(12) STANDARD PATENT (19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012305709 B2

(54) Title

High titer production of poly (alpha 1, 3 glucan)

(51) International Patent Classification(s) C12P 19/18 (2006.01)

(21) Application No: **2012305709** (22) Date of Filing: **2012.09.10**

(87) WIPO No: WO13/036968

(30) Priority Data

(31) Number (32) Date (33) Country 61/532,714 2011.09.09 US

(43) Publication Date: 2013.03.14(44) Accepted Journal Date: 2015.09.24

(71) Applicant(s)

E. I. du Pont de Nemours and Company

(72) Inventor(s)
O'Brien, John P.;Payne, Mark S.

(74) Agent / Attorney
Houlihan², Level 1 70 Doncaster Road, BALWYN NORTH, VIC, 3104

(56) Related Art **WO 1999/040217 A1**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/036968 A1

(43) International Publication Date 14 March 2013 (14.03.2013)

(51) International Patent Classification: C12P 19/18 (2006.01)

(21) International Application Number:

PCT/US2012/054521

(22) International Filing Date:

10 September 2012 (10.09.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

9 September 2011 (09.09.2011) 61/532,714

(71) Applicant (for all designated States except US): E. I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, Delaware 19899 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): O'BRIEN, John P. [US/US]; 871 Saginaw Road, Oxford, Pennsylvania 19363 (US). PAYNE, Mark, S. [US/US]; 4617 Old Linden Hill Road, Wilmington, Delaware 19808 (US).

(74) Agent: SARIASLANI, Fateme, Sima; E. I. du Pont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, Delaware 19805 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM. ZW
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: HIGH TITER PRODUCTION OF POLY (α 1, 3 GLUCAN)

(57) Abstract: A process for enzymatic preparation of poly (a 1, 3 glucan) from sucrose is disclosed. The glucosyltransferase enzyme (gtfJ) from Streptococcus salivarius is used to convert sucrose to fructose and poly (α 1, 3 glucan). Application of semi-permeable membranes to continuously remove fructose, a by-product of the gtf enzyme, thus increasing the poly (α 1, 3 glucan) liter, is disclosed.

TITLE

HIGH TITER PRODUCTION OF POLY (α 1, 3 GLUCAN)

FIELD OF INVENTION

5

10

15

20

25

30

This invention relates to the field of production of a structural polysaccharide. Specifically, it relates to production of poly (α 1, 3 glucan) via an enzymatic reaction. More specifically, it relates to increasing the titer of poly (α 1, 3 glucan) formed during the enzymatic reaction.

BACKGROUND

Cellulose, a polysaccharide formed from glucose via β (1, 4) glycoside linkages by natural processes (Applied Fiber Science, F. Happey, Ed., Chapter 8, E. Atkins, Academic Press, New York, 1979), has achieved commercial prominence as a fiber as a consequence of the many useful products derived therefrom. In particular, cotton, a highly pure form of naturally occurring cellulose, is well-known for its beneficial attributes in textile applications.

Cellulose exhibits sufficient chain extension and backbone rigidity in solution to form liquid crystalline solutions (U.S. Patent No. 4,501,886). However, sufficient polysaccharide chain extension has hitherto been achieved primarily in β (1, 4) linked polysaccharides. Any significant deviation from that backbone geometry in the glucan polysaccharide family lowers the molecular aspect ratio below that required for the formation of an ordered lyotropic phase. Additionally, it is well-known that important commercial cellulosic fibers such as cotton and rayon increasingly present sustainability issues with respect to land use and environmental imprint.

It is therefore highly desirable to discover other glucose-based polysaccharides with utility in films, fibers and resins largely because of the current emphasis on producing low cost, structural materials from renewable resources. In addition such polymers offer materials that are environmentally benign throughout their entire life cycle.

5

10

15

20

Poly (α 1, 3 glucan), a glucan polymer characterized by having α (1, 3) glycoside linkages, has been isolated by contacting an aqueous solution of sucrose with a glucosyltransferase (gtfJ) enzyme isolated from *Streptococcus salivarius* (Simpson et al., Microbiology, 141: 1451-1460, 1995). Glucan refers to a polysaccharide composed of D-glucose monomers linked by glycosidic bonds. Films prepared from poly (α 1, 3 glucan) tolerated temperatures up to 150 °C and provided an advantage over polymers obtained from β (1, 4) linked polysaccharides (Ogawa et al., Fiber Differentiation Methods, 47: 353-362, 1980).

U.S. Patent 7,000,000 disclosed preparation of a polysaccharide fiber comprising hexose units, wherein at least 50% of the hexose units within the polymer were linked via α (1, 3) glycoside linkages using the glucosyltransferase enzyme gtfJ of *Streptococcus salivarius*. The disclosed polymer formed a liquid crystalline solution when it was dissolved above a critical concentration in a solvent or in a mixture comprising a solvent. From this solution continuous, strong, cotton-like fibers highly suitable for use in textiles were spun and used either in a derivatized form or as a non-derivatized (regenerated) form. The poly (α 1, 3 glucan) in U.S. Patent 7,000,000 was made in a batch process wherein the poly (α 1, 3 glucan) titers were typically less than 25 grams of poly (α 1, 3 glucan) per liter of the reactor volume.

It can be desirable to develop processes to increase the titer of the poly $(\alpha 1, 3 \text{ glucan})$ formed by the enzymatic reaction.

SUMMARY OF INVENTION

25

This invention is a process for production of poly (α 1, 3 glucan) from a renewable feedstock, for applications in fibers, films, and pulps. The polymer is made directly in a one step enzymatic reaction using a recombinant glucosyltransferase (gtfJ) enzyme as the catalyst and sucrose as the substrate.

30

In one aspect, the disclosed invention is a reaction system for producing poly (α 1, 3 glucan), wherein said reaction system comprises:

5

10

20

25

- a) a first chamber that comprises an enzyme reaction solution comprising:
 - i) sucrose; and
- ii) at least one glucosyltransferase enzyme comprising a Streptococcus salivarius GtfJ enzyme; and
- b) a second chamber, separated from the first chamber by a semi-permeable membrane that is in contact with the enzyme reaction solution, wherein the semi-permeable membrane is permeable to fructose, but impermeable to poly (α 1, 3 glucan) and the glucosyltransferase enzyme, wherein the semi-permeable membrane has a molecular weight cut-off from 12,000 to 100,000 Daltons.

In another aspect, the disclosed invention is a process wherein poly (α 1, 3 glucan), at a titer of 30 – 200 grams per liter, is produced from sucrose by at least one glucosyltransferase enzyme.

15 <u>DESCRIPTION OF DNA SEQUENCES</u>

SEQ NO. 1 is the sequence of the synthesized gene of the mature glucosyltransferase which has been codon optimized for expression in *E. coli*.

SEQ NO. 2 is the DNA sequence for the plasmid pMP52.

SEQ NO. 3 is the DNA sequence of the mature glucosyltransferase (gtfJ enzyme; EC 2.4.1.5; GENBANK® AAA26896.1) from *Streptococcus salivarius* (ATCC 25975).

DETAILED DESCRIPTION OF INVENTION

Poly (α 1, 3 glucan) is a potentially low cost polymer which can be enzymatically produced from renewable resources such as sucrose using the gtfJ enzyme of *Streptococcus salivarius*. It has been shown that selected polymers comprising hexose units with α (1, 3) glycoside linkages can form ordered liquid crystalline solutions when the polymer is dissolved in a solvent

under certain conditions (U. S. Patent No. 7,000,000). Moreover such solutions can be spun into continuous, high strength, cotton-like fibers. In U. S. Patent No. 7,000,000, batch enzymatic reactions were employed for conversion of sucrose to poly (α 1, 3 glucan) with gtfJ, and the by-products fructose and leucrose accumulated in the reactor. Since the accumulated fructose is known to compete for glucosyl moieties during enzymatic reaction, conversion of available glucose to poly (α 1, 3 glucan) was subsequently hindered thus limiting the final titer of the desired product per unit reactor volume.

5

10

15

20

25

The term "leucrose", as used herein, refers to a disaccharide consisting of glucose and fructose, linked by an α (1, 5) bond.

The term "glucosyltransferase (gtf) enzyme", as used herein, refers to an enzyme excreted by oral streptococci, such as *Streptococcus salivarius* which utilizes the high free energy of the glycosidic bond of sucrose to synthesize poly (α 1, 3 glucan). A glycosidic bond can join two monosaccharides to form a disaccharide. The glycosidic bonds can be in the α or β configuration and can generate, for example, α (1, 2), α (1, 3), α (1, 4), α (1, 6), β (1, 2), β (1, 3), β (1, 4) or β (1, 6) linkages. The term " α (1,3) glycoside linkage", as used herein, refers to a type of covalent bond that joins glucose molecules to each other through the ring carbons 1 and 3 on adjacent glucose rings.

The term "poly (α 1, 3 glucan)", as used herein, refers to high molecular weight, linear polymers obtained from polysaccharide molecules resulting from linking glucose units via α (1,3) glycosidic linkages.

The present invention relates to a process for increasing the titer of the polysaccharide, poly (α 1, 3 glucan), produced from sucrose in an enzymatic reaction using one or more gtf enzymes. The term "enzymatic reaction" refers to a reaction that is performed by the gtf enzyme. An "enzyme reaction solution" of the present invention generally refers to a reaction mixture comprising at least one gtf enzyme in a buffer solution comprising sucrose and possibly one or more primers to convert sucrose to poly (α 1, 3 glucan).

The glucosyltransferase enzyme used in the present invention can be any gtf enzyme. The gtf enzyme used can be from any streprococci. Suitable gtf enzymes can be, for example, the gtfJ of *Streptococcus salivarius*, the gtfB and the gtfC from *Streptococcus mutans*, and the gtfI from *Streptococcus downei*. Particularly, the *Streptococcus* species can be *Streptococcus salivarius*. More particularly, the gtf enzyme can be the gtfJ (E.C. 2.4.1.5) enzyme of *Streptococcus salivarius*.

5

10

15

20

25

30

In one embodiment, the enzyme reaction solution can comprise only one gtf enzyme as described herein. In another embodiment, the enzyme reaction solution can comprise a combination of more than one type of gtf enzyme.

For purposes of this invention, sufficient quantities of the gtfJ enzyme can be produced using a recombinant *E. coli* strain for gtfJ production as described in the Examples. Methods for designing the codon optimized genes and expression in *E. coli* are well known in the art.

Methods for the growth of recombinant microorganisms are well known in the art. Recombinant microorganisms expressing the desired gtf enzyme to perform the instant reaction can be grown in any container, such as, for example: various types of flasks with and without indentations; any autoclavable container that can be sealed and temperature-controlled; or any type of fermenter. In one embodiment, production of the gtfJ enzyme for poly (α 1, 3 glucan) production in the present invention can be achieved by growing the recombinant *E. coli* MG1655/pMP52, expressing the gtfJ enzyme, in a fermenter.

The gtfJ enzyme of *Streptococcus salivarius*, used as the catalyst for conversion of sucrose to poly (α 1, 3 glucan) in the current invention, is a primer-dependent gtf enzyme. A primer-dependent gtf enzyme as referenced in the present application, refers to a gtf enzyme that requires the presence of an initiating molecule in the enzyme reaction solution to act as a primer for the enzyme during poly (α 1, 3 glucan) synthesis. Thus a "primer", as the term is used herein, refers to any molecule that can act as the initiator for the primer-dependent glucosyltransferases. Many other glucosyltransferases are primer-independent enzymes. The primer-independent enzymes do not require the

presence of a primer to perform the reaction. For the purposes of the present invention, either or both a primer-independent enzyme, and/or a primer-dependent gtf enzyme can be used in the same enzyme reaction system during poly (α 1, 3 glucan) synthesis.

The gtfJ is a primer-dependent enzyme. In the present invention, dextran, which is a complex, branched glucan was used as a primer for the gtfJ enzyme. While gtf is a primer-dependent enzyme, conversion of sucrose to poly (α 1, 3 glucan) with this enzyme can also occur in the absence of a primer.

5

10

15

20

25

30

The production of poly (α 1, 3 glucan), by the gtfJ enzyme of Streptococcus salivarius is inhibited by its by-product, fructose. When fructose accumulates in the enzyme reaction solution it can inhibit the production of poly (α 1, 3 glucan) by the enzyme, presumably by competing for available glucosyl moieties which results in the formation of the disaccharide, leucrose. In the present invention, to reduce the effect on gtfJ of fructose, the fructose in the enzyme reaction solution can be continuously removed to prevent its accumulation to inhibitory levels in the enzyme reaction solution. For the purposes of the current invention the reaction system can comprise a semipermeable membrane that separates the enzyme reaction solution, contained in the first chamber, comprising one or more gtf enzymes, one or more primers and sucrose, from the surrounding buffer contained in the second chamber. The term "chamber" as used herein, refers to any container that can hold the enzyme reaction solution or the products of the enzyme reaction solution. The chamber can be made of glass, plastic, metal, film, membrane or any other type of inert material that can hold the enzyme reaction solution. The term "semi-permeable membrane", as used herein, refers to a membrane that will allow passage of certain molecules or ions by diffusion while retaining some other molecules. Essentially any semi-permeable membrane, with a molecular cutoff between 12,000 and 100,000 Daltons that will allow fructose and other low molecular weight moieties to pass through while retaining the enzyme and poly (α 1, 3 glucan) can be suitable for use in the present invention. The term "other low molecular weight moieties" as used herein, refers to various compounds with

molecular weights below 1000 Dalton that can be present in the enzyme reaction solution. Due to the removal of the by-product fructose from the enzyme reaction solution contained in the first chamber, leucrose formation can be reduced. In one embodiment of the present invention, dialysis tubing can be used as the semi-permeable membrane to remove the by-product fructose from the enzyme reaction solution.

For the present invention, the enzyme reaction solution can be maintained at 20 $^{\circ}$ C to 25 $^{\circ}$ C.

The present invention provides for production of poly (α 1, 3 glucan), as a low cost material that can be economically obtained from readily renewable sucrose feedstocks for a variety of applications including fibers, films, and pulps. In particular, it is expected that poly (α 1, 3 glucan) fibers, for example, will functionally substitute for cotton and regenerated cellulose fibers, leading to new textile fibers with minimal environmental impact and excellent sustainability versus the aforementioned incumbents.

EXAMPLES

The advantageous attributes and effects of the composition and process disclosed herein can be more fully appreciated from the examples described below. The embodiments of the process on which the examples are based are representative only, and the selection of those embodiments to illustrate the invention does not indicate that materials, components, reactants, conditions, specifications, steps or techniques not described in these examples are unsuitable for practicing these processes, or that subject matter not described in these examples is excluded from the scope of the appended claims and equivalents thereof.

Materials

5

10

15

20

25

30

Dialysis tubing (Spectrapor 25225-226, 12000 molecular weight cut-off) was obtained from VWR (Radnor, PA).

Dextran and ethanol were obtained from Sigma Aldrich. Sucrose was obtained from VWR.

Suppressor 7153 antifoam was obtained from Cognis Corporation (Cincinnati, OH).

All other chemicals were obtained from commonly used suppliers of such chemicals.

5 Seed medium

10

30

The seed medium, used to grow the starter cultures for the fermenters, contained: yeast extract (Amberx 695, 5.0 grams per liter, g/L), K_2HPO_4 (10.0 g/L), K_2PO_4 (7.0 g/L), sodium citrate dihydrate (1.0 g/L), K_2PO_4 (4.0 g/L), K

The growth medium used in the fermenter contained: KH₂PO₄ (3.50 g/L), FeSO₄ heptahydrate (0.05 g/L), MgSO₄ heptahydrate (2.0 g/L), sodium citrate dihydrate (1.90 g/L), yeast extract (Ambrex 695, 5.0 g/L), Suppressor 7153 antifoam (0.25 milliliters per liter, mL/L), NaCl (1.0 g/L), CaCl₂ dihydrate (10 g/L), and NIT trace elements solution (10 mL/L). The NIT trace elements solution contained citric acid monohydrate (10 g/L), MnSO₄ hydrate (2 g/L), NaCl (2 g/L), FeSO₄ heptahydrate (0.5 g/L), ZnSO₄ heptahydrate (0.2 g/L), CuSO₄ pentahydrate (0.02 g/L) and NaMoO₄ dihydrate (0.02 g/L). Post sterilization additions included glucose (12.5 g/L of a 50% w/w solution) and ampicillin (4 mL/L of a 25 mg/mL stock solution).

25 <u>EXAMPLE 1</u>

CONSTRUCTION OF GLUCOSYLTRANSFERASE (gtfJ) ENZYME EXPRESSION STRAIN

The gene encoding the mature glucosyltransferase enzyme (gtfJ; EC 2.4.1.5) from *Streptococcus salivarius* (ATCC 25975) as reported in GENBANK® (accession M64111.1) was synthesized using codons optimized for expression in *E. coli* (DNA 2.0, Menlo Park, CA). The nucleic acid product (SEQ ID NO: 1) was

subcloned into pJexpress404® (DNA 2.0, Menlo Park CA) to generate the plasmid identified as pMP52 (SEQ ID NO: 2). The plasmid pMP52 was used to transform *E. coli* MG1655 (ATCC 47076™) to generate the strain identified as MG1655/pMP52. All procedures used for construction of the glucosyltransferase enzyme expression strain are well known in the art and can be performed by individuals skilled in the relevant art without undue experimentation.

5

20

25

30

EXAMPLE 2 PRODUCTION OF RECOMBINANT gtfJ IN FERMENTATION

Production of the recombinant gtfJ enzyme in a fermenter was initiated by preparing a pre-seed culture of the *E. coli* strain MG1655/pMP52, expressing the gtfJ enzyme, constructed as described in Example 1. A 10 mL aliquot of the seed medium was added into a 125 mL disposable baffled flask and was inoculated with a 1.0 mL culture of *E. coli* MG1655/pMP52 in 20% glycerol. This culture was allowed to grow at 37 °C while shaking at 300 revolutions per minute (rpm) for 3 hours.

A seed culture, for starting the fermenter, was prepared by charging a 2 L shake flask with 0.5 L of the seed medium. 1.0 mL of the pre-seed culture was aseptically transferred into 0.5 L seed medium in the flask and cultivated at 37 °C and 300 rpm for 5 hours. The seed culture was transferred at optical density 550 nm $(OD_{550}) > 2$ to a 14 L fermenter (Braun, Perth Amboy, NJ) containing 8 L of the fermenter medium described above at 37 °C.

Cells of *E. coli* MG1655/pMP52 were allowed to grow in the fermenter and glucose feed (50% w/w glucose solution containing 1% w/w MgSO₄·7H₂O) was initiated when glucose concentration in the medium decreased to 0.5 g/L. The feed was started at 0.36 grams feed per minute (g feed/min) and increased progressively each hour to 0.42, 0.49, 0.57, 0.66, 0.77, 0.90, 1.04, 1.21, 1.41 1.63, 1.92, 2.2 g feed/min respectively. The rate remained constant afterwards. Glucose concentration in the medium was monitored using an YSI glucose analyzer (YSI, Yellow Springs, Ohio). When glucose concentration exceeded 0.1

g/L the feed rate was decreased or stopped temporarily. Induction of glucosyltransferase enzyme activity was initiated, when cells reached an OD $_{550}$ of 70, with the addition of 9 mL of 0.5 M IPTG (isopropyl β -D-1-thiogalactopyranoside). The dissolved oxygen (DO) concentration was controlled at 25% of air saturation. The DO was controlled first by impeller agitation rate (400 to 1200 rpm) and later by aeration rate (2 to 10 standard liters per minute, slpm). The pH was controlled at 6.8. NH $_4$ OH (14.5% weight/volume, w/v) and H $_2$ SO $_4$ (20% w/v) were used for pH control. The back pressure was maintained at 0.5 bars. At various intervals (20, 25 and 30 hours), 5 mL of Suppressor 7153 antifoam was added into the fermenter to suppress foaming. Cells were harvested by centrifugation 8 hours post IPTG addition and were stored at -80 °C as a cell paste.

5

10

15

20

25

30

EXAMPLE 3

PREPARATION OF GTFJ CRUDE ENZYME EXTRACT FROM CELL PASTE

The cell paste obtained above was suspended at 150 g/L in 50 mM potassium phosphate buffer pH 7.2 to prepare a slurry. The slurry was homogenized at 12,000 psi (Rannie-type machine, APV-1000 or APV 16.56) and the homogenate chilled to 4 °C. With moderately vigorous stirring, 50 g of a floc solution (Aldrich no. 409138, 5% in 50 mM sodium phosphate buffer pH 7.0) was added per liter of cell homogenate. Agitation was reduced to light stirring for 15 minutes. The cell homogenate was then clarified by centrifugation at 4500 rpm for 3 hours at 5-10 °C. Supernatant, containing crude gtfJ enzyme extract, was concentrated (approximately 5X) with a 30 kilo Dalton (kDa) cut-off membrane. The concentration of protein in the gftJ enzyme solution was determined by the bicinchoninic acid (BCA) protein assay (Sigma Aldrich) to be 4-8 g/L.

EXAMPLE 4

IMPROVING THE TITER OF POLY (α 1, 3 GLUCAN) BY USING A SEMI-PERMEABLE MEMBRANE

This Example demonstrates that removal and/or dilution of the by-product fructose, formed during conversion of sucrose to poly (α 1, 3 glucan), increases

poly (α 1,3 glucan) titer. Dialysis tubing was used as a semi-permeable membrane in this Example since it allows passage of the by-product fructose formed during the enzymatic reaction, from inside the tubing to outside of the dialysis tubes.

The enzyme reaction solution in this Example contained 8 L of the sucrose stock solution (Table 1), 24 g of dextran T-10, as the primer, and 1.0 volume % of the gtf enzyme.

TABLE 1 sucrose stock solution

Material	concentration
Sucrose	1200 g
KH ₂ PO ₄	
Buffer	
(pH 6.8 – 7.0)	50 mM
10% KOH	as needed for adjusting
sol'n	to pH 7
Ethanol	800 mL
De-ionized	
water	To 8 liters

10

15

20

5

Four individual dialysis tubes (50 mL capacity) were used as test samples and charged with 50 mL of the enzyme reaction solution and were sealed. The individual dialysis tubes were then suspended in polyethylene buckets holding different volumes of the sucrose stock solution (Table 1) as the surrounding buffer. These polyethylene buckets were then placed on a magnetic stirring plate and allowed to stir at 20-25 °C for 72 hours. A control sample was prepared, in a capped centrifuge tube, consisting of 50 mL of the enzyme reaction solution, in the same proportions as the test samples, and allowed to stand at 20-25 °C temperature for 72 hours without stirring. The control sample was not placed in the dialysis tube or the surrounding buffer.

After 72 hours, the test samples in the dialysis tubes were removed from the surrounding buffer, the tubes were cut open and the poly (α 1, 3 glucan) solids were collected on a Buchner funnel using 325 mesh screen over 40 micometers filter paper. The filter cake was resuspended in deionized water and filtered twice more as above to remove residual sucrose, fructose and other low molecular weight, soluble by-products. Finally two additional washes with methanol were carried out. The filter cake was pressed out thoroughly on the funnel and dried under vacuum at room temperature. The poly (α 1, 3 glucan) formed in the control sample was also isolated and weighed. Formation of poly (α 1, 3 glucan) in the tests and the control samples was confirmed using publically available information (Nakamura, T., et al., Biosci. Biotechnol. Biochem., 68: 868-872, 2004). The resulting dry weights of the poly (α 1, 3 glucan) by the gtfJ enzyme, from the test and the control samples, are shown in Table 2.

15

20

10

5

TABLE 2 Comparison of poly (α 1, 3 glucan) formed in the presence and absence of a semi-permeable membrane

Volume of 15%	
sucrose solution	
(the surrounding	poly (α 1, 3 glucan)
buffer)	(g)
5 L	1.395g
2.5 L	1.515g
250 mL	1.132g
250 mL	1.114g
Control	0.696g

The above results show clearly that the titer of poly (α 1, 3 glucan) was significantly enhanced when the enzyme reaction solution was placed in a dialysis tube and was placed in the surrounding buffer that allowed continuous

passage of the by-product fructose from inside the dialysis tube to outside, thus diluting the concentration of fructose, formed by the enzyme, inside the tube. The highest polymer titers were obtained at higher volumes of the surrounding buffer which can result in higher dilution of the by-product fructose.

5

10

15

20

EXAMPLE 5

DETERMINATION OF THE AMOUNT OF POLY (α 1, 3 GLUCAN) FORMED AT TIMED INTERVALS

To 3 L of the sucrose stock solution (Table 1), 9 g of dextran T-10, as the primer and 2.0% volume% of gtf were added to prepare the enzyme reaction solution.

Seven individual dialysis tubes were used as test samples and charged with 50 mL of the enzyme reaction solution and were sealed. The individual dialysis tubes were then suspended in a polyethylene bucket containing 3 L of the sucrose stock solution as the surrounding buffer. The buckets were placed on a magnetic stirring plate and allowed to stir at 20-25 °C for 72 hours. Individual dialysis tubes were removed at timed intervals shown in Table 3. Since the titer of the poly (α 1, 3 glucan) formed in control samples, as described in the Example 4, was consistently around 0.6 g after 72 hours, no control samples were used in this experiment.

At each timed interval, the poly (α 1, 3 glucan) solids formed in the dialysis tubes were isolated as described in Example 4. The resulting dry weights of the poly (α 1, 3 glucan) obtained enzyme reaction solution at various time intervals are shown in Table 3.

25

TABLE 3

Weight of the Poly (α 1, 3 glucan) formed at various timed intervals

Time (hour)	poly (α1, 3 glucan) (g)
6	0.48
21	1.21
28	1.33
36	1.52
48	1.71
60	2.07
72	2.50

The above results clearly showed that production of poly (α 1, 3 glucan) was significantly enhanced as the enzyme reaction was allowed to proceed for a longer period of time (e.g., 72 hours).

5

Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification, they are to be interpreted as specifying the presence of the stated features, integers, steps or components referred to, but not to preclude the presence or addition of one or more other feature, integer, step, component or group thereof.

10

5

10

15

25

The Claims defining the invention are as follows:

- 1. A reaction system for producing poly (α 1, 3 glucan), wherein said reaction system comprises:
 - a) a first chamber that comprises an enzyme reaction solution comprising:
 - i) sucrose; and
 - ii) at least one glucosyltransferase enzyme comprising a Streptococcus salivarius GtfJ enzyme; and
 - b) a second chamber, separated from the first chamber by a semipermeable membrane that is in contact with the enzyme reaction solution, wherein the semi-permeable membrane is permeable to fructose but impermeable to poly (α 1, 3 glucan) and the glucosyltransferase enzyme, wherein the semi-permeable membrane has a molecular weight cut-off from 12,000 to 100,000 Daltons.
- 2. The reaction system of Claim 1, wherein the enzyme reaction solution is maintained at a temperature of from 20 °C to 25 °C.
- 20 3. The reaction system of Claim 1 or Claim 2, wherein the enzyme reaction system further comprises at least one primer.
 - 4. The reaction system of any one of Claims 1 to 3, wherein the poly (α 1, 3 glucan) accumulates in the first chamber to a concentration ranging from 30 grams per liter to 200 grams per liter.
 - 5. The reaction system of any one of Claims 1 to 4, wherein the semipermeable membrane is a dialysis tubing.
- 30 6. The reaction system of any one of Claims 1 to 5, wherein the at least one primer is dextran.

- 7. The reaction system of any one of Claims 1, 2 and 4 to 6, wherein there is absence of a primer in the enzyme reaction solution.
- 5 8. The reaction system of any one of Claims 1 to 7, wherein more than one glucosyltransferase enzyme is present in the enzyme reaction solution.

20120907_CL5252WOPCT_ST25 SEQUENCE LISTING

<110>	Du Po John Mar k	ı, O'Brien F	D.				
<120>	Hi gh	titer prod	duction of p	ooly (a 1,3	gl ucan)		
<130>	CL52	252					
<160>	3						
<170>	Pat e	entln versio	on 3.5				
<210> <211> <212> <213>	1 4434 DNA arti	ficial sequ	uence				
<220> <223>	codo	on-optimized	d gtfj gene	from Strept	ococcus sal	i vari us	
<400> at ggaco	1 gaaa	cgcaggat aa	gaccgt gacg	cagagcaaca	gcggcaccac	cgct t ccct g	60
gt cact a	agcc	ct gaagccac	gaaagaggcg	gacaaacgca	cgaacact aa	agaggccgac	120
gt t ct ga	acgc	ct gcaaaaga	aacgaacgca	gt cgagact g	cgaccaccac	t aacacccag	180
gcgacg	gcgg	aggccgccac	gaccgcgacc	accgcggacg	t cgcggt ggc	t geggt geeg	240
aacaaaq	gaag	cggt cgt t ac	cacggat gct	ccggcggt ca	cgaccgagaa	agcggaagaa	300
cagccg	gct a	ccgt t aaagc	agaagt cgt c	aat acggaag	t gaaagcgcc	ggaagcggct	360
ct gaaaq	gaca	gcgaggt t ga	ggcagcgct g	agcct gaaga	acat caagaa	cat t gat ggc	420
aagt at t	act	at gt t aat ga	ggat ggcagc	cacaaagaga	at t t cgct at	t accgt gaat	480
ggccago	ct gc	t gt act t t gg	t aaagacggt	gcgct gacgt	cct ct agcac	gtattcttt	540
accccaç	ggca	ct accaat at	cgt ggacggt	tttagcatta	acaaccgcgc	t t acgacagc	600
agcgag	gcga	gct t t gagct	gat cgacggt	t act t gaccg	cagacagct g	gt at cgt ccg	660
gct agca	at ca	t caaagat gg	t gt t acgt gg	caagcgt cca	ccgccgagga	ttttcgtccg	720
ct gct ga	at gg	cat ggt ggcc	gaat gt ggat	acgcaggt ga	act at t t gaa	t t acat gt cc	780
aaagt t t	ttca	acct ggacgc	gaaat act ct	agcaccgaca	aacaggaaac	cct gaaagt g	840
gcagcaa	aaag	acat t caaat	caagat t gaa	caaaagat t c	aagcggagaa	gagcacgcag	900
t ggct go	cgt g	aaact at cag	cgcct t t gt g	aaaacccagc	cgcagt ggaa	caaagaaacc	960
gagaat t	taca	gcaagggt gg	t ggt gaggac	cacct gcaag	gt ggcgcact	gct gt at gt t	1020
aacgaca	agcc	gt acccct t g	ggcgaat agc	gat t accgt c	gt ct gaat cg	caccgcaacc	1080
aat caga	acgg	gcacgat cga	t aagt ct at t	ct ggacgagc	agt ct gaccc	aaaccacat g	1140
ggcggt t	ttcg	act t t ct gct	ggcgaacgac	gt cgacct ga	gcaat ccggt	cgt gcaggct	1200
gagcago	ct ga	at caaat cca	ct at ct gat g	aat t ggggt t	ccat t gt gat	gggt gacaag	1260
gat gcga	aact	t t gacggcat	t cgt gt cgat	gcagt t gaca	acgt ggacgc	ggacat gt t g	1320
caact gt	t at a	ccaat t act t	ccgt gagt ac	t acggt gt ga	acaagagcga	agct aacgca	1380

ct ggct caca	t cagcgt t ct	ggaggcgt gg	agcct gaat g	at aat cat t a	caat gacaag	1440
accgat ggt g	cggcact ggc	aat ggagaat	aagcaacgt c	t ggcgct gt t	gttttcgttg	1500
gcgaaaccga	t caaagagcg	t accccggca	gt gagcccgc	t gt at aacaa	cacct t caat	1560
accacccagc	gt gat gaaaa	gaccgat t gg	at t aacaaag	acggt agcaa	ggct t acaac	1620
gaagat ggca	cggt caaaca	at cgaccat c	ggt aagt aca	acgagaaat a	cggt gacgca	1680
t ccggt aact	acgttttcat	ccgt gcccac	gat aacaacg	t ccaggacat	cat cgccgag	1740
at cat caaga	aagagat caa	cccgaaaagc	gacggct t ca	ccat caccga	cgccgaaat g	1800
aagcaagcct	t t gaaat ct a	t aacaaagat	at gct gt cga	gcgacaaaaa	gt at accct g	1860
aat aacat t c	cggcagcgt a	t gccgt gat g	t t gcagaat a	t ggaaacgat	t acccgcgt c	1920
t at t acggt g	at ct gt at ac	ggacgacggt	cact acat gg	aaaccaaat c	t ccgt at t ac	1980
gat accat cg	t gaat t t gat	gaagagccgt	at caagt at g	t t t cgggt gg	ccaggcgcaa	2040
cgt agct at t	ggct gccgac	cgacggt aag	at ggacaat a	gcgacgt t ga	gct gt accgc	2100
acgaat gagg	ttt acacgag	cgt gcgct at	ggt aaggat a	t cat gaccgc	t aat gat acc	2160
gaagget et a	agt at t cccg	caccagcggc	caagt cacct	t ggt cgcgaa	caat ccgaag	2220
ct gaat ct gg	accaaagcgc	caagt t gaat	gt ggagat gg	gcaaaat cca	t gcgaat cag	2280
aagt at cgcg	cact gat t gt	cggcact gcg	gacggcat t a	agaact t t ac	t t ccgacgcg	2340
gacgccat t g	cagcgggt t a	t gt gaaagaa	accgat agca	acggcgt gct	gacct t cggt	2400
gct aacgaca	t t aaggget a	cgaaacgt t t	gat at gagcg	gt t t cgt ggc	ggt gt gggt t	2460
ccggt gggt g	cat ct gacaa	t caggacat t	cgt gt t gcgc	cgagcaccga	ggcaaagaaa	2520
gaaggt gagc	t gacct t gaa	ggcgacggaa	gcgt at gat a	gccagct gat	t t acgaaggc	2580
tttagcaatt	t ccagacgat	cccagat ggc	agcgat ccgt	ccgt gt at ac	gaaccgcaag	2640
at t gcggaga	acgt ggat ct	gt t caaaagc	t ggggt gt ca	ccagct t t ga	gat ggcaccg	2700
caat t t gt ct	cggcggat ga	t ggcacct t t	ct ggat agcg	t t at t cagaa	t ggct acgcc	2760
t t cgccgacc	gt t at gacct	ggccat gt cc	aagaacaaca	agt at ggt ag	caaagaggac	2820
ct gcgt gat g	cact gaaagc	act gcat aag	gcgggt at t c	aagct at cgc	agact gggt t	2880
ccagaccaga	t ct accagct	gccgggcaaa	gaagt t gt ca	ccgccacccg	t acggat ggt	2940
gct ggccgt a	agat cgcaga	cgcgat t at c	gaccat t ct c	t gt at gt t gc	aaacagcaaa	3000
agcagcggca	aagat t at ca	agcaaagt ac	ggt ggcgagt	t cct ggccga	gct gaaagcc	3060
aaat acccgg	aaat gt t caa	agt t aacat g	at t agcacgg	gt aagccgat	t gat gact cc	3120
gt gaaat t ga	agcaat ggaa	agccgagt ac	t t caat ggca	ccaacgtttt	ggaacgt ggt	3180
gt cggct at g	t t ct gagcga	cgaggcgacc	ggt aagt at t	t cacggt gac	caaagaaggc	3240
aatttcattc	cgct gcaact	gacgggt aaa	gagaaagt t a	t cacgggt t t	ct ccagcgat	3300
ggt aagggt a	t cacct at t t	cggt acgagc	ggt acgcagg	cgaagt ct gc	gt t t gt t acc	3360
t t caat ggt a	acacct act a	tttcgacgcg	cgt ggccaca Page 2	t ggt t accaa	t agcgaat ac	3420

agcccgaat g	gcaaggacgt	ct accgt t t t	ct gccgaacg	gt at cat gct	gagcaat gcg	3480
tttacattg	at gcgaacgg	t aat acct ac	ct gt acaact	ct aagggt ca	aat gt acaaa	3540
ggcggt t aca	cgaaat t cga	t gt t t ct gaa	acggat aagg	acggt aaaga	gt ccaaggt c	3600
gt caagt t cc	gct act t t ac	gaacgaaggc	gt cat ggcca	agggt gt t ac	cgt cat t gat	3660
ggttttaccc	aat act t cgg	t gaggacggc	tttcaagcga	aggat aagct	ggt cacct t c	3720
aagggcaaga	cgt at t act t	cgacgcacac	act ggt aat g	gt at caaaga	t acct ggcgc	3780
aat at caat g	gt aaat ggt a	ct at t t cgac	gcgaat ggcg	t t gct gcgac	cggt gcgcag	3840
gt gat t aacg	gccagaaact	gt act t caac	gaggat ggct	cccaagt caa	aggcggcgt g	3900
gt t aagaacg	cagacggcac	ct at agcaaa	t acaaagaag	gt t t t ggt ga	gct ggt t act	3960
aacgagt t t t	t cacgact ga	t ggcaat gt t	t ggt act acg	ccggt gcaaa	t ggt aaaacc	4020
gt t accggt g	cacaagt gat	caacggccaa	cat t t gt act	t caat gegga	cggt t cccag	4080
gt gaagggt g	gcgt t gt caa	gaacgcggat	ggcacct aca	gcaagt acaa	t gct agcact	4140
ggt gaacgt c	t gacgaacga	gt t ct t t acg	accggt gat a	acaat t ggt a	t t acat t ggc	4200
gcaaacggt a	agagegt gae	gggt gaggt c	aagat t ggt g	at gat act t a	cttttcgcg	4260
aaggat ggca	aacaagt t aa	aggt caaacc	gt cagcgccg	gt aat ggt cg	cat t agct ac	4320
t act acggt g	acagcggcaa	gcgt gcggt t	agcacct gga	t t gagat t ca	gccgggt gt t	4380
t at gt gt at t	t cgacaaaaa	cggt t t ggcg	t accct ccgc	gt gt t ct gaa	t t aa	4434

<210> 2 <211> 8455 <212> DNA

<213> artificial sequence

<220>

<223> pl asmi d pMP52

<400> ct cat gacca aaat ccct ta acgt gagt ta cgcgcgcgt c gt t ccact ga gcgt cagacc 60 ccgt agaaaa gat caaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct 120 t gcaaacaaa aaaaccaccg ct accagcgg t ggt tt gt tt gccggat caa gagct accaa 180 240 ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gttcttctag t gt agccgt a gt t agcccac cact t caaga act ct gt agc accgcct aca t acct cgct c 300 t gct aat cct gt t accagt g gct gct gcca gt ggcgat aa gt cgt gt ct t accgggt t gg 360 act caagacg at agt t accg gat aaggege ageggt eggg et gaaegggg ggt t egt gea 420 cacageceag et t ggagega aegaeet aea eegaaet gag at aeet aeag egt gaget at 480 540 gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 600 t cggaacagg agagcgcacg agggagct t c cagggggaaa cgcct ggt at cttt at agt c ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc 660 720 ggagectatg gaaaaaegee ageaaegegg cetttttaeg gtteetggee ttttgetgge

cttttgctca	catgttcttt	cct gcgt t at	cccct gat t c	t gt ggat aac	cgt at t accg	780
cct t t gagt g	agct gat acc	gct cgccgca	gccgaacgac	cgagcgcagc	gagt cagt ga	840
gcgaggaagc	ggaaggcgag	agt agggaac	t gccaggcat	caaact aagc	agaaggcccc	900
t gacggat gg	cctttttgcg	tttctacaaa	ct ct t t ct gt	gt t gt aaaac	gacggccagt	960
ct t aagct cg	ggccccct gg	gcggt t ct ga	t aacgagt aa	t cgt t aat cc	gcaaat aacg	1020
t aaaaacccg	ct t cggcggg	ttttttatg	gggggagt t t	agggaaagag	cat t t gt cag	1080
aat at t t aag	ggcgcct gt c	act t t gct t g	at at at gaga	attatttaac	ct t at aaat g	1140
agaaaaaagc	aacgcact t t	aaat aagat a	cgttgctttt	t cgat t gat g	aacacct at a	1200
at t aaact at	t cat ct at t a	ttt at gattt	tttgtatata	caat at t t ct	agt t t gt t aa	1260
agagaat t aa	gaaaat aaat	ct cgaaaat a	at aaagggaa	aat cagt t t t	t gat at caaa	1320
at t at acat g	t caacgat aa	t acaaaat at	aat acaaact	at aagat gt t	at cagt at t t	1380
at t at gcat t	t agaat aaat	t t t gt gt cgc	cct t aat t gt	gagcggat aa	caat t acgag	1440
ct t cat gcac	agt gaaat ca	t gaaaaat t t	attt gcttt g	t gagcggat a	acaat t at aa	1500
t at gt ggaat	t gt gagcgct	cacaat t cca	caacggt t t c	cct ct agaaa	t aat t t t gt t	1560
taacttttga	at t ct ct aga	ggaaggt aaa	acat at ggac	gaaacgcagg	at aagaccgt	1620
gacgcagagc	aacagcggca	ccaccgct t c	cct ggt cact	agccct gaag	ccacgaaaga	1680
ggcggacaaa	cgcacgaaca	ct aaagaggc	cgacgt t ct g	acgcct gcaa	aagaaacgaa	1740
cgcagt cgag	act gcgacca	ccact aacac	ccaggcgacg	gcggaggccg	ccacgaccgc	1800
gaccaccgcg	gacgt cgcgg	t ggct gcggt	gccgaacaaa	gaageggt eg	t t accacgga	1860
t gct ccggcg	gt cacgaccg	agaaagcgga	agaacagccg	gct accgt t a	aagcagaagt	1920
cgt caat acg	gaagt gaaag	cgccggaagc	ggct ct gaaa	gacagcgagg	t t gaggcagc	1980
gct gagcct g	aagaacat ca	agaacat t ga	t ggcaagt at	t act at gt t a	at gaggat gg	2040
cagccacaaa	gagaat t t cg	ct at t accgt	gaat ggccag	ct gct gt act	t t ggt aaaga	2100
cggt gcgct g	acgt cct ct a	gcacgt at t c	tttacccca	ggcact acca	at at cgt gga	2160
cggt t t t agc	at t aacaacc	gcgct t acga	cagcagcgag	gcgagct t t g	agct gat cga	2220
cggt t act t g	accgcagaca	gct ggt at cg	t ccggct agc	at cat caaag	at ggt gt t ac	2280
gt ggcaagcg	tccaccgccg	aggattttcg	t ccgct gct g	at ggcat ggt	ggccgaat gt	2340
ggat acgcag	gt gaact at t	t gaat t acat	gt ccaaagt t	t t caacct gg	acgcgaaat a	2400
ct ct agcacc	gacaaacagg	aaaccct gaa	agt ggcagca	aaagacat t c	aaat caagat	2460
t gaacaaaag	at t caagegg	agaagagcac	gcagt ggct g	cgt gaaact a	t cagcgcct t	2520
t gt gaaaacc	cagccgcagt	ggaacaaaga	aaccgagaat	t acagcaagg	gt ggt ggt ga	2580
ggaccacct g	caaggt ggcg	cact gct gt a	t gt t aacgac	agccgt accc	ct t gggcgaa	2640
t agcgat t ac	cgt cgt ct ga	at cgcaccgc	aaccaat cag	acgggcacga	t cgat aagt c	2700
t at t ct ggac	gagcagt ct g	асссааасса	cat gggcggt	ttcgactttc	t gct ggcgaa	2760

cgacgt cgac	ct gagcaat c	cggt cgt gca	ggct gagcag	ct gaat caaa	t ccact at ct	2820
gat gaat t gg	ggt t ccat t g	t gat gggt ga	caaggat gcg	aact t t gacg	gcat t cgt gt	2880
cgat gcagt t	gacaacgt gg	acgcggacat	gt t gcaact g	t at accaat t	act t ccgt ga	2940
gt act acggt	gt gaacaaga	gcgaagct aa	cgcact ggct	cacat cagcg	t t ct ggaggc	3000
gt ggagcct g	aat gat aat c	at t acaat ga	caagaccgat	ggt gcggcac	t ggcaat gga	3060
gaat aagcaa	cgt ct ggcgc	tgttgtttc	gt t ggcgaaa	ccgat caaag	agcgt acccc	3120
ggcagt gagc	ccgct gt at a	acaacacct t	caat accacc	cagcgt gat g	aaaagaccga	3180
t t ggat t aac	aaagacggt a	gcaaggct t a	caacgaagat	ggcacggt ca	aacaat cgac	3240
cat cggt aag	t acaacgaga	aat acggt ga	cgcat ccggt	aact acgt t t	t cat ccgt gc	3300
ccacgat aac	aacgt ccagg	acat cat cgc	cgagat cat c	aagaaagaga	t caacccgaa	3360
aagcgacggc	t t caccat ca	ccgacgccga	aat gaagcaa	gcct t t gaaa	t ct at aacaa	3420
agat at gct g	t cgagcgaca	aaaagt at ac	cct gaat aac	at t ccggcag	cgt at gccgt	3480
gat gt t gcag	aat at ggaaa	cgat t acccg	cgt ct at t ac	ggt gat ct gt	at acggacga	3540
cggt cact ac	at ggaaacca	aat ct ccgt a	t t acgat acc	at cgt gaat t	t gat gaagag	3600
ccgt at caag	t at gt t t cgg	gt ggccaggc	gcaacgt agc	t at t ggct gc	cgaccgacgg	3660
t aagat ggac	aat agcgacg	t t gagct gt a	ccgcacgaat	gaggt t t aca	cgagcgt gcg	3720
ct at ggt aag	gat at cat ga	ccgct aat ga	t accgaaggc	t ct aagt at t	cccgcaccag	3780
cggccaagt c	acct t ggt cg	cgaacaat cc	gaagct gaat	ct ggaccaaa	gcgccaagt t	3840
gaat gt ggag	at gggcaaaa	t ccat gcgaa	t cagaagt at	cgcgcact ga	t t gt cggcac	3900
t geggaegge	at t aagaact	t t act t ccga	cgcggacgcc	at t gcagcgg	gt t at gt gaa	3960
agaaaccgat	agcaacggcg	t gct gacct t	cggt gct aac	gacat t aagg	gct acgaaac	4020
gt t t gat at g	agcggt t t cg	t ggcggt gt g	ggt t ccggt g	ggt gcat ct g	acaat cagga	4080
cat t cgt gt t	gcgccgagca	ccgaggcaaa	gaaagaaggt	gaget gacet	t gaaggegae	4140
ggaagcgt at	gat agccagc	t gat t t acga	aggetttage	aat t t ccaga	cgat cccaga	4200
t ggcagcgat	ccgt ccgt gt	at acgaaccg	caagat t gcg	gagaacgt gg	at ct gt t caa	4260
aagct ggggt	gt caccagct	t t gagat ggc	accgcaat t t	gt ct cggcgg	at gat ggcac	4320
ct t t ct ggat	agcgt t at t c	agaat ggct a	cgcct t cgcc	gaccgt t at g	acct ggccat	4380
gt ccaagaac	aacaagt at g	gt agcaaaga	ggacct gcgt	gat gcact ga	aagcact gca	4440
t aaggegggt	at t caagct a	t cgcagact g	ggt t ccagac	cagat ct acc	agct gccggg	4500
caaagaagt t	gt caccgcca	cccgt acgga	t ggt gct ggc	cgt aagat cg	cagacgcgat	4560
t at cgaccat	t ct ct gt at g	t t gcaaacag	caaaagcagc	ggcaaagat t	at caagcaaa	4620
gt acggt ggc	gagt t cct gg	ccgagct gaa	agccaaat ac	ccggaaat gt	t caaagt t aa	4680
cat gat t agc	acgggt aagc	cgat t gat ga	ct ccgt gaaa	t t gaagcaat	ggaaagccga	4740
gt act t caat	ggcaccaacg	ttttggaacg	t ggt gt cggc Page 5	t at gt t ct ga	gcgacgaggc	4800

gad	ccggt aag	t at t t cacgg	t gaccaaaga	aggcaat t t c	at t ccgct gc	aact gacggg	4860
t aa	aagagaaa	gt t at cacgg	gt t t ct ccag	cgat ggt aag	ggt at cacct	at t t cggt ac	4920
ga	geggt aeg	caggcgaagt	ct gcgt t t gt	t acct t caat	ggt aacacct	act at t t cga	4980
cgo	egegt gge	cacat ggt t a	ccaat agcga	at acageceg	aat ggcaagg	acgt ct accg	5040
ttt	t ct gccg	aacggt at ca	t gct gagcaa	t gcgt t t t ac	at t gat gcga	acggt aat ac	5100
cta	acct gt ac	aact ct aagg	gt caaat gt a	caaaggcggt	t acacgaaat	t cgat gt t t c	5160
t ga	aaacggat	aaggacggt a	aagagt ccaa	ggt cgt caag	t t ccgct act	t t acgaacga	5220
ag	gcgt cat g	gccaagggt g	t t accgt cat	t gat ggt t t t	acccaat act	t cggt gagga	5280
cg	gctttcaa	gcgaaggat a	agct ggt cac	ct t caagggc	aagacgt at t	act t cgacgc	5340
aca	acact ggt	aat ggt at ca	aagat acct g	gcgcaat at c	aat ggt aaat	ggt act at t t	5400
cga	acgcgaat	ggcgt t gct g	cgaccggt gc	gcaggt gat t	aacggccaga	aact gt act t	5460
caa	acgaggat	ggct cccaag	t caaaggcgg	cgt ggt t aag	aacgcagacg	gcacct at ag	5520
caa	aat acaaa	gaaggt t t t g	gt gagct ggt	t act aacgag	tttttcacga	ct gat ggcaa	5580
t gt	ttggtac	t acgccggt g	caaat ggt aa	aaccgt t acc	ggt gcacaag	t gat caacgg	5640
cca	aacatttg	t act t caat g	cggacggt t c	ccaggt gaag	ggt ggcgt t g	t caagaacgc	5700
gga	at ggcacc	t acagcaagt	acaat gct ag	cact ggt gaa	cgt ct gacga	acgagt t ct t	5760
t a	cgaccggt	gat aacaat t	ggt at t acat	t ggcgcaaac	ggt aagagcg	t gacgggt ga	5820
ggt	caagat t	ggt gat gat a	cttactttt	cgcgaaggat	ggcaaacaag	t t aaaggt ca	5880
aad	cegt cage	gccggt aat g	gt cgcat t ag	ct act act ac	ggt gacagcg	gcaagcgt gc	5940
ggt	t agcacc	t ggat t gaga	t t cagccggg	t gt t t at gt g	t at t t cgaca	aaaacggt t t	6000
ggo	cgt accct	ccgcgt gt t c	t gaat t aat g	agt ct agact	gcagggt acc	aagct t cccc	6060
aa	gggcgaca	ccccat aat t	agcccgggcg	aaaggcccag	t ct t t cgact	gagcctttcg	6120
ttt	tatttga	t gcct ggcag	t t ccct act c	t cgcat gggg	agt ccccaca	ct accat cgg	6180
cg	ct acggcg	tttcacttct	gagt t cggca	t ggggt cagg	t gggaccacc	gcgct act gc	6240
cgo	ccaggcaa	acaaggggt g	t t at gagcca	t at t caggt a	t aaat gggct	cgcgat aat g	6300
tto	cagaat t g	gt t aat t ggt	t gt aacact g	acccct at t t	gtttatttt	ct aaat acat	6360
t ca	aaat at gt	at ccgct cat	gagacaat aa	ccct gat aaa	t gct t caat a	at at t gaaaa	6420
ag	gaagaat a	t gagt at t ca	acat t t ccgt	gt cgccct t a	ttcccttttt	t geggeat t t	6480
t go	cct t cct g	tttttgctca	cccagaaacg	ct ggt gaaag	t aaaagat gc	t gaagat cag	6540
ttg	gggt gcac	gagt gggt t a	cat cgaact g	gat ct caaca	gcggt aagat	cct t gagagt	6600
ttt	cgccccg	aagaacgt t t	t ccaat gat g	agcactttta	aagt t ct gct	at gt ggcgcg	6660
gt a	at t at ccc	gt at t gacgc	cgggcaagag	caact cggt c	gccgcat aca	ct at t ct cag	6720
aat	gact t gg	t t gagt act c	accagt caca	gaaaagcat c	t t acggat gg	cat gacagt a	6780
aga	agaat t at	gcagt gct gc	cat aaccat g	agt gat aaca	ct gcggccaa	cttacttctg	6840

acaacgat cg gaggaccgaa ggagct aacc gctttttt gc acaacat ggg ggat cat gt a 6900 6960 actogoctig atogitggga accggagetg aatgaagcca taccaaacga cgagegtgac accacgat gc ct gt agcgat ggcaacaacg tt gcgcaaac tattaact gg cgaact act t 7020 7080 actict aget ti iccoggicaaca lattaat agac it ggat ggagg icggat aaagt it gcaggacca cttctgcgct cggcccttcc ggctggctgg tttattgctg ataaatccgg agccggtgag 7140 7200 cgt ggt t ct c geggt at cat cgcageget g gggecagat g gt aagecet c cegt at egt a 7260 gtt at ct aca cgacgggag t caggcaact at ggat gaac gaaat agaca gat cgct gag 7320 at aggt geet caet gat taa geat t ggt aa geggegegee at egaat gge geaaaaeet t 7380 ticgcggt at gigcat gat agcigccggaagaigagt caat tic lagggt ggt gallat at gaaacci agt aacgt ta tacgat gt cg cagagt at gc cggt gt ct ct tat cagaccg ttt cccgcgt 7440 7500 ggt gaaccag gccagccacg tttct gcgaa aacgcgggaa aaagt ggaag cggcgat ggc 7560 ggaget gaat it acatitieea acegegt gge acaacaactig gegggeaaac agtiegt tiget 7620 gattggcgtt gccacctcca gtctggccct gcacgcgccg tcgcaaattg tcgcggcgat 7680 t aaat ct cgc geegat caac t gggt geeag egt ggt ggt g t egat ggt ag aaegaagegg 7740 cgt cgaagec t gt aaagegg eggt geacaa tettet egeg eaaegegt ea gt ggget gat 7800 cattaactat ceget ggat g accaggat ge catt get gt g gaaget geet geact aat gt 7860 teeggegtta titetigatg teteigaeea gaeaeeeate aacagtatia titteteeea t gaggacggt acgcgact gg gcgt ggagca t ct ggt cgca t t gggt cacc agcaaat cgc 7920 get gt t ageg ggeceat t aa gt t et gt et e ggegegt et g egt et gget g get ggeat aa 7980 8040 at at ct cact cgcaat caaa tt cagccgat agcggaacgg gaaggcgact ggagt gccat gt ccggtttt caacaaacca t gcaaat gct gaat gagggc at cgttccca ct gcgat gct 8100 8160 ggt t gccaac gat cagat gg cgct gggcgc aat gcgcgcc at t accgagt ccgggct gcg 8220 cgttggtgcg gatatctcgg tagtgggata cgacgatacc gaagatagct catgttatat cccgccgtta accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg 8280 cttgctgcaa ctctctcagg gccaggcggt gaagggcaat cagctgttgc cagtctcact 8340 8400 ggt gaaaaga aaaaccaccc t ggcgcccaa t acgcaaacc gcct ct cccc gcgcgt t ggc 8455 cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtga

```
<210> 3
<211> 1518
<212> PRT
<213> Strept ococcus salivarius
<400> 3

Met Glu Asn Lys IIe His Tyr Lys Leu His Lys Val Lys Lys Gln Trp
1 5 10 15
```

Leu Ser Val Thr Thr Ser Ser Val Ser Ala Asp Glu Thr Gln Asp Lys 35 40 45

Thr Val Thr Gin Ser Asn Ser Gly Thr Thr Ala Ser Leu Val Thr Ser 50 55 60

Pro Glu Ala Thr Lys Glu Ala Asp Lys Arg Thr Asn Thr Lys Glu Ala 65 70 75 80

Asp Val Leu Thr Pro Ala Lys Glu Thr Asn Ala Val Glu Thr Ala Thr 85 90

Thr Thr Asn Thr Gin Ala Thr Ala Giu Ala Ala Thr Thr Ala Thr Thr 100 105 110

Ala Asp Val Ala Val Ala Ala Val Pro Asn Lys Glu Ala Val Val Thr 115 120 125

Thr Asp Ala Pro Ala Val Thr Thr Glu Lys Ala Glu Glu Gln Pro Ala 130 135 140

Thr Val Lys Ala Glu Val Val Asn Thr Glu Val Lys Ala Pro Glu Ala 145 150 155 160

Ala Leu Lys Asp Ser Glu Val Glu Ala Ala Leu Ser Leu Lys Asn IIe 165 170 175

Lys Asn II e Asp Gly Lys Tyr Tyr Tyr Val Asn Glu Asp Gly Ser His 180 185

Lys Glu Asn Phe Ala IIe Thr Val Asn Gly Gln Leu Leu Tyr Phe Gly 195 200 205

Lys Asp Gly Ala Leu Thr Ser Ser Ser Thr Tyr Ser Phe Thr Pro Gly 210 215 220

Thr Thr Asn IIe Val Asp Gly Phe Ser IIe Asn Asn Arg Ala Tyr Asp 225 230 235 240

Ser Ser Glu Ala Ser Phe Glu Leu IIe Asp Gly Tyr Leu Thr Ala Asp 245 250 255

Ser Trp Tyr Arg Pro Ala Ser IIe IIe Lys Asp Gly Val Thr Trp Gln 265 270

Ala Ser Thr Ala Glu Asp Phe Arg Pro Leu Leu Met Ala Trp Trp Pro

Asn Val Asp Thr Gln Val Asn Tyr Leu Asn Tyr Met Ser Lys Val Phe Page 8 Asn Leu Asp Ala Lys Tyr Ser Ser Thr Asp Lys Gin Glu Thr Leu Lys 305 310 315

Val Ala Ala Lys Asp IIe Gin IIe Lys IIe Giu Gin Lys IIe Gin Ala 325 330 335

Glu Lys Ser Thr Gln Trp Leu Arg Glu Thr IIe Ser Ala Phe Val Lys 340 350

Thr Gin Pro Gin Trp Asn Lys Giu Thr Giu Asn Tyr Ser Lys Giy Giy 355 360 365

Gly Glu Asp His Leu Gln Gly Gly Ala Leu Leu Tyr Val Asn Asp Ser 370 380

Arg Thr Pro Trp Ala Asn Ser Asp Tyr Arg Arg Leu Asn Arg Thr Ala 385 390 395 400

Thr Asn G n Thr G y Thr II e Asp Lys Ser II e Leu Asp G u G n Ser 405 410 415

Asp Pro Asn His Met Gly Gly Phe Asp Phe Leu Leu Ala Asn Asp Val 420 430

Asp Leu Ser Asn Pro Val Val Gin Ala Giu Gin Leu Asn Gin Ile His 435 440 445

Tyr Leu Met Asn Trp Gly Ser IIe Val Met Gly Asp Lys Asp Ala Asn 450 455 460

Phe Asp Gly II e Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Met 465 470 475 480

Leu Gin Leu Tyr Thr Asn Tyr Phe Arg Giu Tyr Tyr Giy Val Asn Lys 485 490 495

Ser Glu Ala Asn Ala Leu Ala His IIe Ser Val Leu Glu Ala Trp Ser 500 505 510

Leu Asn Asp Asn His Tyr Asn Asp Lys Thr Asp Gly Ala Ala Leu Ala 515 520 525

Met Glu Asn Lys Gln Arg Leu Ala Leu Leu Phe Ser Leu Ala Lys Pro 530 540

II e Lys Glu Arg Thr Pro Ala Val Ser Pro Leu Tyr Asn Asn Thr Phe 545 550 555 560

Asn Thr Thr Gin Arg Asp Giu Lys Thr Asp Trp IIe Asn Lys Asp Giy Page 9 Ser Lys Ala Tyr Asn Glu Asp Gly Thr Val Lys Gln Ser Thr lle Gly 580 590

Lys Tyr Asn Glu Lys Tyr Gly Asp Ala Ser Gly Asn Tyr Val Phe IIe 595 600 605

Arg Ala His Asp Asn Asn Val Gin Asp IIe IIe Ala Giu IIe IIe Lys 610 620

Lys Glulle Asn Pro Lys Ser Asp Gly Phe Thr lle Thr Asp Ala Glu 625 630 635 640

Met Lys Gin Ala Phe Giu II e Tyr Asn Lys Asp Met Leu Ser Ser Asp 645 650 655

Lys Lys Tyr Thr Leu Asn Asn IIe Pro Ala Ala Tyr Ala Val Met Leu $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Gin Asn Met Giu Thr IIe Thr Arg Val Tyr Tyr Giy Asp Leu Tyr Thr 675 685

Asp Asp Gly His Tyr Met Glu Thr Lys Ser Pro Tyr Tyr Asp Thr IIe 690 700

Val Asn Leu Met Lys Ser Arg IIe Lys Tyr Val Ser Gly Gly Gln Ala 705 710 715 720

Gin Arg Ser Tyr Trp Leu Pro Thr Asp Gly Lys Met Asp Asn Ser Asp 725 730 735

Val Glu Leu Tyr Arg Thr Asn Glu Val Tyr Thr Ser Val Arg Tyr Gly 740 745 750

Lys Asp IIe Met Thr Ala Asn Asp Thr Glu Gly Ser Lys Tyr Ser Arg 755 760 765

Thr Ser Gly Gln Val Thr Leu Val Ala Asn Asn Pro Lys Leu Asn Leu 770 775 780

Asp Gln Ser Ala Lys Leu Asn Val Glu Met Gly Lys IIe His Ala Asn 785 790 795 800

Gin Lys Tyr Arg Ala Leu IIe Val Gly Thr Ala Asp Gly IIe Lys Asn 805 810 815

Phe Thr Ser Asp Ala Asp Ala IIe Ala Ala Gly Tyr Val Lys Glu Thr 820 830

Asp Ser Asn Gly Val Leu Thr Phe Gly Ala Asn Asp IIe Lys Gly Tyr Page 10 Glu Thr Phe Asp Met Ser Gly Phe Val Ala Val Trp Val Pro Val Gly 850 860

Ala Ser Asp Asn Gln Asp II e Arg Val Ala Pro Ser Thr Glu Ala Lys 865 870 880

Lys Glu Gly Glu Leu Thr Leu Lys Ala Thr Glu Ala Tyr Asp Ser Gln 885 890 895

Leu II e Tyr Glu Gly Phe Ser Asn Phe Gln Thr II e Pro Asp Gly Ser 900 910

Asp Pro Ser Val Tyr Thr Asn Arg Lys IIe Ala Glu Asn Val Asp Leu 915 925

Phe Lys Ser Trp Gly Val Thr Ser Phe Glu Met Ala Pro Gln Phe Val 930 935 940

Ser Ala Asp Asp Gly Thr Phe Leu Asp Ser Val IIe Gln Asn Gly Tyr 945 950 955 960

Ala Phe Ala Asp Arg Tyr Asp Leu Ala Met Ser Lys Asn Asn Lys Tyr 965 970 975

Gly Ser Lys Glu Asp Leu Arg Asp Ala Leu Lys Ala Leu His Lys Ala 980 985 990

Gly IIe Gin Ala IIe Ala Asp Trp Val Pro Asp Gin IIe Tyr Gin Leu 995 1000 1005

Pro Gly Lys Glu Val Val Thr Ala Thr Arg Thr Asp Gly Ala Gly 1010 1020

Arg Lys IIe Ala Asp Ala IIe IIe Asp His Ser Leu Tyr Val Ala 1025 1030 1035

Asn Ser Lys Ser Ser Gly Lys Asp Tyr Gln Ala Lys Tyr Gly Gly 1040 1050

Glu Phe Leu Ala Glu Leu Lys Ala Lys Tyr Pro Glu Met Phe Lys 1055 1060 1065

Val Asn Met IIe Ser Thr Gly Lys Pro IIe Asp Asp Ser Val Lys 1070 1080

Leu Lys Gin Trp Lys Ala Giu Tyr Phe Asn Giy Thr Asn Val Leu 1085 1090 1095

Glu Arg Gly Val Gly Tyr Val Leu Ser Asp Glu Ala Thr Gly Lys Page 11 Tyr Phe Thr Val Thr Lys Glu Gly Asn Phe IIe Pro Leu Gln Leu 1115 1120 1125

Thr Gly Lys Glu Lys Val IIe Thr Gly Phe Ser Ser Asp Gly Lys 1130 1140

Gly II e Thr Tyr Phe Gly Thr Ser Gly Thr Gln Ala Lys Ser Ala 1145 1150 1155

Phe Val Thr Phe Asn Gly Asn Thr Tyr Tyr Phe Asp Ala Arg Gly 1160 1170

His Met Val Thr Asn Ser Glu Tyr Ser Pro Asn Gly Lys Asp Val 1175 1180 1185

Tyr Arg Phe Leu Pro Asn Gly IIe Met Leu Ser Asn Ala Phe Tyr 1190 1200

II e Asp Ala Asn Gly Asn Thr Tyr Leu Tyr Asn Ser Lys Gly Gln 1205 1210 1215

Met Tyr Lys Gly Gly Tyr Thr Lys Phe Asp Val Ser Glu Thr Asp 1220 1225 1230

Lys Asp Gly Lys Glu Ser Lys Val Val Lys Phe Arg Tyr Phe Thr 1235 1240 1245

Asn Glu Gly Val Met Ala Lys Gly Val Thr Val IIe Asp Gly Phe 1250 1260

Thr Gin Tyr Phe Gly Glu Asp Gly Phe Gin Ala Lys Asp Lys Leu 1265 1270 1275

Val Thr Phe Lys Gly Lys Thr Tyr Tyr Phe Asp Ala His Thr Gly 1280 1285 1290

Asn Gly IIe Lys Asp Thr Trp Arg Asn IIe Asn Gly Lys Trp Tyr 1295 1300 1305

Tyr Phe Asp Ala Asn Gly Val Ala Ala Thr Gly Ala Gln Val IIe 1310 1320

Asn Gly Gln Lys Leu Tyr Phe Asn Glu Asp Gly Ser Gln Val Lys 1325 1330 1335

G y G y Val Val Lys Asn Ala Asp G y Thr Tyr Ser Lys Tyr Lys 1340 1345 1350

Glu Gly Phe Gly Glu Leu Val Thr Asn Glu Phe Phe Thr Thr Asp Page 12

20120907_CL5252WOPCT_ST25 1360 1365

1355

- Gly Asn Val Trp Tyr Tyr Ala Gly Ala Asn Gly Lys Thr Val Thr 1370 1380
- Gly Ala Gin Val II e Asn Gly Gin His Leu Tyr Phe Asn Ala Asp 1385 1390 1395
- Gly Ser Gln Val Lys Gly Gly Val Val Lys Asn Ala Asp Gly Thr 1400 1405 1410
- Tyr Ser Lys Tyr Asn Ala Ser Thr Gly Glu Arg Leu Thr Asn Glu 1415 1425
- Phe Phe Thr Thr Gly Asp Asn Asn Trp Tyr Tyr IIe Gly Ala Asn 1430 1440
- Gly Lys Ser Val Thr Gly Glu Val Lys IIe Gly Asp Asp Thr Tyr 1445 1450 1455
- Phe Phe Ala Lys Asp Gly Lys Gln Val Lys Gly Gln Thr Val Ser 1460 1465 1470
- Ala Gly Asn Gly Arg IIe Ser Tyr Tyr Tyr Gly Asp Ser Gly Lys 1475 1485
- Arg Ala Val Ser Thr Trp IIe Glu IIe Gln Pro Gly Val Tyr Val 1490 1495 1500
- Tyr Phe Asp Lys Asn Gly Leu Ala Tyr Pro Pro Arg Val Leu Asn 1505 1515