Title: THERMAL METAL GROUND FOR INTEGRATED CIRCUIT RESISTORS

Abstract: Metal thermal grounds are used for dissipating heat from integrated-circuit resistors. The resistors may be formed using a front end of line layer, for example, a titanium-nitride layer. A metal region (e.g., in a first metal layer) is located over the resistors to form a heat sink. An area of thermal posts connected to the metal region is also located over the resistor. The metal region can be connected to the substrate of the integrated circuit to provide a low impedance thermal path out of the integrated circuit.
THERMAL METAL GROUND FOR INTEGRATED CIRCUIT RESISTORS

BACKGROUND

Field

[0001] The present invention relates to integrated circuits and, more particularly, to a thermal metal ground for cooling integrated circuit resistors.

Background

[0002] Some integrated-circuit resistors operate with high power dissipation. This leads to heating in the area of the resistor. The resulting increased temperature can impair the reliability of circuit elements in that area. For example, metal interconnect lines that are routed over the resistors could suffer from increased electromigration. Additionally, integrated circuit fabrication processes have scaled to smaller and smaller feature sizes. This leads to the possibility of increased power density and temperature rises in localized areas.

[0003] Resistors used for on-die termination (OUT) of inputs and outputs of an integrated circuit are an example of resistors that may have a high power dissipation. Some previous designs have lessened the temperature increase by making the resistors physically larger (increasing both the width and length of the resistor so that the electrical resistance is unchanged). Some previous designs have not used the area near the resistors for routing metal interconnects. Both of these approaches are undesirable as they result in a larger integrated circuit.

SUMMARY

[0004] Integrated-circuit resistors with metal thermal grounds are provided. The resistors may be formed using a front end of line (FEOL) layer, for example, a titanium-nitride layer. A metal region (e.g., in a first metal layer) is located over the resistors to form a heat sink. An area of thermal posts connected to the metal region is also located over the resistor. The metal region can be connected to the substrate of the integrated circuit to provide a low impedance thermal path out of the integrated circuit.

[0005] In one aspect, an integrated circuit is provided that includes: a resistor; a metal region disposed parallel to and overlapping at least part of the resistor; and one or more
thermal posts electrically connected to the metal region and disposed between the metal region and the resistor, the thermal posts electrically isolated from the resistor.

[0006] In one aspect, a method for dissipating heat from a resistor in an integrated circuit is provided. The method includes: conducting heat from the resistor to a thermal metal ground using one or more thermal posts disposed between the thermal metal ground and the resistor; and conducting heat from the thermal metal ground to a substrate of the integrated circuit.

[0007] In one aspect, an integrated circuit is provided that includes: a resistor; a metal region disposed parallel to and overlapping at least part of the resistor; and means for conducting heat from the resistor to the metal region.

[0008] Other features and advantages of the present invention should be apparent from the following description which illustrates, by way of example, aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which:

[0010] FIG. 1 illustrates resistors with a metal thermal ground according to a presently disclosed embodiment;

[0011] FIG. 2 illustrates heat transfer paths for the resistors and the thermal metal ground of FIG. 1;

[0012] FIG. 3 illustrates heat transfer paths for resistors without a thermal metal ground; and

[0013] FIG. 4 is a flowchart of a process for dissipating heat from integrated circuit resistors.

DETAILED DESCRIPTION

[0014] The detailed description set forth below, in connection with the accompanying drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in simplified form in order to avoid obscuring such concepts.

[0015] FIG. 1 illustrates an example layout of resistors with a metal thermal ground. FIG. 1A is a top view. This is the view commonly used for designing the layout of an integrated circuit. FIG. 1B is a cross-sectional view along line B-B. FIG. 1C is a cross-sectional view along line C-C. Like regions and layers are indicated with like references in the figures. Not all layers are shown. Additionally, regions are generally illustrated as rectangular, although the shapes may vary in a fabricated integrated circuit. The example is described for CMOS technology but may be used with other technologies. The arrangement of the particular layers can vary and the layers used can vary, for example, when different fabrication processes are used for the integrated circuit.

[0016] The example of FIG. 1 includes two resistors (110a, 110b). The resistors may be formed in a titanium-nitride layer. The resistors are connected to other circuitry, for example, via metal and contacts (125a, 125b) located at opposite ends of the resistors. The resistors (110a, 110b) are surrounded by a dielectric 130a. In addition to being an electrical insulator, the dielectric 130a is a poor thermal conductor.

[0017] A thermal metal region 120 is located over the resistors. The thermal metal region 120 provides a heat sink for the resistors (110a, 110b). Local heating of the thermal metal region 120 does not pose a reliability issue, since the thermal metal region 120 does not carry electrical current and, thus, is not susceptible to electromigration. The thermal metal region 120 may be formed in the first metal layer (the metal layer closest to the substrate of the integrated circuit). The first metal layer is often referred to as "M1" and is also used to route signal interconnects between components on the integrated circuit. The signal interconnects may use other metal layers as well; for example, a transistor in one area of the integrated circuit may be connected to the first metal layer and then connected to higher metal layers and routed to a second area of the integrated circuit where the higher metal layers are again connected to the first metal layer which is connected to a transistor in the second area of the integrated circuit. The thermal metal region 120 may be, for example, formed of copper and other metals.

[0018] The thermal metal region 120, in the embodiment of FIG. 1, is connected to the substrate 140 of the integrated circuit. The thermal metal region 120 is connected to the substrate 140 at locations between isolation regions (145a, 145b) in the substrate 140. The connections may be, for example, to p-diffusion regions when the substrate is p-
type. The connections are through contacts (150a, 152a, 150b, 152b, 150c, 152c) located in contact openings in dielectric layers (130a, 130b, 130c). The contacts are formed of an electrical conductor, such as tungsten, which is also a good thermal conductor. The thermal metal region 120, in the embodiment of FIG. 1, is ohmically connected to the substrate 140 via the contacts and p-diffusion regions. The thermal metal region 120 may alternatively be connected to the substrate without an ohmic contact, for example, using n-diffusion regions in the p-type substrate which form a diode contact. The thermal metal region 120 may alternatively be thermally connected to the substrate without an electrical connection between the thermal metal region 120 and the substrate 140, for example, by using it an intervening material such as beryllia, which is an electrical insulator with high thermal conductivity. The particular arrangement of contacts and dielectric layers may differ for different process nodes. The connection between the thermal metal region 120 and the substrate 140 can be the same as the type of connection, for example, used between a first metal layer regions and a source-drain region elsewhere on the integrated circuit. The thermal metal region 120 is surrounded by dielectric layers (not shown in FIG. 1).

[0019] In addition to being an electrical conductor, the thermal metal region 120 is a good thermal conductor. Thus, the thermal metal region 120 can provide a path with low thermal resistance for dissipating heat from the resistors (110a, 110b). Connecting the thermal metal region 120 to the substrate 140 can further reduce the thermal resistance for dissipating heat from the resistors (110a, 110b) as the substrate 140 can have a low thermal resistance path for dissipating heat, for example, via connection to metal in an integrated circuit package.

[0020] An array of thermal posts (122a, 122b) is located in a layer between the thermal metal region 120 and the resistors (110a, 110b). The thermal posts (122a, 122b) may include, for example, tungsten or other metals. The thermal posts and openings for the thermal posts may be formed by methods similar to those used for forming contacts and contact openings between the first metal layer and source/drain regions in the substrate of the integrated circuit. The openings for the thermal posts (122a, 122b) may be formed, for example, by selective etching between different dielectric materials or by a timed etch. The thermal posts (122a, 122b) are connected to the thermal metal region 120 and extend toward the resistors (110a, 110b). The thermal posts (122a, 122b) do not contact the resistors (110a, 110b). Portions of the dielectric 130a separate the thermal posts (122a, 122b) from the resistors (110a, 110b).
[0021] The thermal posts (122a, 122b) are good thermal conductors. In particular, the thermal posts (122a, 122b) are much better thermal conductors than the dielectric layers. Thus, the thermal resistance of dissipating heat from the resistors (110a, 110b) is reduced by the proximity of the thermal posts (122a, 122b) to the resistors (110a, 110b).

[0022] FIG. 2 illustrates heat transfer paths 200 for the resistors and the thermal metal ground of FIG. 1. FIG. 3 illustrates heat transfer paths for a resistor 210 without a thermal metal ground. The thermal metal region 120 and thermal posts (122a, 122b) can substantially (e.g., 25%) lower the thermal impedance seen by the resistors. Qualitatively, this can be understood by comparing the heat transfer paths 200 illustrated in FIG. 2 with the heat transfer paths 220 illustrated in FIG. 3. The heat transfer paths 220 without a thermal metal ground are generally through dielectric layers (e.g., dielectric 230 and other dielectric layers above the resistor or the dielectric 230 and other dielectric layers below the resistor). The heat transfer paths 200 with the thermal metal ground are generally through metal and silicon layers (e.g., the thermal posts (122a, 122b), the thermal metal region 120, the contacts (150a, 152a, 150b, 152b), and the substrate 140). The metal layers and the silicon substrate are good thermal conductors and the dielectric layers are poor thermal conductors, thus the thermal path through the metal and substrate is less resistive than the path through the dielectrics.

[0023] FIG. 4 is a flowchart illustrating a method for dissipating heat from a resistor in an integrated circuit according to a presently disclosed embodiment. The process of FIG. 4 may be performed with various integrated circuits; however, to provide a specific example, the method will be described with reference to FIG. 1.

[0024] In step 410, heat is conducted from the resistor to a thermal metal ground using one or more thermal posts. The thermal posts are disposed between the thermal metal ground and the resistor. For example, heat can be conducted from the resistor 110a to the thermal metal region 120 using the thermal posts 122a.

[0025] In step 410, heat is conducted from the thermal metal ground to a substrate of the integrated circuit. For example, heat can be conducted from the thermal metal region 120 to the substrate 140 using the contacts 150b, 152.

[0026] The process of FIG. 4 may be modified, for example, by adding, omitting, reordering, or altering steps. Additionally, the steps may be performed concurrently.

[0027] Although embodiments of the invention are described above for particular embodiments, many variations of the invention are possible including, for example, those with different numbers of resistors, thermal posts, and thermal metal regions. The
shapes and locations of the various elements can also be varied, in the illustrated embodiment, the thermal metal region and resistors only partially overlap since the thermal metal region is formed in the first metal layer which is also used to connect to the resistors. Other embodiments may use different layers and have full overlap between the thermal metal region and resistors.

[0028] Directional terms, such above, above, below, left, and right, are used to describe some features. This terminology is used to provide clear and concise descriptions. The terms are relative and no particular absolute orientation should be inferred. Additionally, features of the various embodiments may be combined in combinations that differ from those described above.

[0029] The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent presently preferred embodiments of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.
What is claimed is:

1. An integrated circuit, comprising:
 a resistor;
 a metal region disposed parallel to and overlapping at least part of the resistor; and
 one or more thermal posts electrically connected to the metal region and disposed between the metal region and the resistor, the thermal posts electrically isolated from the resistor.

2. The integrated circuit of claim 1, wherein the metal region is electrically connected to the substrate of the integrated circuit.

3. The integrated circuit of claim 1, wherein the resistor is formed of titanium nitride.

4. The integrated circuit of claim 1, wherein the metal region is formed in a first metal layer of the integrated circuit.

5. The integrated circuit of claim 1, wherein the metal region is disposed above the resistor.

6. The integrated circuit of claim 1, wherein the resistor is surrounded by a dielectric.

7. A method for dissipating heat from a resistor in an integrated circuit, the method comprising:
 conducting heat from the resistor to a thermal metal ground using one or more thermal posts disposed between the thermal metal ground and the resistor; and
 conducting heat from the thermal metal ground to a substrate of the integrated circuit.

8. The method of claim 7, wherein the thermal metal ground is disposed parallel to and overlapping at least part of the resistor.
9. The method of claim 7, wherein the thermal posts are electrically connected to the thermal metal ground and the thermal posts are electrically isolated from the resistor.

10. The method of claim 7, wherein the thermal metal ground is electrically connected to the substrate of the integrated circuit.

11. The method of claim 7, wherein the resistor is formed of titanium nitride.

12. The method of claim 7, wherein the thermal metal ground is formed in a first metal layer of the integrated circuit.

13. The method of claim 7, wherein the resistor is surrounded by a dielectric.

14. An integrated circuit, comprising:
 a resistor;
 a metal region disposed parallel to and overlapping at least part of the resistor; and
 means for conducting heat from the resistor to the metal region.

15. The integrated circuit of claim 14, wherein the means for conducting heat includes one or more thermal posts electrically connected to the metal region and disposed between the metal region and the resistor, the thermal posts electrically isolated from the resistor.

16. The integrated circuit of claim 14, wherein the metal region is electrically connected to the substrate of the integrated circuit.

17. The integrated circuit of claim 14, wherein the resistor is formed of titanium nitride.

18. The integrated circuit of claim 14, wherein the metal region is formed in a first metal layer of the integrated circuit.

19. The integrated circuit of claim 14, wherein the metal region is disposed above the resistor.

20. The integrated circuit of claim 14, wherein the resistor is surrounded by a dielectric.
Conduct heat from resistor to thermal metal ground using contact region

Conduct heat from thermal metal ground to integrated circuit substrate

FIG. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01L23/367 H01L49/02 H01L23/522

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevance to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012/068308 AI (IGETA MITSUAKI [JP] ET AL) 22 March 2012 (2012-03-22) paragraph [0005] : figures 3, 10 -----</td>
<td>1, 2, 4-10, 12-16, 18-20</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) on which the application is based

"O" document referred to in the oral proceedings of the international search

"P" document which does not fall within categories "A" to "O" but which is considered to be relevant

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search 1 June 2015

Date of mailing of the international search report 10/06/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL-2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Gelébart, Jacques

Authorized officer
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2012068308 A1</td>
<td>22-03-2012</td>
<td>DE 112009005017 T5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5335914 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012068308 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011001494 A1</td>
</tr>
<tr>
<td>US 2005167801 A1</td>
<td>04-08-2005</td>
<td>US 2005167801 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008102584 A1</td>
</tr>
<tr>
<td>US 2006231945 A1</td>
<td>19-10-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2011140279 A1</td>
<td>16-06-2011</td>
<td>NONE</td>
</tr>
</tbody>
</table>