WO 03/050700 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

/—\\
A TINNN

(10) International Publication Number

19 June 2003 (19.06.2003) PCT WO 03/050700 Al
(51) International Patent Classification’: GO6F 15/16 Road, Fairfax, VA 22033 (US). SWINGLE, Joseph,
A.; Apartment 1B, 1115 North Pitt Street, Alexandria,
(21) International Application Number: PCT/US02/20319 VA 22314 (US). COX, Daniel, E.; 104 East Bellefonte
Avenue, Alexandria, VA 22301 (US).
(22) International Filing Date: 26 June 2002 (26.06.2002)
(74) Agents: JABLON, Clark, A. et al.; Akin, Gump, Strauss,
(25) Filing Language: English Hauer & Feld, L.L.P,, Sulte 2290, One Commerce Square,
2005 Market Street, Philadelphia, PA 19103-7086 (US).
(26) Publication Language: English (81) Designated States (national): AE, AG, AL, AM, AT, AU,
L AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(30) Priority Data: CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
10/013,745 10 December 2001 (10.12.2001) US

(71) Applicant: CYSIVE, INC. [US/US]; Suite 400, 10780
Parkridge Boulevard, Reston, VA 20191 (US).

(72) Inventors: ROLLINS, Gregory, L.; 109 Broad Street,
Middletown, MD 21769 (US). WILLINGHAM, Roy, E.;
20405 Sawgrass Drive, Montgomery Village, MD 20886
(US). HANSIRISAWAT, Sawat; 12329 Washington Brice

GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: APPARATUS AND METHOD OF USING SESSION STATE DATA ACROSS SESSIONS

USER LOGIN
PROCESS
24
2 A
DOES ALLOCATE NEW SESSION
CHALLENGE i AND DO NOT

MATCH A LOGIN ID

OF A RETAINED

SNAPSHOT
?

INITIALLY ASSOCIATE
ANY OLD SESSION DATA
WITH THE SESSION ID.

DOES
USER WISH
TO CONTINUE WITH
A PREVIOUS

9
|
|
!
|

| OPTIONAL
!
SESSION |
? |
|
J

RETRIEVE SNAPSHOT DATA
FOR CORRESPONDING LOGIN

|

ALLOCATE A NEW SESSION ID
AND POPULATE SESSION DATA
FOR THE NEW SESSION 1D
WITH SESSION DATA RETRIEVED
FROM THE SNAPSHOT

|

CONTINUE WITH SESSION
AT PQOINT THAT
PREVIOUS SESSION ENDED

-

32

END

(57) Abstract: A process is provided to allow session state data
to be used across sessions. In the process, the first session is es-
tablished. The first session includes session state data. Then, a
second session is established. It is then determined if the sec-
ond session desires to access session state data established by
the first session (26). If so, at least some of the session state data
from the first session is used during the second session (28) to
establish the initial session state during the second session(30).

w0 03/050700 A1 NI 000 .0 O 0O R

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, For two-letter codes and other abbreviations, refer to the "Guid-
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent ance Notes on Codes and Abbreviations" appearing at the begin-
(BE, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW, ML, MR, ning of each regular issue of the PCT Gazette.

NE, SN, TD, TG).

Published:
— with international search report

10

15

20

25

30

WO 03/050700 PCT/US02/20319

TITLE OF THE INVENTION
APPARATUS AND METHOD OF USING SESSION STATE DATA ACROSS SESSIONS

BACKGROUND OF THE INVENTION
HTTP is a stateless protocol because there is no information about what occurred
previously. Absent any session tracking techniques, The World Wide Web is also stateless
because it runs on top of HTTP. Accordingly, each request for a new web page is processed
without any knowledge of previous pages requested. Thus, a new connection is established for

each client request to a server and no state information is maintained between requests. That

is,-a web server treats each HTTP request as an independent request. The web server has no

knowledge of previous requests, even if they occurred seconds prior to a current request.
Consider an example of a website that contains a document broken up into 10 web pages of
text. If user 1’s browser requests page 1, then page 2, and so on, even when user 1 requests
page 10, the web server still does not know that user 1, as opposed to some other user, has
requested page 10. Put simply, when a browser asks for a web page, the web server delivers the
web page, without regard for who requested it.

A “‘session” is a continuous (non-permanent) connection from a browser to a server
over a fixed peﬁod of time. No session is established in the example above because each
request for a new web page establishes a new connection. Business-oriented web applications,
such as e-commerce applications, generally need to be able to track a user’s previous requests
along with certain information associated with those requests. Such applications thus need the
ability for the user to establish a session between the browser and the server and maintain state
information associated with that session. There are numerous well-known techniques of
establishing and maintaining sessions that allow for storing and tracking of state information.
These techniques include the use of session cookies, hidden form fields, and URL rewriting
(i.e., embedding data in URLSs). .

Session management is the ability to maintain usef information over the course of a
visit (i.e., session) as the user travels from web page to web page in an application. In one
conventional technique, a unique identification number is assigned to each client who requests
to commﬁnicate with a website so that the website can identify the client in subsequent

communications within the same session. The unique identification number is typically

10

15

20,

25

30

WO 03/050700 PCT/US02/20319

referred to as a session identifier (hereafter, “session ID”). In another conventional technique,
the session ID is stored in a session ID cookie. That is, the session ID cookie contains only the
session ID. The website creates the “session ID cookie” and sends it to the client. The session
ID cookie is then stored in a pre-specified file in the client’s browser. Session ID cookies are
non-petsistent and are automatically‘deleted from the client’s computer after the browser is
closed. If a client requests a subsequent communication with the website that created the.
session ID cookie, the browser sends the session ID cookie (which contains the session ID)
with the HTTP request as HTTP request header fields. The name of the session ID cookie is
application server specific. The website then stores data specific to the session, associated with
the session ID. The session ID is typically associated with state data, but may also contain
other data that is not state-specific. The combination of the “state data” and “other data” that is
associated with the session ID is also referred to herein as “session data.”

Figs. 1-3, taken together, illustrate a conventional session management process for
épplications that is used to keep track of the state of each user. In this example, two different
registered users 1 and 2 establish sessions, via a public network such as the Internet, with a
website server at address www.buystuff.com. Consider, for example, user 1, session 1. User 1
sends a first request fo website www.buystuff.com (step 10) device 1. Since this is a first
request during a browser session to www.buystuff.com, no session has been created and no
session ID cookie exists in the HTTP request header field. That is, a first request by a browser
to a URL does not contain a session ID. On the server side, this fact is detected (step 12, “NO”
output), a new session is created, and a session ID gookié (containing a newly created unique
sessién ID) is created. The session ID cookie is then communicated b‘éc'k to the browser with
the first response (step 14), and is stored by the client for use in the header of subsequént
requests sent to the server. In this manner, the server can now identify subsequent requests
from the same source.

On the server side, session specific data is associated with the session ID. In the
example of Fig. 2, the session data include session ID (the association), login ID, session state
data (e.g., where was the last place that the user went (current page), and data associated with
where the user was last), and other attributes that are not related to session state data. The
session ID is logged into a list of “unexpired” session ID’s. Sessions are typically programmed
to expire after a certain period of inactivity, such as 30 minutes. For example, if more than 30

minutes passes between client requests, the session expires and is no longer valid. Upon

-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

expiration, the session ID is removed from the list of valid sessions and the associated data is
deleted. The website application program may also decide to delete a valid session at any time
for application specific reasons, such as detection that the user has logged out. An unexpired
session ID is merely one that has not yet expired due to inactivity or the occurrence of a
specific trigger event.

Referring again to Fig. 1, if the client request includes a session ID cookie (step 12,
“YES” output), then a previous session has already been established and the server must check
its table to determine if an unexpired and valid session ID exists at the server (step 16). If an

unexpired and valid session ID does not exist at the server, then a new session ID is allocated,

. and a session ID cookie (containing the newly allocated unique session ID) is created. The

session ID cookie is then communicated back to the browser with the first response (step 14),
and is stored in the client device for use in the header of subsequent requests sent to the server.
If an unexpired and valid session ID exists at the server, then the client request is executed and
the data in the session is updated (step 18) as necessary.

In the example of Fig. 2, users 1 and 2 initiated a first session using respective
desktop computers, labeled as devices 1A and 1B. The session data for user 1, session 1
indicates that the last request made by user 1 was for webpage 2, and that session staté data for
datal and data2 equals variablel and variable2, respectively. The session data for user 2,
session 1 indicates that the last request made by user 2 was for webpage 64, and that session
state data for datal and data2 equals variablel and variable2, respectively. The session ID’s for
both users are currently unexpired and valid, and thus both session ID’s are present in the table.

In the example of Fig. 3, users 1 and 2 have closed their browsers and have initiated
new communications with the website www.buystuff.com. In this example, user 1 initiates a
second session from a new device 2, here, a PDA, whereas user 2 initiates a second session
from the same device 1B as the first time, here, a desktop computer. Since the initial requests
by both users do not include a session ID cookie, then new session ID’s must be created (steps
12, 14 of Fig. 1). User 1 is assigned session ID 456789, user 2 is assigned session ID 333337,
and both of these values are entered into the table of unexpired session ID’s. Currently, both
users are at the homepage (i.e., current page=homepage). Since the second sessions are new,
the session state data is also new, even though both users have logged in with their same login
ID’s (e.g., johndoe and marysmith) as in the first session. In the example of Fig. 3, the session

ID of user 2, session 1 has not yet expired and thus the corresponding session ID is still present

-3-

10

15

20

25

WO 03/050700 PCT/US02/20319

in the valid list. However, since user 2 closed the browser and initiated a new browser session,
a new session is allocated for user 2 with a new session ID, and the session data created by user
2 during session 1 cannot be accessed during session 2. The session for user 1, session 1 has
expired and thus the corresponding session ID is not present in the list. However, even if the
session ID for user 1, session 1 did not expire and thus was present in the valid list, the
corresponding session ID would also not be accessible to user 1 during the new PDA-based
session 2.

~ The result of this process is that neither of the users retains their session state data
across sessions. If user 1 wishes to view webpage 2 and continue with a session (e.g., an e-
commerce transaction) that needs to use variablel and variable2 in the session data associated
with session ID 123456, then user 1 must repeat all of the steps (e.g., webpage requests, picking
jitems to go in to a shopping cart, filling in fields of order data forms) that are required to get
back to this point in the process. Likewise, if user 2 wishes to view webpage 64 and continue
with a session that needs to use variablel and variable2 in the session data associated with
session ID 789012, then user 1 must repeat all of the steps that are required to get back ;co this
point in the process.

Thus, session management processes, such as the use of session ID’s, associated

session data, and session ID cookies, do not provide a quick and convenient method to allow a
user to reconvene with the state of a previous session. Nor do other conventional techniques for
maintaining session state, such as URL rewriting, provide such a capability since they also rely
upon the browser remaining open. The present invention provides such a capability without the

necessity for a browser that began a session to remain open.

BRIEF SUMMARY OF THE INVENTION
A process is provided to allow session state data to be used across sessions. In the
process, a first session is established. The first session includes session state data. Then, a
second session is established. It is then determined if the second session desires to access
session state data established by the first session. If so, at least some of the session state data
from the first session is used during the second session to establish the initial session state

during the second session.

10

15

20

25

30

WO 03/050700 PCT/US02/20319

- BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of preferred
embodiments of the invention, will be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the invention, there is shown in the
drawings embodiments which are presently preferred. It should be understood, however, that
the invention is not limited to the precise arrangements and instrumentalities shown.

In the drawings:

Figs. 1-3, taken together, illustrate a conventional session management process for
applications that is used to keep track of the state of each user;

Figs. 4-10, taken together, provide an overview of a session management process in
accordance with the present invention that allows for the use of session state data across
sessions;

Fig. 11 shows a detailed schematic diagram of the basic components of a non-
persistent solution of the present invention that allows for the use of session state data across
sessions; and

Fig. 12 shows a detailed schematic diagram of the basic components of a persistent

. -solution of the present invention that allows for the use of session state data across sessions.

DETAILED DESCRIPTION OF THE INVENTION
I. Overview of Present Invention
The present invention allows session state data to be used across sessions. Most
generally, the present invention operates as follows:

(a) A first session is established. The first session includes session state data.

(b) A second session is established.

(c) It is determined if the second session desires to access session state data
established by the first session. If so, then at least some of the session state data from the first
session is used during the second session to establish the initial session state during the second
session. ’

The present invention may be implemented in many different ways. Two such
implementations are described herein. A first implementation is a non-persistent solution. A

second implementation is a persistent solution. The type of solution chosen depends upon the

10

15

20

25

30

WO 03/050700 PCT/US02/20319

web site developer’s preference for performance or fault tolerance. These solutions require
significantly different steps and apparatus, and thus are described separately.

As background to the solutions, large websites today have a traffic load that is
generally too big to be managed by one server. It is common practice to have multiple servers
working in concert to provide enough processing power to meet the traffic load. When an
individual establishes a session with a website, the actual session information may be
maintained on any of multiple servers and may even be automatically moved to another server
while the session is active. However, whether one or plural servers are used to handle server
requests for a particular session, there is no guarantee that the same user (e.g., johndoe or
marysmith) is always handled by the same server.

Since the present invention requires that the session data from the first session be
made available for the second session, a scheme must be provided for sharing the session data
between servers in such multiple server websites. Both the persistent solution and the non-
persistent solution address this requirement.

The multiple server details are provided in the Detailed Disclosure section below.
This overview section describes the present invention in the context of a single server website.
However, the scope of the present invention covers single and plural website server

embodiments.

PERSISTENT SOLUTION

Fig. 4 through Fig. 8 provide an overview of the present invention in the context of
the example in Figs. 1-3. To implement the present invention, snapshots are taken of a subset
of session data. The subset include some or all of the session data. The snapshots are updated,
if necessary, whenever the data in the session is changed. The snapshots persist for an
application-defined period of time. The snapshots may be stored within application data, in a
separate database, or in a file. A session data management component, as described below,
determines the exact contents of the snapshots. The snapshots include at least user
identification data (e.g., login ID), and some state information, such as current page and
corresponding data variables, that would allow a user to continue a session where the user left
off without repeating any input steps or page requests. Session data that are not necessary to
recreate the session state data of the session need not be stored in the snapshot. A snapshot thus

contains a copy of at least some of the session state data and other session data.

10

15

20

25

30

WO 03/050700 PCT/US02/20319

Fig. 4 shows an example of snapshots that would be taken for the current state of the
session in Fig. 2. As discussed above, the snapshots need not store all of data in the session,
since some of the data, and even session ID, may not be necessary to track the current session
state.

Session data management application logic, hereafter referred to as a “session data
management component,” manages the flow of data between sessions and session snapshots.
More specifically, the session data management component determines when, or if, a newly
created session should be populated with data from a previously created snapshot, as well as
which session data is maintained in the snapshots. The session data managément component
also controls the snapshot updating process described below in F ig. 7.

Figs. 5 and 6 show how the snapshots are employed when users request to reconnect
with the website server in the same manner as shown in Fig. 3. Referring to Fig. 5, challenge
data (here, a login ID) is tested to determine if it matches a login ID of a retained snapshot
(step 22). If not, then a new session ID is allocated as described above (step 24). The session
data associated with the new session is not populated with any old session state data, and thus is
similar to the new sessions created in Fig. 3. If the login ID matches a login ID of a retained
snapshot (step 22, “YES” output), then the user is asked if they wish to continue with their
previous session (step 26). If not, then a new session is created as described above (step 24). If
the user wishes to continue with their previous session (step 26,, “YES” output), then the
snapshot data associated with the login ID is retrieved (step 28). Step 26 is optional. Thus,
when a login ID matches a login ID of a retained snapshot, step 28 may occur automatically
without providing the user an option to start with new, unpopulated session state data. Since
the user is making a first request to a website, the request does not contain any session ID
cookie, as described above with respect to Fig. 1. Thus, session data is associated with a new
session ID that is assigned to the session and sent back to the client for use in subsequent
requests. However, unlike the example of Fig. 3, in the present invention, the snapshot data is
used to populate associated session state data in the newly created session (step 30).
Accordingly, data that is returned to the user in response to the'initial request reflects the
session state at the point in which the previous session-ended (step 32). This difference is
illustrated in Fig. 5 which shows that the session state data associated with the session ID is
identical to the session state data of Fig. 2, instead of the new session state data shown in the

session of Fig. 3, even though the sessién ID’s of the sessions in Fig. 5 are the same as the

-7-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

session ID’s of the sessions in Fig. 3. Fig. 5 thus illustrates that even though a user has started
a new HTTP session, session state data can be retained and restored, even if a user changes
device type (in the case of user 1). In Figs. 3 and 5, the session ID’s are identical so as to
illustrate the user’s experience in a conventional process (Fig. 3), compared to the user’s
experience when implementing the present invention (Fig. 5). In reality, session ID’s would
likely be different every time a new session is established.

Fig. 7 illustrates the snapshot update process which occurs after a request has been
made. First, it is determined whether any changes occurred to the session data (step 34). If not,
then no change or modification is made to the data in the snapshot. For example, some requests

may not cause a change to the session data. If a change occurred to the session data, then it is

determined whether the changed data is a piece of data that belongs in the snapshot (step 38). If

so, then the snapshot is updated with new data. If not, then no change is made to the data in the
snapshot. In the embodiment of the present invention disclosed in the Detailed Description
section below, step 38 is performed using a data exclusion list which identifies the data that the
snapshot should not contain. Any data that is not on the exclusion list is presumed to belong in
the snapshot and is updated when necessary. In an alternative embodiment of the present
invention, an inclusion list may be used instead wherein only data on the inclusion list is
presumed to belong in the snapshot. The data that is stored in the snapshot may represent an
update of data that currently exists in the snapshot, or it may represent new data that has come
into existence for the first time and thus was not previously in the snapshot. The web
application may also dictate that a certain piece of session data become part of the snapshot
only after a certain point in the session, such as after the user has reached a predetermined stage
in an e-commerce transaction, as detected by a specific session data change. Step 34 includes
such a scenario.

Fig. 8 illustrates an alternative embodiment of the present invention wherein plural
session ID’s may be defined by the same session owner. In this manner, plural users may share
session state data so that a first user may initiate a session and stop using the session in
mid-state (a multiple request transaction being in progress), and ahsecond user having their own
unique login ID may access the session state data and continue with the session. This process
requires the use of a permanent session owner/login ID cross-reference table or the like that

identifies each session owner and the corresponding login ID’s associated with that owner. The

10

15

20

25

30

WO 03/050700 PCT/US02/20319

snapshots of session data are similar to the snapshots shown in Fig. 4, except the snapshot is
associated with a session owner, instead of a session ID.

Fig. 8 shows an example wherein session owner “ownerl” is associated with login
ID’s johndoe and janedoe, and session owner “owner2” is associated with login ID’s marysmith
and johnsmith. In this example, userl and user2 both log out of an uncompleted session at
time=t1. Their respective snapshots reflect the state at time=t1, in the same manner as
described in Fig. 4. However, the snapshots are associated with ownerl and owner?2 instead of
the login ID’s for user 1 and user 2, respectively. At time=t2, users 3 and 4 log into the website
and enter their login ID’s. Since the login ID for users 3 and 4 are cross-referenced to owners 1
and 2, respectively, the system checks the snapshots to determine if there are any currently
stored snapshots for these session owners. In the current example, both snapshots exist.
Accordingly, at time=t2, the sessions created for users 3 and 4 are populated with data from
their respective snapshots. In this manner, users 3 and 4 may continue with a session at the
same point in time that users 1 and 2 left off. If no current snapshots existed, then users 3 and 4
would have started their sessions with completely new session data.

The snapshots are provided with their own timeout that, when reached, causes them
to expire. Upon expiration, session state persistence is no longer possible. The timeout may be
set for any desired period (e.g., two days, one month).

The present invention provides users with session state persistence. That is, the
present invention bridges current HTTP session management boundaries (e.g., browser/device).
In the example above, the user conducts a transaction at an e-commerce website. However, the
scope of the present invention includes other types of applications. Consider, for example, a
worker who uses a form to enter timesheet data. The user may log in to a specific website via a
public network from a browser of a personal computer and begin a timesheet form. The
timesheet entries are stored in the data fields of the session and also stored in the snapshot. The
user may then either log out or just close the browser. The user may then log back in at the end
of the day from either same personal computer or from a different device, such as a wireless
device or a voice-activated system and can complete the timesheet form. Upon recognizing the
user via the login ID or some other identifier, the new session is populated with the previously
submitted time entries, and the user can continue entering time at the same point in which the

user left off,

10

15

20

25

30

WO 03/050700 PCT/US02/20319

NON-PERSISTENT SOLUTION

Fig. 9 and Fig. 10 illustrate some of the conceptual aspects of a non-persistent
solution using the same session data and user login scenario as illustrated in the persistent
solution. Thus, the description of the non-persistent solution will be limited to highlighting the
differences between the solutions.

The non-persistent solution does not use snapshots to transfer session data across
multiple sessions. Instead, when it is desired to use session data across multiple sessions,
session data is directly retrieved from the session data of the previous session and directly
copied into a new session under the control of a session data management component, as shown
in Fig. 10 and described in more detail below. In a plural server website embodiment, a session
manager is also needed to coordinate the process, as also described in more detail below. In a
single website server embodiment, sessions are not distributed among plural servers and thus no
session manager is needed.

Fig. 9 shows the session data for user 1 and user 2 at the end of a first session (top
row) and at the beginning of a new session (bottom row). Except for the session ID, the session
data are identical.

Fig. 10 shows a flowchart of the user login process for the non-persistent solution.
Fig. 10 is comparable to Fig. 6 of the persistent solution and thus is not explained in detail.
Three main differences exist between the persistent solution in Fig. 6 and the non-persistent

solution in Fig. 10, as highlighted below:

Step 22 of Fig. 6: Does challenge match a login ID of a retained snapshot?
Step 50 of Fig. 10: Does challenge match a login ID of an unexpired, valid session?

Step 28 of Fig. 6: Retrieve snapshot data for corresponding login.
Step 56 of Fig. 10: Retrieve session data for corresponding login.

Step 30 of Fig. 6: Allocate a new session ID and populate session data for the new session ID
with session data retrieved from the snapshot.
Step 58 of Fig. 10: Allocate a new session ID and populate session data for the new session ID

with session data from an existing session.

In the examples above, a login ID is used to identify snapshots or sessions that have

session state data that is desired to be used in subsequent sessions. In the solutions described in

-1‘0-

10

WO 03/050700 PCT/US02/20319

detail below, a “unique session key” pérforms the function of the login ID. Well-known
examples of session keys include encrypted information about the user, a hash of the login ID
and the login ID itself.

One embodiment of the present invention is implemented in an object-oriented
environment using a conventional session management technique that creates and uses “session
objects.” One form of a session object is the HttpSession object within a Java servlet-based
server. This object is used by the servlet to store or retrieve information about a particular
client who has established a session with a server. The HttpSession object maintains
information about a single session. The session object typically contains session state data, but
may also contain other session data that is not state-specific. As noted above, the combination
of the “session state data” and “other session data” is referred to as “session data.” The scope
of the present invention includes non-object-oriented environments and session stores.

Furthermore, although the present invention is described in the context of a user

being a person, a user may also be an external system.

-11-

10

15

20

25

WO 03/050700 PCT/US02/20319

II. Detailed Description

1 Overview
2 Non-Persistent
2.1 Components
2.1.1 Application Server
2.1.2 Session Broker
2.1.3 Session Manager
2.1.4 Session Keys
2.2 Session Establishment
2.2.1 Establishing A New HTTP Session With A New Session Key
2.2.2 Establishing A New HTTP Session With An Existing Session Key
. 223 Establishing A New HTTP Session With An Existing Session Key (Same Broker)
2.3 HTTP Session Timeout |
2.4 Limit Copied Data
3 Persistent
3.1 Components
3.1.1 Application Server
3.1.2 Session Broker
3.1.3 Snapshot Data Store
3.1.4 Session Keys
32 Session Establishment
3.2.1 Establishing A New HTTP Session With A New Session Key
3.2.2 Establishing A New HTTP Session With An Existing Session Key
3.2.3 Establishing A New HTTP Session With An Existing Session Key (Same Broker)
3.3 Snapshot Updates ‘
3.4 HTTP Session Timeout
3.5 Limit Copied Data

-12-

10

15

20

25

WO 03/050700 PCT/US02/20319

1 OVERVIEW

Persistent and non-persistent solutions, as described above, are explained in more detail below.

2 NON-PERSISTENT
2.1 Components

Fig. 11 shows the basic components of a non-persistent solution populated with sample data.

2.1.1 Application Server
The application server is an external component that provides HTTP session tracking
capabilities (cookies, URL rewriting etc), including the ability to associate session data with a

user’s session.

2.1.2 Session Broker
Each application (a web site is considered an application) maintains one session broker on
every server on which that application is running. If multiple applications are running on the
same server, then each application will have its own session broker. Each session broker is
configured to communicate with one session manager. Each session broker has the following
responsibilities:

(a) Track a reference to the server maintained session data, and associate that reference
with a unique key that identifies a session that is to be shared across HTTP sessions.

(b) Notify the session manager that a particular session key is being used by an active
HTTP session.

(c) Notify the session manager when a session key is no longer being used.

(d) Merge session data from the previous HTTP session into the new HTTP session
when both sessions are identified with the same key.

(e) Provide session data to another session broker when that broker is taking over an
active session.
Note: An application may wish to participate in sharing sessions with different session
managers. If this were the case, the session broker would maintain a list of session managers to
communicate HTTP session information to. If each session manager uses a different unique
key scheme, the application would need to maintain multiple session brokers, one for each

session manager.

-13-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

2.1.3 Session Manager

Each application or set of applications that wish to share sessions communicate with one and
only session manager. That session manager may be running on the same server, with
applications and their session brokers or an entirely separate server. Regardless, all session
brokers treat the session manager as if it is running on a separate server. The session manager
has the following responsibilities:

(2) Track all session keys that are being used by all session brokers reporting to it.

(b) For each session key, maintain a reference to the session broker that is tracking the
actual HTTP session.

(c) When a session is being transferred from one session broker to another, provide the
session broker handle to the broker that will own the session going forward.

(d) Guarantee that a session key does not get associated with more than one session

broker.

2.1.4 Session Keys

A session key is some data that uniquely identifies a session that is to be shared across HTTP
sessions. This key can be constructed in any manner. When a user or other system has
establishes an HTTP session with an application, it is the application’s responsibility to
determine from the user, o?'other information available to it, the session key to use. When the
user or system attaches through another HTTP session the application must be able to generate
the same session key in order to share sessions. Session keys are typically pieces of

information like a login name, or email address, that uniquely identify the user.

2.2 Session Establishment
2.2.1 Establishing a new HTTP session with a new session key

1. A user or system makes a request from a website and the server creates a new HTTP
session for that client.

2. The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not have to occur immediately — for
example a login page can be presented to the user and user credentials captured from it.,

3. The application notifies the session broker of the new session, handing it a reference to

- the HTTP session and the unique session key.

4, The session broker tracks a reference to the session data associated with the session key.

-14-

10

15

20

25

30

222

10.

11.

12.

WO 03/050700 PCT/US02/20319

The session broker notifies its session manager that a new session has been established
and gives it the session key for the new session.

The session manager determines that no other session brokers are currently using that
key.

The session manager tracks a reference to the session broker along with the session key.
The session manager notifies the broker that no other brokers are using the given

session key.

Establishing a new HTTP session with an existing session key

A user or system makes a request from a website and the server creates a new HTTP
session for that client.

The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not have to occur immediately — for
example a login page can be presented to the user and user credentials captured from it.
The application notifies the session broker of the new session, handing it a reference to
the session and the unique session key.

The session broker tracks a reference to the session data associated with the session key.
The session broker asks the session manager if the session key is currently in use.

The session manager determines that another session broker (hereafter referred to as the

" “old” broker) has an active session with that key.

The session manager notifies the new session broker that the session key is already in
use and identifies the old session broker that is using that key.

The new session broker retrieves the old HTTP session data from the old session broker
and merges it into the new HTTP session.

The new session broker notifies the old session broker that the HTTP session associated
with the session key needs to be terminated (invalidated).

The old session broker terminates the-old HTTP session (or requests that the server or
other resource maintaining the HTTP session terminate that HTTP session).

The old session broker notifies the session manager that the session key is no longer
being used by it.

The session manager stops tracking the session key and associated session broker

reference.

-15-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

13. The new session broker notifies the session manager that a new session has been
established and gives it the session key for the new session.

14. The session manager tracks a reference to the session broker along with the session key.

2.2.3 Establishing a new HTTP session with an existing session key (same broker)

This path exists for efficiency’s sake. There is no need to communicate with the session
manager if the broker is already tracking the old session. The same key will be used and the
session manager is already aware that the broker has that key active.

1. A user or system makes a request from a website and the server creates a new HTTP
session for that client.

2. The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not have to occur immediately — for
example a login page can be presented to the user and user credentials captured from it.

3. The application notifies the session broker of the new session, handing it a reference to
the session and the unique session key.

4. The session broker determines that it is already tracking an HTTP session with the given
session key.

5. The session broker retrieves the old HTTP session data and merges it into the new
HTTP session.

6. The sessién broker terminates the old HTTP session (or requests that the server or other
resource maintaining the HTTP session terminate that HTTP session).

7. The session broker replaces the reference to the old HTTP éession associated with the

session key with a reference to the new HTTP session.

23 HTTP Session Timeout

When an HTTP session is tracked by cookies or URL-rewriting, the server has no way of
knowing that a particular session never intends to communicate with the servér again (the user
closes their browser). In order to avoid requiring resources to track every session ever
established, servers generally establish a timeout for HTTP sessions. If more than the set .
timeout period elapses between requests on a session, the server terminates (invalidates) the
session and releases resources associated with it.

In order participate in this resource cleanup, servers generally offer a way for applications to be

notified when a session is terminated. When this occurs, the session broker notifies the session

-16-

WO 03/050700 PCT/US02/20319

manager that it is no longer using the key. The session manager stops tracking the key and

associated session broker reference.

2.4 Limit Copied Data
The application can identify to the session broker a list of session data attributes that should not
be copied between sessions. This avoids copying attributes that are not needed or are

undesired.

-17-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

3. PERSISTENT

Fig. 12 shows the basic components of a persistent solution populated with sample data.

3.1 Components
3.1.1 Application Server

This provides the same functionality as in the non-persistent implementation.

3.1.2 Session Broker
Each application (a web site is considered an 'application) maintains one session broker on
every server on which that application is running. If multiple applications are running on the
same server, then each application will have its own sessipn broker. Each session broker has a
unique ID assigned to it. It is the application’s responsibility to configure the session broker
with this ID and guarantee that it is not in use by other session brokers. Each session broker
has the following responsibilities:

(a) Determine if a snapshot currently exists in the snapshot data store

(b) Create a snapshot when a new session is established.

(c) Track the session keys currently associated with it.

(d) Update the snapshot when requested by the application.

(e) Remove the snapshot when requested by the application.

(f) Determine if the snapshot has been taken over by another session broker when
requested by the application.

(g) Merge session data from the snapshot of a previous HT'TP session into the new
HTTP session when both sessions are identified with the same key.
Note: An application may specify that the snapshot be updated with every request, or for the:
sake of better performance, may wish to notify the session broker to update the data only when
it knows the data has been changed.

Note: When a user or system makes a request, it is the application’s responsibility to ensure

that the session has not been taken over by another session broker since the last request was

made on the session.

3.1.3. Snapshot Data Store
Each application or set of applications that wish to share sessions interact with one and only

snapshot data store. Each snapshot that is stored is associated with a session key.

-18-

10

15

20

25

WO 03/050700 PCT/US02/20319

(a) Store a snapshot of session data, associated with a session key and a session broker
ID.

(b) Guarantee that a session key is only associated with one snapshot at any given time.
Note: There are a variety of methods in which snapshots can be stored, including, but not
limited to, a relation database management system (RDBMS), in memory by a shared resource,
in a naming or lookup service, or even in a flat file. In whichever method it is implemented, the

session broker interacts directly with the snapshot data store.

3.1.4 Session Keys

Session keys in the persistent solution are identical to those in the non-persistent solution.

3.2 Session Establishment
3.2.1 Establishing a new HTTP session with a new session key

1. A user or system makes a request from a website and the server creates a new HTTP
session for that client.

2. The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not have to occur immediately — for
example a login page can be presented to the user and user credentials captured from it.

3. The application notifies the session broker of the new session, handing it a reference to
the session and the unique session key.

4. The session broker determines that it is not currently tracking a snapshot for the session
key and that the snapshot data store does not contain a snapshot associated with the
session key.

5. The session broker tracks that it is maintaining a snapshot for the session key.

6. The session broker copies the data out of the session and records it in a new snapshot in
the snapshot data store, associated with the session key and its session broker ID.

7. The snapshot data store guarantees that session key is not already associated with
another snapshot. |

3.2.1 Establishing a new HTTP session with an existing session key
1. A user or system makes a request from a website and the server creates a new HTTP

session for that client.

-19-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

2. The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not have to occur immediately — for
example a login page can be presented to the user and user credentials captured from it.

3. The application notifies the session broker of the new session, handing it a reference to
the session and the unique session key.

4. The session broker determines from the snapshot data store that the session key is
currently associated with an existing snapshot.

5. The session broker retrieves the old HTTP session data from the snapshot and merges it
into the new HTTP session.

6. The session broker updates the snapshot of the session data with the new HTTP
session’s data (the new session may contain new data that is not yet in the snapshot).

7. The session broker updates the session broker ID for the snapshot in the snapshot data
store. _

8. The session broker tracks that it is maintaining a snapshot for the session key.

Note: In this scenario, it is the application’s responsibility to determine when an existing HTTP
session is trying to make a request for a session key associated with a snapshot currently
maintained by another session broker. When this occurs, it must invalidate the old HTTP

session.

3.2.3 Establishing a new HTTP session with an existing session key (same broker)
This path exists so that a new HTTP session handled by the same broker can automatically
invalidate the old HTTP session. There are also minor efficiencies gained.
1. Auser or system makes a request from a website and the server creates a new HTTP
session for that client. | ‘A
2. The application uses information available to it to manufacture a unique session key to
associate with that user or system. This does not hav.e to oécur immediately — for
example a login page can be presented to the user and user credentials captured from it.
3. . The application notifies the session broker of the new session, handing it a reference to
the session and the unique session key.
4. The session broker defermines that it is already tracking an HTTP session with the given
session key.
5. The session broker retrieves the old HTTP session data from the snapshot and merges it

: into the new HTTP session.

220-

10

15

20

25

30

WO 03/050700 PCT/US02/20319

6. The session broker updates the snapshot of the session data with the new HTTP
session’s data (the new session may contain new data that is not yet in the snapshot).
7. The session broker terminates the old HTTP session (or requests that the server or other
resource maintaining the HTTP session terminate that HTTP session).
8. The session broker tracks that it is maintaining a snapshot for the session key.
3.3 Snapshot Updates
The application can notify the session broker that its session data has changed, and that the '
snapshot should be updated. This is similar to 3.2.3, except that the session is not invalidated
after the data has been updated. Instead of merging the old data with the new, the existing

snapshot is updated with any changes.

3.4 HTTP Session Timeout
(See the non-persistent solution for a definition of HTTP session timeout)
When an HT TP session times out, the session broker removes the snapshot from the snapshot

data store and stops tracking the session key associated with the HTTP session.

3.5 Limit Copied Data

The same technique defined in the non-persistent solution can be used in the persistent solution.

The present invention may be implemented with any combination of hardware and
software. If implemented as a computer-implemented apparatus, the present invention is
implemented using means for performing all of the steps and functions described above.

The present invention can be included in an article of manufacture (e.g., one or more
computer program products) having, for instance, computer useable-media. The media has
embodied therein, for instance, computer readable program code means for providing and
facilitating the mechanisms of the present invention. The article of manufacture can be
included as part of a computer system or sold separately.

It will be appreciated by those skilled in the art that changes could be made to the
embodiments described above without departing from the broad inventive concept thereof. It is
understood, therefore, that this invention is not limited to the particular embodiments disclosed,
But it is intended to cover modifications within the spirit and scope of the present invention as
defined by the appended claims.

We claim:

21-

WO 03/050700 PCT/US02/20319

CLAIMS
1. A method of using session state data across sessions, the method comprising:
(a) establishing a first session, the session including session state data;
(b) establishing a second session; and
(c) determining if the second session desires to access session state data
established by the first session, and if so, using at least some of the session state data from the
first session during the second session to establish the initial session state during the second

session.

2. The method of claim 1 wherein the first and second sessions have session owner
data associated therewith, and step (c) is performed by determining if the session owner data of

the second session matches with the session owner data of the first session.
3. The method of claim 2 wherein the session owner data is a unique user ID.

4. The method of claim 3 wherein a plurality of different user ID’s are assigned to
the same session owner, and step (c) is performed by determining if the session owner
associated with the user ID of the second session matches the session owner associated with the

user ID of the first session.

5. The method of claim 1 wherein each session has an associated session object
that includes session state data which defines the session state, and step (c) further comprises
using the session state data in the session object of the first session in the session object of the

second session to establish the initial session state during the second session.

6. The method of claim 5 further comprising:
(d) maintaining a copy of at least some of the session state data associated with
the first session, wherein the data in the copy is updated whenever session state data in the
session object that also exists in the copy is changed, and step (c) further comprises using the

session state data in the copy to populate the session object during the second session.

7. The method of claim 1 wherein the sessions are HTTP sessions and the session

state data are HTTP session data.

-22-

WO 03/050700 PCT/US02/20319

8. The method of claim 1 further comprising:

(d) maintaining a copy of the current state of at least some of the session state
data associated with the first session, wherein step (c) further comprises using the session state

data in the copy during the second session.

9. An article of manufacture for using session state data across sessions, the article
of manufacture comprising a computer-readable medium holding computer-executable
instructions for performing a method comprising:

(2) establishing a first session, the session including session state data;

(b) establishing a second session; and

(c) determining if the second session desires to access session state data
established by the first session, and if so, using at least some of the session state data from the
first session during the second session to establish the initial session state during the second

session.

10. The article of manufacture of claim 9 wherein the first and second sessions have
session owner data associated therewith, and step (c) is performed by determining if the session

owner data of the second session matches with the session owner data of the first session.

11. The article of manufacture of claim 10 wherein the session owner data is a

unique user ID.

12. The article of manufacture of claim 11 wherein a plurality of different user ID’s
are assigned to the same session owner, and step (c) is performed by determining if the session
owner associated with the user ID of the second session matches the session owner associated

with the user ID of the first session.

13. The article of manufacture of claim 9 wherein each session has an associated
session object that includes session state data which defines the session state, and step (c)
further comprises using the session state data in the session object of the first session in the
session object of the second session to establish the initial session state during the second

session.

14. The article of manufacture of claim 13 wherein the computer-executable

instructions perform a method further comprising:

23.

WO 03/050700 PCT/US02/20319

(d) maintaining a copy of at least some of the session state data associated with
the first session, wherein the data in the copy is updated whenever session state data in the
session object that also exists in the copy is changed, and step (c) further comprises using the

session state data in the copy to populate the session object during the second session.

15. The article of manufacture of claim 9 wherein the sessions are HTTP sessions

and the session state data are HT'TP session data.

16. The article of manufacture of claim 9 wherein the computer-executable
instructions perform a method further comprising:
(d) maintaining a copy of the current state of at least some of the session state
data associated with the first session, wherein step (c) further comprises using the session state

data in the copy during the second session.

24-

WO 03/050700

PCT/US02/20319

1/12

(START)

CLIENT SENDS REQUEST
TO A WEBSITE

12
SERVER
SIDE

DOES CLIENT
" REQUEST INCLUDE
A SESSION ID
COOKIE?

16
SERVER
SIDE

DOES
AN UNEXPIRED,
VALID SESSION ID
EXIST AT THE
SERVER?

/"10

BROWSER
SIDE

NO

SERVER SIDE /'

ALLOCATE NEW SESSION
ID AND CREATE
SESSION ID COOKIE,
AND SEND THE SESSION
ID COOKIE TO THE

NO

/‘18

CLIENT FOR USE IN
SUBSEQUENT
CLIENT-SERVER
COMMUNICATIONS

LOCATE SESSION DATA

REQUEST, UPDATE STATE
DATA IN THE SESSION

THAT CORRESPONDS TO THE
SESSION ID, EXECUTE CLIENT

SERVER
SIDE

END

Fig. 1
(Prior Art)

PCT/US02/20319

WO 03/050700

= ¢ 3ALNdIdLlY = ¢ 3LNGI¥LLY | L YLvad NOISS3IS
= | ALNGRILLY = | 3LNGRILLY Y3IHLO
Z T1avVIVA = 2 VYlva Z FNaVINVA = Z VY.VQ
L FIGVIIVA = | VLVQ | 3EVINVA = | vivqQ |k Viva VIS
$9 39Vd = 39vd LNIHH¥ND Z 39Vd = 39Vd LNIY¥ND NOISS3S
HLINSANYN = @I NI9O1 J0ANHOM = al NI901
210684 = QI NOISS3S 9S¥$ZL = Al NOISS3S
| NOISS3S 'z ¥3SN ¥03 VLVA NOISS3S | |1 NOISS3S ‘I ¥3SN ¥04 v1Va NOISS3S
Z1068L (1Y 41014J)
95¥¢Z 1 .
5,01 NOISS3S 7 ‘o1
~ a34IdXaANN
~
N 1S
woo MsANg mmm HO4 ¥IAYIS ILISTIM 3ais
llllllllllllllllll 1 o __._.__ Yy
T —~—" 1| R
] (L3INY3LNI “B'8)
MYOMLIN oNend
|||||||||||||||||| Y T
3als
| **xxx | QYOMSSVd | % x x x | QYOMSSVd 1N3ND
| HLIASAYYW | N19O1 I NOISS3S | 3J0AGNHOr | NI9OT I NOISS3S
| woo'yymsAng mmm | :SS3YAAY ¢ d3sn | woo'yymskng mmm | :353¥0QAV GRESY)
MASMONE ¥IASMOUE

(doiMs3g “b-e) gl 3IDIN3IQ

(

doixs3a “6-8) vi 30IA3A

PCT/US02/20319

3/12

WO 03/050700

= Z 3LNEINLLY = Z 3LNAINLLY wﬁé NOISS3S
= | 3LNEINLLY = | 3LNGIYLLY Y3IHLO
~ % Viva 2% viva|lviva ws
JOVINOH = 39¥d INIHHND 39VJINOH = 39vd LNINEND NOISS3S
HLINSAYYWN = QI NI9OT J04NHOP = QI NI9OT
LESEES = QI NOISS3S 68.9SY = QI NOISS3S
Z NOISS3S ‘z ¥3SN ¥04 VLVA NOISS3S | |Z NOISS3S ‘t ¥3sn 4904 VLvd NOISS3S
LEEEEE
689G (14y 41014])
21068/ .
sl NOISS3sS € 31y
a3uIdXANN
1S
wooynsAng mmm yO4 HIANIS ILISEIM 3ais
|||||||||||||||||| I R O N - -
\I./I\/l\\ ‘e
| (LINYALNI “B°3)
MYOML3IN orand
/I-I\\/I\.\I.’/
3q1S
|+ % % * | QYOMSSVd |+ % x * | QYOMSSYd LIN3MD
| HLINSAYYW | NI9O1 Z NOISS3S | J0ONHOM | NI9OT Z NOISS3S
| wooryymsAng'mmm | :ss3yagy || ¢ ¥3SN | wooryymshng'mmm | :ss3yaqy || + 3N
¥ISMOYS ¥3SMoug
(doLvs3a “B's) g1 3I0IA3C (vad “Be) z 301A3a

PCT/US02/20319

WO 03/050700

4/12

b S1]

¢ J18viavA = ¢ vivdad
I 318VIdVA = | Vivd
79 FOVd = 30Vd LNIYINO

HLINSAYYW = @i Nipo7 | V4iVd NOISSES
40 SLOHSJVYNS

¢ J18VYIVA = ¢ v1va

L 31GVIIVA = | V1vd

¢ 3OVd = 30Vd LNIJNO
4OANHOr = dl NI9OT

LNINOJWO9D
| LINIWNIOVNYI “
V1Vad NOISS3S

= ¢ 3LNnapLly

= | J1INE[HLLY

¢ JNavidvA = Z vivda

I 378VIMVA = | V1v(Qd

79 30Vd = 30Vd INIJINO
HLINSAYVA = QI NIDO1
¢l068L = dI NOISS3S

l NOISS3S Z ¥3SN ¥04 V.Lvd NOISS3S

= ¢ 31NaLLV

= | ALNGI¥LLY

¢ J18VIIVA = ¢ v.ivd

L 378VIdVA = | Vivd

¢ 39Vd = 30Vd IN3¥N0
AOANHOM = @l NI9OT
9Gve¢l = dl NOISS3S

L NOISS3S ‘L ¥3SN ¥04 VivVa NOISS3S

PCT/US02/20319

WO 03/050700

= Z 3LNAIMLLY = Z 3ALNEINLLY |\ viva NOISS3S
= | 3LNGINLLY = | 3LNGNLLY ¥3AHLO
Z FaviavA = Z viva Z TavidvA = Z vivda
L 378YINVA = | Viva I 3N8VINVA = | viva | b Y1Vd 3LViS
9 3OVd = 39Yd ININNND Z 39Yd = 39vd LNI¥¥ND NOISS3S
HLINSANYN = QI NI9O1 30ONHOP = Al NI9O7
L£€CES = @l NOISS3S 689Gy = QI NOISS3S
Z NOISS3S ‘¢ ¥3SN ¥04 V1VA NOISS3S | [Z NOISS3S °} ¥3sn ¥04 VLivd NOSSIS
LESCET
689G .
21060, S 31
~ s, NOISS3S
~ a34IdXANN
/
w 1S
wooynsAng mmm ¥O4 HIANIS ILISEIM 3q1s
llllllllllllllllll I _YiAu3s
\‘ll/\n/l\\\.. -
| (L3INY3LNI “B°8)
MYOMLIN onand
llllllllllllllllll T I
‘ Q1S
| *x*x | ayomssvd I #x* x| qQyoMsSYd IN3MO
| HLINSANYW | NI90O7 Z NOISS3S | 30GNHOr | NI9O1 Z NOISS3S
| wooynmskng'mmm | :ss3yaqy || ¢ ¥3SN | wooyymsAng'mmm | :ss3yaqy || + E3SN
YIASMONS YISMOYS

(doLlys3a “b-e) gl 391A30

(vad “69) z 301A3C

WO 03/050700 PCT/US02/20319

6/12
USER LOGIN
PROCESS
24
22 f
DOES ALLOCATE NEW SESSION
CHALLENGE NO ID AND DO NOT

MATCH A LOGIN ID
OF A RETAINED
SNAPSHOT

INITIALLY ASSOCIATE
ANY OLD SESSION DATA
WITH THE SESSION ID.

T I]

DOES

USER WISH

TO CONTINUE WITH

A PREVIOUS

SESSION
9

|
I
|
| OPTIONAL
I
|
|
|

________________ I

28
RETRIEVE SNAPSHOT DATA |/
FOR CORRESPONDING LOGIN

ALLOCATE A NEW SESSION ID
AND POPULATE SESSION DATA f30
FOR THE NEW SESSION ID
WITH SESSION DATA RETRIEVED
FROM THE SNAPSHOT

CONTINUE WITH SESSION f32
AT POINT THAT
PREVIOUS SESSION ENDED

END

Fig. 6

WO 03/050700 PCT/US02/20319

7/12

SNAPSHOT UPDATE
PROCESS

START

34 f 36

DID THE NO DO NOT
SESSION DATA ~— MODIFY THE
CHANGE? SNAPSHOT

38

IS THE
CHANGED DATA
A PIECE OF DATA THAT
BELONGS IN THE
SNAPSHOT?

NO

40
UPDATE THE SNAPSHOT |/~
WITH NEW DATA

END

Fig. 7

PCT/US02/20319

WO 03/050700

8/12

¢ JN8VI¥VA = ¢ Vvivd
I 37aVIIVA = | VYLVvd

¢ FN8VRIVA = € Vv1va
L 318VIdVA = | YivQ

¥9 30Vd = 3O9Vd LNIYENO
¢ d3INMO = ¥3NMO NOISS3S

VLvad NOISS3S

¢ 3OVd = 39Vd LN3IYYNO
40 SLOHSJVNS I ¥3INMO = 43INMO NOISS3S

30Q3NVYP ‘30ANHOP

HLINSNHOP ‘HLINSAMYW | 2 d3NMO TavL
L 43INMO FONIYITY—SSOMD

¢ JNavidvA = ¢ v1va
L F18VIRIVA = | Vivd
Y9 30Vd = 39Vd IN3HdNO
HLINSNHOM = 4l Ni9071
¢6¥889 = (! NOISS3S

¥ 434SN 404 VLIVA NOISS3S

¢ FavidvA = ¢ viva

L F18VRIVA = | vivd

¢ 3OVd = 39Vd IN3YdNO
- JOd3NVr = @} NI9O1
IWw8¢G6 = (I NOISS3S

¢ d3ISN ¥O4 VLIVA NOISS3S

= ¢ ALNgIYlLY

= | 31NgI4LLY

¢ JavIdvA = ¢ vlva

L 3N8VRIVA = | vivd

¥9 30Vd = 3OVd LNIJHND
HLINSAYYN = (I NIDOT
210684 = QI NOISS3S

¢ ¥3SN J04 V1va NOISSs3s

= ¢ 3LngidLLy

= | ALngldLly

¢ J18YRIVA = ¢ Vivd

L JNGYIRIVA = | Yilvd

¢ 39Vd = 30Vd IN3¥dNO
JOANHOM = @l NI9OT
96veCl = 4l NOISS3S

L ¥3SN ¥0d4 VLIVA NOISS3S

(s)al NIoO1 JANMO NOISS3S ANINVAY3d
= ¢ 31LNGIMLLY = 7 3LNGIYLLY
= | 3LNAILLY = | 3LNGIILLY

¢l

S — — o Mo Gmtn m— S—— ST —— — . ——— —— — - St o s i e o S T i e i e, i, St oy iy s s s

13

8§ ‘S1q

PCT/US02/20319

WO 03/050700

9/12

6 'S1d

= ¢ 3LNGRILLY

= | 3LNaidLLY

¢ J1aVIdVA = T v1va

L J8VRIVA = | VLVvd

¥9 30Vd = 30Vd LN3IJ4NO
HLINSAYVIN = QI NI9OT
Leeeee = (I NOISS3S

¢ NOISS3S ‘Z ¥3Sn ¥04 VLVQ NOISS3S

= ¢ 31N8IdLLY

= | 3LNgI¥LLY

¢ JaVIdVA = € V1iva

L 31aVIIVA = | V1IVQ

¢ 3OVd = 3OVd LN3JdNO
JOANHOr = QI NI90OT
6849GY -= dl NOISS3S

Z NOISS3S ‘I ¥3SN ¥04 Viva NOISS3S

LNINOJWOO
INIWIOVNVIN
V1va NOISS3S

= ¢ JALNGI4LLY

= | 31NEILLY

¢ A1gVIdVA = ¢ Vivd

L J1aVIRIVA = | V1vd

¥9 30Vd = 39Vd LNIJND
HLINSAYYIWN = QI NIOOT
¢l0684 = I NOISS3S

L NOISS3S ‘Z ¥3SN ¥04 VLva NOISS3S

= ¢ 3LN8IJLLY

= | JLNgI¥LLY

¢ JN8VIIVA = ¢ VLivda

L 31aVIdVA = | viva

¢ 3OVd = 39Vd LNIJINO
JO0NHOr = al NI9O1
95v¢¢l = di NOISS3S

L NOISS3S ‘I ¥3SN ¥04 V.IVA NOISS3S

NOISS3S
aNOJ3S 40
ONINNIO38

NOISS3S
1S4di4
3O dN3

WO 03/050700 PCT/US02/20319

10/12
USER LOGIN
PROCESS
N 52
DOES ALLOCATE A NEW SESSION

CHALLENGE
MATCH A LOGIN ID
OF AN UNEXPIRED
OBJECT

NO ID AND DO NOT
INITIALLY ASSOCIATE

ANY OLD SESSION DATA
WITH THE SESSION ID

{7~ —]

| 54 |

| DOES :

{ USER WISH ,

| TO CONTINUE WITH | OPTIONAL
, A PREVIOUS |

| SESSION |

| |

| |

Lo YES Y i

56
RETRIEVE SESSION DATA |/ -
FOR CORRESPONDING LOGIN

ALLOCATE A NEW SESSION ID
AND POPULATE SESSION DATA /'58
FOR THE NEW SESSION ID
WITH SESSION DATA FROM
AN EXISTING SESSION

CONTINUE WITH SESSION /50
AT POINT THAT
PREVIOUS SESSION ENDED

END - Fig. 10

WO 03/050700

11/12

PCT/US02/20319

Application /

Server 1

Web Site R

Session Broker R

Session Key [NANCY]

HTTP Session ID [001]

Session Key [KATHERINE]

HTTP Session ID [002]

Session Key [ALICE]

HTTP Session ID [003]

Application

Server

G\HTI'P Session [001, Session Data] (Nancy's Desktop)

F}’RFP Session [002, Session Data] (Katherine's PDA)

H"IT\PkSession [003, Session Data] (Alice's Phone)

Application /

Server 2

Web Site !

Session Broker

Sesslon Key [STEVE]

HTTP Session ID [001] !

Session Key [TOM]

HTTP Session 1D [002]

Application Server

HTTP Session [001, Session Data] (Steve's Phone)

HTTP Session [002, Session Data} (Tom's Desktop)

N\

Session Data

1D [001]

Current Page [Checkout]

Session Manager Server

‘Session Manager

Language [English]

Session Key [NANCY]

Session Broker Handle (Server 1)

Cart Items [CD, Book, MP3 Player]

Sesslon Broker Handle (Server 1)

i - | Session Key [KATHERINE]

Session Key [ALICE]

Session Broker Handle (Server 1)

| Session Key [STEVE]

Session Broker Handle (Server 2)

:":| Session Key [TOM]

Session Broker Handle (Server 2)

Fig. 11

WO 03/050700

12/12

PCT/US02/20319

Server 1

Application / Web Site

Session Broker

Session Key [NANCY]

Session Broker ID

[APP1SRV1] Session Key [KATHERINE]

'} Session Key [ALICE]

Application Server

HTTP Session [001, Session Data] (Nancy's Desktop)

QTI'P Session [002, Session Data] (Katherine's PDA)
HTh{Session [003, Session Data] (Alice's Phone)

Server 2

Application / Web Site

~ Session Brplger

Session Broker ID
[APP1SRV2]

1 Session Key [STEVE]

) Session Key [TOM]

Application Server

HTTP Session [001, Session Data] (Steve's Phone)

HTTP Session [002, Session Data] (Tom's Desktop)

\ _— vy
Session Data -
1D [001]
| Snapshot Data Store
Current Page [Checkout]
Language [English]] Session Key [NANCY] Session Broker ID [APP1SRV1] | Snapshot [Checkout, ...]
Cart Items [CD, Book, MP3 Player] Session Key [KATHERINE] | Session Broker ID [APP1SRV1] | Snapshot [Home, ...]

Session Key [ALICE]

Session Broker ID [APP1SRV1]

Snapshot [View Cart, ...]

Session Key [STEVE]
Session Data Snapshot p)

Session Broker ID [APP1SRV2]

Snapshot [Checkout, ...]

Session Key [TOM]

Session Broker ID [APP1SRV2]

Snapshot [Item# 12321, ...]

Current Page [Checkout]

Language [English]

Cart Items [CD, Book, MP3 Player] ~

Fig. 12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/20319

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 15/16
USCL 709/228

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 709/228

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
University of Cambridge website (http://www.uk.research.att.com/vcn/docs

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 6,085,247 A (PARSONS, JR. et al) 04 July 2000 (04.06.2000), col. 7-12. 1-6, 8-14, 16

X US 6,269,402 B1 (LIN et al) 31 July 2001 (31.07.2001), col. 5-6. 1-3, 5, 8-11, 13

X RICHARDSON et al. Virtual Network Computing, IEEE Internet Computing, 1-3, 5,7, 811, 13, 15
January/February 1998, Vol 2, Number 1, pages 33-38.

A US 6,178,457 B1 (PITCHFORD et al) 23 January 2001 (23.01.2001), col. 2-6. 1-16

A US 5,771,353 A (EGGLESTON et al) 23 June 1998 (23.06.1998), col. 2-5. 1-16

A US 4,586,134 A (NORSTEDT) 29 April 1986 (29.04.1986), col. 3-13. 1-16

I:] Further documents are listed in the continuation of Box C.

[]

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the appllcanon but cited to understand the
principle or theory underlying the invention

“Xr document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“¥” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

12 September 2002 (12.09.2002)

Date of mailing of the mternatlonal seﬁﬁﬁ?ort

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer

Glen Burdess| fﬁw.'/l.\,,__ £ Ml e

Telephone No. 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/20319
INTERNATIONAL SEARCH REPORT

Continuation of B. FIELDS SEARCHED Item 3:
IEEE
search terms: session, user id, state, persistent

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

