
US 200800828.00A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0082800 A1

Matsuo (43) Pub. Date: Apr. 3, 2008

(54) DATA PROCESSOR FOR MODIFYING AND (30) Foreign Application Priority Data
EXECUTING OPERATION OF
INSTRUCTION CODE Jul. 19, 2002 (JP)............................... 2002-211060 (P)

(75) Inventor: Masahito Matsuo, Hyogo (JP) Publication Classification
(51) Int. Cl.

Correspondence Address: G06F 9/38 (2006.01)
BUCHANAN, INGERSOLL & ROONEY PC (52) U.S. Cl. .. 712/226; 712/E09
POST OFFICE BOX 1404
ALEXANDRIA, VA 22313-1404 (US) (57) ABSTRACT

A MOD SAT instruction indicating that a 16 bit saturation
is to be carried out with respect to the operation of one of

(73) Assignee: Renesas Technology Corp. instructions executed in parallel is placed in the left con
tainer and an ADD instruction is placed in the right con

21) Appl. No.: 11F976,568 tainer. When the instruction decode unit decodes these
(21) ppl. No 9 instructions, the instruction decode unit indicates that the
(22) Filed: Oct. 25, 2007 instruction execution unit executes the ADD instruction

accompanying a saturation process. Accordingly, the opera
Related U.S. Application Data tion of a great number of instructions can be modified by

combining instructions and, therefore, the basic instruction
(63) Continuation of application No. 10/443,768, filed on length can be made short and it becomes possible to increase

May 23, 2003. the code efficiency.

IF STAGE D STAGE

FETCH
INSTRUCTION

E STAGE . M STAGE W STA
MEMORY WRIT
ACCESS

INSTRUCTION
EXECUTION

INSTRUCTION
DECODE

404 4.(
E2 STAGE

INSTRUCTION
EXECUTION 2

401 402 403 406

Patent Application Publication Apr. 3, 2008 Sheet 1 of 27 US 2008/0082800 A1

FIG.
BIT NUMBER 0 15

RO -
R1 -2
R2 -3
R3 -4
R4 -5
R5 -6
R6 -7
R7 -8
R8 -9
R9 - 10
R10 -11
R11 -12
R12 -13
R13 14

R14 - 15
R15 17

CRO PSW 18

BIT NUMBER O 39

Patent Application Publication Apr. 3, 2008 Sheet 2 of 27 US 2008/0082800 A1

FIG.2

BIT NUMBER 11 12 13. 14 15
PSW SM FOFSC

31 32 33 34 35 36

FIG.3

BIT NUMBER 0 1 2 16 17 31

LEFT CONTAINER RIGHT CONTAINER

51 52 53

FIG.4

INSTRUCTION EXECUTION ORDER

FORMAT LEFT RIGHT
CONTAINER CONTAINER

00 SHORT x 2 PARALLEL FIRST FIRST
01 | SHORT x 2 SEQUENTIAL | FIRST SECOND

SHORT x 2 SEGUENTIAL SECOND FIRST

LONG x 1 - | FIRST

Patent Application Publication Apr. 3, 2008 Sheet 3 of 27 US 2008/0082800 A1

FIG.5

BIT NUMBER
O 5 6 9 10 13 14

61 62 63 64

FIG.6

BIT NUMBER

O 6 7 14

7 72

Patent Application Publication Apr. 3, 2008 Sheet 4 of 27 US 2008/0082800 A1

&

S.

8

O .S D

o

Patent Application Publication Apr. 3, 2008 Sheet 5 of 27 US 2008/0082800 A1

FIG.8

---------------- a 100 . . .
DATA PROCESSOR a 10

CONTROL
UNIT

13

FIRST SECOND
OPERATION OPERATION

UNIT

I D.

INTERNAL OPERAND INTERNALSIGNAL
NSTRUCTION INSTON ocesse EAIA
FETCH UNIT MEMORY UNIT MEMORY

EXTERNA EXTERNAL CONTROL
ADDRESS BUS DATABUS SIGNAL

IA: INSTRUCTION ADDRESS
ID: INSTRUCTION DATA (INSTRUCTION CODE)
OA: OPERAND ADDRESS
OD: OPERAND DATA

Patent Application Publication Apr. 3, 2008 Sheet 6 of 27 US 2008/0082800 A1

FIG.9
113

- - - - - - - - - - - - - - a sm as as up m - a sm - w - a mals as ---------

INSTRUCTION DECODE UNIT

NSTRUCTION 0 1 2 3 4. 16 17 REGISTER 31
LEFT CONTAINER RIGHT CONTAINER

D STAGE
CONTROL
UNIT

EXPANSION
DATA
GENERATION
UNIT

FIG.10

IF STAGE D STAGE E STAGE . M STAGE W STA

MEMORY
ACCESS

404
E2 STAGE

INSTRUCTION
EXECUTION 2

401 402 403 406

INSTRUCTION
FETCH

INSTRUCTION
DECODE

INSTRUCTION
EXECUTION

Patent Application Publication Apr. 3, 2008 Sheet 7 of 27 US 2008/0082800 A1

FIG.11
BIT NUMBER

O 5 6 9 10 13 14

MOD SAT 101111 0001 0000 0

FIG.12
BIT NUMBER

O 5 6 9 10 13 14

MOD SATB 101111 000 000 0

FIG.13
BIT NUMBER

O 5 6 9 10 13 4

MOD SATN 1011 0010 0000 0

FIG.14
BIT NUMBER

O 5 6 9.10 13 4

MOD SATX 101111 001 0000 0

FIG.15
BIT NUMBER

O 5 6 9 10 13 14

ADD. Rodest,Rsrc 000001 Rdest Rsrc 0

US 2008/0082800 A1

TÕTTICO,TOTOOO, T,TOOOOOOEDOLOLO0 , |_0000_1_100000_1_00_ 18 08:LZ 9Z£Z ZZ1 | 9 || 9 ||Z || || ||8 LZ || 0

HEEWN?IN LI8

Patent Application Publication Apr. 3, 2008 Sheet 8 of 27

Patent Application Publication Apr. 3, 2008 Sheet 9 of 27 US 2008/0082800 A1

FIG.17

BEFORE AFTER
EXECUTION EXECUTION

RO 0x9000

R2 0x2000 0x2000

S O o

FIG.18
BEFORE AFTER
EXECUTION EXECUTION

RO 0x9000 Ox5000

R2 Oxc000

S O o

US 2008/0082800 A1 Patent Application Publication Apr. 3, 2008 Sheet 10 of 27

|0

| 18 0817 97£Z ZZ1 | 9 | G |Z || || ||8 LZ || 0

Œ00)[0000:00000)[0]) 0000 || 1000 || || || 101 || 00_

838WnN LI?

US 2008/0082800 A1

1][108||0 LIWNIW HELEQ

ETI=} HELSISOBH

0

£Z |HBC]OOEO ONOOES

Patent Application Publication Apr. 3, 2008 Sheet 11 of 27

Patent Application Publication Apr. 3, 2008 Sheet 12 of 27 US 2008/0082800 A1

FIG.2
BEFORE AFTER
EXECUTION EXECUTION

RO 0x7000

R2 0x2000 0x2000

S o

FIG.22
BEFORE AFTER
EXECUTION EXECUTION

RO 0x9000 0x8000

R2 Oxc000 Oxc000

S O

FIG.23
BIT NUMBER

O 5 6 9 10 3 14

SL I Rodestimm4 01.0001 Rdest imm4 - 1

US 2008/0082800 A1

----£#'OH ITIS-IVS GOW W+ A—,—v-\ | || 11000000 :1000?0) || 0 || 00001000TITIOTTOOT

Patent Application Publication Apr. 3, 2008 Sheet 13 of 27

US 2008/0082800 A1 2008 Sheet 15 Of 27 9 Patent Application Publication Apr. 3

„LIINI] © <> -1 \J \J W UJIN V C-1-10-1?

Patent Application Publication Apr. 3, 2008 Sheet 16 of 27 US 2008/0082800 A1

FIG.27

BIT NUMBER

O 5 6 9 10 13 14

STB Rsrc GRsrc2 111100 Rsrc Rsrc2 0.

US 2008/0082800 A1

18,08LZ 9Z£Z ZZL || 9 | G |Z || || ||8 LZ || 0

HEELWITIN LIE

Patent Application Publication Apr. 3, 2008 Sheet 17 of 27

Patent Application Publication Apr. 3, 2008 Sheet 18 of 27 US 2008/0082800 A1

co

US 2008/0082800 A1

F5T??TOETÕÕ?? T????. LIOOOOOL LIL
(OT: 0000 || 0100 || I || 101 || 0 | 0100 || 0000100000 ·

18 08LZ 9Z£Z ZZ[| 9 | G |Z || || ||8 LZ || 0

}|E|E|W|[^\N ILIE 08’0I-H

Patent Application Publication Apr. 3, 2008 Sheet 19 of 27

US 2008/0082800 A1

TOITTOO---T-TOGO,100000| 0 | 01000000100000: || 00 || XLVSTGOW6H'8H CJCIV.’ W-H „———, --) |0| 0000? 100| | | | 0 ||| 0 || 1001 || .000 || ||100000FTOOT
18 O9LZ 9Z£Z ZZL || 9 || 9 ||Z || || ||8 LZ • ! 0

}}=|8|Wf]N LIE | 8°0IH

Patent Application Publication Apr. 3, 2008 Sheet 20 of 27

Patent Application Publication Apr. 3, 2008 Sheet 21 of 27 US 2008/0082800 A1

FIG.32

BIT NUMBER r

O 5 6 9 O 13 4

MOD2B 101111 01.01 0000 0

US 2008/0082800 A1

OLOLOOLLOOOOLLOOOOOOOT?T????ITTOTOFFTTTTOTTõõT ? ?Z || 0

}}E{EWTIN LIE

Patent Application Publication Apr. 3, 2008 Sheet 22 of 27

US 2008/0082800 A1

ET]]-} HELSIOE}}

| | | | | |

HECIO OEC] CJNO OES

Patent Application Publication Apr. 3, 2008 Sheet 23 of 27

Patent Application Publication Apr. 3, 2008 Sheet 24 of 27 US 2008/0082800 A1

FIG.35

BEFORE AFTER
EXECUTION EXECUTION

RO 0x0001 Oxffff

R2 0x01 02 0x002

FIG.36

BEFORE AFTER
EXECUTION EXECUTION

RO 0x0001 Oxfeff
R2 0x002 0x01 O2

Patent Application Publication Apr. 3, 2008 Sheet 26 of 27 US 2008/0082800 A1

FIG.38

BIT NUMBER
O 3 12 13 415

PREFIX 0000 SS2S30
511 512 514

513

Patent Application Publication Apr. 3, 2008 Sheet 27 of 27 US 2008/0082800 A1

FIG.39

'll - r600 . .

DATA PROCESSOR 601
- C--------

MPU CORE UNIT 611

CONTROL UNIT
INSTRUCTION QUEUE - 612

ISISSION INSTRUCTIONDECODE UNIT
o 15 16 31 32 47 48 "f 63,

PREFX FIRST CONTAINER SECOND CONTAINER THIRD CONTAINER

7-622 V -625 i
2 55. FIRST SECOND THIRD

DECODER DECODER DECODER
l

CONTROL
SIGNAL

FIRST
OPERATION

SECOND
OPERATION

THIRD
OPERATION
UNT

| libi A. OATOD,osos D D 6
CO

INSTRUCTION INTERNAL OPERAND LC INTERNAL
FETCH UNIT SETION ACCESS UNIT DATA MEMORY

SIG

EXTERNAL EXTERNAL CONTROL
ADDRESS DATABUS SIGNAL
BUS

A: INSTRUCTION ADDRESS
D: INSTRUCTION DATA (INSTRUCTION CODE)
OA: OPERAND ADDRESS
OD: OPERAND DATA

US 2008/0082800 A1

DATA PROCESSOR FOR MODIFYING AND
EXECUTING OPERATION OF INSTRUCTION

CODE

BACKGROUND OF THE INVENTION

0001)
0002 The present invention relates to a data processor for
fetching and sequentially executing an instruction code, and
more particularly to a data processor having a function of
modifying the content of the operation of an instruction
which is executable alone.

0003 2. Description of the Background Art
0004. In recent years the performance of applications has
been enhanced and the number of functions of applications
has increased and, at the same time, the number of types of
instructions required for a data processor. Such as a micro
processor, has also increased. In general, selection of
instructions is carried out taking the target application, cost
and the like into consideration at the time the instruction set
is determined when designing a data processor.
0005. It is important to increase the code efficiency in
order to, for example, lower product cost. In a data processor
built into an equipment wherein a program is written into a
ROM (Read Only Memory), the size of the program is a
significant factor in determining product cost and, therefore,
it is particularly important to increase code efficiency.

1. Field of the Invention

0006 An increase in code efficiency is achieved by
selecting instructions having a high frequency of execution
and by implementing these instructions as instructions of
smaller code sizes. When, in order to make the basic
instruction length shorter, the number of instructions is too
greatly reduced, however, the desired function or perfor
mance cannot be obtained. In addition, in Some cases, on
contrary, the number of instructions necessary for imple
mentation of a predetermined process increases, which
results in an increase in the code size.

0007 On the other hand, in the case of the development
of a specific data processor having a certain degree of
versatility, it is necessary to implement instructions utilized
in the target application in the data processor in order to
efficiently process this application. In order to efficiently
cope with multimedia processing, instructions including a
product-Sum operation instruction are, for example, added.
There is a tradeoff between reduction in cost as a result of
increase in code efficiency and the addition of instructions
for the enhancement of performance.
0008. In a data processor for carrying out a signal pro
cess, for example, a Saturation operation is frequency used.
In the case that an overflow generates when a Saturation
operation is carried out a maximum value is set as a result
of the operation and in the case that an underflow generates
when a saturation operation is carried out a minimum value
is set as a result of the operation, thereby it becomes possible
to prevent the result of the operation from being converted
from the maximum value to the minimum value or from the
minimum value to the maximum value.

0009. However, there are many operation instructions
that must be implemented as Saturation operations, such as
addition and Subtraction, sign change, calculation of the
absolute value, shift and the like. In addition, for each of

Apr. 3, 2008

these operations the operand may be given as the immediate
data or the operand may be stored in a register, an accumu
lator or a memory and, therefore, many instructions must be
provided according to the types of operands.
0010 Thus, in the case that an instruction with a satura
tion operation function and an instruction without a satura
tion operation function are both provided, the number of
instructions that are implemented increase and the bit width
necessary for the instructions increases so that the code
efficiency is decreased. In particular, in a versatile data
processor, the size of an instruction is, at least, a byte (eight
bit) unit. Furthermore, many data processors adopt an
instruction set of 16/32/64bit units in order to simplify
hardware control, in order to increase the operational fre
quency and in order to achieve enhancement of perfor
mance. Accordingly, restrictions in respect to instruction
allocation become great and it becomes difficult to allocate
many instructions with instructions of a short length so that
reduction of costs becomes difficult.

0011. In order to solve such a problem, a data processor
has been developed that is provided with a function of
designating an operation mode and that can execute different
operation contents depending on the operation mode even
for the same instruction code. However, Saturation operation
is not, in general, carried out in an address calculation or the
like. In the case that the same instructions are utilized for
address calculation and for a data operation, and a Saturation
operation is required in the data operation, it becomes
necessary to frequently carry out change of the mode setting.
Accordingly, in Such a case, the overhead required for
change of the mode setting becomes great and the perfor
mance may significantly deteriorate.
0012. In addition, the content of the operation is not
determined by the instruction codes alone and, therefore,
debugging of the program becomes difficult and the possi
bility of bugs becoming incorporated in the program
becomes high. In the case that the same process is converted
into Subroutines, for example, different mode settings when
calling out such subroutines lead to different operational
contents of the subroutines due the status thereof and,
thereby, a problem may arise causing a malfunction.
0013 As described above, in the data processor accord
ing to a prior art, a great number of independent operation
instructions are attempted to be implemented in order to
increase performance, resulting in a long basic instruction
length and, therefore, a problem arises wherein the code
efficiency is decreased leading to higher product costs.
0014. In addition, in the case that different operations are
executed using the same instruction according to the mode
setting, the debugging of a program becomes difficult caus
ing a problem wherein the possibility of the incorporation of
bugs in a program is increased and wherein the overhead
accompanying change in the mode setting becomes great, so
that processing performance is lowered.

SUMMARY OF THE INVENTION

0015. An object of the present invention is to provide a
data processor wherein the basic instruction length can be
made short so as to increase the code efficiency while
implementing a large number of executable instructions.
0016. Another object of the present invention is to pro
vide a data processor wherein debugging of Software is easy
and bugs in the software are prevented.

US 2008/0082800 A1

0017 According to one aspect of the present invention, a
data processor includes: an instruction fetch unit fetching an
instruction code; an instruction decode unit decoding the
instruction code fetched by the instruction fetch unit; an
instruction execution unit executing an instruction in
response to the result of decoding by the instruction decode
unit; and a circuit, in the case that the instruction code
indicates a modification of operations of a plurality of other
instruction codes, modifying the operations and allowing the
instruction execution unit to execute the modified operations
of the plurality of other instruction codes.

0018 Since the circuit modifies the operation of the
plurality of other instruction codes, the operations of many
instructions can be modified by combining instructions so
that the basic instruction length can be made short and it
becomes possible to increase the code efficiency. In addition,
the content of the operations is determined solely by the
instruction codes and, therefore, debugging of software
becomes easy and it becomes possible to prevent software
bugs. Furthermore, one instruction code modifies the opera
tions of a plurality of other instruction codes and, therefore,
further increase in the code efficiency becomes possible.

0.019 According to another aspect of the present inven
tion, a data processor includes: an instruction fetch unit
fetching an instruction code; an instruction decode unit
decoding the instruction code fetched by the instruction
fetch unit; an instruction execution unit executing an instruc
tion in response to the result of decoding by the instruction
decode unit; and a circuit, in the case that the instruction
code indicates a modification of an operation of an instruc
tion code of the next instruction, modifying the operation
and allowing the instruction execution unit to execute the
modified operation of the instruction code of said next
instruction.

0020 Since the circuit modifies the operation of the
instruction code of the next instruction, the operations of a
great number of instructions can be modified by combining
instructions and, therefore, it becomes possible to obtain
Substantially the same effects as of increasing the number of
instructions that are implemented.

0021 According to still another aspect of the present
invention, a data processor executing an instruction includ
ing a first operation code and a second operation code,
includes: an instruction fetch unit fetching an instruction
code; an instruction decode unit decoding an instruction
code that has been fetched by the instruction fetch unit; and
an instruction execution unit for executing the instruction in
response to the result of decoding by the instruction decode
unit, wherein the instruction decode unit includes: a first
decoder decoding the first operation code; and a second
decoder decoding the second operation code, the instruction
execution unit includes: a first instruction execution unit
executing the first operation code in response to the result of
decoding by the first decoder; and a second operation
execution unit executing the second operation code in
response to the result of decoding by the second decoder,
and the data processor further includes a circuit, in the case
that the second operation code indicates a modification of an
operation indicated by the first operation code, allowing the
first instruction execution unit to execute a modified opera
tion indicated by the first operation code.

Apr. 3, 2008

0022. Accordingly, it becomes possible for the first
instruction execution unit to execute an operation of an
instruction that has not been implemented.
0023. According to yet another aspect of the present
invention, a data processor includes: an instruction fetch unit
fetching an instruction code; an instruction decode unit
decoding an instruction code fetched by the instruction fetch
unit; and an instruction execution unit executing the instruc
tion in response to the result of decoding by the instruction
decode unit, wherein at the time of processing a first
instruction including a first instruction code and a second
instruction code wherein parallel execution is defined as an
instruction, and a second instruction including one or a
plurality of instruction codes to be executed after the first
instruction, and the data processor further includes a circuit
allowing the instruction execution unit to execute modified
operations of the second instruction code and the one or
plurality of instruction codes included in the second instruc
tion in the case that the first instruction code indicates
modifications of operations of the second instruction code
and of the one or plurality of instruction codes included in
the second instruction.

0024. Accordingly, the operations of the second instruc
tion code included in the first instruction and the operations
of the one or the plurality of instruction codes included in the
next instruction can be modified so that it becomes possible
to further increase the code efficiency.
0025. According to yet another aspect of the present
invention, a data processor executing an instruction includ
ing a plurality of operation codes and an instruction prefix
word designating the modification of the operation indicated
by the plurality of operation codes, includes: an instruction
fetch unit fetching an instruction code; an instruction decode
unit decoding an instruction code fetched by the instruction
fetch unit; and an instruction execution unit executing the
instruction in response to the result of decoding by the
instruction decode unit, wherein the instruction decode unit
includes a plurality of decoders decoding the plurality of
operation codes, the instruction execution unit includes a
plurality of instruction execution units executing the opera
tion indicated by the plurality of operation codes in response
to the results of decoding obtained by the plurality of
decoders, and the data processor further includes a circuit
determining whether or not each operation designated by the
corresponding operation code is to be modified in response
to the instruction prefix word and allowing the correspond
ing instruction execution unit to execute the corresponding
operation.
0026. Since operations indicated by a plurality of opera
tion codes can be modified by an instruction prefix word, the
basic instruction length can be made short and it becomes
possible to increase the code efficiency.
0027 According to yet another aspect of the present
invention, a data processor includes: an instruction fetch unit
fetching an instruction code; an instruction decode unit for
decoding an instruction code fetched by the instruction fetch
unit; an instruction execution unit executing the instruction
in response to the result of decoding by the instruction
decode unit; and a circuit allowing the instruction execution
unit to execute the operation with respect to a plurality of
pieces of data designated by the other instruction code in the
case that an instruction code indicates that a modification of
an operation of other instruction code is to be modified.

US 2008/0082800 A1

0028. Since a circuit allowing the instruction execution
unit to execute the operation with respect to a plurality of
pieces of data designated by other instruction code is
included, the operation of many instructions can be modified
by combining instructions so that the basic instruction length
can be made short and it becomes possible to increase the
code efficiency. In addition, the content of the operation is
determined by an instruction code alone and, therefore,
debugging of Software is easy and it becomes possible to
prevent Software bugs. Furthermore, the operation is modi
fied so as to be executed with respect to a plurality of pieces
of data with one instruction code and, therefore, it becomes
possible to further increase the code efficiency.
0029. The foregoing and other objects, features, aspects
and advantages of the present invention will become more
apparent from the following detailed description of the
present invention when taken in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0030 FIG. 1 is a diagram for describing the register set
in a data processor according to the first embodiment of the
present invention;
0031 FIG. 2 is a diagram for describing PSW18 in detail:
0032 FIG. 3 is a diagram for describing an instruction
format for the data processor according to the first embodi
ment of the present invention;
0033 FIG. 4 is a diagram for describing the content of
FM bit 51:

0034 FIG. 5 is a diagram showing bit allocation of a
short instruction having two operands;
0035 FIG. 6 is a diagram showing bit allocation of a
branch instruction in the short format;

0.036 FIG. 7 is a diagram showing bit allocation of a
three operand instruction or a load/store instruction having
displacement or immediate data of 16 bits:
0037 FIG. 8 is a block diagram showing a schematic
configuration of the data processor according to the first
embodiment of the present invention:
0038 FIG. 9 is a block diagram for describing instruction
decode unit 113 in further detail;
0.039 FIG. 10 is a diagram for describing pipeline pro
cessing of data processor 100 according to the first embodi
ment of the present invention;
0040 FIG. 11 is a diagram for describing bit allocation of
operation modifying instruction MOD SAT:
0041 FIG. 12 is a diagram for describing bit allocation of
operation modifying instruction MOD SATB;
0.042 FIG. 13 is a diagram for describing bit allocation of
operation modifying instruction MOD SATN;
0.043 FIG. 14 is a diagram for describing bit allocation of
operation modifying instruction MOD SATX;
0044 FIG. 15 is a diagram for describing bit allocation of
an ADD instruction for carrying out a 16 bit addition
between registers;

Apr. 3, 2008

0045 FIG. 16 is a diagram showing a 32 bit instruction
in the case that two ADD instructions are carried out in
parallel;

0046 FIG. 17 is a diagram showing register values and S
flag values before and after the operation in the case that
“ADD R0, R2 is solely executed and an overflow occurs:
0047 FIG. 18 is a diagram showing register values and S
flag values before and after the operation in the case that
“ADD R0, R2 is solely executed and an underflow occurs:
0048 FIG. 19 is a diagram showing a 32 bit instruction
in the case that an ADD instruction is executed in parallel
with a MOD SAT:

0049 FIG. 20 is a block diagram showing configurations
of an ALU and a shifter and of its peripheral circuit within
second operation unit 117;
0050 FIG. 21 is a diagram showing register values and S
flag values before and after the operation in the case that an
instruction “ADD R0, R2, of which the operation is modi
fied, is executed and an overflow occurs;

0051 FIG. 22 is a diagram showing register values and S
flag values before and after the operation in the case that an
instruction “ADD R0, R2, of which the operation is modi
fied, is executed and an underflow occurs;

0052 FIG. 23 is a diagram for describing bit allocation of
a left shift instruction SLLI, of which the amount of shift is
designated by immediate data of 4 bits;

0053 FIG. 24 is a diagram showing a 32 bit instruction
in the case that an SLLI instruction is executed parallel to a
MOD SAT:

0054 FIG. 25 is a diagram showing a 32 bit instruction
in the case wherein an ADD instruction is placed in a left
container 52 and a MOD SAT instruction is placed in a right
container 53;

0055 FIG. 26 is a block diagram showing configurations
of an ALU and an alignment circuit and of its peripheral
circuit within first operation unit 116;

0056 FIG. 27 is a diagram showing instruction bit allo
cation of a byte store (STB) instruction in a register indirect
mode;

0057 FIG. 28 is a diagram showing a 32 bit instruction
in the case that an STB instruction is executed parallel to a
MOD SATB instruction;

0058 FIG. 29 is a diagram showing instruction bit allo
cation of a three operand addition (ADD3) instruction for
carrying out an addition of immediate data;

0059 FIG. 30 is a diagram showing one example of a
case wherein the operation of an ADD instruction in a long
format is modified;

0060 FIG. 31 is a diagram showing one example of a
method for utilizing a MOD SATX instruction;

0061 FIG. 32 is a diagram showing instruction bit allo
cation of a MOD 2B instruction for indicating that two
eight bit operations are executed in parallel with respect to
the operation of a pair of instructions executed in parallel;

US 2008/0082800 A1

0062 FIG. 33 is a diagram showing one example in the
case wherein a SUB instruction is executed parallel to a
MOD 2B instruction;

0063 FIG. 34 is a diagram showing, in detail, a block
configuration of ALU 133 within second operation unit 117
and of its periphery for describing an SIMD process of two
byte operations;

0064 FIG. 35 is a diagram showing one example of the
result of a subtraction process of two pieces of byte data;

0065 FIG. 36 is a diagram for describing an operation
process in the case that a subtraction process of 1.6 bit data
having the same initial value as in FIG. 35 is carried out:

0.066 FIG. 37 is a diagram showing a format of a basic
instruction executed by a data processor according to the
second embodiment of the present invention;

0067 FIG.38 is a diagram for describing prefix word 501
shown in FIG. 37 in detail; and

0068 FIG. 39 is a block diagram showing a schematic
configuration of the data processor according to the second
embodiment of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First Embodiment

0069. According to the first embodiment of the present
invention, though the case wherein the data processor is a 16
bit processor and the bit length of addresses and data is 16
bits is described, the data processor can be applied in the
case of bit length of addresses and data of 32 bits or 64bits.

0070 FIG. 1 is a diagram for describing the register set
of the data processor according to the first embodiment of
the present invention. The big endian system is adopted with
respect to bit order and byte order in this data processor and
the MSB (most significant bit) becomes bit 0 in the bit
position.

0071 Sixteen general purpose registers R0 (1) to R15
(16, 17) store data and address values. Register R13 (14) is
allocated as a link register for storing a return address at the
time of subroutine jump. Register R15 (16, 17) is a stack
pointer (SP) and includes a stack pointer SPI 16 for interrupt
and a stack pointer SPU 17 for user. These registers are
switched by means of a stack mode bit within the below
described processor status word (PSW) 18. Hereinafter, SPI
16 and SPU17 are generically referred to as a stack pointer
(SP). Here, the number of the register that becomes an
operand is designated in a register designation field of 4 bits,
except for special cases.

0072. In addition, the data processor according to the
present embodiment is provided with control registers such
as PSW (CR0) 18 and a program counter (PC) (not shown).
These control registers have the register numbers indicated
by 4 bits in the same manner as general purpose registers.
Here, these registers do not directly relate to the present
invention and, therefore, detailed descriptions thereof are
omitted.

Apr. 3, 2008

0073 Registers A0 (21) and A1 (22) indicate accumula
tors of 40 bits.

0074 FIG. 2 is a diagram for describing PSW18 in detail.
This PSW18 includes a stack mode (SM) bit 31 indicating
the selection of either stack pointer SPI 16 for interrupt or
stack pointer SPU17 for user, as well as F0 flag 33, F1 flag
34, saturation (S) flag 35 and carry (C) flag 36 which are
conditional flags set by a comparison instruction, or the like,
and are referred to as conditions of conditional branch
instructions, or the like. Other flags such as status flags and
mode bit 32 do not directly relate to the present invention
and, therefore, detailed descriptions thereof are omitted.
0075 FIG. 3 is a diagram for describing an instruction
format of the data processor according to the present
embodiment. The data processor according to the present
embodiment processes two way VLIW (very long instruc
tion word) instruction sets. The basic instruction length is
fixed at 32 bits and is aligned within the 32 bit borders. The
PC value is controlled by the instruction word address of 32
bits.

0076. As shown in FIG. 3, an instruction code of 32 bits
is formed of a format designation (FM) bit 51 of 2 bits
indicating the format of the instruction, a left container 52 of
15 bits and a right container 53 of 15 bits. Left container 52
and right container 53, respectively, can store Subinstruc
tions in short formats of 15 bits and in addition, the two
containers together can store a Subinstruction in a long
format of 30 bits. Hereinafter, for the purpose of simplifi
cation a subinstruction in the short format is referred to as
short instruction and a Subinstruction in the long format is
referred to as long instruction.
0077 FIG. 4 is a diagram for describing the content of
FM bit 51. FM bit 51 designates the format of the instruc
tions and execution order of the two short instructions. In the
instruction execution order “first indicates the instruction to
be executed first and “second’ indicates the instruction to be
executed afterwards. In the case that FM bit 51 is “11”, this
indicates that left container 52 and right container 53 hold
one long instruction of 30 bits. Other cases indicate that left
container 52 and right container 53, respectively, hold short
instructions.

0078. In the case that FM bit 51 is “00, this indicates that
two short instructions are executed in parallel. In addition, in
the case that the FM bit 51 is “01, the short instruction held
in right container 53 is executed after the short instruction
held in left container 52 is executed. In addition, in the case
that FM bit 51 is “10, this indicates that the short instruction
held in left container 52 is executed after the short instruc
tion held in right container 53 is executed. Thus, two short
instructions to be sequentially executed can be encoded as
one 32 bit instruction and, thereby, an increase in the code
efficiency is achieved.

0079 FIGS. 5 to 7 are diagrams showing examples of
typical bit allocations of an instruction for the data processor
according to the present embodiment. FIG. 5 shows bit
allocation of a short instruction having two operands. Fields
61 and 64 are operation code fields. In addition, the accu
mulator number is, in Some cases, designated by field 64.

0080 Fields 62 and 63 designate the storage position of
data that is referred to, or is updated, as an operand with a

US 2008/0082800 A1

register number or an accumulator number. In addition, field
63 may, in some cases, designate immediate data of 4 bits.
0081 FIG. 6 shows bit allocation of a branch instruction
in the short format. This instruction format is formed of an
operation code field 71 of seven bits and a branch displace
ment field 72 of eight bits. The branch displacement is
designated by an offset from this instruction word (32 bits)
in the same manner as the PC value.

0082 FIG. 7 shows bit allocation of a three operand
instruction or a load/store instruction having a displacement
or immediate data of 16 bits. This instruction format is
formed of an operation code field 81, fields 82 and 83 that
designate register numbers, or the like, in the same manner
as the short format and an expansion data field 84 that
designates a displacement, immediate data, or the like, of 16
bits.

0083. In addition to the above described instruction for
mat, an instruction, such as a NOP (no operation) instruc
tion, wherein the entirety of 15 bits is an operation code and
an instruction, such as a 1 operand instruction, having a
special bit allocation exist.
0084. The respective subinstructions implemented in the
data processor according to the present embodiment form a
RISC (reduced instruction set computer)-like instruction set.
Instructions that access memories are load/store instructions
alone. Operation instructions carry out operations corre
sponding to operands or immediate operands stored in a
register or in an accumulator.
0085 Addressing modes of accesses to operand data have
five types, a register indirect mode, a register indirect mode
with a post increment, a register indirect mode with a post
decrement, a push mode and a register relative indirect
mode. These five types of mnemonics are, respectively,
indicated by “(a)Rsrc”, “(a)Rsrc--, “(a)Rsrc-, “(a)-SP” and
“(a)(disp 16, RSrc).”“Rsrc indicates the register number
designating the base address and “disp 16' indicates the
displacement value of 16 bits. Here, the addresses of oper
ands are designated by byte addresses.
0.086 Load/store instructions other than of the register
relative indirect mode have the instruction format shown in
FIG. 5. That is to say, the base register number is designated
by field 63 and the number of the register in which a value
loaded from a memory is written or the number of the
register in which the value stored in the memory is held is
designated by field 62.
0087. In the register indirect mode, the value of the
register designated as the base register becomes the operand
address.

0088. In the register indirect mode with a post increment,
the value of the register designated as the base register
becomes the operand address and the value of this base
register is increased by the size (number of bytes) of the
operand as a post increment and is written back into the
register.

0089. In the register indirect mode with a post decrement,
the value of the register designated as the base register
becomes the operand address and the value of this base
register is decreased by the size (number of bytes) of the
operand as a post decrement and is written back into the
register.

Apr. 3, 2008

0090 The push mode is a store instruction and can be
utilized only in the case that the base register is R15 (SP)
wherein the SP value is decreased by the size (number of
bytes) of the operand as a post decrement so as to become
the operand address and this reduced value by a decrement
is written back into the SP.

0091. The format of load/store instructions in the register
relative indirect mode is the instruction format shown in
FIG. 7. The number of the base register is designated by field
83 and the number of the register in which the value loaded
from a memory is written or the number of the register that
holds the value stored in a memory is designated by field 82.
In addition, the displacement value from the base address is
designated by field 84. In this register relative indirect mode,
the displacement value of 16 bits is added to the value of the
register designated as the base register so that the operand
address is obtained.

0092 Jump address designation of a jump instruction
includes a register indirect mode wherein the jump address
is designated by the value stored in a register and a PC
relative indirect mode wherein the jump address is desig
nated by the branch displacement from the PC value. This
PC relative indirect mode includes two types, a short format
wherein the branch displacement is designated with eight
bits and a long format wherein the branch displacement is
designated with 16 bits.
0093 FIG. 8 is a block diagram showing a schematic
configuration of a data processor according to the first
embodiment of the present invention. This data processor
100 includes an MPU (micro processing unit) core unit 101,
an instruction fetch unit 102 for fetching instruction data in
response to a request from MPU core unit 101, an internal
instruction memory 103, an operand access unit 104 for
accessing operand data in response to a request from MPU
core unit 101, an internal data memory 105 and an external
bus interface unit 106 for arbitrating a request from instruc
tion fetch unit 102 and operand access unit 104 in order to
access a memory outside of data processor 100.
0094) In addition, MPU core unit 101 includes a control
unit 111 for overall control of MPU core unit 101, a register
file 115, a first operation unit 116, a second operation unit
117 and a PC unit 118 for controlling the PC value. Fur
thermore, control unit 111 includes an instruction queue 112
and an instruction decode unit 113.

0095 Instruction queue 112 is formed of a 32 bit instruc
tion buffer of two entries, effective bits thereof, an input/
output pointer and the like, and is controlled according to a
FIFO (first-in first-out) system. Instruction queue 112 tem
porarily holds instruction data fetched by instruction fetch
unit 102 and transfers this instruction data to instruction
decode unit 118. Instruction decode unit 113 decodes the
instruction data to be executed and generates a control signal
necessary for the execution of instructions.
0096 FIG. 9 is a block diagram for describing instruction
decode unit 113 in further detail. The block diagram shown
in FIG. 9 shows only the connection relationships required
for description of the data processor according to the present
embodiment and does not illustrate portions not relating to
this description.

0097. This instruction decode unit 113 includes an
instruction register 121 for holding instruction data received

US 2008/0082800 A1

from instruction queue 112, a first decoder 122, a second
decoder 123, a pre-decoder 124, an expansion data genera
tion unit 125 and a D stage control unit 126.
0098. Instruction register 121 holds instruction data that

is the object of decoding received from instruction queue
112. Here, the format of the instruction data held in this
instruction register 121 is the same as the instruction format
shown in FIG. 3.

0099 Instruction decode unit 113 is provided with two
decoders (first decoder 122 and second decoder 123) for
generating an execution control signal, or the like, and it is
possible to decode two short instructions in parallel.

0100 First decoder 122 decodes the instruction to be
executed by first operation unit 116 and generates an instruc
tion execution control signal primarily for first operation
unit 116, PC unit 118 and register file 115, a control signal
relating to branch/jump? operand access and the like.

0101 Second decoder 123 decodes the instruction to be
executed by second operation unit 117 and generates an
instruction execution control signal primarily for second
operation unit 117 and register file 115.

0102 Pre-decoder 124 decodes the short instruction to be
executed later while executing the short instruction in
advance in the case that the two short instructions are
sequentially executed in order to determine which of first
decoder 122 or second decoder 123 carries out decoding of
the subsequent instruction after the execution of the previous
instruction.

0103). Here, first decoder 122, second decoder 123 and
pre-decoder 124, respectively, have multiplexers (MUX)
and it is possible to selectively input either the short instruc
tion held in left container 52 or the short instruction held in
right container 53.
0104 Expansion data generation unit 125 receives the
decoding result from first decoder 122 and slices expansion
data Such as immediate data or the displacement necessary
for instruction execution in first operation unit 116. In order
to slice expansion data of an instruction in the long format,
data stored in right container 53 is transferred to expansion
data generation unit 125. Here, the part that generates
immediate data, displacement and the like required for
instruction execution in second operation unit 117 is
included in second decoder 123 as illustrated.

0105 D stage control unit 126 carries out status control
of instruction decoding in the instruction decode stage (D
stage) described below. Here, though D stage control unit
126 need not be included in instruction decode unit 113, it
is included in instruction decode unit 113 to describe the
present embodiment because the analysis of instructions is
involved.

0106. In the first cycle of decoding a 32 bit instruction,
the instruction code stored in left container 52 is always
analyzed in first decoder 122 and the instruction code stored
in right container 53 is always analyzed in second decoder
123. Here, FM bit 51 as well as bit 0 and bit 1 of left
container 52 are analyzed by both decoders. Accordingly,
the instruction to be executed first must be placed in a
position corresponding to the operation unit that executes
this instruction.

Apr. 3, 2008

0.107. In the case that two short instructions are sequen
tially executed, after the earlier decoding of the short
instruction according to the decoding result in pre-decoder
124, the short instruction that is to be carried out later is
fetched into the decoder that is to carry out decoding and is
analyzed. In the case that the short instruction that is
executed later is an instruction that can be processed by
either decoder, first decoder 122 decodes this short instruc
tion.

0.108 Register file 115 corresponds to general purpose
registers R0 to R15 (1 to 17), shown in FIG. 1, and holds the
address value and data that become the object of processing.
This register file 115 is connected to first operation unit 116,
second operation unit 117, PC unit 118 and operand access
unit 104 through a plurality of buses. At the time of
word/two word load instruction execution, the load data is
directly fetched into register file 115 from operand access
unit 104.

0.109 First operation unit 116 primarily executes load/
store instructions, branch instructions, arithmetic operation
instructions, logic operation instructions, comparison
instructions, transfer instructions and the like. This first
operation unit 116 is connected to register file 115, PC unit
118 and operand access unit 104 through a plurality of buses
and transfer of data or addresses required for execution of
instructions is carried out between first operation unit 116,
and register file 115, PC unit 118 and operand access unit
104. In addition, first operation unit 116 fetches expansion
data, such as immediate data or the displacement, required
for the operation from expansion data generation unit 125.
0110. In addition, first operation unit 116 is provided with
an ALU (Arithmetic and Logic Unit) (not shown) and carries
out transfer, comparison, arithmetic operations, logic opera
tions, calculation/transfer of operand addresses, increment/
decrement of operand address values, calculation/transfer of
jump destination addresses and the like. First operation unit
116 writes back the operation results or the results of address
update in the register within register file 115 that has been
designated by the instruction via a bus.
0.111 First operation unit 116 outputs the calculated oper
and address to operand access unit 104 at the time of
execution of a load/store instruction. In addition, first opera
tion unit 116 outputs a jump destination address to PC unit
118 at the time of execution of a jump/branch instruction.
0112 First operation unit 116 outputs store data read out
from register file 115 to operand access unit 104 after first
operation unit 116 holds/aligns store data read out from
register file 115 at the time of execution of a store instruc
tion. In addition, first operation unit 116 carries out a byte
alignment and a Zero/sign expansion on load data fetched
from operand access unit 104 and outputs the result to
register file 115 at the time of byte loading.
0113 PC unit 118 is provided with an arithmetic unit
Such as an incrementor, a latch and the like, and carries out
management/updating of instruction fetch address and man
agement/updating of the execution instruction PC value in
synchronization with the pipeline processing of instructions
upon a control of control of control unit 111. In the case that
process sequences of instructions including the Switching
immediately after resetting are switched, PC unit 118 fetches
the jump destination address from first operation unit 116 so
that the values of a variety of address latches within PC unit
118 are initialized.

US 2008/0082800 A1

0114 PC unit 118 outputs the address of the instruction to
be fetched next to instruction fetch unit 102 at the time of
instruction fetching. In addition, PC unit 118 outputs the
address of a branch instruction required for the calculation
for a branch destination address to first operation unit 116 at
the time of processing of a branch instruction. In addition,
PC unit 118 outputs the address of the instruction succeeding
to subroutine jump/branch instruction to register file 115 as
a return address in the case of a Subroutine jump/branch
instruction.

0115 Second operation unit 117 primarily carries out
processing, such as arithmetic operations, including prod
uct-Sum operation, shift processing, bit manipulation, com
parison and transfer. Second operation unit 117 is connected
to register file 115 via a plurality of buses, reads out
reference operand data from register file 115 and outputs
write-in operand data to register file 115.
0116 Second operation unit 117 includes a 40 bit ALU,
a 40 bit barrel shifter, a 17 bitx17 bit multiplier, an arith
metic unit such as a priority encoder and two 40 bit
accumulators 31 and 32 shown in FIG. 1.

0117 FIG. 10 is a diagram for describing the pipeline
processing of data processor 100 according to the first
embodiment of the present invention. Data processor 100
carries out five stages of pipeline processing, instruction
fetch (IF) stage 401 for fetching instruction data, instruction
decode (D) stage 402 for analyzing an instruction, an
instruction execution (E) stage 403 for executing an opera
tion, a memory access (M) stage 404 for accessing a data
memory and write-back (W) stage 405 for writing a byte
operand loaded from a memory in a register.
0118 Write-in of the operation result in E stage 403 to a
register is completed in E stage 403. In addition, write-in of
data to a register at the time of loading of word (two bytes)
or two words (four bytes) is completed in M stage 404. As
for a product-Sum/product-difference operation, instructions
are further executed in a two stage pipeline of multiplication
and addition. The process (addition) of this rear stage is
referred to as an instruction execution 2 (E2) stage 406.
Thus, multiplication and addition are carried out in a two
stage pipeline and, therefore, a series of product-Sum/prod
uct-difference operations can be executed according to a
throughput of oncefone clock cycle.
0119 Fetching of an instruction and management of
instruction queue 112 are primarily carried out in IF stage
401. The parts with respect to instruction fetch address
management of instruction fetch unit 102, internal instruc
tion memory 103, external bus interface unit 106 and PC
unit 118, as well as the parts for carrying out IF stage control
of control unit 111, instruction fetch control, control of PC
unit 118 and the like operate according to the control of the
above IF stage 401. IF stage 401 is initialized at the time of
execution of a jump in E stage 403.
0120 In IF stage 401, control unit 111 outputs an instruc
tion fetch request to instruction fetch unit 102 in the case that
there is a vacancy in instruction queue 112. Instruction fetch
unit 102 fetches instruction data in response to the value of
the instruction fetch address transferred from PC unit 118.

0121 Instruction fetch unit 102 fetches instruction data
from internal instruction memory 103 in the case that the
corresponding instruction data is in internal instruction

Apr. 3, 2008

memory 103. In this case fetching of instruction data of 32
bits is completed in one clock cycle.

0122) In the case that the corresponding instruction data
is not in internal instruction memory 103, instruction fetch
unit 102 outputs an instruction fetch request to external bus
interface unit 106. External bus interface unit 106 arbitrates
between this instruction fetch request and a request from
operand access unit 104 and fetches instruction data from an
external memory when fetching of instructions become
possible and, then, outputs the instruction data to instruction
fetch unit 102. External bus interface unit 106 can access an
external memory in a two clock cycle at a minimum.
Instruction fetch unit 102 outputs the fetched instruction to
instruction queue 112. The instruction data fetched into
instruction queue 112 is sequentially outputted to instruction
decode unit 113.

0123. In D stage 402, instruction decode unit 113 ana
lyzes the operation code and generates a group of control
signals for controlling the parts relating to the executions of
the instructions, such as first operation unit 116, second
operation unit 117, PC unit 118 and the like. D stage 402 is
initialized at the time of execution of a jump in E stage 403.
In D stage 402, the system is shifted to an idling cycle and
waits by until an effective instruction code is transferred in
the case that an invalid instruction code is transferred from
instruction queue 112.
0.124. In the case that E stage 403 cannot start the next
process, instruction decoder 113 nullifies control signals
outputted to an arithmetic unit and the like and waits until
the completion of processing of the preceding instruction in
E stage 403. In the case that the instruction during the
execution in E stage 403 is, for example, an instruction for
carrying out memory access and a memory access is carried
out in M stage 404 at that time, processing of the preceding
instruction in E stage 403 is made to wait so as to become
of Such a condition.

0.125. In addition, in D stage 402, division of two instruc
tions that are sequentially executed and a sequential control
of two cycle execution instructions are also carried out.
Furthermore, in D stage 402, interference check of a load
operand using a score board register (not shown) and
interference check of an arithmetic unit in second operation
unit 117 are also carried out and, in the case that an
interference is detected, issuing of processing commands are
restricted until the interference is resolved.

0.126 In the case that there is an operation instruction to
refer to a loaded operand immediately after a load instruc
tion of a word or two words, the start of execution of the
operation instruction is delayed until the loading to a register
is completed. In this case, even when the memory access is
completed in one clock cycle, a stall of one clock cycle
occurs. In the case that byte data is loaded, write-in to
register file 115 is completed in W stage 405 which is an
additional stage and, therefore, the stall period is expanded
by additional one cycle.

0127. In addition, in the case that there is a rounding
process utilizing an adder immediately after the product-sum
operation instruction, instruction decode unit 113 delays the
start of execution of the rounding instruction until the
operation of the preceding product-Sum operation instruc
tion is completed. In this case, a stall of one clock cycle

US 2008/0082800 A1

occurs. In the case that product-Sum operation instructions
are in series, a stall does not occur.

0128. Almost all processes concerning instruction pro
cessing except memory accesses and addition and Subtrac
tion processing of product-Sum/product-difference operation
instructions, such as transfers between registers, including
operation, comparison and control registers, operand
address calculations of load/store instructions, calculations
of jump destination addresses of jump instructions, jump
processing, EIT (exception, interruption and trap) detec
tions, jump to the vector address of each EIT and the like are
carried out in E stage 403.

0129. E stage 403 becomes of the idle condition unless a
processing command is issued from D stage 402. In the case
that the instruction being processed in E stage 403 is the
instruction for carrying out an operand access and that a
memory cell access is not completed in M stage 404.
processing in E stage 403 is made to wait for completion.

0130. In E stage 403 first operation unit 116 carries out
arithmetic operations, logic operations, comparison, trans
fer, calculation of the addresses of memory operands or
addresses of branches. In E stage 403, a general purpose
register within register file 115, a control register within first
operation unit 116 or within PC unit 118, values of expan
sion data Such as immediate data and displacement fetched
from instruction decode unit 113 are read-out as source
operands.

0131. At the time of the execution of operation instruc
tions, operations including transfers are carried out in the
ALU within first operation unit 116. In the case that the
destination operand is a general purpose register or a control
register, the operation result in the ALU is written into
register file 115 or into the control register within first
operation unit 116 or within PC unit 118.

0132) In the case of a load/store instruction, first opera
tion unit 116 transfers the operation result (address value) to
operand access unit 104. In the case of a jump instruction,
first operation unit 116 transfers the jump address to PC unit
118. In addition, in the case of a store instruction, first
operation unit 116 aligns the store data read out from the
register file 115 and holds the value thereof.
0133). In addition, in E stage 403 the update of the PC
value independent of the instruction to be executed is also
carried out. PC unit 118 carries out management of the PC
value of the instruction being executed as well as generation
of the address of the instruction to be carried out next. In E
stage 403, in the case that a jump occurs, first operation unit
116 transfers the jump address to PC unit 118 and initial
ization is carried out. In the case that executions of short
instructions are sequentially carried out, an incrementor (not
shown) within PC unit 118 increments the PC value by 1
whenever processing of a 32 bit instruction is started.

0134. In E stage 403, second operation unit 117 carries
out all of the operation processes, except for addition of
product-Sum operations such as arithmetic operations, logic
operations, comparison, transfer, shift and the like. Second
operation unit 117 reads out values held in register file 115
and the accumulator as the values of operands as well as
immediate data sliced by second decoder 123, and carries
out the operation designated by this value in an arithmetic

Apr. 3, 2008

unit within second operation unit 117. Then, the operation
result is written into register file 115 or to the accumulator.
0.135) In E stage 403, update control of the flag value in
the PSW according to the operation result in first operation
unit 116 or in second operation unit 117 is carried out. In
addition, E stage 403 holds an operation control signal for
executing addition/subtraction in the product-Sum/product
difference operation generated by second decoder 123.
Memory access information and load register information
are transferred to M stage 404. Here, the stage control of E
stage 403 is carried out by control unit 111.
0.136 M stage 404 carries out access of an operand using
the address transferred from first operation unit 116 in
response to an operand access request from control unit 111.
In the case that the operand is in internal data memory 105
or in an I/O within a chip (not shown), operand access unit
104 carries out read-out or write-in of an operand from or to
internal data memory 105 or to the I/O within the chip once
per clock cycle.
0.137 In the case that an operand is not in internal data
memory 105 or in the I/O within the chip, a data access
request is outputted to external bus interface 106. External
bus interface unit 106 carries out data access on an external
memory upon receiving the data access request.

0.138. In the case of load, operand access unit 104 trans
fers data read out by external bus interface unit 106 via a
bus. In the case of byte data, the data is transferred to first
operation unit 116. In addition, in the case of word or two
word data, data is directly written into register file 115.
0.139. In the case of store, operand access unit 104
receives aligned store data from first operation unit 116 and
writes the data into an external memory that becomes an
object via external bus interface unit 106. Address genera
tion and access control of the access of the latter half at the
time of non-alignment access are carried out in M stage 404.
0140. In the case of loading of byte data, the load operand
(byte) held within first operation unit 116 is aligned and
undergoes Zero/sign expansion in W Stage 405 and, after
that, is written into register file 115.
0.141. In E2 stage 406, addition processing or subtraction
processing of product-Sum/product-difference operations is
carried out and the addition result or the subtraction result is
written back into the accumulator.

0142. The data processor according to the present
embodiment carries out internal control based on the input
clock and, in the fastest case, each pipeline stage completes
processing in one clock cycle. Here, the clock control is not
directly related to the present embodiment and, therefore,
detailed descriptions are omitted.
0.143 Next, an example of processing of each subinstruc
tion is described. Operation instructions such as addition/
Subtraction, logic operations, comparison and transfer
instructions between registers complete processing in the
three stages of IF stage 401, D stage 402 and E stage 403.
Operations and data transfers are carried out in E stage 403.
0.144 Product-sum/product-difference instructions are
executed for the operation in the two clock cycles of
multiplication processing in E stage 403 and of addition/
Subtraction processing in E2 stage 406. Accordingly, pro

US 2008/0082800 A1

cessing is completed in the four stages of IF stage 401, D
stage 402, E stage 403 and E2 stage 406.
0145 Byte load instructions complete processing in the
five stages of IF stage 401, D stage 402, Estage 403, Mstage
404 and W stage 405. Word/two word load instructions and
store instructions complete processing in the four stages of
IF stage 401, D stage 402, E stage 403 and M stage 404.
0146 In the case of non-aligned access, operand access
unit 104 carries out two accesses for carrying out memory
access in M stage 404. In E stage 403, processing is
completed in one clock cycle. In instructions that require
two cycles for execution, first instruction decoder 122 or
second instruction decoder 123 generates and outputs an
execution control signal for each cycle so that first operation
unit 116 or second operation unit 117 carries out operation
execution in two cycles.

0147 As described above, one 32 bit instruction is
formed of one long instruction and execution of the 32 bit
instruction is completed by processing this one long instruc
tion.

0148. In the case that two short instructions are executed
in parallel, the speed is determined by the process of the
instruction that has a greater process cycle, between the two
short instructions. For example, in the case of a combination
of an instruction executed in two cycles and an instruction
carried out in one cycle, the execution of these two short
instructions requires two cycles.
0149. In the case that two short instructions are sequen

tially executed, the process cycle is determined by a com
bination of the respective subinstructions. That is to say, the
respective instructions are sequentially decoded at the
decode stage so that the respective instructions are sequen
tially executed. For example, in the case of two addition
instructions of which execution is completed in one cycle in
E stage 403, D stage 402 and E stage 403, respectively,
complete processing of each instruction in one cycle, with a
total of two cycles. Decoding of the Succeeding instruction
in D stage 402 is carried out parallel to execution of the
preceding instruction in E stage 403.

0150. Next, operation modification instructions carried
out by the data processor according to the first embodiment
of the present invention are described in detail. FIGS. 11 to
14 are diagrams for describing bit allocations of the opera
tion modification instructions.

0151 A MOD SAT instruction, shown in FIG. 11, is an
instruction that can be utilized only in parallel execution and
is an instruction indicating that Saturation of 16 bits is
carried out with respect to the operation of the other instruc
tion executed in parallel.

0152 AMOD SATB instruction, shown in FIG. 12, is an
instruction that can be utilized only in parallel execution in
the same manner as the MOD SAT instruction shown in
FIG. 11 and is an instruction indicating that Saturation of
eight bits is carried out with respect to the operation of the
other instruction executed in parallel.

0153 AMOD SATN instruction, shown in FIG. 13, is an
instruction indicating that Saturation is carried out with
respect to the operation of the next instruction. This is
utilized in the case wherein saturation is carried out with

Apr. 3, 2008

respect to a Subinstruction in the long format or with respect
to two Subinstructions in the short format executed in
parallel.

0154 AMOD SATS instruction, shown in FIG. 14, is an
instruction indicating that Saturation is carried out with
respect to the operation of the other instruction executed in
parallel and of the next instruction.
0.155 These operation modification instructions are NOP
instructions that do not carry out processing by themselves.
In addition, the operation modification instructions can be
placed in either left container 52 or right container 53.
0156 FIG. 15 is a diagram for describing bit allocation of
an ADD instruction for carrying out 16 bit addition between
registers. When this ADD instruction is executed, the value
of the register designated by RSrc is added to the value of the
register designated by Rdest and the result of the addition is
written back into the register designated by Rdest. This
addition instruction can be executed alone. In this case,
saturation is not carried out.

0157 FIG. 16 is a diagram showing a 32 bit-instruction
in the case that two ADD instructions are executed in
parallel. “ADD R0, R2 is executed by first operation unit
116 and “ADDR1, R3” is executed by second operation unit
117. In the case that this 32 bit-instruction is executed alone,
saturation is not carried out.

0158 FIGS. 17 and 18 are diagrams showing the register
values and the values of saturation (S) flags before and after
execution in the case that “ADD RO, R2 is executed alone.
Here, “Ox’ indicates that the following portion is repre
sented by a hexadecimal number. FIG. 17 shows the case
that a 16 bit number with a sign is added and an overflow
occurs as an example. A saturation process is not carried out,
however, and the result of the operation of the addition as 16
bits is written into register R0 as it is. At this time, the S flag
does not change.

0159 FIG. 18 shows the case that a 16 bit number with
a sign is added and an underflow occurs as an example. In
this case, also, a saturation process is not carried out and the
result of the operation of the addition as 16 bits is written
into register R0 as it is. At this time, also, the S flag does not
change.

0.160 FIG. 19 is a diagram showing a 32 bit instruction
in the case that an ADD instruction is executed parallel to a
MOD SAT instruction. The MOD SAT instruction is placed
in left container 52 while the ADD instruction is placed in
right container 53. Instruction decode unit 113 decodes two
instructions in parallel. First decoder 122 decodes the MOD
SAT instruction and generates no operation information So

as not to carry out an effective process as execution control
information, which is outputted to first operation unit 116, or
the like. First decoder 122 outputs information indicating
that the content of the operation is modified so that a
saturation of 16 bits is carried out with respect to the
instruction that is being decoded by second decoder 123, to
second decoder 123 via a signal line 127.
0.161 Second decoder 123 decodes an ADD instruction
and generates operation control information for carrying out
an addition process, which is outputted to register file 115
and to second operation unit 117. At this time, in the case
that signal line 127 indicates that the content of the operation

US 2008/0082800 A1

is modified so that a saturation of 16 bits is carried out,
second decoder 123 generates a control signal for carrying
out the Saturation and output the same to second operation
unit 117, or the like.
0162 FIG. 20 is a block diagram showing configurations
of the ALU, of the shifter and of the peripheral circuit
thereof within second operation unit 117. Here, though
second operation unit 117 is provided with many other
arithmetic units, the parts that do not directly relate to the
present invention are omitted.
0163 Second operation unit 117 includes latches A131
and B132 for ALU operations, an ALU 133, an overflow
determination circuit 134 for ALU operations, a selector 135
for selecting the output of ALU 133, a shift amount input
latch SC 141, a shift data input latch SD 142, a shifter 143,
an overflow determination circuit 144 for shift operations, a
selector 145 for selecting the output of shifter 143 and
immediate unit (IMM) 151.
0164. The immediate unit 151 fetches immediate data
sliced out from an instruction code, carries out a sign/Zero
expansion on the immediate data and prepares bit mask data
for bit operations.
0165 Next, the operation of second operation unit 117, in
the case that the instruction shown in FIG. 19 is executed, is
described in reference to FIG. 20. A MOD SAT instruction
is in the left container 52 and, therefore, first operation unit
116 does not carry out an effective operation. Second
operation unit 117 carries out an addition process with
saturation.

0166 First, the values of registers R0 and R2 are read out
from register file 115 and are transferred to latches A131 and
B132, respectively. ALU 133 carries out an addition process
on the values held in latches A131 and B132. Since satura
tion control signal 136 indicates that a saturation of 16 bits
is carried out, determination circuit 134 determines whether
or not an overflow oran underflow has occurred based on the
result of the operation of ALU 133 (carry output information
of bit 0 and bit 1, or the like) and outputs the result of the
determination as a selection signal of selector 135.
0167. In the case that an overflow is detected, selector
135 outputs the positive maximum value "Ox7ff. In addi
tion, in the case that an underflow is detected, selector 135
outputs the negative minimum value “0x8000'. In addition,
in the case that neither an overflow nor an underflow is
detected, selector 135 selects and outputs the output of ALU
133. This output of selector 135 is written back into register
RO.

0168 In addition, in the case that an overflow or an
underflow is detected, S flag 35 within control unit 111 is set
at “1”. In the case that neither an overflow nor an underflow
is detected, S flag 35 within control unit 111 is cleared to
Zero. The output of the result of the operation from second
operation unit 117 to control unit 111 or the detail of flag
control is not necessary for the description of the present
invention and, therefore, descriptions thereof are omitted.
0169 FIGS. 21 and 22 are diagrams showing register
values and the values of the S flag before and after the
operation in the case that the instruction “ADD R0, R2, of
which the operation is modified, is executed. FIG. 21 shows
the case that a 16 bit number with a sign is added and an

Apr. 3, 2008

overflow occurs as an example. Since a saturation process is
carried out, the positive maximum value “0x7ff is written
into register R0 after the execution of the operation. At this
time, an overflow occurs and, therefore, the S flag becomes
“1”.

0170 FIG. 22 shows the case that a 16 bit number with
a sign is added and an underflow occurs as an example. In
this case, also, a saturation process is carried out and,
therefore, the negative minimum value “0x8000 is written
into register R0 after the operation. At this time, an under
flow occurs and, therefore, the S flag becomes “1”.

0171 In the case that an ADD instruction of which the
operation is not modified, as shown in FIG. 16, is executed,
second decoder 123 receives information indicating that
operation modification is not carried out by means of signal
line 127 and indicates that saturation is not carried out by
means of Saturation control signal 136. In this case, selector
135 selects the output of ALU 133 regardless of whether or
not an overflow or an underflow has occurred. This addition
result is written back into register file 115. In addition, S flag
35 within control unit 111 is not influenced by the execution
of this ADD instruction.

0172 Next, the operation of second operation unit 117 in
the case that operation modification is carried out on a shift
instruction is described. FIG. 23 is a diagram for describing
the bit allocation of a left shift instruction SLLI, of which the
amount of shift is designated by immediate data of four bits.
The value of the register designated by Rdest is shifted to the
left by the amount of shift designated by imm4 and is written
back into the register designated by Rdest.

0.173) In the case that operation modification is not car
ried out, the value of the shift is written back into a register
as it is, regardless of whether or not an overflow or an
underflow has occurred. In the case that operation modifi
cation is carried out, the determination of an overflow or an
underflow is carried out on data including the data that has
been shifted out and a saturation process is carried out. In
addition, S flag 35 within control unit 111 is influenced by
the execution of the operation.

0.174 FIG. 24 is a diagram showing a 32 bit instruction
in the case that an SLLI instruction is executed in parallel
with a MOD SAT instruction. A MOD SAT instruction is
placed in left container 52 while an SLLI instruction is
placed in right container 53. The method for decoding an
instruction is the same as the method described in reference
to FIG. 19 except for that the executed instruction is a shift
instruction instead of an addition instruction.

0.175. Next, the operation of second operation unit 117 in
the case that the instruction shown in FIG. 24 is executed is
described in reference to FIG. 20. Since a MOD SAT
instruction is in left container 52, first operation unit 116
does not carry out an effective operation. Second operation
unit 117 carries out a left shift process with saturation.

0176 First, the value of register R0 is read out from
register file 115 and is transferred to latch SD 142. In
addition, the immediate data sliced out from the instruction
code is made to undergo Zero expansion by IMM 151 so as
to be transferred to latch SC141. Shifter 143 carries out a left
shift process in reference to the values held in latches SC141
and SD142 and outputs the result of shift to selector 145.

US 2008/0082800 A1

0177 Since carrying out of saturation is indicated by
saturation control signal 146, determination circuit 144
determines whether or not an overflow or an underflow has
occurred based on the value inputted into shifter 143 and
outputs the result of this determination as a selection signal
of selector 145. Determination circuit 144 generates mask
data wherein bits have become “1” by the amount of shift
toward the LSB side, starting from the second bit on the
MSB side of the value (shift data) held in latch SD142 based
on the amount of shift held in latch SC141.

0178 Then, an exclusive—or of each of the bits, from the
second bit on the MSB side to the LSB of the shift data and
a sign bit (value of MSB) is operated, and a logical product
of each bit of the result of this calculation and each bit of
mask data is operated. As a result, in the case that any of the
bits is “1” and the sign of the shift data is positive (MSB is
“O), it is determined that an overflow has occurred. In
addition, in the case that any of the bits is “1” and the sign
of the shift data is negative MSB is “1”), it is determined that
an underflow has occurred.

0179. In the case that an overflow has been detected,
selector 145 outputs the positive maximum value "Ox7ff.
In addition, in the case that an underflow has been detected,
selector 145 outputs the negative minimum value “0x8000.
In addition, in the case that neither an overflow nor an
underflow has been detected, selector 145 selects and out
puts the output of shifter 143. This output of selector 145 is
written back into register R0.
0180. In addition, in the case that an overflow or an
underflow has been detected, S flag 35 within control unit
111 is set at “1”. In the case that neither an overflow nor an
underflow has been detected, S flag 35 within control unit
111 is cleared to Zero.

0181 Next, the operation in the case that an operation
modification instruction is in right container 53 is described.
FIG. 25 is a diagram showing a 32 instruction in the case that
an ADD instruction is placed in left container 52 and a
MOD SAT instruction is placed in right container 53.
Instruction decode unit 113 decodes two instructions in
parallel. Second decoder 123 decodes a MOD SAT instruc
tion and generates no operation information so as not to
carry out an effective process as execution control informa
tion, which is outputted to second operation unit 117, or the
like. Second decoder 123 outputs, to first decoder 122 via a
signal line 128, information indicating to first decoder 122
that first decoder 122 is to modify the content of the
operation so that a saturation of 16 bits is carried out on the
instruction being decoded.
0182 First decoder 122 decodes an ADD instruction and
generates operation control information for carrying out an
addition process, which is outputted to register file 115 and
first operation unit 116. At this time, in the case that signal
line 128 indicates that the content of the operation is to be
modified so that saturation is carried out, first decoder 122
generates a control signal for carrying out Saturation, which
is outputted to first operation unit 116, or the like.
0183 FIG. 26 is a block diagram showing configurations
of an ALU and of an alignment circuit as well as of its
peripheral circuit within first operation unit 116. Here,
though first operation unit 116 is provided with many other
arithmetic units, the parts that do not directly relate to the
present invention are omitted.

Apr. 3, 2008

0.184 First operation unit 116 includes latches A161 and
B162 for ALU operations, an ALU 163, an overflow deter
mination circuit 164 for ALU operations, a selector 165 for
selecting the output of ALU 163, a latch 166 for holding an
address, latches 171, 172 and 175 for alignment, a saturation
(SAI) circuit 173 and an alignment circuit 174.
0185 ALU 163 and its peripheral circuits 161, 162, 164
and 165 are the same as ALU 133 and its peripheral circuits
131, 132, 134 and 135 within second operation unit 117
shown in FIG. 20 and, therefore, detailed descriptions
thereof are not repeated. Here, latch 166 holds and outputs
an address.

0186. In the case that the instruction shown in FIG. 25 is
executed, a MOD SAT instruction is in right container 53
and, therefore, second operation unit 117 does not carry out
an effective operation. First operation unit 116 carries out an
addition process with Saturation. Here, the operation in the
case that the instruction shown in FIG. 25 is executed is the
same as the operation in the case that the instruction shown
in FIG. 19 is executed and, therefore, detailed descriptions
thereof are not repeated.
0187 FIG. 27 is a diagram showing instruction bit allo
cation of a byte store (STB) instruction in a register indirect
mode. When this STB instruction is executed, the lower
eight bits in the value of the register designated by RSrc1 are
stored in the address indicated by the value of the register
designated by RSrc2.
0188 FIG. 28 is a diagram showing a 32 bit instruction
in the case that an STB instruction is executed in parallel
with a MOD SATB instruction. An STB instruction is
placed in left container 52 and a MOD SATB instruction is
placed in right container 53. Instruction decode unit 113
decodes two instructions in parallel. Second decoder 123
decodes the MOD SATB instruction and generates no
operation information so as not to carry out an effective
process as execution control information, which is outputted
to second operation unit 117. Second decoder 123 outputs,
to first decoder 122 via signal line 128, information indi
cating to first decoder 122 that first decoder 122 is to modify
the content of the operation so that a saturation of eight bits
is carried out on the instruction being decoded.
0189 Next, the operation of first operation unit 116 in the
case that the instruction shown in FIG. 28 is executed is
described in reference to FIG. 26. Since a MOD SATB
instruction is in right container 53, second operation unit 117
does not carry out an effective operation. First operation unit
116 carries out a store process with Saturation.
0.190 First, the value of register R0 (store data) is read
out from register file 115 and is transferred to latch 171.
Since the carrying out of Saturation of eight bits is indicated
by saturation control signal 176, saturation circuit 173
receives 16 bit data as input and carries out saturation to
obtain a value that can be represented by eight bits. That is
to say, values no less than “0x007fare clipped to “0x007f
while values no greater than "Oxf30' and clipped to
“Oxf80' and are, then, outputted. Here, in the case that
saturation is not carried out, the values that have been
inputted are outputted as it is.
0191 Alignment circuit 174 carries out alignment based
on the address held in latch A161. This alignment value is
held value latch 175 and is outputted to operand access unit

US 2008/0082800 A1

104. In addition, as for the operand address, the value of
register R8 within register file 115 is held in latch A161 and
is outputted to operand access unit 104 via latch 166.
Operand access unit 104 stores the operand held in latch 175
in the operand address held in latch 166.
0192 Next, a case is described wherein the instruction for
transfer between registers “MV Rdest, Rsrc" held in left
container 52 and a MOD SATB instruction held in right
container 53 are executed in parallel. In the case that an MV
instruction is executed, the value of the register designated
by RSrc in first operation unit 116 is transferred to latch 171.
Saturation circuit 173 carries out saturation on the value held
in latch 171 so that this value is written back into the register
designated by Rdest within register file 115. Thus, it is
possible to carry out Saturation on 16 bit data to obtain eight
bit data.

0193 Next, the operation of a MOD SATN instruction
for modifying the operation of the next instruction is
described. FIG. 29 is a diagram showing instruction bit
allocation of a three operand addition (ADD3) instruction
for carrying out addition of immediate data. When this
ADD3 instruction is executed, the value of the register
designated by RSrc and immediate data of 16 bits designated
by imm16 are added and this addition result is written back
into the register designated by Rdest.
0194 Since this ADD3 instruction is an instruction in the
long format, a MOD SAT instruction cannot be utilized.
FIG. 30 is a diagram showing an example of the case
wherein the operation of an ADD instruction in the long
format is modified. As shown in FIG. 30, in the case that the
operation of an ADD3 instruction is modified, the ADD3
instruction is executed immediately after the execution of
the MOD SATN instruction.

0.195 Since the MOD SATN instruction is stored in right
container 53, the MOD SATN instruction is decoded by
second decoder 123. The MOD SATN instruction, itself, is
an NOP instruction that does not carry out an effective
operation. When second decoder 123 decodes a MOD
SATN instruction, it outputs information indicating that the

operation of the next instruction is to be modified to D stage
control unit 126. D stage control unit 126 holds this infor
mation until the next instruction is decoded and outputs this
information to first decoder 122 and second decoder 123 at
the time when the next instruction is decoded.

0196) First decoder 122 decodes an ADD3 instruction
and, at this time, an operation control signal indicating that
saturation also is to be carried out is generated in accordance
with information indicating modification of the operation of
the next instruction outputted from D stage control unit 126
and is outputted to first operation unit 116. First operation
unit 116 receives this operation control signal and carries out
an addition process with Saturation.
0197) First, the value of register R0 within register file
115 is transferred to latch A161 and the immediate value
outputted from first decoder 122 is transferred to latch B162.
ALU 163 adds the values held in latches A161 and B162 and
writes back the result of this operation to R0 within register
file 115 via selector 165 after the saturation process has been
carried out.

0198 Next, a MOD SATX instruction for modifying the
operations of the instructions to be executed in parallel and

Apr. 3, 2008

of the instructions to be executed next is described. FIG. 31
is a diagram showing one example of a method for utilizing
a MOD SATX instruction. When this MOD SATX instruc
tion is decoded, the MOD SAT instruction and the MOD
SATN instruction are, both, processed. Accordingly, the

instruction “ADDR8, R9” to be executed in parallel with the
MOD SATX instruction and the instructions “ADDR0, R2
and “ADD R1, R3 to be executed next are executed with
saturation.

0199 A case wherein saturation is carried out as an
operation modification instruction is described above. In
many cases of image processing, byte data is handled.
Therefore, the data processor according to the present
embodiment is provided with an SIMD (single instruction
multiple data stream) operation function with respect to two
pieces of byte data. In the following, a case is described
wherein an SIMD operation is carried out as an operation
modification instruction.

0200 FIG. 32 shows a MOD 2B instruction indicating
that two operations of eight bits are carried out in parallel
with respect to the operation of a pair of instructions carried
out in parallel which is an instruction solely allowing
parallel execution. The MOD 2B instruction, itself, does
not carry out an operation process (NOP). The MOD 2B
instruction can be placed in either left container 52 or the
right container.
0201 FIG.33 is a diagram showing an example of a case
wherein a SUB instruction is executed in parallel with a
MOD 2B instruction. The "SUB R0, R2 instruction is an
instruction for subtracting the value of R2 from the value of
R0 and for writing back the result into R2. The MOD 2B
instruction is placed in left container 52 while the SUB
instruction is placed in right container 53 so that the two
instructions decoded in parallel in instruction decode unit
113 shown in FIG. 9. The MOD 2B instruction is decoded
in first decoder 122 and generates no operation information
So as not to carry out an effective process as execution
control information to be transferred to first operation unit
116, which is outputted to first operation unit 116, or the like.
0202) In addition, information indicating that the content
of the operation is to be modified with respect to the
instruction being decoded in second decoder 123 so as to
carry out two byte operations is sent from first decoder 122
to second decoder 123 via signal line 127. The SUB instruc
tion is decoded in second decoder 123 and operation control
information for carrying out a Subtraction process is gener
ated and is outputted to register file 115 and to second
operation unit 117. At this time, in the case that signal line
127 indicates that the content of operation is to be modified
So as to carry out two byte operations, a control signal for
carrying out two byte operations is generated and is output
ted.

0203 FIG. 34 is a detailed diagram showing the block
configuration around ALU 133 within second operation unit
117 describing an SIMD process of two byte operations. It
has a function wherein the upper eight bits and the lower
eight bits can independently be operated on arithmetically.
In FIG. 34, the same reference symbols are attached to the
parts having the same configurations and functions as in
FIG. 20. Here, though many other control signals exist in
second operation unit 117, the parts that do not directly
relate to the present invention are omitted.

US 2008/0082800 A1

0204] Second operation unit 117 includes latches 131a
and 132a for the ALU of the upper eight bits, latches 131b
and 132b for the ALU of the lower eight bits, an ALU H
133a that is an ALU portion of the upper eight bits, an
ALU L 133b that is an ALU portion of the lower eight bits,
a selector 133c for selecting a carry input to ALU H 133a,
an overflow determination circuit 134 for ALU operations
and a selector 135 for selecting the outputs of ALU H 133a
and ALU L 133b.

0205 The operation of second operation unit 117 in the
case that the instruction shown in FIG. 33 is executed is
described in reference to FIG. 34. In the case that an SIMD
operation of two pieces of byte data is carried out, the data
processor according to the present embodiment carries out a
process wherein it is assumed that the byte data of the
respective process object is stored in the upper eight bits and
in the lower eight bits of one 16 bit register.
0206 First operation unit 116 does not carry out an
effective operation because a MOD 2B instruction is in left
container 52 of first operation unit 116. Second operation
unit 117 carries out two byte (eight bit) subtraction pro
cesses. The values of registers R0 and R2, respectively, are
read out from register file 115 and the respective upper eight
bits are transferred to latch A. H131a and to latch B H132a
while the respective lower eight bits are transferred to
A L131b and to B L132b.

0207 Subtraction processes in ALU H133a and
ALU L133b are executed by setting carry input CYI at “1”
and by adding the inverted value of the value fetched from
latch B H132a or B L132b to the value fetched from latch
A. H131a or A L131b. At the time of the execution of the
instruction shown in FIG. 33, second decoder 123 sets carry
input 138 at “1” and sets carry selection signal 137 at the
value wherein selector 133c selects carry input 138.
0208. By exercising control in such a manner, a subtrac
tion process of the upper eight bits is carried out in ALU H
133a and a subtraction process of the lower eight bits is
carried out in ALU L 133b. The two byte subtraction results
are combined and are written back to register R0 within
register file 115 via selector 135.
0209 FIG. 35 is a diagram showing an example of the
result of the subtraction process of two pieces of byte data.
The upper eight bits “0x00–0x01 and the lower eight bits
“Ox01-0x02, respectively, are calculated and the result of
these operations “Oxff (upper eight bits) and “Oxff (lower
eight bits) are combined and written back to register R0.
0210. A case is briefly described below wherein the
"SUB R0, R2 instruction is solely executed in second
operation unit 117. In this case, a subtraction process of 16
bits is carried out. At the time of instruction decoding,
information that does not carry out operation modification
with signal 127 is transferred to second decoder 123 and the
value wherein selector 133c selects carry output CYO 139
from ALU L 133b with carry selection signal 137 is trans
ferred to selector 139. Other operation control signals are the
same in the case wherein two pieces of byte data are
operated on. Thus, a subtraction process of 16 bits is
executed.

0211 FIG. 36 is a diagram for describing an operation
process in the case that a Subtraction process of 16 bit data
is carried out with the same initial value as in FIG. 35.

Apr. 3, 2008

Unlike in FIG. 35, “Oxfeff, which is the result of the
operation of 16 bits, is written back to register R0 as the
result of the operation.
0212 Though the data processor according to the present
embodiment is provided, in the same manner as of the case
of the MOD SATN instruction and the MOD SATX
instruction for carrying out saturation, with a MOD 2BN
instruction for modifying the operation so that two byte
operations are carried out with respect to the operation of the
next instruction and with a MOD 2BX instruction for
modifying the operation so that two byte operations are
carried out with respect to instructions executed in parallel
and with respect to the instruction executed next as the
above described operation modification instructions, the
same controls as of the MOD SATN instruction and of the
MOD SATX instruction are executed with the only differ
ence being in the content of modification of the operation
and, therefore, detailed descriptions thereof are not repeated.
0213 The data processor according to the present
embodiment is described above and the present invention
can, of course, be applied in the case wherein the instruction
set, the pipeline configuration, the data bit length and the like
differ from those in the present embodiment.
0214. In addition, though a case is described wherein a
saturation process and an SIMD operation are carried out as
modifications of the operation, it is possible to additionally
carry out a variety of other processes. It is possible to apply
the present invention in the case of the modification of the
content of operations such as, for example, designation of
operation size in the case that an operation having a different
operation size default is carried out, designation of a round
ing mode, designation of the address bit length in the case
that there are a plurality of address bit lengths (for example,
16 bit mode and 32 bit mode), designation of an addressing
method in the case of modulo addressing, or the like, and
designation of a special modification of address and of a
special method for updating addresses. In addition, it is
possible to update the content of operations while maintain
ing compatibility by just adding instructions for modifying
the operations even in the case of updating the content of
operations of instructions implemented in an existent data
processor.

0215. In addition, though a data processor of 16 bits is
described in the present embodiment, it is possible to apply
the present invention in a data processor of 32 bits or 64bits.
0216) In addition, though a data processor using a VLIW
system is described in the present embodiment, it is possible
to apply a MOD SATN instruction or a MOD 2BN instruc
tion for modifying the operation of the next instruction to a
data processor for processing an instruction set other than of
the VLIW system. In addition, it is possible to further
increase the performance by applying Super Scalar technol
ogy to the MOD SATN instruction, or the like, so that the
operation modification instruction and the operation modi
fication object instruction are processed in parallel.
0217 Furthermore, a variable length instruction set may
be used so that option designation is handled as a prefix
word.

0218. In addition, though a data processor for executing
two instructions in parallel is described for the purpose of
simplification in the present embodiment, it is possible to

US 2008/0082800 A1

apply the present invention in a data processor for executing
three, or more, instructions in parallel.
0219. In addition, an addition instruction, a left shift
instruction and a store instruction are cited and described as
examples of instructions for modifying an operation so as to
carry out Saturation. It is possible to modify any instruction,
Such as a sign inversion instruction, an absolute value
instruction, an addition and Subtraction instruction, a trans
fer instruction and the like. In addition, though a case of
subtraction is cited and described as an example of an SIMD
operation, it is possible to modify any instruction, such as
other arithmetic operation instructions, including absolute
value and multiplication/product sum, a shift instruction and
the like.

0220) Furthermore, the data processor may be formed so
that modification of a plurality of operations is possible for
one instruction.

0221) Though in the present embodiment an application
example is cited for a case wherein two pieces of byte data
are held in one 16 bit register in the case that an SIMD
operation modification is carried out, three, or more, pieces
of data may be treated. For example, four byte operations
may be carried out for a 32 bit operation.
0222. In addition, hardware may be added so that two, or
more, 16 bit operations can be carried out. For example, a
bus connected to a 16 bit adder and to a register file may be
added so that the result of the addition of the value of R0 and
the value of R2 is written back to R0 while the result of the
addition of the value of R1 and the value of R3 is written
back to R1 in the case that an SIMD operation modification
is carried out on “ADD R0, R2. R1 and R3 are registers
having numbers obtained by adding. “1” to the register
numbers of R0 and R2, respectively, and are designated
according to predetermined rules instead of in an explicit
manner. There is no specific limitation to the type of
designation method, so the designation method can be freely
determined.

0223 Furthermore, in the case that an SIMD operation
modification is applied to operation instructions such as a
product sum operation, an absolute value Sum operation and
the like, a plurality of multipliers, an absolute value calcu
lation circuit and a three input adder may be implemented so
that two pairs of operations are carried out for multiplication
and an absolute value operation and a three value addition is
carried out at the final stage of addition and, thereby, the
result of the addition is accumulated in one accumulator or
register.
0224. The type of operation and the type of modification
carried out on the operation may be freely selected, taking
into consideration the target application, frequency of
appearance of instructions, cost of added hardware, inspec
tion cost and the like. In addition, the types of combinations
of implemented instructions may be selected, taking
tradeoffs similar as the above into consideration.

0225. Though modification of an operation is carried out
in the instruction decoder according to the present embodi
ment, modification control of the operation may be carried
out at any stage, from the decoding of the instruction to the
execution of the instruction.

0226. In addition, though the MOD SATN instruction
modifies the operation, only, of the instruction that is to be

Apr. 3, 2008

executed next in the present embodiment, the number of
instructions for modifying the operations may be designated
so that one operation modification instruction modifies the
operations of many instructions.
0227. As described above, in the data processor accord
ing to the present embodiment, an operation modification
instruction is implemented and, thereby, it becomes unnec
essary to allocate different instruction codes for every
instruction having a different operation, the basic instruction
length of the instructions can be made short, and it becomes
possible to increase the code efficiency. Accordingly, it
becomes possible to reduce the product cost of a data
processor built into a machine wherein a program is written
into a ROM.

0228. In addition, it becomes possible to modify opera
tions of many instructions by combining instructions and,
therefore, substantially the same effect as of increasing the
number of implemented instructions is obtained and the
effect of increase in the performance of the data processor is
achieved. In addition, the operations of many instructions
can be modified by implementing only an extremely small
number of operation modification instructions and, there
fore, it becomes possible to reduce the development cost of
a data processor.

0229. In addition, the content of an operation is deter
mined by an instruction code alone according to the present
invention, in comparison with the case wherein operation
modes are switched by means of mode bits and, therefore,
Software debugging is easy So that it becomes possible to
prevent the incorporation of bugs in Software.
0230. Furthermore, in the case that one operation modi
fies the operations of a plurality of instructions, such as the
MOD SATX instruction or the MOD 2BX instruction, it
becomes possible to further increase the code efficiency.

Second Embodiment

0231. A data processor according to the second embodi
ment of the present invention relates to a data processor
provided with an instruction prefix word.
0232 FIG. 37 is a diagram showing a format of the basic
instructions executed by the data processor according to the
second embodiment of the present invention. This instruc
tion format includes a prefix word 501, a first container 502,
a second container 503 and a third container 504. Prefix
word 501 designates the length of subinstructions, the num
ber of instructions to be executed in parallel, the execution
conditions and the like and, in addition, can modify the
content of the operation of the subinstruction stored in each
container.

0233 FIG. 38 is a diagram describing, in detail, prefix
word 501 shown in FIG. 37. For the purpose of simplifica
tion, only the case of the carrying out of Saturation is
described. It becomes possible to additionally carry out
saturation by modifying the operation of the instruction
designated in each container in the case that field 511 is
“OOO1.

0234 S1 field 512 designates modification of the opera
tion of the Subinstruction in first container 502. S2 field 513
designates modification of the operation of the Subinstruc
tion in second container 503. Third field 514 modifies the

US 2008/0082800 A1

operation of the subinstruction in third container 504. In the
case that these fields 512 to 514 are “0”, this indicates that
modification of the operations of the subinstructions in the
corresponding containers is not carried out. In addition, in
the case that fields 512 to 514 are “1”, this indicates that
modification of the operations of the subinstructions in the
corresponding containers is carried out, and Saturation pro
cesses are additionally carried out.
0235 FIG. 39 is a block diagram showing a schematic
configuration of the data processor according to the second
embodiment of the present invention. This data processor
600 includes an MPU core unit 601, an instruction fetch unit
602 for fetching instruction data in response to a request
from MPU core unit 601, an internal instruction memory
603, an operand access unit 604 for accessing operand data
in response to a request from MPU core unit 601, an internal
data memory 605 and an external bus interface unit 606 for
arbitrating requests from instruction fetch unit 602 and from
operand access unit 604 as well as for accessing a memory
outside of data processor 600.
0236. Here, instruction fetch unit 602, internal instruction
memory 603, operand access unit 604, internal data memory
605 and external bus interface unit 606 are the same as
instruction fetch unit 102, internal instruction memory 103.
operand access unit 104, internal data memory 105 and
external bus interface unit 106 and, therefore, detailed
descriptions thereof are not repeated.

0237. In addition, MPU core unit 601 includes a control
unit 611 for carrying out overall control of MPU core unit
601, a PC unit 614 for controlling the PC value, a register file
615, first operation unit 616, second operation unit 617 and
third operation unit 618. Here, PC unit 614, register file 615,
first operation unit 616, and second operation unit 617 are
the same as PC unit 118, register file 115, first operation unit
116, and second operation unit 117 and, therefore, detailed
descriptions thereof are not repeated.
0238. Third operation unit 618 is connected to register

file 615 via a plurality of buses and, therefore, can carry out
an arithmetic operation in parallel with first operation unit
616, and second operation unit 617.

0239 Control unit 611 includes an instruction queue 612
and an instruction decode unit 613. In addition, instruction
decode unit 613 includes instruction register 621 for holding
instruction data received from instruction queue 612, a D
stage control unit 622, a first decoder 623, a second decoder
624 and a third decoder 625.

0240 Instruction register 621 holds instruction data,
which is an object of decoding, received from instruction
queue 612. Here, the format of the instruction data held in
this instruction register 621 is the same as the instruction
format shown in FIG. 37.

0241 Instruction decode unit 613 is provided with three
decoders (first decoder 623, second decoder 624 and third
decoder 625) for generating an execution control signal and
the like, and it is possible to decode three subinstructions in
parallel.

0242 First decoder 623 decodes the instruction stored in
first container 502 and first operation unit 616 executes the
instruction in response to the result of decoding. Second
decoder 624 decodes the instruction stored in second con

Apr. 3, 2008

tainer 503 and second operation unit 617 executes the
instruction in response to the result of decoding. Third
decoder 625 decodes the instruction stored in third container
504 and third operation unit 618 executes the instruction in
response to the result of decoding.
0243 A prefix word 501 is primarily decoded in D stage
control unit 622 and field 511 within prefix word 501 is also
decoded in first to third decoders 623 to 625. In addition, S1
field 512 is decoded in first decoder 623, S2 field 513 is
decoded in second decoder 624 and S3 field 514 is decoded
in third decoder 625.

0244. In the case that field 511 is “0001” and any of S1
field 512, S2 field 513 and S3 field 514 is “1”, an operation
and a process with Saturation are carried out with respect to
the Subinstruction stored in the container corresponding to
the field that has become “1”. Here, D stage control unit 622
carries out the same process as of D stage control unit 126
according to the first embodiment shown in FIG. 9 and,
thereby, controls first decoder 623, second decoder 624 and
third decoder 625.

0245 Though the second embodiment is described
above, the present invention can, of course, be applied even
in the case that the instruction set, the pipeline configuration,
the data bit length and the like are different from those in the
embodiment.

0246 Control may be carried out so that the number of
operation codes is variable and the prefix word may be
treated as an option so that an instruction encoding method
may be adopted wherein the prefix word is not necessarily
included.

0247. In addition, the instruction, or the like, affected by
the content of modification of the operation, or the operation
that becomes an object, may be applied in any case in the
same manner as in the first embodiment. In addition, modi
fication of a plurality of operations may be carried out with
respect to one instruction.
0248. As described above, prefix word 501 modifies the
operation of an instruction in the data processor according to
the present embodiment and, therefore, the instruction code
length of the basic instruction can be made short, and it has
become possible to increase the code efficiency.
0249. In addition, one prefix word 501 can modify the
operation of a plurality of instructions and, therefore, even
in the case that the operation of a plurality of instructions is
modified, this can be implemented with a short instruction
length so that it becomes possible to increase the code
efficiency. Accordingly, it becomes possible to reduce the
product cost of a data processor built into an equipment
wherein a program is written into a ROM.
0250). In addition, the content of an operation is deter
mined by an instruction code alone according to the present
invention, in comparison with the case wherein operation
modes are switched by means of mode bits and, therefore,
Software debugging is easy So that it becomes possible to
prevent the incorporation of bugs in Software.
0251 Although the present invention has been described
and illustrated in detail, it is clearly understood that the same
is by way of illustration and example only and is not to be
taken by way of limitation, the spirit and scope of the present
invention being limited only by the terms of the appended
claims.

US 2008/0082800 A1

1. A data processor comprising: an instruction fetch unit
fetching an instruction code; an instruction decode unit
decoding the instruction code fetched by said instruction
fetch unit; an instruction execution unit executing the
instruction in response to a result of decoding by said
instruction decode unit; and a circuit, in the case that the
instruction code indicates a modification of operations of a
plurality of other instruction codes, modifying said opera
tions and allowing said instruction execution unit to execute
the modified operations of said plurality of other instruction
codes.

2. The data processor according to claim 1, wherein said
instruction execution unit executes a process including a
saturation process in a case that the instruction execution
unit executes the modified operation of said plurality of
other instruction codes

3. The data processor according to claim 1, wherein said
instruction execution unit executes the operation designated
by said plurality of other instruction codes for a plurality of
pieces of data in the case that the instruction execution unit
executes the modified operations of said plurality of other
instruction codes.

4. The data processor according to claim 3, wherein said
instruction execution unit divides data, which is an object of
processing, into a plurality of pieces of data and executes the
operation designated by said plurality of other instruction
codes for each of the plurality of divided pieces of data in the
case that the instruction execution unit executes the modified
operations of said plurality of other instruction codes.

5. The data processor according to claim 3, wherein said
instruction execution unit executes the operation designated
by said plurality of other instruction codes for a plurality of
data including data designated by said plurality of other
instruction codes and data implicitly designated by said
plurality of other instruction codes based on predetermined
rules in the case that said instruction execution unit executes
the modified operations of said plurality of other instruction
codes.

6. A data processor comprising: an instruction fetch unit
fetching an instruction code; an instruction decode unit
decoding the instruction code fetched by said instruction
fetch unit; an instruction execution unit executing the
instruction in response to a result of decoding by said
instruction decode unit; and a circuit, in the case that the
instruction code indicates a modification of an operation of
an instruction code of the next instruction, modifying said
operation and allowing said instruction execution unit to
execute the modified operation of the instruction code of
said next instruction.

7. The data processor according to claim 6, wherein said
instruction execution unit executes a process including a

Apr. 3, 2008

saturation process in a case that the instruction execution
unit executes the modified operation of the instruction code
of said next instruction.

8. The data processor according to claim 6, wherein said
instruction execution unit executes the operation designated
by said instruction code of said next instruction for a
plurality of pieces of data in the case that the instruction
execution unit executes the modified operation of the
instruction code of said next instruction.

9. The data processor according to claim 8, wherein said
instruction execution unit divides data, which is an object of
processing, into a plurality of pieces of data and executes the
operation designated by said instruction code of said next
instruction for each of the plurality of divided pieces of data
in the case that the instruction execution unit executes the
modified operation of the instruction code of said next
instruction.

10. The data processor according to claim 8, wherein said
instruction execution unit executes the operation designated
by said instruction code of said next instruction for a
plurality of data including data designated by said instruc
tion code of said next instruction and data implicitly desig
nated by said instruction code of said next instruction based
on predetermined rules in the case that said instruction
execution unit executes said instruction code of said next
instruction.

11. A data processor comprising: an instruction fetch unit
fetching an instruction code; an instruction decode unit
decoding the instruction code fetched by said instruction
fetch unit; an instruction execution unit executing the
instruction in response to a result of decoding by said
instruction decode unit; and a circuit, in the case that the
instruction code indicates a modification of an operation of
other instruction code, modifying said operation and allow
ing said instruction execution unit to execute a modified
operation of said other instruction code, wherein said
instruction execution unit executes a process including a
saturation process in a case that the instruction execution
unit executes the modified operation of said other instruction
code.

12. The data processor according to claim 11, wherein
said other instruction code is an operation instruction.

13. The data processor according to claim 11, wherein
said other instruction code is a store instruction.

14. The data processor according to claim 11, wherein
said other instruction code is a transfer instruction.

15.-20. (canceled)

