(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 104135381 A
(43) 申请公布日 2014.11.05

(21) 申请号 201410332332.X
(22) 申请日 2014.10.20
(21) 申请日 2014.10.20
(51) Int.Cl.
H04L 12/24 (2006.01)

(30) 优先权数据
23/CHE/2010 2010.01.05 IN
12/751,384 2010.03.31 US

(62) 分案的申请数据
201010602186.X 2010.12.20

(71) 申请人 埃森哲环球服务有限公司
地址 爱尔兰都柏林

(72) 发明人 M・B・帕特尔 M・达布尔哈
S・拉玛斯 S・瑞纳
P・坎维哈利

(74) 专利代理机构 北京市金杜律师事务所
11256
代理人 郭杰 陈盈

(54) 发明名称
层级式服务管理方法和系统

(57) 摘要
一种层级式服务管理。服务管理系统包括存储用户处所中网络层级的数据存储。该层级包括虚拟网络层和每层中的设备。该存储设备还存储与层级中等级相关联服务的服务简档，并且等级包括一个或多个虚拟网络层。系统接收用于为层中设备创建服务的信息。该信息包括服务功能和属性。该系统将服务的服务简档存储到存储设备中，并且该服务简档包括接收的信息。该系统基于接收的数据和服务简档中的信息确定是否触发该服务。
1. 一种管理用户处所服务的服务系统，所述服务系统 (100) 包括：
存储设备，用于存储所述用户处所中网络的层级，所述层级包括虚拟网络层和每层中的设备；
其中所述虚拟网络层基于每层中设备的分类划分所述网络，并且所述虚拟网络层中的至少一个包括所述层级中至少一个虚拟网络层下的至少一个子层；
服务管理器计算机系统，用于：
接收 (401, 402) 对所述网络的所述层级的所述虚拟网络层之一的子层的选择，以及对选择的所述子层下的设备的选择；
确定选择的所述设备的功能；
接收对所述功能之一的选择；
生成 (403) 用于与选择的所述设备关联的服务的服务简档；其中用于所述服务的所述服务简档包括选择的所述功能、选择的所述子层和触发条件，并且所述触发条件指定用于满足所述选择的所述功能的服务的条件；以及
在所述存储设备 (250) 中存储 (404) 所述服务简档，其中所述存储设备 (250) 存储用于所述网络的所述层级中的设备的多个服务简档。
2. 根据权利要求 1 所述的服务系统，其中所述服务管理器计算机系统用于接收对用于选择的所述子层的所述虚拟网络层的属性的选择，并且包括用于所述服务的所述服务简档中的选择的所述子层的属性，其中，所述属性描述与选择的所述子层的所述虚拟网络层中的所有所述设备关联的功能。
3. 根据权利要求 2 所述的服务系统，包括：
用户接口，用于呈现所述虚拟网络层、所述虚拟网络层中的设备、所述设备的功能以及用于所述虚拟网络层的属性，并且所述用户接口用于接收选择的所述子层、选择的所述设备、选择的所述功能以及选择的所述属性作为用户输入。
4. 根据权利要求 1 所述的服务系统，其中所述服务简档标识由所述服务执行的动作；
和 / 或
其中所述服务管理器计算机系统用于从在用于所述服务的所述服务简档中标识的所述设备接收数据，并且基于接收的所述数据和所述触发条件确定是否触发所述服务。
5. 根据权利要求 1 所述的服务系统，包括：
网络接口，用于从所述层级中的所述设备接收数据，其中所述服务管理器计算机系统用于：
匹配用于所述设备的信息与来自存储的所述服务简档的信息；
根据所述匹配标识服务简档；以及
基于接收的所述数据和标识的所述服务简档中的触发条件确定是否触发用于标识的所述服务简档的服务。
6. 根据权利要求 1 所述的服务系统，其中所述数据存储设备用于存储用户处所层级，并且所述用户处所层级的一个或多个等级各自包括多个用户处所和与所述一个或多个等级中的每个等级关联的服务；以及
其中所述服务管理器计算机系统优选地通过标识所述等级中的所述用户处所和所述服务之间的共同属性来匹配所述一个或多个层级中的每个层级与关联的所述服务。
7. 一种管理服务的系统，所述系统包括：
存储设备，用于：
存储计算机网络的层级，所述层级包括虚拟网络层和针对每层的网络中的设备，
存储用于与所述层级中多个等级关联的服务的服务简档，所述多个等级包括所述虚拟
网络层中的至少一个虚拟网络层；以及
存储用户处所层级，其中所述用户处所层级中的一个或多个等级各自包括多个用户处
所和与所述一个或多个等级中的每个等级关联的服务；以及
至少一个处理器，用于：
聚合所述网络的所述层级和所述用户处所层级，以及
基于聚合的所述层级来确定是否对所述用户处所中的用户触发用于存储的所述服务
简档之一的服务。
8. 根据权利要求7所述的系统，其中为了确定是否触发所述服务，所述至少一个处理
器用于标识与所述用户关联的聚合的所述层级中的等级，标识来自用于所述等级的服务简
档的服务，以及确定是否满足用于标识的所述等级和标识的所述服务的条件以触发所述
服务。
9. 根据权利要求8所述的系统，包括：
网络接口，用于从所述网络中的所述设备接收数据，并且所述至少一个处理器用于基
于接收的所述数据确定所述条件中的至少一个条件是否被满足。
10. 根据权利要求8所述的系统，其中所述设备被包括在所述用户处所之一中，并且被
连接到所述用户处所中的所述网络并且由所述网络连接到所述系统，并且所述系统包括
网络接口，用于经由所述网络从所述设备接收数据，并且基于接收的所述数据和一个存
储的服务简档中的信息来确定是否触发用于所述一个存储的服务简档的服务。
11. 一种用于创建服务简档以由层级中的设备执行服务的方法，所述方法包括：
在数据存储设备中存储网络的层级，所述层级包括虚拟网络层和每层中的设备，其中
所述虚拟网络层基于每层中设备的分类划分所述网络，并且所述虚拟网络层中的至少一个
包括所述层级中的至少一个虚拟网络层下的至少一个子层；
接收对所述网络的所述层级的所述虚拟网络层之一的子层的选择；
接收对选择的所述子层的设备的选择；
确定选择的所述设备的功能；
接收对所述功能之一的选择；
由处理器生成用于与选择的所述设备关联的服务的服务简档；其中用于所述服务的所
述服务简档包括选择的所述功能、选择的所述子层和触发条件，并且所述触发条件指定用
于满足以触发包括选择的所述功能的所述服务的条件；以及
在所述数据存储设备中存储所述服务简档，其中所述数据存储设备存储用于所述网络
的所述层级中的所述设备的多个服务简档。
12. 根据权利要求11所述的方法，其中每个虚拟网络层包括属性，并且所述方法包括：
接收对用于选择的所述子层的所述虚拟网络层的属性的选择，以及
在用于所述服务的所述服务简档中包括选择的所述属性，其中，所述属性描述与选择
的所述子层的所述虚拟网络层层中的所述所述设备关联的功能；和／或
其中所述服务简档标识由所述服务执行的动作。
13. 根据权利要求 11 所述的方法，包括：
从在用于所述服务的所述服务简档中标识的所述设备接收数据，以及
基于接收的所述数据和所述触发条件确定是否触发所述服务；和/或
包括：
从所述层级中的所述设备接收数据；
匹配用于所述设备的信息与来自存储的所述服务简档的信息；
根据所述匹配标识服务简档；以及
基于接收的所述数据和标识的所述服务简档中的触发条件确定是否触发用于标识的
所述服务简档的服务。
14. 根据权利要求 11 所述的方法，包括：
在所述数据存储设备中存储用户处所层级，其中所述用户处所层级的一个或多个等级
各自包括多个用户处所和与所述一个或多个等级中的每个等级关联的服务；以及
优选地包括：
聚合所述网络的所述层级和所述用户处所层级；以及
基于聚合的所述层级来确定是否触发用于存储的所述服务简档之一的服务。
15. 根据权利要求 11 所述的方法，包括：
响应于从所述设备中的一个设备接收数据，查询所述数据存储设备以从用于所述设
备中的所述一个设备的存储的简档中标识相关服务。
层级式服务管理方法和系统

[0001] 本发明是申请日为 2010 年 12 月 20 日提交的、申请号为 201010602186. X、名称为“层级式服务管理方法和系统”的发明专利申请的分案申请。

技术领域
[0002] 本发明涉及层级式服务管理。

背景技术
[0003] 数字互连家庭无处不在，并且如今的消费者在互连家庭中获取的数字服务的类型具有很高的期望。家庭中数字服务的增长主要目标在于：支持将设备连接至单个局域网（LAN），以及服务提供者从 LAN 外部向连接至该 LAN 的设备而将服务传递至家庭。

[0004] 对于在家庭中提供服务的该模型的主要前提是：服务提供者能够通过网络提供家庭中需要的所有服务。该模型现在可能是有效的，然而，许多因素妨碍服务提供者向被赋予该模型的家庭提供全方位服务。例如，家庭中不同系统与网络设备之间的无数配置为提供用于接收服务的连接性服务的原始设备制造商（OEM）和服务提供者带来了巨大挑战。连接性问题还施加于软件应用之间，该软件应用可以具有或者不具有用于与服务提供者交换信息的应用程序接口（API）。通常，随着家庭中服务的服务越来越多，并且随着具有不同能力以及不同接口的不同类型设备的爆炸式发展，家庭外的服务提供者可能不能支持全范围可能的服务场景。

[0005] 另外，通过服务提供者（例如，通过因特网或经由服务提供者网络）使其可用的许多服务不能由用户定制或者具有用户可以改变的最小数量的设备。因此，用户受可用服务的类型以及其设备用于接收和管理服务的能力的约束。

发明内容
[0006] 根据一个实施方式，提供了一种使用层级提供至少一个服务的方法，所述方法包括：存储网络的层级，所述网络的层级包括虚拟网络层和每层中的设备；存储与所述层级中多个等级相关联的服务的设备段；所述多个等级包括所述虚拟网络层中的至少一个；接收至所述设备中的至少一个创建第一服务的信息，其中所述信息包括存储的服务功能和属性中的至少一个；存储所述第一服务的第一服务段，所述第一服务段包括接收的信息；从所述设备中的至少一个接收数据，以及基于接收的数据和所述第一服务段中的信息，确定是否触发所述第一服务。

[0007] 根据另一实施方式，提供了一种管理用户处所服务的服务系统，所述服务系统包括：存储设备，存储所述用户处所网络的层级，所述层级包括虚拟网络层和每层中的设备，并且所述存储设备存储与所述层级中多个等级相关联的服务的设备段；所述多个等级包括所述虚拟网络层中的至少一个；服务管理器计算机系统，接收用于针对所述设备中的至少一个创建第一服务的信息，其中所述信息包括所述存储的服务功能和属性中的至少一个，并且所述服务管理器计算机系统将所述第一服务的第一服务段存储到所述存储设备。
备中，所述第一服务简档包括接收的信息；以及所述服务管理器计算机系统基于接收的数据和所述第一服务简档中的信息确定是否触发所述第一服务。

[0008] 根据另一实施方式，提供了一种被配置用于管理一个或多个服务的计算机系统，所述计算机系统包括：数据存储，存储用户处所中网络的层级，所述层级包括虚拟网络层和每层中的设备，并且存储设备存储与所述层级中多个等级相关联的服务的服务简档，所述多个等级包括所述虚拟网络层中的至少一个；处理器，接收用于针对设备中至少一个创建第一服务的信息，其中所述信息包括存储的服务功能和属性中的至少一个，并且所述服务管理将所述第一服务的第一服务简档存储到所述存储设备中；所述第一服务简档包括接收的信息；以及所述处理器基于接收的数据和所述第一服务简档中的信息，确定是否触发所述第一服务。

附图说明
[0009] 参考以下附图在下面的描述中详细描述本发明的实施方式。
[0010] 图 1A 显示了根据一个实施方式的系统；
[0011] 图 1B 显示了根据一个实施方式的层级的一部分；
[0012] 图 2 显示了根据一个实施方式的服务系统的架构；
[0013] 图 3 显示了根据一个实施方式的、用于确定可以用于定义和实现服务的网络层级的方法；
[0014] 图 4 显示了根据一个实施方式的用于创建服务的方法；
[0015] 图 5 显示了根据一个实施方式的、用于确定是否触发服务的方法；以及
[0016] 图 6 显示了根据一个实施方式的用于服务系统的硬件平台。

具体实施方式
[0017] 为了简单和说明的目的，实施方式的原理应通过参考其示例来进行描述。在下面的描述中，列举了多个具体细节以便提供对实施方式的了解。然而，本领域的技术人员应当理解，可以实施实施方式而不需要限制于这些具体细节。在某些实施中，为了避免不必要的陈述实施方式，没有详细描述公知的方法和结构。

[0018] 根据一个实施方式，服务系统向用户提供用于定义服务的标准方式，并且向网络设备提供用于在用户处所（诸如，家、办公室等）处提供或促进服务的标准方式。服务系统使用用户能够从该用户处所直接定义、控制和访问服务，并且服务提供者可以按照需要（诸如，为了与用户处所外的用户更广泛的合作）管理和控制服务。然而，用户可以定义不需要外部服务提供者而实现的服务。

[0019] 这里使用的服务包括由设备执行的动作。该动作可以响应检测的条件。例如，服务可以包括响应于检测医疗条件而联系保健提供者。服务的另一示例可以是在一天中的设定时间制作咖啡的咖啡机。服务可以是更加复杂的，诸如从多个设备接收数据并且汇集在设备之间共享的数据，同时实现安全措施和数字版权管理。执行服务的设备可以是网络设备，该网络设备是可连接至网络（诸如，LAN 或点对点网络或者用户处所中其他共享的通信协议）的设备。设备的示例可以包括个人计算机、膝上型计算机、服务器、蜂窝电话、游戏设备、电视、装置等。通常，该设备包括某些类型的处理器或处理电路（诸如，专用集成电路
(ASIC) 和计算机可读存储设备，其可操作用于存储数据和计算机程序，该计算机程序可以是固件。同样，该设备可以包括用于连接至网络的网络接口。

【0020】许多服务组合可以通过服务系统在用户处所处单独进行定义和管理，该服务系统包括硬件和软件以支持在用户处所处定义和管理服务。由于成本限制或基础设施限制，对于外部服务提供者而言可能不可行的许多不同服务可以提供该服务系统提供。

【0021】根据一个实施方式，服务系统使用用户能够通过创建 LAN 的虚拟部分（称作虚拟网络层）来定义 LAN 或其他类型网络中的服务。向一个或多个虚拟网络层分配网络设备。用户可以通过标识 LAN 中的虚拟网络层来创建服务，并且该虚拟网络层中的一个或多个设备将管理或使用该服务。还为该服务指定了服务功能，并且该服务功能存储在服务系统中。服务功能可以包括针对服务的一个或多个动作和条件。条件可以是动作的触发器。还可以由用户指定服务的属性，并且针对服务的所有信息可以作为服务简档存储在服务系统中。服务的属性可以涉及访问控制、自动化等。属性的其他示例包括：如果服务被触发，则设置设备接收服务；或者如果服务被触发，则设置用户接收服务，诸如用户接收共享的内容。同样，可以使用语法（如预定的服务定义语言）或模板或预定功能和属性来以统一的方式定义服务，并且向用户提供简化的方式来提供用于创建和管理服务的信息。服务由可以位于 LAN 中的服务系统管理，而不是由外部服务提供者管理。

【0022】图 1A 示出了根据一个实施方式的服务系统 100。该服务系统 100 可以位于用户处所 101（诸如，家或其他用户处所）内。服务系统 100 包括具有处理器和存储器的计算机，诸如图 6 中所示以及在下文中描述的计算机系统。服务系统 100 可以包括输入/输出设备或网络接口，该网络接口允许用户与服务系统 100 交互。用户处所不必是建筑物。例如，用户处所可以是地理位置，并且服务系统 100 在该地理位置边界的网络上操作。网络可以是有线的、无线的或两者的组合，并且可以是操作在小地理位置中的 LAN，诸如城市中的“热点”。

【0023】服务系统 100 经由用户处所 101 中的网络（诸如，LAN103）从网络设备 102a-g 收集数据。服务系统 100 可以包括独立网络设备的硬件和/或软件，或者可以与其他网络设备（诸如，路由器）集成。示出了处于用户处所 101 中的连接至服务系统 100 的网络设备 102a-g，但是一个或多个网络设备 102a-g 可以位于该用户处所外。服务系统 100 确定是否触发服务，并且如果服务被触发则管理该服务。在一个示例中，服务系统 100 从网络设备 102a-g 接收数据。基于接收的数据，服务系统 100 确定服务的条件是否符合使得任何该服务被触发的条件。针对服务的条件和动作存储在服务系统 100 的服务简档中。服务系统 100 管理触发服务，其包括执行服务简档中针对该触发服务指定的动作。这可以包括接收针对该服务的数据以及向网络设备 102a-g 中的一个或多个服务提供者发送 111，该服务提供者 111 经由外部网络 112 连接至服务系统 100。该外部网络 112 可以包括服务提供者网络、因特网等。

【0024】服务系统 100 还可以存储 LAN103 的层级。该层级包括一个或多个虚拟网络层，每层中具有一个或多个设备。图 1A 中示出了虚拟网络层的示例，如家庭活动室 10、主卧室 11、监督系统 12、厨房 13 和家庭办公室 14。设备可以包括网络设备，诸如层 10-14 中的网络设备 102a-g。

【0025】存储的层级还可以标识针对层级的一个或多个等级的一个或多个服务，并且在图 1B 中示出了不同等级中服务的示例。图 1B 中示出了部分层级的示例。例如，服务系统 100
位于根处。主卧室虚拟网络层 11 位于该层级的一个等级处并且包括在另一等级处的网络设备 102c。该另一等级对于主卧室虚拟网络层 11 的父等级而言是子等级。该层级的另一等级包括厨房虚拟网络层 13。在该层级下是定时设备等级 15，并且该定时设备等级 15 下面是网络设备 102e。该层级还可以包括针对每个等级的一个或多个服务。例如，主卧室虚拟网络层 11 包括服务 A 和服务 B，并且网络设备 102c 等级包括服务 A。厨房虚拟网络层 13 包括服务 D。定时设备等级 15 包括服务 D 和服务 E，以及针对网络设备 102e 的等级包括服务 D 和服务 E。注意，可以手动向等级分配服务，这取决于该服务是否应用于该等级。例如，如果该等级包括使用或执行该服务的网络设备，那么通过用户接口请求该服务与该等级相关联而经由与服务系统 100 交互的用户来将服务与该等级相关联。

[0026] 层级的父子结构可以用于继承服务，包括功能和 / 或属性。在一个实施方式中，与层级中特定等级相关联的服务可应用于该特定等级和该特定等级的所有子等级。因此，服务不需要手动与每个子等级相关联。

[0027] 在另一实施方式中，服务与等级属性的计算机化匹配可以由服务系统 100 或服务系统后端 110（例如，服务器或其他计算机系统）执行，用于向等级关联或分配服务。创建并存储服务简档，其描述了服务的属性。同样，针对每个等级创建和存储等级简档，其描述等级的属性。继而，将等级简档的一个或多个属性与存储的服务简档的属性进行匹配，以标识可以与该等级相关的服务。用户继而可以从该等级匹配的服务中选择一个或多个服务。针对层级、服务的信息以及这里描述的其他信息可以存储在服务系统 100 或可由服务系统 100 访问的外部计算机构，外部计算机诸如服务系统后端 110。注意，服务系统 100 可以被配置用于接受对应于层级的等级相关联的服务的手动选择或计算机化匹配。

[0028] 基于层级中的等级分配的服务，服务系统 100 能够标识将分析的任何服务来确定这些服务是否被触发。例如，服务系统 100 从网络设备 102c 接收数据。根据该层级，服务系统 100 标识服务 D 和服务 E，与网络设备 102e 相关联。服务系统 100 检索服务 D 和服务 E 的服务简档，并且根据该简档中的信息和接收的数据，确定服务 D 和服务 E 的任何服务是否被触发。下面参考方法 300 和方法 400 进一步描述该层级。除了使用层级来确定服务是否被触发之外，服务系统 100 可以使用用于创建服务的层级，如下面进一步描述。为了说明的目的，图 1B 中只示出了该层级的一部分，而实际存储的层级可以包括该层级所有等级的信息。

[0029] 层级不限于 LAN 的虚拟层。层级包括多个等级，并且这些等级通过共同主题或类似属性相关。在上面的示例中，共同主题是具有虚拟网络层的网络，并且该虚拟网络层基于房间类型或设备功能。在另一示例中，层级可以基于地理位置的距离。例如，层级可以包括具有针对州、邮政编码、城市、城镇、街道等的等级的家庭分组。在另一示例中，用户处可以由地理位置以外的一个或多个共同属性进行分组。例如，表示层级中等级的一个分组可以包括具有上小学的孩子的家庭。在该父分组下面的子分组（即，在该层级的较低等级中）可以包括有孩子的孩子。个体家庭可以在该子分组下，可以创建与分组的共同属性相关联的服务并且将其与该分组匹配。例如，可以向特定分组提供标识足球场条件和足球晋级的服务。

[0030] 服务系统 100 可以基于针对每个用户处所创建的信息简档（被称作用户处所简档）对该家庭进行分组。每个用户处所简档可以包括，如在该用户处所处从因特网使用捕获的
关于特定用户处所的信息；或者由居住在该用户处所的个人提供的信息；或者通过其他手段捕获的信息。可以将用户处所简档与服务简档匹配，以标识服务并且将该服务与家庭分组或个体家庭相联。匹配可以通过用户请求服务系统 100 将服务与用户处所或用户处所分组相关联来执行，和 / 或匹配可以通过服务系统 100 或服务系统端口 110 将用户处所简档的属性与服务简档进行匹配来执行。因此，服务可以与层级的一个或多个等级相关联，并且当符合服务的服务条件时被触发。可以针对每个服务指定一个或多个服务条件，并且将该一个或多个服务条件存储在每个服务简档中。同样，可以针对等级或多个等级指定一个或多个服务条件，并且该一个或多个条件可以由子等级继承。存储的等级或层简档可以包括该一个或多个条件。此外，可以针对个体或网络设备，针对整个用户处所或用户处所的分组创建和匹配服务。层级可以存储在每个用户处所 101 的服务系统 100 中以及下面描述的服务系统端口 110 中。

[0031] 根据一个实施方式，服务匹配可以通过标识针对多个用户处所的共同属性的模式来执行。例如，模式可以包括加入相关学校并且参与类似课外活动的，来自不同用户处所的孩子，或者可以标识多个用户处所的类似在线购买习惯的模式。针对共享共同属性的多个用户处所创建分组。继而，将服务与分组匹配。分组的创建和用户处所的匹配以及服务的触发可以由服务系统 100 和 / 或服务系统端口 110 执行。

[0032] 同样，可以在单个层级中或在不同层级之间聚合服务。服务的聚合可以包括组合多个服务来执行某些动作。在一个示例中，所组合服务的服务简档存储在彼此的链接，所以如果激活一个服务，那么服务系统 100 标识该链接并且执行其他服务。服务的聚合可以包括基于与多个层级相关联的条件或触发服务。例如，一个层级可以包括用户处所、用户处所的分组以及通过地理位置进一步分组用户处所的分组。另一层级可以基于用户而在用户处所中。例如，父母可以位于根处，然后孩子，然后再是亲戚。付费电影频道电视服务目标在于第一层级中的家庭分组，但是基于用户处所中基于用户层级的规则，该服务对于孩子而言是不可用的。

[0033] 返回参考图 1A，服务提供者 111 可以提供附加服务。服务系统 100 可以与服务提供者 111 通信，以向网络设备 102-a-n 和服务系统 100 的用户提供附加服务。服务系统端口 110 可以包括服务系统 100 和位于其他用户处所的其他服务系统的端口服务器。后端 110 管理服务相关功能，其包括与第三方服务进行通信。同样，可以在后端 110 上创建并存储服务并且向服务系统（诸如服务系统 100）分发。同样，后端 110 可以存储应用用于创建应用的软件开发工具包。应用是服务的软件实现。应用可以包括向网络设备 102-a-n 的一个或多个设备上加载的软件代理，该软件代理允许设备与服务系统通信并且执行服务相关功能。同样，应用可以包括向服务系统分发的服务简档或服务功能。

[0034] 图 2 显示了根据一个实施方式的服务系统 100 的架构 200。架构 200 可以包括：存储在服务系统 100 中的应用 1-n、应用管理器 201、服务管理器 202、数据库 250、用户处所接口 210 和服务提供者接口 220。数据库 250 可以存储关于用户处所的一个或多个层级的信息。该信息既可以包括服务简档、设备简档、描述层级结构以及等级之间的关系的信息。数据库 250 还可以存储关于每个等级的信息，诸如与每个等级相关联的服务以及任何子等级或父等级的标识。

[0035] 应用管理器 201 注册并管理应用 1-n，并且代表运行应用的平台。管理应用可以包
括按照需要加载和运行应用。服务管理器 202 注册并管理服务，包括存储服务简档。服务管理器 202 还执行运行时功能，包括确定服务是否被触发以及触发服务，其可以包括执行服务功能。当创建服务时，服务管理器 202 还创建和存储服务简档。

[0036] 用户处所接口 210 包括：用于与网络设备对接的路由管理器 211、简档管理器 212、用户接口 213 和事件管理器 214。简档管理器 212 确定网络设备的设备简档的信息并且存储该简档。设备简档的信息包括可以描述设备特性的设备属性以及描述可以由设备执行的功能。用户接口 213 向用户提供接口用于创建和管理简档并且输入可以由服务系统 100 使用的任何用户信息，用于执行这里所述的服务系统 100 的功能。用户通过用户接口输入的服务简档信息可以包括服务的属性和服务的其他信息。服务简档可以包括用于将该服务与另一服务聚合的、到其他服务的链接。同样，可以使用语法（诸如，预定的服务定义语义）或模板或预定功能和属性来以统多方式定义服务，并且向用户提供简化的方式来提供用于创建和管理服务的信息。

[0037] 事件管理器 214 存储预定事件的信息，诸如是否发生预定事件、预定事件何时发生等。可以由事件管理器 214 存储的信息来确定是否触发服务。

[0038] 服务提供者接口 220 提供用于与外部系统（诸如，图 1A 中所示的外部服务提供者 111 和服务系统后端 110）对接的接口。服务提供者接口 220 包括服务提供者管理器 221，该服务提供者管理器 221 可以经由外部网络 112 下载应用或可用应用的目录。架构 200 的组件中可以包括软件块，该软件块存储在计算机可读存储设备上并且由处理器执行以执行服务系统 100 的功能。服务系统 100 可以执行其它功能并且包括没有示出的其它模块。

[0039] 图 3 展示了根据一个实施方式的、用于确定可以用于定义和实现服务的网络层级的方法 300。一旦确定，便将该层级存储在服务系统 100 中。该层级包括多个等级，诸如图 1B 中所示。等级可以包括父子关系。例如，父等级下的子等级可以继承父等级的服务功能和属性。参考图 1B 作为示例，厨房虚拟网络层是父等级而定时设备子层是子等级。同样，层级可以是在最高等级处具有根的树的形式。从根展开的分支形成较低等级。

[0040] 在步骤 301，确定网络。例如，确定家庭 LAN 的网络地址。LAN 地址存储在服务系统 100 中。该 LAN 地址可以是 IP 地址，该 IP 地址可以用于从该 LAN 外部向该 LAN 中的设备发送信息。

[0041] 在步骤 302，确定网络中的虚拟网络层并且将其存储到服务系统 100 中。该虚拟网络层标识网络中设备之间的虚拟分层。在一个示例中，基于房间类型定义虚拟网络层。例如，该网络是家庭 LAN。虚拟网络层可以包括家庭活动层室，家庭办公层室，厨房层、浴室层、主卧室层等。在另一示例中，基于设备类型定义虚拟网络层。例如，虚拟网络层可以包括：内容共享设备、设备、家庭安全设备、移动设备、实用设备（例如，功率表、燃气表等）、医疗设备、游戏设备等。可以基于其他标准定义其他类型的虚拟网络层。同样，可以在一个层级中定义和使用虚拟网络层的不同集合。例如，定义基于房间类型的虚拟网络层集合和基于设备类型的虚拟网络层集合二者。

[0042] 同样，可以定义虚拟网络层下的子层。例如，在图 1B 所示厨房层下，存在针对以下所有网络设备的定时设备子层，该网络设备可以基于一天中的时间控制，网络设备诸如咖啡机、电饭煲等。子层的另一示例可以是内容共享子层，该内容共享子层可以包括厨房中的 TV 或 PC。
[0043] 在步骤 303，标识每层中的设备并且将其存储到服务系统 100 中。例如，冰箱可以在厨房层中而台式个人计算机可以在家庭办公室层中。设备可以包括在不止一层中。例如，膝上型计算机可以在家庭办公室层中、移动设备层和内容共享设备层中。在一个实施方式中，存储用户处所中设备的设备简档，并且继而该层级的每层或等级与相应等级或层中一个或多个设备的一个或多个设备简档相关联。针对层或等级，可以将单个相关联设备简档的设备简档 ID 存储到数据库表中，来提供设备简档与该层或等级的关联。

[0044] 在步骤 304，确定网络设备的设备简档。设备简档可以包括唯一设备标识符（例如 MAC 地址）以及设备的功能和能力。该设备简档还可以包括接口信息（例如设备是否是即插即用（PnP））、网络接口信息、安全信息等。

[0045] 在步骤 305，针对该层级的每个等级，标识一个或多个服务。例如，将图 1B 中所示的层级存储到数据结构中的服务系统 100 中。服务与图 1A 中所示的每个等级相关联。注意，等级可以包括子等级或父等级。

[0046] 与每个等级相关联的服务可以包括服务功能和属性。服务功能是针对服务的动作和 / 或条件。服务属性可以是服务设置或服务的某些其他特征或特性。在一个实施方式中，针对层级中特定等级定义的包括功能和 / 或属性的服务可应用于该等级以及是该特定等级或层的孩子的所有等级。例如，在网络层，可以定义可应用于该层级的所有等级中的所有服务的功能和属性。例如，在根层进行安全设置，并且该安全设置可在该层级中的所有层中应用。在另一示例中，创建医疗设备层。该层可以代表该层级中的单个等级。针对该层存储服务，包括功能和属性。一个功能可以包括如果满足条件则向医护人员发出警报的能力。另一功能可以是如果满足条件则在特定设备上生成本地警报。这些功能和属性可以应用于医疗设备层的所有子层。在层级的另一等级中还可以指定服务的功能和属性。在功能和属性的另一示例中，针对图 1B 中所示的定时设备子层，服务 D 指定咖啡机在特定时间制作咖啡，并且当制作好咖啡时通知用户。属性可以标识用户设备来发送通知。

[0047] 由这里描述的方法来确定的或者标识或使用的信息可以存储在服务系统 100 的计算机可读存储设备中。参考图 6 描述计算机可读存储设备的示例。服务系统 100 可以按需检索信息来执行服务系统中的功能。同样，通过示例而不是限制的方式参考服务系统 100 描述这里描述的方法。该方法可以在其他系统中执行。

[0048] 除了存储层级和每个等级中或下的设备，服务系统 100 还存储针对该层级的每个等级定义的功能和属性，并且使用这些功能和属性来创建服务。图 4 描述了一个实施方式的、用于创建服务的方法 400。

[0049] 在步骤 401，由用户标识层的等级。该等级可以包括虚拟网络层或该虚拟网络层的子等级。具体地，服务系统 100 包括用户接口，该用户接口可操作用于向用户呈现由服务系统 100 存储的层级、设备简档和其他信息。用户可以通过用户接口选择层级的等级中的虚拟网络层。该选定的等级与用户创建的服务相关联。

[0050] 在步骤 402，由用户标识经标识等级中的设备。服务系统 100 可以针对层级中经标识等级中的设备而呈现来自于该设备简档的信息。用户可以通过接口从该等级选择设备。该设备与用户创建的服务相关联。

[0051] 在步骤 403，为在步骤 402 选定的设备创建服务。该服务可以基于先前指定并存储在服务系统 100 的选定设备的功能和属性来创建。例如，可以生成示出该设备的预定功能。
和属性的菜单。某些信息可以通过设备简档提供。用户可以选择将用于服务的设备功能。用户还可以指定没有经由菜单显示的服务的其他功能。用户还可以指定用于触发服务的一个或多个条件。

在步骤 404，创建包括来自步骤 403 的信息的服务简档，并且服务简档存储在服务系统 100 中，诸如存储在图 2 所示的数据库 250 中。服务简档可以包括唯一服务 ID，该唯一服务 ID 用于标识由服务简档描述的服务。该服务简档包括功能，诸如由设备执行的动作。属性也可以包括在服务简档中。服务属性的示例可以包括共享内容的设备、安全性设置或可以针对服务设置的任何特性。服务简档还包括用于触发该服务的一个或多个条件。该服务简档存储在系统 100 中并且与设备和该设备的设备是其成员的虚拟网络层相关联。因此，层级的每个等级可以包括与该等级相关的服务简档。如参考方法 500 所述，当触发服务时系统 100 可以标识针对等级的服务简档。

图 5 显示了根据一个实施方式的，用于确定是否触发服务的方法 500。在步骤 501，服务系统 100 从服务系统 100 处的网络设备接收数据。

在步骤 502，确定与该设备相关联的层级中的所有等级。参考图 1B，例如，针对设备 102c 标识包括主卧室和设备 102c 的等级。确定与该网络设备相关联的等级可以通过服务系统 100 使用该网络设备的唯一设备 ID 查询图 2 中所示数据库 250 来执行。数据库 250 返回与该网络设备相关联的等级的指示。设备与每个等级的关联之前存储在数据库 250 中。

在步骤 503，基于等级确定与设备相关联的服务。例如，针对图 1B 中所示设备 102c 来标识服务 A 和服务 B。这可以包括该设备是其成员的虚拟网络层子层的服务。确定与该等级相关联的服务可以通过服务系统 100 向图 2 中所示数据库 250 查询与该等级相关联的服务来执行。对于每个等级，数据库 250 之前存储了针对与每个等级相关联的所有服务的唯一服务 ID。每个服务 ID 可以与服务简档相关联。因此检索的设备 ID 标识相关联等级服务的。

在步骤 504，服务系统 100 基于接收的数据确定经标识服务的任何服务是否被触发。该确定可以基于根据接收的数据来确定服务中功能的条件是否满足。当服务简档创建或可能在添加到服务简档时，可以在服务简档中指定条件。在一个简化的示例中，设备是敏感用户血糖程度的医疗设备。如果用户的血糖程度低于阈值，那么触发表警报的服务。服务系统 100 可以接收血糖程度数据并且确定该血糖程度是否低于阈值。如果服务系统 100 确定该血糖程度数据低于阈值，那么服务系统 100 可以标识该触发的服务。备选地，设备可以确定血糖程度低于阈值并且向服务系统 100 发送血糖标记，其中服务被标识为触发（例如，服务系统 100 可以基于接收的数据发送一个或多个警报）。设备可以执行该服务或者该服务的至少某些功能。例如，设备向外服务提供者发送警报，并且外服务提供者向用户处发送警报。服务的属性可以指示哪些设备或实体将接收警报以及通过哪些通道发送警报，诸如电话、文本、电子邮件等。因此，如果服务被标识为将被触发，那么在步骤 504，触发该服务并且执行该服务。触发该服务可以包括首先执行该服务或者已经启动的服务的动作。

图 6 显示了可以用作服务系统 100 的硬件平台的计算机组网 600。该计算机系统 600 可以用于执行这里所述方法、功能和其他步骤的一个或多个的平台。这些步骤可以
实现为存储在一个或多个计算机可读存储设备上的软件，该计算机可读存储设备为硬件存储设备。

【0058】 计算机系统 600 包括处理器 602 或处理电路，该处理器 602 或处理电路可以实现或执行软件指令，该软件指令用于执行这里描述的某些或所有方法、功能和其他步骤。来自处理器 602 的命令和数据通过通信总线 604 进行通信。计算机系统 600 还包括计算机可读存储设备，和次要数据存储 608，其中计算机可读存储设备诸如主存储器 606，例如，随机访问存储器（RAM），其中用于处理器 602 的软件和数据可以在运行时期间存储，次要数据存储 608 可以是非易失性的并且存储软件和数据。存储器和第二数据存储是存储设备类型的示例，该存储设备可以用于存储服务系统 100 的数据和计算机程序。计算机系统 600 可以包括用于连接至网络的网络接口 612 和 1/0 设备 111（诸如，键盘、显示器等），1/0 设备 111 允许用户与计算机系统 600 交互。本领域中的普通技术人员应当理解，可以在计算机系统 600 中添加或替代其他已知的电子部件。

【0059】这里描述的方法的一个或多个步骤和这里描述的其他步骤，以及这里描述的系统的一个或多个部件可以实现为存储在计算机可读介质（诸如存储器和 / 或次要存储）上的计算机代码，并且在计算机系统上如由处理器、专用集成电路（ASIC）或其他控制器来执行。代码可以作为软件程序存在，包括：源代码中的程序指令、目标代码、可执行代码或其他格式。计算机可读介质的示例包括常规计算机系统 RAM（随机访问存储器）、ROM（只读存储器）、EPROM（可擦除可编程 ROM）、EEPROM（电可擦除可编程 ROM）、硬盘驱动和快速存储器。

【0060】虽然已经参考示例描述了实施方式，但是本领域技术人员能够对所描述的实施方式进行各种修改而不脱离所要求实施方式的范围。
图1B
图 2
图 3

图 4
图 5

从设备接收数据 501

针对设备标识层级中的等级 502

标识等级的任何服务 503

触发服务？ 504

否

是

触发服务 505
图 6