wo 2017/058479 A1 |1 NN OO0 OO0 O R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/058479 A1l

6 April 2017 (06.04.2017) WIPO I PCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6N 3/08 (2006.01)

International Application Number:
PCT/US2016/050539

International Filing Date:
7 September 2016 (07.09.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/234,559 29 September 2015 (29.09.2015) US
15/081,780 25 March 2016 (25.03.2016) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: TOWAL, Regan Blythe; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). JULIAN,
David Jonathan; 510 1st Avenue, Unit 504, San Diego,
California 92101 (US).

(74

(8D

(84)

Agents: LENKIN, Alan M. et al.; Seyfarth Shaw LLP,
Suite 3500, 2029 Century Park East, Los Angeles, Calitor-
nia 90067-3021 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: SELECTIVE BACKPROPAGATION

700

702
EVALUATE TRAINING DATA

'

DETERMINE FREQUENCY OF
EXAMPLES IN A CLASS

!

UPDATE GRADIENT BASED ON THE
FREQUENCY

704

Iy 706

708
¥ o Yy [~
UPDATEBY SELECTIVELY
APPLYING THE GRADIENT BASED
ON A SAMPLE OF THE CLASS

UPDATE BY APPLYING A
SCALING FACTOR TO THE

GRADIENT PER CLASS EXAMPLES
Y y Y
INDIVIDUAL| | EPOCH | | TRAINING
BASIS BASITS CORPUS
BASIS
Gz G s
FIG. 7

(57) Abstract: The balance of training data between classes
for a machine learning model is modified. Adjustments are
made at the gradient stage where selective backpropagation
is utilized to modify a cost function to adjust or selectively
apply the gradient based on the class example frequency in
the data sets. The factor for modifying the gradient may be
determined based on a ratio of the number of examples of
the class with a fewest members to the number of examples
of a present class. The gradient associated with the present
class is modified based on the above determined factor.

WO 2017/058479 A1 |IIWAIK 00PN 0000 AR

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

WO 2017/058479 PCT/US2016/050539

SELECTIVE BACKPROPAGATION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Patent
Application No. 62/234,559, filed on September 29, 2015, and titled “SELECTIVE
BACKPROPAGATION,” the disclosure of which is expressly incorporated by

reference herein in its entirety.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to machine learning
and, more particularly, to modifying the balance of training data between classes for a

machine learning model.

Background

[0003] An artificial neural network, which may comprise an interconnected group of
artificial neurons (e.g., neuron models), is a computational device or represents a

method to be performed by a computational device.

[0004] Convolutional neural networks are a type of feed-forward artificial neural
network. Convolutional neural networks may include collections of neurons that each
have a receptive field and that collectively tile an input space. Convolutional neural
networks (CNNs) have numerous applications. In particular, CNNs have broadly been

used in the area of pattern recognition and classification.

[0005] Deep learning architectures, such as deep belief networks and deep
convolutional networks, are layered neural networks architectures in which the output of
a first layer of neurons becomes an input to a second layer of neurons, the output of a
second layer of neurons becomes and input to a third layer of neurons, and so on. Deep
neural networks may be trained to recognize a hierarchy of features and so they have
increasingly been used in object recognition applications. Like convolutional neural
networks, computation in these deep learning architectures may be distributed over a

population of processing nodes, which may be configured in one or more computational

WO 2017/058479 PCT/US2016/050539

chains. These multi-layered architectures may be trained one layer at a time and may be

fine-tuned using backpropagation.

[0006] Other models are also available for object recognition. For example, support
vector machines (SVMs) are learning tools that can be applied for classification.
Support vector machines include a separating hyperplane (e.g., decision boundary) that
categorizes data. The hyperplane is defined by supervised learning. A desired
hyperplane increases the margin of the training data. In other words, the hyperplane

should have the greatest minimum distance to the training examples.

[0007] Although these solutions achieve excellent results on a number of
classification benchmarks, their computational complexity can be prohibitively high.

Additionally, training of the models may be challenging.

SUMMARY

[0008] In one aspect, a method of modifying a balance of training data between
classes for a machine learning model is disclosed. The method includes modifying
gradients of a backpropagation process while training the model, based on a ratio of a
number of examples of a class with a fewest members to a number of examples of a

present class.

[0009] Another aspect discloses an apparatus for modifying a balance of training
data between classes for a machine learning model. The apparatus includes means for
determining a factor for modifying a gradient based on a ratio of a number of examples
of a class with a fewest members to a number of examples of a present class. The
apparatus also includes means for modifying the gradient associated with the present

class based on the determined factor.

[0010] Another aspect discloses wireless communication having a memory and at
least one processor coupled to the memory. The processor(s) is configured to modify
gradients of a backpropagation process while training the model, based on a ratio of a
number of examples of a class with a fewest members to a number of examples of a

present class.

WO 2017/058479 PCT/US2016/050539

[0011] Another aspect discloses a non-transitory computer-readable medium having
non-transitory program code recorded thereon which, when executed by the
processor(s), causes the processor(s) to perform operations of modifying gradients of a
backpropagation process while training the model, based at least in part on a ratio of a
number of examples of a class with a fewest members to a number of examples of a

present class.

[0012] Additional features and advantages of the disclosure will be described below.
It should be appreciated by those skilled in the art that this disclosure may be readily
utilized as a basis for modifying or designing other structures for carrying out the same
purposes of the present disclosure. It should also be realized by those skilled in the art
that such equivalent constructions do not depart from the teachings of the disclosure as
set forth in the appended claims. The novel features, which are believed to be
characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The features, nature, and advantages of the present disclosure will become
more apparent from the detailed description set forth below when taken in conjunction
with the drawings in which like reference characters identify correspondingly

throughout.

[0014] FIGURE 1 illustrates an example implementation of designing a neural
network using a system-on-a-chip (SOC), including a general-purpose processor in

accordance with certain aspects of the present disclosure.

[0015] FIGURE 2 illustrates an example implementation of a system in accordance

with aspects of the present disclosure.

[0016] FIGURE 3A is a diagram illustrating a neural network in accordance with

aspects of the present disclosure.

WO 2017/058479 PCT/US2016/050539

[0017] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional

network (DCN) in accordance with aspects of the present disclosure.

[0018] FIGURE 4 is a block diagram illustrating an exemplary software architecture
that may modularize artificial intelligence (AI) functions in accordance with aspects of

the present disclosure.

[0019] FIGURE 5 is a block diagram illustrating the run-time operation of an Al

application on a smartphone in accordance with aspects of the present disclosure.

[0020] FIGURE 6 illustrates a method for balancing training data according to

aspects of the present disclosure.

[0021] FIGURE 7 illustrates an overall example for balancing training data

according to aspects of the present disclosure.

[0022] FIGURE 8 illustrates a method for balancing training data according to

aspects of the present disclosure.

DETAILED DESCRIPTION

[0023] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing
a thorough understanding of the various concepts. However, it will be apparent to those
skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0024] Based on the teachings, one skilled in the art should appreciate that the scope
of the disclosure is intended to cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the disclosure. For example, an
apparatus may be implemented or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure is intended to cover such an
apparatus or method practiced using other structure, functionality, or structure and

functionalitv in addition to or other than the various aspects of the disclosure set forth.

4

WO 2017/058479 PCT/US2016/050539

It should be understood that any aspect of the disclosure disclosed may be embodied by

one or more elements of a claim.

[0025] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0026] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

SELECTIVE BACKPROPAGATION

[0027] Aspects of the present disclosure are directed to modifying the balance of
training data between classes in a machine learning model. In particular, rather than
manipulating the training data and adjusting a number of examples for each class at the
input stage, aspects of the present disclosure are directed to adjustments at the gradient
stage. In various aspects of the present disclosure, selective backpropagation is utilized
to modify a cost function to adjust or selectively apply the gradients based on the class
example frequency in the data sets. In particular, gradients may be adjusted based on

the actual or expected frequency of examples for each class.

[0028] FIGURE 1 illustrates an example implementation of the aforementioned
selective backpropagation using a system-on-a-chip (SOC) 100, which may include at
least one processor, such as a general-purpose processor (CPU) or multi-core general-
purpose processors (CPUs) 102 in accordance with certain aspects of the present
disclosure. Variables (e.g., neural signals and synaptic weights), system parameters
associated with a computational device (e.g., neural network with weights), delays,

frequency bin information, and task information may be stored in a memory block

5

WO 2017/058479 PCT/US2016/050539

associated with a neural processing unit (NPU) 108, in a memory block associated with
a CPU 102, in a memory block associated with a graphics processing unit (GPU) 104, in
a memory block associated with a digital signal processor (DSP) 106, in a dedicated
memory block 118, or may be distributed across multiple blocks. Instructions executed
at the general-purpose processor 102 may be loaded from a program memory associated

with the CPU 102 or may be loaded from a dedicated memory block 118.

[0029] The SOC 100 may also include additional processing blocks tailored to
specific functions, such as a GPU 104, a DSP 106, a connectivity block 110, which may
include fourth generation long term evolution (4G LTE) connectivity, unlicensed Wi-Fi
connectivity, USB connectivity, Bluetooth connectivity, and the like, and a multimedia
processor 112 that may, for example, detect and recognize gestures. In one
implementation, the NPU is implemented in the CPU, DSP, and/or GPU. The SOC 100
may also include a sensor processor 114, image signal processors (ISPs), and/or

navigation 120, which may include a global positioning system.

[0030] The SOC 100 may be based on an ARM instruction set. In an aspect of the
present disclosure, the instructions loaded into the general-purpose processor 102 may
comprise code for modifying gradients of a backpropagation process while training a
machine learning model. The modifying is based on a ratio of a number of examples of
a class with a fewest members to a number of examples of a present class. The

modifying is applied to a gradient associated with the present class.

[0031] FIGURE 2 illustrates an example implementation of a system 200 in
accordance with certain aspects of the present disclosure. As illustrated in FIGURE 2,
the system 200 may have multiple local processing units 202 that may perform various
operations of methods described herein. Each local processing unit 202 may comprise a
local state memory 204 and a local parameter memory 206 that may store parameters of
a neural network. In addition, the local processing unit 202 may have a local (neuron)
model program (LMP) memory 208 for storing a local model program, a local learning
program (LLP) memory 210 for storing a local learning program, and a local connection
memory 212. Furthermore, as illustrated in FIGURE 2, each local processing unit 202
may interface with a configuration processor unit 214 for providing configurations for
local memories of the local processing unit, and with a routing connection processing

unit 216 that orovides routing between the local processing units 202.

6

WO 2017/058479 PCT/US2016/050539

[0032] Deep learning architectures may perform an object recognition task by
learning to represent inputs at successively higher levels of abstraction in each layer,
thereby building up a useful feature representation of the input data. In this way, deep
learning addresses a major bottleneck of traditional machine learning. Prior to the
advent of deep learning, a machine learning approach to an object recognition problem
may have relied heavily on human engineered features, perhaps in combination with a
shallow classifier. A shallow classifier may be a two-class linear classifier, for
example, in which a weighted sum of the feature vector components may be compared
with a threshold to predict to which class the input belongs. Human engineered features
may be templates or kernels tailored to a specific problem domain by engineers with
domain expertise. Deep learning architectures, in contrast, may learn to represent
features that are similar to what a human engineer might design, but through training.
Furthermore, a deep network may learn to represent and recognize new types of features

that a human might not have considered.

[0033] A deep learning architecture may learn a hierarchy of features. If presented
with visual data, for example, the first layer may learn to recognize relatively simple
features, such as edges, in the input stream. In another example, if presented with
auditory data, the first layer may learn to recognize spectral power in specific
frequencies. The second layer, taking the output of the first layer as input, may learn to
recognize combinations of features, such as simple shapes for visual data or
combinations of sounds for auditory data. For instance, higher layers may learn to
represent complex shapes in visual data or words in auditory data. Still higher layers

may learn to recognize common visual objects or spoken phrases.

[0034] Deep learning architectures may perform especially well when applied to
problems that have a natural hierarchical structure. For example, the classification of
motorized vehicles may benefit from first learning to recognize wheels, windshields,
and other features. These features may be combined at higher layers in different ways

to recognize cars, trucks, and airplanes.

[0035] Neural networks may be designed with a variety of connectivity patterns. In
feed-forward networks, information is passed from lower to higher layers, with each
neuron in a given layer communicating to neurons in higher layers. A hierarchical

representation mav be built up in successive layers of a feed-forward network, as

7

WO 2017/058479 PCT/US2016/050539

described above. Neural networks may also have recurrent or feedback (also called top-
down) connections. In a recurrent connection, the output from a neuron in a given layer
may be communicated to another neuron in the same layer. A recurrent architecture
may be helpful in recognizing patterns that span more than one of the input data chunks
that are delivered to the neural network in a sequence. A connection from a neuron in a
given layer to a neuron in a lower layer is called a feedback (or top-down) connection.
A network with many feedback connections may be helpful when the recognition of a
high-level concept may aid in discriminating the particular low-level features of an

input.

[0036] Referring to FIGURE 3 A, the connections between layers of a neural
network may be fully connected 302 or locally connected 304. In a fully connected
network 302, a neuron in a first layer may communicate its output to every neuron in a
second layer, so that each neuron in the second layer will receive input from every
neuron in the first layer. Alternatively, in a locally connected network 304, a neuron in
a first layer may be connected to a limited number of neurons in the second layer. A
convolutional network 306 may be locally connected, and is further configured such that
the connection strengths associated with the inputs for each neuron in the second layer
are shared (e.g., 308). More generally, a locally connected layer of a network may be
configured so that each neuron in a layer will have the same or a similar connectivity
pattern, but with connections strengths that may have different values (e.g., 310, 312,
314, and 316). The locally connected connectivity pattern may give rise to spatially
distinct receptive fields in a higher layer, because the higher layer neurons in a given
region may receive inputs that are tuned through training to the properties of a restricted

portion of the total input to the network.

[0037] Locally connected neural networks may be well suited to problems in which
the spatial location of inputs is meaningful. For instance, a network 300 designed to
recognize visual features from a car-mounted camera may develop high layer neurons
with different properties depending on their association with the lower versus the upper
portion of the image. Neurons associated with the lower portion of the image may learn
to recognize lane markings, for example, while neurons associated with the upper

portion of the image may learn to recognize traffic lights, traffic signs, and the like.

WO 2017/058479 PCT/US2016/050539

[0038] A deep convolutional network (DCN) may be trained with supervised
learning. During training, a DCN may be presented with an image, such as a cropped
image of a speed limit sign 326, and a “forward pass” may then be computed to produce
an output 322. The output 322 may be a vector of values corresponding to features such
as “sign,” “60,” and “100.” The network designer may want the DCN to output a high
score for some of the neurons in the output feature vector, for example the ones
corresponding to “sign” and “60” as shown in the output 322 for a network 300 that has
been trained. Before training, the output produced by the DCN is likely to be incorrect,
and so an error may be calculated between the actual output and the target output. The
weights of the DCN may then be adjusted so that the output scores of the DCN are more
closely aligned with the target.

[0039] To adjust the weights, a learning algorithm may compute a gradient vector
for the weights. The gradient may indicate an amount that an error would increase or
decrease if the weight were adjusted slightly. At the top layer, the gradient may
correspond directly to the value of a weight connecting an activated neuron in the
penultimate layer and a neuron in the output layer. In lower layers, the gradient may
depend on the value of the weights and on the computed error gradients of the higher
layers. The weights may then be adjusted so as to reduce the error. This manner of
adjusting the weights may be referred to as “backpropagation” as it involves a

“backward pass” through the neural network.

[0040] In practice, the error gradient of weights may be calculated over a small
number of examples, so that the calculated gradient approximates the true error
gradient. This approximation method may be referred to as stochastic gradient descent.
Stochastic gradient descent may be repeated until the achievable error rate of the entire

system has stopped decreasing or until the error rate has reached a target level.

[0041] After learning, the DCN may be presented with new images 326 and a
forward pass through the network may yield an output 322 that may be considered an

inference or a prediction of the DCN.

[0042] Deep belief networks (DBNs) are probabilistic models comprising multiple
layers of hidden nodes. DBNs may be used to extract a hierarchical representation of

training data sets. A DBN may be obtained by stacking up layers of Restricted

WO 2017/058479 PCT/US2016/050539

Boltzmann Machines (RBMs). An RBM is a type of artificial neural network that can
learn a probability distribution over a set of inputs. Because RBMs can learn a
probability distribution in the absence of information about the class to which each
input should be categorized, RBMs are often used in unsupervised learning. Using a
hybrid unsupervised and supervised paradigm, the bottom RBMs of a DBN may be
trained in an unsupervised manner and may serve as feature extractors, and the top
RBM may be trained in a supervised manner (on a joint distribution of inputs from the

previous layer and target classes) and may serve as a classifier.

[0043] Deep convolutional networks (DCN5s) are networks of convolutional
networks, configured with additional pooling and normalization layers. DCNs have
achieved state-of-the-art performance on many tasks. DCNs can be trained using
supervised learning in which both the input and output targets are known for many
exemplars and are used to modify the weights of the network by use of gradient descent

methods.

[0044] DCNs may be feed-forward networks. In addition, as described above, the
connections from a neuron in a first layer of a DCN to a group of neurons in the next
higher layer are shared across the neurons in the first layer. The feed-forward and
shared connections of DCNs may be exploited for fast processing. The computational
burden of a DCN may be much less, for example, than that of a similarly sized neural

network that comprises recurrent or feedback connections.

[0045] The processing of each layer of a convolutional network may be considered
a spatially invariant template or basis projection. If the input is first decomposed into
multiple channels, such as the red, green, and blue channels of a color image, then the
convolutional network trained on that input may be considered three-dimensional, with
two spatial dimensions along the axes of the image and a third dimension capturing
color information. The outputs of the convolutional connections may be considered to
form a feature map in the subsequent layer 318 and 320, with each element of the
feature map (e.g., 320) receiving input from a range of neurons in the previous layer
(e.g., 318) and from each of the multiple channels. The values in the feature map may
be further processed with a non-linearity, such as a rectification, max(0,x). Values from
adjacent neurons may be further pooled, which corresponds to down sampling, and may

orovide additional local invariance and dimensionality reduction. Normalization, which

10

WO 2017/058479 PCT/US2016/050539

corresponds to whitening, may also be applied through lateral inhibition between

neurons in the feature map.

[0046] The performance of deep learning architectures may increase as more
labeled data points become available or as computational power increases. Modern
deep neural networks are routinely trained with computing resources that are thousands
of times greater than what was available to a typical researcher just fifteen years ago.
New architectures and training paradigms may further boost the performance of deep
learning. Rectified linear units may reduce a training issue known as vanishing
gradients. New training techniques may reduce over-fitting and thus enable larger
models to achieve better generalization. Encapsulation techniques may abstract data in

a given receptive field and further boost overall performance.

[0047] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional
network 350. The deep convolutional network 350 may include multiple different types
of layers based on connectivity and weight sharing. As shown in FIGURE 3B, the
exemplary deep convolutional network 350 includes multiple convolution blocks (e.g.,
C1 and C2). Each of the convolution blocks may be configured with a convolution
layer, a normalization layer (LNorm), and a pooling layer. The convolution layers may
include one or more convolutional filters, which may be applied to the input data to
generate a feature map. Although only two convolution blocks are shown, the present
disclosure is not so limiting, and instead, any number of convolutional blocks may be
included in the deep convolutional network 350 according to design preference. The
normalization layer may be used to normalize the output of the convolution filters. For
example, the normalization layer may provide whitening or lateral inhibition. The
pooling layer may provide down sampling aggregation over space for local invariance

and dimensionality reduction.

[0048] The parallel filter banks, for example, of a deep convolutional network may
be loaded on a CPU 102 or GPU 104 of an SOC 100, optionally based on an ARM
instruction set, to achieve high performance and low power consumption. In alternative
embodiments, the parallel filter banks may be loaded on the DSP 106 or an ISP 116 of
an SOC 100. In addition, the DCN may access other processing blocks that may be
present on the SOC, such as processing blocks dedicated to sensors 114 and navigation

120.

11

WO 2017/058479 PCT/US2016/050539

[0049] The deep convolutional network 350 may also include one or more fully
connected layers (e.g., FC1 and FC2). The deep convolutional network 350 may further
include a logistic regression (LR) layer. Between each layer of the deep convolutional
network 350 are weights (not shown) that are to be updated. The output of each layer
may serve as an input of a succeeding layer in the deep convolutional network 350 to
learn hierarchical feature representations from input data (e.g., images, audio, video,

sensor data and/or other input data) supplied at the first convolution block C1.

[0050] FIGURE 4 is a block diagram illustrating an exemplary software architecture
400 that may modularize artificial intelligence (AI) functions. Using the architecture,
applications 402 may be designed that may cause various processing blocks of an SOC
420 (for example a CPU 422, a DSP 424, a GPU 426 and/or an NPU 428) to perform

supporting computations during run-time operation of the application 402.

[0051] The Al application 402 may be configured to call functions defined in a user
space 404 that may, for example, provide for the detection and recognition of a scene
indicative of the location in which the device currently operates. The AT application
402 may, for example, configure a microphone and a camera differently depending on
whether the recognized scene is an office, a lecture hall, a restaurant, or an outdoor
setting such as a lake. The Al application 402 may make a request to compiled program
code associated with a library defined in a SceneDetect application programming
interface (API) 406 to provide an estimate of the current scene. This request may
ultimately rely on the output of a deep neural network configured to provide scene

estimates based on video and positioning data, for example.

[0052] A run-time engine 408, which may be compiled code of a Runtime
Framework, may be further accessible to the Al application 402. The Al application
402 may cause the run-time engine, for example, to request a scene estimate at a
particular time interval or triggered by an event detected by the user interface of the
application. When caused to estimate the scene, the run-time engine may in turn send a
signal to an operating system 410, such as a Linux Kernel 412, running on the SOC 420.
The operating system 410, in turn, may cause a computation to be performed on the
CPU 422, the DSP 424, the GPU 426, the NPU 428, or some combination thereof. The
CPU 422 may be accessed directly by the operating system, and other processing blocks
mav be accessed through a driver, such as a driver 414-418 for a DSP 424, for a GPU

12

WO 2017/058479 PCT/US2016/050539

426, or for an NPU 428. In the exemplary example, the deep neural network may be
configured to run on a combination of processing blocks, such as a CPU 422 and a GPU

426, or may be run on an NPU 428, if present.

[0053] FIGURE 5 is a block diagram illustrating the run-time operation 500 of an
Al application on a smartphone 502. The Al application may include a pre-process
module 504 that may be configured (using for example, the JAVA programming
language) to convert the format of an image 506 and then crop and/or resize the image
508. The pre-processed image may then be communicated to a classify application 510
that contains a SceneDetect Backend Engine 512 that may be configured (using for
example, the C programming language) to detect and classify scenes based on visual
input. The SceneDetect Backend Engine 512 may be configured to further preprocess
514 the image by scaling 516 and cropping 518. For example, the image may be scaled
and cropped so that the resulting image is 224 pixels by 224 pixels. These dimensions
may map to the input dimensions of a neural network. The neural network may be
configured by a deep neural network block 520 to cause various processing blocks of
the SOC 100 to further process the image pixels with a deep neural network. The
results of the deep neural network may then be thresholded 522 and passed through an
exponential smoothing block 524 in the classify application 510. The smoothed results

may then cause a change of the settings and/or the display of the smartphone 502.

[0054] In one configuration, a machine learning model is configured for modifying
gradients of a backpropagation process while training a machine learning model. The
model includes means for modifying means, and/or means for determining. In one
aspect, the modifying means, and/or determining means may be the general-purpose
processor 102, program memory associated with the general-purpose processor 102,
memory block 118, local processing units 202, and or the routing connection processing
units 216 configured to perform the functions recited. In another configuration, the
aforementioned means may be any module or any apparatus configured to perform the

functions recited by the aforementioned means.

[0055] In another aspect, the modifying means may include means for scaling the
gradient. Optionally, the modifying means may include means for selectively applying

the gradient.

13

WO 2017/058479 PCT/US2016/050539

[0056] According to certain aspects of the present disclosure, each local processing
unit 202 may be configured to determine parameters of the model based upon desired
one or more functional features of the model, and develop the one or more functional
features towards the desired functional features as the determined parameters are further

adapted, tuned and updated.

[0057] In many machine learning processes, a cost function is used to quantify the
error between a learned classification function’s output and the desired output. A
purpose of a machine learning process is to alter the parameters of the learned
classification function to minimize this cost function. In classification problems, the
cost function is often a log-probability penalty function of the actual class labels
associated with some input and the predicted class labels achieved by applying the
function to that input. Training is the process of altering the parameters of the learned
classification function. During training, example inputs and their associated labels are
presented to the machine learning process. The process finds the predicted label given
the current learned classification functions parameters, evaluates the cost function, and
alters the parameters of the learned classification function according to some update

learning rule.

[0058] During the training process, the use of imbalanced training data may bias the
classifier(s). Rules, such as “learning rules” may be utilized as an attempt to balance the
training data such that there are approximately an equal number of examples of each
class label. If the training data contains a large number of examples of one class and a
small number of examples of another class, the parameters of the classification function
are updated more often in a way that is biased toward the class with more numerous
examples. In the extreme, if one is training a binary classifier with one million
examples of the first class and only one example of the second class, the classifier will
perform very well by simply always predicting the first class. In another example, a dog
recognizer is being trained. In this example, the training data includes a thousand total
examples, where 990 of the examples are dogs and 10 of the examples are cats. The
classifier may learn to classify images as dogs, which will result in a high recall with a
high precision on the training set. However, it is more likely the classifier has not

learned anything.

14

WO 2017/058479 PCT/US2016/050539

[0059] Typically, the “balancing” of the training data between classes is addressed
by ensuring the relative frequencies of training examples for each class match the
relative frequency one expects to encounter when applying the classifier to new
examples not used in training. However, this approach has several drawbacks. First, it
assumes the relative frequencies of the class examples in a future dataset are known.
However, this is not always easy to determine. Second, the training data may contain
too many or too few examples of each class. To balance the training examples, data is
either thrown away or repeated. By throwing away data, valuable training data may be
excluded for some classes, which may prevent the classifiers from fully representing the
input variations associated with that class. By repeating data in a straightforward way,
much more disk space is used to stage the data. In particular, if the goal is to use all of
the data, then every class would be repeated up to the least common multiple for perfect
balance. Further, for multi-label data, where each example may be labelled as positive
for two or more labels, balancing across all the labels becomes a complex scheduling

exercise, and simple repetition may not suffice.

[0060] Aspects of the present disclosure are directed to balancing training data
between classes in a machine learning model. In particular, rather than manipulating the
training data and adjusting a number of examples for each class at the input stage,

aspects of the present disclosure are directed to adjustments at the gradient stage.

[0061] Backpropagation, also referred to as the backward propagation of errors,
may be utilized for computing gradients of a cost function. In particular,
backpropagation includes determining how to adjust weight values to reduce the error
closer to zero. In various aspects of the present disclosure, selective backpropagation is
a modification to any given cost function to adjust or selectively apply the gradients
based on the class example frequency in the data sets. After images have been input and
the gradient is about to be applied to perform the backpropagation, the gradients may be

adjusted based on the frequency of examples for each class.

[0062] In one aspect, the adjustment is related to a relative class frequency, fc,
which is a ratio of a minimum number of examples in a training data set (min¢ N,) to
the number of all the examples in the training data set (N, e.g., number of examples of
a class with the fewest members to a number of examples of a present class). The

relative class freanencv (also called a frequency factor) may be represented as:

15

WO 2017/058479 PCT/US2016/050539

fe = C > all concepts (D

[0063] The minimum number of examples may be based on an actual or expected
number. Further, the number of all examples in the training data set may be based on
the actual number of an expected number of examples. Referring back to the cat/dog
example where a dog recognizer is being trained, there are 990 examples of dogs and 10
examples of cats. The frequency factor for each class for the dogs is 10/990 where 10 is
the minimum number of examples and 990 is the number of examples for your class.
The factor for each class for cats is 10/10. The adjustment factor (e.g., the relative class
frequency) is the value “1” for the class that has the minimum number of examples and

may be less than one for all other classes.

[0064] Once the frequency factor is determined, the backpropagation gradient is
modified. The modification may include scaling the gradient for each class. The

scaling may be represented as:

dEapplied _ dE

Scaling: il L

(2)
[0065] In the scaling implementation, the gradient may be multiplied by the
frequency factor (e.g., the relative class frequency). The gradient is the derivative of the
error with respect to a particular parameter. In an example where there are many
examples of a certain class, only a fraction of the gradient is applied each time to
prevent overlearning of that class. In the dog/cat example, where there are 10 examples
of dogs in a row, then only a tenth of the gradient is applied. The goal is to prevent the
model from overlearning and labelling all images as a dog because it has seen many
more examples of dogs than cats. The scaling is applied equally to all gradients in all

the weights of a particular class.

[0066] The modification may also include using the factor to sample from the

images. The sampling may be represented as:

0 .
. dEapplied ’ lfS =0
Sampling: — — = Z—E' ifs=1 ()
X

16

WO 2017/058479 PCT/US2016/050539

[0067] Here, the gradient is selectively applied based on a sampling of the class
examples. In one example, the sampling is randomly applied. The value of the scaling
factor may be used as the probability parameter of a Bernoulli distribution from which
samples are drawn. Sampling from this distribution produces either Os or 1s with the
probability of sampling a 1 being equal to the scaling factor described in the first
method. For the class with the minimum number of examples, the sampling produces a
1. When the coin flip produces a 1, the error gradient for that class is backpropagated.
When the coin flip produces a 0, the gradient for that class if not backpropagated, but
effectively set to 0. In other words, images are sampled at the gradient stage to only
sometimes send back the gradient when there are many examples. When there are a
minimum number of examples, it is sent back every time. This provides for
equalization of the examples from which the classifier is learning by adjusting the
gradients rather than adjusting the input. In one aspect, before forward propagating an
image, it is checked whether that class is set to use that image for the current epoch. For

each epoch, the sets can be reshuftled.

[0068] The sampling may be applied on an individual basis, an epoch basis, or a
training corpus basis. As presented above, in the individual basis, a random outcome is
generated from the Bernoulli distribution for each image independent of the other
images presented during a training epoch. Some epochs may see more or less than the

desired number of examples for each class due to the random nature of the sampling.

[0069] For the epoch basis, the scale factor is randomly selected for each class from
all class examples. A fixed number of examples are used for each class during each
epoch. For example, ten (10) examples may be selected from each class. Only those

examples are backpropagated during the particular epoch.

[0070] For the training corpus basis, a frequency factor is randomly selected for
each epoch for each class from those that have not yet been presented to the classifier.
The examples are sampled without replacement. In the following illustrative examples,
there are 1000 dog examples, and in each epoch, 10 samples are randomly selected. In
the first epoch, 10 examples are selected from the 1000 total examples. In the next
epoch, the previously 10 selected examples are removed and 10 examples are selected
from the remaining 990 examples. This continues until all of the examples have been

exhausted. ensuring the same number of examples is used for each class during each

17

WO 2017/058479 PCT/US2016/050539

epoch and that all available examples are used over the course of training. When
cycling through the data the next time, the same order could be maintained or
alternatively, a different order could be used. In another configuration, the examples are

sampled with replacement.

[0071] In many cases, the entire training corpus is available before the start of
training and the fc factors are static over the training session and may be calculated for
each class before training begins. However, in cases where classes are added after
training begins or the training examples are supplied ad hoc during training, the fc
factors may be changing over time or unknown at the start of training. In this situation,
a running count of the number of examples for each class (Nc) can be kept and updated
after each example is presented. The fc factor is then calculated on the fly after each

update to Nc for a particular class (c).

[0072] In another aspect, the relative frequency of a class (e.g., frequency factor) is
utilized to equalize the amount of change in the network for each class and to ensure
each class is relatively equally likely to be guessed by the classifier. The relative
frequency class promotes a uniform distribution of classes in the data set. If there is a
known expectation that there will be more of some classes than other classes, the
frequency factor may be adjusted. For example, if it is known there are more cats than
dogs in the real world, but the training data includes 1000 examples of dogs and 10
examples of cats, then the frequency factor may be adjusted to account for the real
world expectation. If it is known that it is ten times more likely to see cats than dogs in
the real world, the frequency factor may be multiplied by a factor of ten for cats and by
a factor of one for dogs. Essentially, the frequency factor (Fc) may be manipulated at
the learning stage to target a uniform expectation of what is present in the real world.

The frequency factor may be adjusted as:

min p(c) min N,

Je =p@ TN,

(4)

where p(c) is the expected probability of observing a particular class in the real world

(or “wild”).

[0073] FIGURE 6 illustrates a method 600 for balancing training data between
rlaccac far a machine learning model. In block 602, the process determines a factor for

18

WO 2017/058479 PCT/US2016/050539

modifying a gradient based on a ratio of a number of examples of a class with a fewest
members to a number of examples of a present class. The fewest members may be
based on the number of actual or expected members. Likewise, the number of examples
of a present class may be based on the actual or expected number of examples. In block
604, the process modifies the gradient associated with the present class based on the

determined factor.

[0074] FIGURE 7 illustrates an overall method 700 for balancing training data
between classes for a machine learning model. In block 702, the training data is
evaluated. In block 704, the frequency of examples in a class is determined. In block
706, the gradient is updated based on the determined frequency. The update may be
performed by applying a scaling factor to the gradient for each class at block 710.
Alternately, the update may be performed by selectively applying the gradient based on
a sample of the class examples at block 708. The selectively sampling update may be
performed on an individual basis at block 712, epoch basis at block 714 or training

corpus basis at block 716.

[0075] FIGURE 8 illustrates a method 800 for balancing training data according to
aspects of the present disclosure. In block 802, the process modifies gradients of a
backpropagation process while training the model. The modification is based on a ratio
of a number of examples of a class with a fewest members to a number of examples of a

present class.

[0076] In some aspects, methods 600, 700, and 800 may be performed by the SOC
100 (FIGURE 1) or the system 200 (FIGURE 2). That is, each of the elements of
methods 1100 and 1200 may, for example, but without limitation, be performed by the
SOC 100 or the system 200 or one or more processors (e.g., CPU 102 and local
processing unit 202) and/or other components included therein. In some aspects, the
methods 600 and 700 may be performed by the SOC 420 (FIGURE 4) or one or more

processors (e.g., CPU 422) and/or other components included therein.

[0077] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,

but not limited to, a circuit, an application specific integrated circuit (ASIC), or

19

WO 2017/058479 PCT/US2016/050539

processor. Generally, where there are operations illustrated in the figures, those
operations may have corresponding counterpart means-plus-function components with

similar numbering.

[0078] As used herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,
deriving, investigating, looking up (e.g., looking up in a table, a database or another data
structure), ascertaining and the like. Additionally, “determining” may include receiving
(e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
Furthermore, “determining” may include resolving, selecting, choosing, establishing

and the like.

[0079] As used herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of: a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

[0080] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a
general-purpose processor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other
programmable logic device (PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but in the alternative,
the processor may be any commercially available processor, controller, microcontroller
or state machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
Mmicroprocessors, one or more microprocessors in conjunction with a DSP core, or any

other such configuration.

[0081] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash

memory, erasable programmable read-only memory (EPROM), electrically erasable

20

WO 2017/058479 PCT/US2016/050539

programmable read-only memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[0082] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[0083] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[0084] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed

broadlv to mean instructions, data, or any combination thereof, whether referred to as

21

WO 2017/058479 PCT/US2016/050539

software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable Read-only memory (EEPROM), registers, magnetic disks,
optical disks, hard drives, or any other suitable storage medium, or any combination
thereof. The machine-readable media may be embodied in a computer-program

product. The computer-program product may comprise packaging materials.

[0085] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with
cache and/or general register files. Although the various components discussed may be
described as having a specific location, such as a local component, they may also be
configured in various ways, such as certain components being configured as part of a

distributed computing system.

[0086] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
application specific integrated circuit (ASIC) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more field programmable gate arrays
(FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic,

discrete hardware components, or any other suitable circuitry, or any combination of

22

WO 2017/058479 PCT/US2016/050539

circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[0087] The machine-readable media may comprise a number of software modules.
The software modules include instructions that, when executed by the processor, cause
the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions
from that software module. Furthermore, it should be appreciated that aspects of the
present disclosure result in improvements to the functioning of the processor, computer,

machine, or other system implementing such aspects.

[0088] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Additionally, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

23

WO 2017/058479 PCT/US2016/050539

technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable
media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[0089] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer-readable medium having instructions stored (and/or
encoded) thereon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[0090] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.

[0091] It is to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.

24

WO 2017/058479 PCT/US2016/050539

CLAIMS
WHAT IS CLAIMED IS:

1. A method of modifying a balance of training data between classes for a machine
learning model, comprising:

modifying gradients of a backpropagation process while training the model,
based at least in part on a ratio of a number of examples of a class with a fewest

members to a number of examples of a present class.

2. The method of claim 1, in which the modifying comprises scaling the gradient.

3. The method of claim 1, in which the modifying comprises selectively applying

the gradient based at least in part on a sampling of the class examples.

4. The method of claim 3, in which the sampling of the class occurs by selecting a

fixed number of examples from each training epoch.

5. The method of claim 1, in which the sampling occurs without replacement of

examples in a training epoch.

6. An apparatus for modifying a balance of training data between classes for a
machine learning model, comprising:

means for determining a factor for modifying a gradient based at least in part on
a ratio of a number of examples of a class with a fewest members to a number of
examples of a present class; and

means for modifying the gradient associated with the present class based on the

determined factor.

7. The apparatus of claim 6, in which the modifying means comprises means for

scaling the gradient.

8. The apparatus of claim 6, in which the modifying means comprises means for
selectively applying the gradient based at least in part on a sampling of the class

examples.

25

WO 2017/058479 PCT/US2016/050539

9. The apparatus of claim 8, in which the sampling of the class occurs by selecting

a fixed number of examples from each training epoch.

10. The apparatus of claim 6, in which the sampling occurs without replacement of

examples in a training epoch.

11. An apparatus for modifying a balance of training data between classes for a
machine learning model, comprising:

a memory; and

at least one processor coupled to the memory, the at least one processor
configured to modify gradients of a backpropagation process while training the model,
based at least in part on a ratio of a number of examples of a class with a fewest

members to a number of examples of a present class.

12. The apparatus of claim 11, in which the at least one processor is configured to

modify by scaling the gradient.

13. The apparatus of claim 11, in which the at least one processor is configured to
modify by selectively applying the gradient based at least in part on a sampling of the

class examples.

14. The apparatus of claim 13, in which the sampling of the class occurs by

selecting a fixed number of examples from each training epoch.

15. The apparatus of claim 11, in which the sampling occurs without replacement of

examples in a training epoch.

16. A non-transitory computer-readable medium for modifying a balance of training
data between classes for a machine learning model, the non-transitory computer-
readable medium having program code recorded thereon, the program code comprising:

program code to modify gradients of a backpropagation process while training
the model, based at least in part on a ratio of a number of examples of a class with a

fewest members to a number of examples of a present class.

26

WO 2017/058479 PCT/US2016/050539

17. The non-transitory computer-readable medium of claim 16, in which the

program code to modify comprises program code to scale the gradient.

18. The non-transitory computer-readable medium of claim 16, in which the
program code to modify comprises program code to selectively apply the gradient based

at least in part on a sampling of the class examples.

19. The non-transitory computer-readable medium of claim 18, in which the
sampling of the class occurs by selecting a fixed number of examples from each training

epoch.

20. The non-transitory computer-readable medium of claim 16, in which the

sampling occurs without replacement of examples in a training epoch.

27

WO 2017/058479

100

1/9

PCT/US2016/050539

1024

104

106

108

1104

I
1

CPUs

MULTIMEDIA
GPU
DSP SENSORS
NPUs ISPs

MEMORY
CONNECTIVITY
NAVIGATION

—112

—114

—116

—118

—120

FIG. 1

PCT/US2016/050539

WO 2017/058479

2/9

¢ O

[SuIssadoid 807

AJOWIIN

weIdorq

weI30Ig
uonddUU0)) Suruwred | ADOTAT 1890

800 800 [PPOIN [E90]
— > [4¥4 \ 01¢ \ 80¢C J >
KIOWIN “
IvueIed ATOWON |
[e207] 9JelS [B307] |
90z -/ voz -~ _
_
3urssa001qd . _
uonemsguo)) . _
_
AKIOUDIN] weidord _
uondauu0)) Jururea| 5 :mfwo%%o _
8207 800 [PPON [B00T _
[4¥4 \ 01¢ \ 80¢C J “
™ KIOWSIN >
19)oWeIR] AJowoN _
800 QJe)S [800] _
_
907 -/ voz _
11U SuISS001] [BI0] _

14%4 J

3uIss9001
uondAUU0))
3unnoy

WO 2017/058479 PCT/US2016/050539

3/9
302 304 306
FULLY CONNECTED LOCALLY CONNECTED CONVOLUTIONAL

30
h 18 0 CLASSFICATION 322

R A R

FEATUREMAPS FEATUREMAPS .\ n \

25 B8 e AT

“.“\“ ‘ 5.\ . \
“"_ \ & . XK — \\
(o) \\“ &0 \ m\ o2 !
%

CONVOLUTION

FEATURE EXTRACTION CONVOLUTION

FIG. 34

WO 2017/058479 PCT/US2016/050539

4/9
3%1\\
(1
(cow)
[LNorm]
(maxpooL)
Q2
(cow)
(LNorm]
(maxpooL)
Y
FC1
FC2
R

FIG. 3B

PCT/US2016/050539

WO 2017/058479

5/9

v OId

0cv -1

0l

y0v -1

8ey 9y 144 oy
/ JIVMAdYH
L~)
Ndd
.. S S
_ g J0YdS
Y TANYIA
m\ MNIOMINYES FNILNNY _m
!) ’ m J0%dS
) N\ ! BN
é ! dY "
m Jejegeusos | "
", / !

00v

PCT/US2016/050539

WO 2017/058479

6/9

$ O

T 1 fona=papaiegs)
e INHLOONS | YR
gl SOBRANT e} ¥ Mdsia
| SINSNOLESSD 8IS 9 AR p—
i EE e e l Y
| |
| [STIOHSZeHL A_ TN, | : _
10t I O o A o 1 O O P ST f| s [+ <+
| NS0 __ /T |
e L Uk 805 905 lveod 3o —
g (/
905

WO 2017/058479 PCT/US2016/050539

7/9

600

¢
602
DETERMINING A FACTOR FOR MODIFYING
A GRADIENT BASED ON A RATIO OF A
NUMBER OF EXAMPLES OF A CLASS WITH
A FEWEST MEMBERS TO A NUMBER OF
EXAMPLES OF A PRESENT CLASS
L 604

MODIFYING THE GRADIENT ASSOCIATED
WITH THE PRESENT CLASS BASED ON THE
DETERMINED FACTOR

FIG. 6

WO 2017/058479 PCT/US2016/050539

8/9
700
¢
702
EVALUATE TRAINING DATA
L 704
DETERMINE FREQUENCY OF
EXAMPLES IN A CLASS
706
UPDATE GRADIENT BASED ON THE |
FREQUENCY
f'ﬂo f708
UPDATE BY APPLYING A UPDATE BY SELECTIVELY
APPLYING THE GRADIENT BASED
SCALING FACTOR TO THE
GRADIENT PER CLASS ON A SAMPLE OF THE CLASS
EXAMPLES
INDIVIDUAL EPOCH T(I:‘OARHEESG
BASIS BASIS BASIS
L712 L 714 L 716

FIG. 7

WO 2017/058479 PCT/US2016/050539

9/9

800

802
MODIFY GRADIENTS OF BACKPROPAGATION
PROCESS WHILE TRAINING A MODEL, BASED ON
A RATIO OF A NUMBER OF EXAMPLES OF A
CLASS WITH A FEWEST MEMBERS TO A NUMBER
OF EXAMPLES OF A PRESENT CLASS

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/050539

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N3/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6N GO6K

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X SANG-HOON OH ED
ET AL:

vol. 74, no. 6,

1058-1061, XP028362551,
ISSN: 0925-2312, DOI:
10.1016/J.NEUCOM.2010.11.024
[retrieved on 2011-01-01]

9 November 2010 (2010-11-09), pages

paragraph [0001] - paragraph [0002]
_/__

- SCHLEIF FRANK-MICHAEL 1-20
"Error back-propagation algorithm
for classification of imbalanced data",
NEUROCOMPUTING, ELSEVIER, AMSTERDAM, NL,

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 December 2016

Date of mailing of the international search report

23/12/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Cilia, Elisa

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/050539
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X ALEJO R ET AL: "An Efficient 1-20
Over-sampling Approach Based on Mean
Square Error Back-propagation for Dealing
with the Multi-class Imbalance Problem",
NEURAL PROCESSING LETTERS, KLUWER ACADEMIC
PUBLISHERS, NORWELL, MA, US,
vol. 42, no. 3,
17 August 2014 (2014-08-17), pages
603-617, XP035574033,
ISSN: 1370-4621, DOI:
10.1007/511063-014-9376-3
[retrieved on 2014-08-17]
paragraph [0001] - paragraph [0003]
A PAULA BRANCO ET AL: "A Survey of 1-20
Predictive Modelling under Imbalanced
Distributions",
CORR (ARXIV),
vol. abs/1505.01658v2,
13 May 2015 (2015-05-13), pages 1-48,
XP055325924,
the whole document
A HAIBO HE ET AL: "Learning from Imbalanced 1-20
Data",
TIEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, IEEE SERVICE CENTER, LOS
ALAMITOS, CA, US,
vol. 21, no. 9,
19 December 2008 (2008-12-19), pages
1263-1284, XP011263451,
ISSN: 1041-4347
the whole document
A SALMAN H KHAN ET AL: "Cost Sensitive 1-20
Learning of Deep Feature Representations
from Imbalanced Data",
CORR (ARXIV),
vol. abs/1508.03422v1,
14 August 2015 (2015-08-14), pages 1-9,
XP055326622,
paragraph [0002] - paragraph [0003]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

