

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0158014 A1

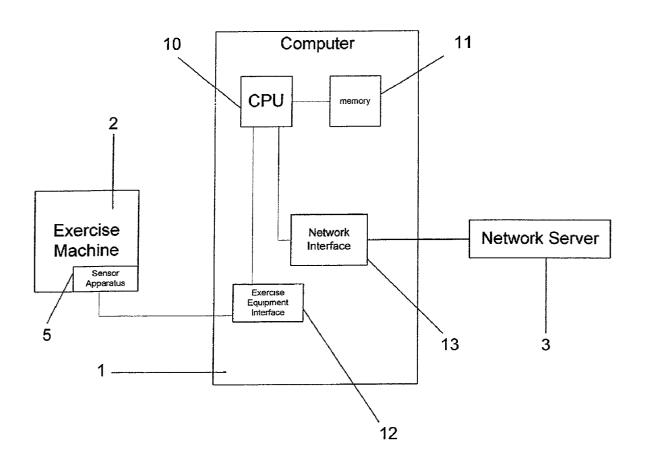
Valentin-Sivico

Aug. 21, 2003 (43) Pub. Date:

(54) FITNESS MACHINE WITH DATA **EXCHANGE PORT**

(76) Inventor: Javier Valentin-Sivico, Aquadilla, PR

Correspondence Address: **HEWLETT-PACKARD COMPANY Intellectual Property Administration** P.O. Box 272400 Fort Collins, CO 80527-2400 (US)


(21) Appl. No.: 10/077,206

(22) Filed: Feb. 15, 2002

Publication Classification

(57)**ABSTRACT**

A computer and exercise apparatus having a data exchange port. A user exercises during a workout session and the computer records data regarding the workout session in memory. The data is then downloadable through the port into an appropriate device. A number of exercise apparatus may be networked, saving the user from having to download after each exercise in the session and allowing for greater download potential. Separate auxiliary centers may also be provided in a network setting. Users may also add data to the device manually or through subsequent downloads at remote locations and then upload the new data into the local network, thus saving data that might otherwise be lost and incorporating it into a single record.

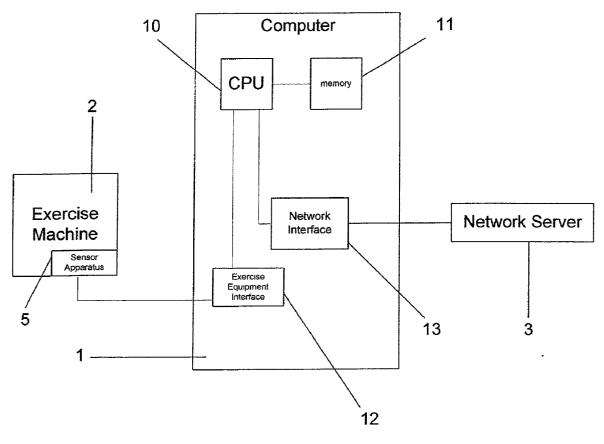


Figure 1

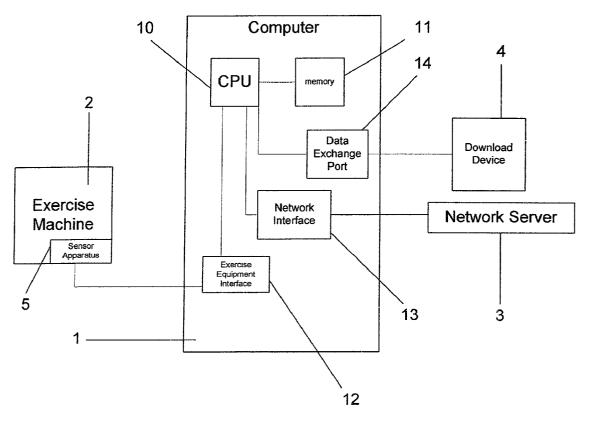


Figure 2

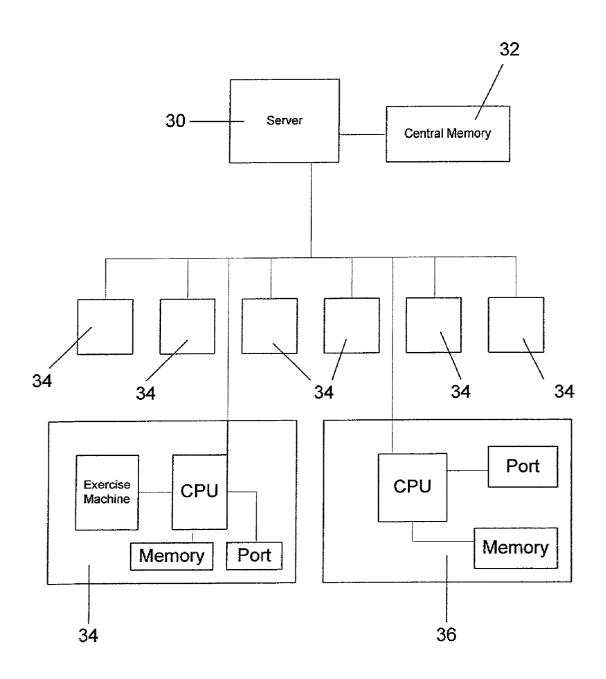


Figure 3

FITNESS MACHINE WITH DATA EXCHANGE PORT

FIELD OF THE INVENTION

[0001] The present invention relates to the exchange of information obtained while exercising. More specifically, the present invention relates to the provision of a data exchange port on an exercise apparatus for the purpose of exchanging statistical and other information acquired during an exercise session.

BACKGROUND OF THE INVENTION

[0002] Exercise is a popular pastime, especially in light of the current health-conscious mentality of society and the increasing number of sedentary occupations. One common feature of the modern exercise phenomenon is the desire to improve one's physical condition over time and to track that improvement. In order to do this, a person must keep records of exercise sessions or workouts and their statistics for comparison and evaluation. However, typically, records are not easily kept during an intense workout because an individual has his or her attention focused on the various exercises and because the traditional method for keeping records has been to record information manually. This method required not only maintenance at the gym, but also the archival of a number of records. To this end, many exercise machines have built-in counters to keep track of repetitions, or reps, performed and give the user a final count after the exercise is completed. This solution still requires recording the final rep count. Other solutions have added memory to the counters, which works well with a single user machine but falls short in a multiple user setting. Exercise machines have been enhanced with computers and even networked with internet access, such as those advertised by Fitlinxx®. Linking exercise equipment to computers for the purpose of centralizing data collection is known in the prior art, such as shown in FITLINXX® advertisement literature by Integrated Fitness Corp. and U.S. Pat. Nos. 5,655,997 and 5,213,555. This latest solution proves workable, as networked systems currently allow users to log-in and track performance machine to machine. However, the problem still exists when a user desires to workout at a non-networked location and there is the added problem of incorporating statistics from a non-networked location into the user's usual networked location.

[0003] To address the problem of transferability and record keeping, the present invention provides a computer-enhanced exercise machine with a data exchange port. The present invention eliminates the need for the user to manually record workout statistics and eases the transportation of that information from location to location. After a workout, or even part of a workout on one computer-enhanced machine, the user simply downloads the accumulated statistics by connecting a PDA, laptop or similar portable device to the exercise machine's data exchange port and stores the information on the portable device. To add those statistics to a file at another location, the user simply uploads the information in the same fashion.

SUMMARY OF THE INVENTION

[0004] The present invention utilizes a data exchange port so that a user may take his or her workout data to any gym,

club or other location at will and not be limited to the current linked systems. The present invention also frees a user from the responsibility of manually recording workout data, reduces the possibility of loss of data, and makes the data entirely portable, which is to say the user can take the data anywhere or even privately maintain his/her own information without the intrusion of an invasive system.

[0005] The present invention includes at least one or more data exchange ports to a linked exercise apparatus. The ports may be serial or parallel and may be configured for any type of device (laptop, PDA, digital organizer, etc.) capable of receiving and storing data. The actual structure and configuration are limited only by the requirement that the systems be, in some way, compatible. This compatibility requires communications software, compatible database software and a physical interface structure.

DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a schematic drawing of a prior art computerized exercise apparatus;

[0007] FIG. 2 is a schematic drawing of the apparatus of FIG. 1 equipped with a data exchange port according to the present invention; and

[0008] FIG. 3 is a network schematic showing exercise and auxiliary stations.

DETAILED DESCRIPTION OF THE INVENTION

[0009] With reference to the aforementioned drawings, the present invention is illustrated. Referring to drawing FIG. 1, depicted is a prior art exercise apparatus. As can be seen, an exercise machine 2 is equipped with a sensor apparatus 5. The exercise machine 2 may be of any design and the sensor apparatus 5 may be of any sort suited to exercise machine 2. The sensor apparatus 5 is in operable connection to computer 1 via an interface 12. The exercise machine's interface 12 is operatively coupled to the computer's CPU 10, which is in turn in operable relation to the computer's memory 11. Statistics derived from the workout session are stored in memory 11 and may be displayed on a display module (not shown) for the convenience of the user. At this point, computerized exercise apparatuses vary in construction and purpose. The most complex are networked, through standard networking protocols and equipment (as shown in FIG. 1), to a server 3 through a network interface 13 and are used to monitor and evaluate the user's performance based on workout regimens that are preprogrammed and predetermined by a trainer.

[0010] According to the present invention, illustrated in drawing FIG. 2, the apparatus illustrated in drawing FIG. 1 includes at least one or more data exchange ports 14, operatively coupled to CPU 10, for connection to download device 4. Download device 4 should be equipped with its own CPU, memory, input devices and input port (not shown). In order to facilitate the exchange of data, both computer 1 and download device 4 should be previously equipped with compatible data management software and exchange protocols and software. Data exchange port 14 need only be compatible with both computer 1 and download device 4 to provide an operable connection between the two. The individual styling and equipment would vary with

the design of the device and would include connection cords, cradles, light waves, radio waves or any other method of connection. The user, upon activating a download cycle, is able to download and store any workout data, including regimens, into download device 4. The exchange software could be designed to allow uploading as well. This would give a user, normally in a networked system, the freedom to use the data at any exercise facility, on any related machine, and still follow a regimen prescribed at his or her usual facility by his or her trainer, record or, if the other location is properly equipped, download new data and upload it into the user's usual networked system for incorporation into future regimens and performance evaluations. In a network system, shown in drawing FIG. 3, the inclusion of at least one or more data exchange ports 14 can be added to any computer connected to server 30, regardless if it has an exercise machine connected to it. An auxiliary computer station 36, or a plurality of auxiliary stations, can be provided in a network. These extra stations would prove useful in the event of heavy demand to use the exercise apparatuses 34 in a network by allowing users to exchange data at a location without interfering with another user's regimen.

[0011] Having thus described certain preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof as hereinafter claimed.

What is claimed is:

- 1. A computerized exercise apparatus having an exercise machine operatively linked to a computer having a CPU and memory, comprising:
 - at least on connection port operatively linked to the CPU of the computer, the at least one connection port for interfacing with an auxiliary device, the auxiliary device having a CPU and memory, the auxiliary device and the computer each having protocols and software for allowing an exchange of data when the auxiliary device interfaces with the at least one connection port operatively linked to the computer.
- 2. The apparatus of claim 1, wherein the at least one connection port includes a light bean emitter/receiver for interacting with a corresponding emitter/receiver on the auxiliary device.
- 3. The apparatus of claim 1, wherein the at least one connection port includes a connection port physically interfaced with a connection port on the auxiliary device.
- 4. A network of a plurality of computerized exercise apparatus, the network having a plurality of linked individual computerized exercise apparatus, each computerized exercise apparatus linked to at least one server having a central memory core, each computerized exercise apparatus having a base exercise machine linked to a computer, in turn having a CPU and memory, the network comprising:
 - at least one connection port coupled to the CPU of the computer of at least one of the plurality of computerized exercise apparatus, the at least one connection port for interfacing with a predetermined auxiliary device, the predetermined auxiliary device having at least one CPU and at least one memory, the predetermined auxiliary device and the computer each having proto-

- cols and software for allowing an exchange of data when the predetermined auxiliary device interfaces with the at least one connection port coupled to the computer linked to the at least one server having the central memory core.
- 5. The network of claim 4, wherein the at least one connection port is a light beam emitter/receiver configured to interact with a corresponding emitter/receiver on the predetermined auxiliary device.
- **6**. The network of claim 4, wherein the at least one connection port is adapted to physically interface with a connection port on the predetermined auxiliary device.
- 7. The network of claim 4, further comprising at least one exchange station, the at least one exchange station further comprising a computer with a memory and CPU and a connection port; wherein, in addition to the exercise apparatuses, the at least one exchange station is operatively linked to the at least one server.
- 8. The network of claim 7, wherein the at least one connection port includes a connection port having a light beam emitter/receiver for interaction with a corresponding emitter/receiver on the predetermined auxiliary device.
- 9. The improvement of claim 7, wherein the at least one connection port physically interfaces with a port on the predetermined auxiliary device.
- **10**. A method for tracking exercise by an individual using an exercise apparatus comprising:

providing an exercise apparatus;

providing a computer having a CPU and memory;

connecting the exercise apparatus and the computer; and

- providing at least one connection port operatively connected to the CPU of the computer, the at least one connection port for interfacing with a predetermined auxiliary device, the predetermined auxiliary device having a CPU and memory, the predetermined auxiliary device and the computer each having a protocol and software for allowing an exchange of data and for the predetermined auxiliary device to interface with the at least one connection port operatively connected to the computer.
- 11. The method of claim 10, wherein the at least one connection port includes a connection port having a light beam emitter/receiver for interacting with a corresponding emitter/receiver on the auxiliary device.
- 12. The method of claim 10, wherein the at least one connection port includes a connection port physically interfaced with a port on the auxiliary device.
- 13. A method of tracking exercise by a plurality of users of exercise apparatus using a network comprising:

providing a plurality of computerized exercise apparatus;

connecting the plurality of computerized exercise apparatus in a network, each computerized exercise apparatus connected to at least one server having a central memory core, each computerized exercise apparatus having a base exercise machine connected to a computer in turn having a CPU and memory, said network including at least one connection port connected to the CPU of the computer of at least one of the plurality of computerized exercise apparatus, said at least one connection port for interfacing with a predetermined auxiliary device, said predetermined auxiliary device hav-

ing at least one CPU and at least one memory, the predetermined auxiliary device and the computer each having a protocol and software for allowing an exchange of data for the predetermined auxiliary device to interface with the at least one connection port connected to the computer connected to the at least one server having a central memory core.

- 14. The method of claim 13, wherein the at least one connection port includes a connection port having a light beam emitter/receiver configured to interact with a corresponding emitter/receiver on the predetermined auxiliary device.
- 15. The method of claim 13, wherein the at least one connection port includes a connection port physically interfaced with a port on the predetermined auxiliary device.
- 16. The method of claim 13, further comprising at least one exchange station, said at least one exchange station further comprising a computer with a memory and CPU and a connection port; wherein, in addition to the exercise apparatuses, the at least one exchange station is operatively linked to the at least one server.
- 17. The method of claim 16, wherein the at least one connection port includes a connection port having a light beam emitter/receiver for interacting with a corresponding emitter/receiver on the predetermined auxiliary device.
- 18. The method of claim 17, wherein the at least one connection port interfaces with a port on the predetermined auxiliary device.

* * * * *