

<223> 引物

<400> 19
ccaattgctgt cccgtgcaaa gctg 24

<210> 20
<211> 25
<212> DNA
<213> 人工序列

<220>

<223> 引物

<400> 20
atggtagecc ttggcctgt ggttc 25
序列表

1. 人工序列
2. 引物
3. DNA
4. 人工序列
5. 引物
6. RNA
7. 人工序列
8. 核酸分子
9. RNA
10. 人工序列

[0008]
核酸分子

cagucuacac uacacuacuac cccccaccccg gcuaugaaca angaucaguau geucuacccu g

aa

62

人工序列

核酸分子

uguacuaaga cuacuacac cccccaccccg gcuaugaaca angaucaguau geucuacccu g

aa

62

RNA

26

人工序列

正向

gacaugcaac acuacucuua g

21

27

反向

aaacucuaug uacacuacuac u

21
序 列 表

〈210〉 28
〈211〉 21
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 正向

〈400〉 28
guucagugc ucaunuaacaa g 21

〈210〉 29
〈211〉 21
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 反向

〈400〉 29
uguusaugac caegucaacu u 21

〈210〉 30
〈211〉 19
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 核酸分子

〈400〉 30
uuggegenuu uggugaege 19

〈210〉 31
〈211〉 62
〈212〉 RNA
〈213〉 人工序列

〈220〉

[0010]

86
核酸分子

31
aaccuaugaa agaagcaaa acgecececa cggcugug ucaaucucu caugguucu

eg

62

60

210 32
211 62
212 RNA
213 人工序列

220
223 核酸分子

400 32
aaccuaugaa guaagcaaa agecececa cggcugug ucaaucucu caugguucu

eg

62

60

210 33
211 62
212 RNA
213 人工序列

220
223 核酸分子

400 33
cuaugauag taugacaaca gcecececa ggcuguguc uauacucuca uggauucu

ga

62

60

210 34
211 62
212 RNA
213 人工序列

220
223 核酸分子

[0011]
<400> 34
caugacaacg ecceacaecg gacucuaucau uucuucucug ggceuacg

aa

62

<210> 35
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 35
caugacaacg ecceacaecg gacucuaucau uucuucucug ggceuacg

ac

62

<210> 36
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 36
caugacaacg ecceacaecg gacucuaucau uucuucucug ggceuacg

cc

62

<210> 37
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 37
caugacaacg ecceacaacg gacucuaucau uucuucucug ggceuacg

c

60

[0012]

88
au

〈210〉 38
〈211〉 62
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 核酸分子

〈400〉 38
aguanagaca aacgccccac acgggcccug ugucauauuc ucguucguuc uccguucauuc uccgaaceau 60
ga 62

〈210〉 39
〈211〉 62
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 核酸分子

〈400〉 39
guagaccaac agccccacac acgggugcgu caucuuacuuc uuuccguuuc uccguucauuc uccgaacauag 60
ga 62

〈210〉 40
〈211〉 62
〈212〉 RNA
〈213〉 人工序列

〈220〉
〈223〉 核酸分子

〈400〉 40
agucacacag cccccacacg gcuguucga uacuucucau guucuucgg gacacucaga 60
ag 62

[0013]
<210> 41
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 41
acacacccc caacgcaucu gugauacuc uucacaguc ucuucgauc cagagagac 60
au
62

<210> 42
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 42
acacccca cccgcaucu ugcacauac ucauggguu ucaggacca uagauacua 60
ga
62

<210> 43
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 43
caccccaaca cggcgacuc ucguacauucu cauggcuuc uggcaacgc uggacuacg 60
cu
62

[0014]
<210> 44
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 44
agcccccaac ggccuguguc uacucuucu uugguucugc gaaccaugag aaauagac

aa

<210> 45
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 45
gcccccaac ggcuguguc uacucuucu ugguucugc gaaccaugag aaauagaca

ac

<210> 46
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 46
ccccccaacg gcctgugucca uactucuca ugguucucgg aaccaugaga aguacaca

cn

<210> 47
<211> 62

[0015]
核酸分子

cecaacaegc uguacuacgu ucuaccaacg gcuacuacag acaaguguacu ccugaacgac 60
gc

[0016]
<220>
<223> 核酸分子

<400> 50
ageguacau uacuuniage ccacaccegg cuucucucau uacuacagc cunucuugg 60
t
61

<210> 51
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 51
ageaagtguu caaguactuu agccacacae cgccuaaggu caacuaacag cugcuuuuic 60
gg 62

<210> 52
<211> 61
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 52
gcagagcuac auugacuuaa geccccaace ggcuuaangg auugacacag ugcuucuug 60
g 61

<210> 53
<211> 62
<212> RNA
<213> 人工序列

<220>

[0017]
核酸分子

uuguangacg guiuaaauu euccecaaceg gauauugua cgagacaac acucuucuegg

gu

核酸分子

uuguangacg uguuacauu uuucceceu ugcgauauu aucagacaac acucuucu

n8

核酸分子

aaagctgcca atgeecceg acc

gag

核酸分子

tagcgggtg gectegtet tg
<210> 57
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

400> 57
cgucaacaa aagegeaam ccccaacacc gaaugcgeu uuhgngac gcunucnegg 60
aa
62

<210> 58
<211> 62
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

400> 58
agegucacaa aaaaagegea aumccceacac cggaamugeg cuuugnggug acgcucuenuc 60
gg
62

<210> 59
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 引物

400> 59
cctggacatca agctggcctt ggac 24

<210> 60
<211> 24
<212> DNA
<213> 人工序列

<220>
<223> 引物

<400> 60
caacagtgtg gcatgggca ctt

<210> 61
<211> 64
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 61
aaccagaga auaugcaaa cagcccacac cggcguug ucaaucucuu caugguuegu
ucaacg

<210> 62
<211> 64
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 62
accagaga auaugcaaa aagccccaa cggcguug ucaaucucuu caugguuegu

<210> 63
<211> 60
<212> RNA
<213> 人工序列

<220>

[0020]
＜223＞ 核酸分子

accangagau guagacaac agecaacec geugucanu uauacacau guinmuegg 60

＜210＞ 64
＜211＞ 58
＜212＞ RNA
＜213＞ 人工序列

＜220＞
＜223＞ 核酸分子

accangagau guagacaac agecaacec geugucanu auauacacau guinmuega 58

＜210＞ 65
＜211＞ 58
＜212＞ RNA
＜213＞ 人工序列

＜220＞
＜223＞ 核酸分子

accangagau guagacaac agecaacec geuugucanu auauacacau guinmuegg 58

＜210＞ 66
＜211＞ 56
＜212＞ RNA
＜213＞ 人工序列

＜220＞
＜223＞ 核酸分子

accangagau guagacaac agecaacec geugucanu auauacacau guinmuegg 58

＜210＞ 67
＜211＞ 54
<212> RNA

<213> 人工序列

<220>
<223> 核酸分子

<400> 67
caugagaag auagacaacag ccaacaccgc ugucaacau uceucaagggu uca

<210> 68
<211> 54
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 68
ccaugagaag uaugacaca ccaacaccgc ugucaacau uceucaagggu uca

<210> 69
<211> 52
<212> RNA
<213> 人工序列

<220>
<223> 核酸分子

<400> 69
caugagaag auagacaac ccaacaccgc ugucaacau uceucaagggu uca
图6

图7
A549细胞

图 8

293细胞

图 9
图 10

图 11
图 12
图 13

TGF β1/肺重量 (pg/mg)

投与组 1
投与组 2
投与组 3
投与组 4
投与组 5
投与组 6
投与组 7
投与组 8
图 14

(A) BALF 中 TNF-α (pg/ml)

投与组 1

投与组 2

投与组 3

(B) BALF 中 IFN-β (pg/ml)

投与组 1

投与组 2

投与组 3
图 15
图16