US 20120066389A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0066389 A1

Hegde et al. 43) Pub. Date: Mar. 15, 2012
(54) MIGRATION OF LOGICAL PARTITIONS (52) US.Cl .ot 709/226
BETWEEN TWO DEVICES (57) ABSTRACT
. Sohi A method includes receiving a command to migrate a work-
(75) Inventors: Nikhil Hegde, Round Rock, TX) &
(US); Prasha;lt A. Parani a, e load partition from a source machine to a target machine. The
Bang,alore (IN)) Jape, source machine and the target machine are communicatively

coupled to a first subnetwork and a second subnetwork,
respectively. The workload partition has a source network
(73) Assignee: International Business Machines address defined by network addressing of the first subnet-

Corporation, Armonk, NY (US) work. The method also includes determining a socket con-
nection providing network communication between the
workload partition and a host. The method includes notifying
the host that the workload partition is migrating from the
source machine to the target machine, wherein in response to
(22) Filed: Sep. 10, 2010 the notifying the host is on alert to receive, through a network
tunnel communication, an identification of a target network
address that is assigned to the workload partition after the
workload partition is migrated to the target machine. The

(21) Appl. No.: 12/879,865

Publication Classification

(51) Int.ClL workload partition is migrated from the source machine to the
GO6F 15/173 (2006.01) target machine.
. | TRANSFER
100 4 10871 mopuLE
REPOSTTORY | ” C/%‘\\

118 PR
- ga\',‘?'/ o 47:4 //V7‘f
'6\“’5/ g . 130

110 O 108 ﬂ‘ '\ Z

‘ o 138 -

' § CHECKPOINT
CHECKPOINT |~ MODULE

MODULE

. e \\;’

e 7 (PROCESSA)' N e

/ ~— \

| T
/—O ~ /

- 138

\ (PROCESS N)i /
AN WORKLGAD
™ pmmon_-

- 116

WORKLOAD
PARTITION

< TARGET

SOURCE _©
MACHINE MACHINE 104

US 2012/0066389 Al

Mar. 15,2012 Sheet 1 of 7

Patent Application Publication

Y01 INIHOVIN
~/ 1394Vl

7

/

L "Old

~—

“TNOILILIVA N

\ QVOIHOM \

—

e [\|«z mmm_oomn_v
o
/ o)
o
/ 7 T
el o N « v mmm_oomav Y

v /
ey S T

ITINAONW
INIOdMD3IHD y,

9
0gL y \

\

|

/

801

)

5\,

AHOLISOdTY |af

3TNAOCW
H34SNVHL

Nor ANIHOVIN
304N0S

NOILLILYVd
avoIHdOM

9l 1

| =31naow
7| AINIOdXD3HO
e oLl
e

“L-901

US 2012/0066389 Al

Mar. 15, 2012 Sheet 2 of 7

Patent Application Publication

0,2 S

g ANIHOVIA ¢ ol
1 ore
A
N P L zie
we —— 8LZ LS
N
LAXZR N FA N1 ¥2/0'LL°'GL LANENS
282 5 .
01T vee
zee
08z - \
vz | 210 ¥2/0°1°0°6 LANANS ocz | G106
DaANHOWA|_ ANIHOVI
cLL'L'06 394N0S
gez | -~ —— U ZLLL06
z |
- 80¢ - { NOILILYVd S
X) avoTIMHOM o
1902 zZoL
zez —— | 9z’ 1°Z6 |
vz - |gTT8
f ¥Z/0°2'1'26L LANANS

0ce »

Z ANIHOVIN

Patent Application Publication Mar. 15, 2012 Sheet 3 of 7 US 2012/0066389 A1

300 A \ BEGIN /)

S e

l

RECEIVE A COMMAND TO MIGRATE A WORKLOAD PARTITION FROM
A SOURCE MACHINE IN A FIRST SUBNET TO A TARGET MACHINE IN A
SECOND SUBNET

302 -

SOCKET
CONNECTIONS FOR NO
WORKLOAD
PARTITION?

YES

306 -1 TRANSMIT A MIGRATION NOTIFICATION TO THE ENDPOINT OF THE
SOCKET CONNECTION OF THE WORKLOAD PARTITION

TRANSMIT SCRAMBLER BITS TO THE ENDPOINT OF THE SOCKET

308 CONNECTION OF THE WORKLOAD PARTITION

310 — MARK THE SOCKET CONNECTION AND STORE THE ASSOCIATED
L SCRAMBLER BITS

l

MIGRATE THE WORKLOAD PARTITION FROM THE SOURCE MACHINE
TO THE TARGET MACHINE

32

FIG. 3

Patent Application Publication = Mar. 15,2012 Sheet 4 of 7 US 2012/0066389 A1

P | BEGIN >

402 11| INITIATE RESTART OF WORKLOAD PARTITION ON THE TARGET
MACHINE

404 .

SOCKET

NO CONNECTIONS FOR
WORKLOAD

PARTITION?

YES

CREATE TUNNEL-BASED PACKET FOR THE END POINT OF THE
SOCKET CONNECTION, WHEREIN THE INNER NETWORK HEADER IS |-/ 406
ENCRYPTED USING THE SCRAMBLER BITS

v

TRANSMIT TUNNEL-BASED PACKET TO THE END POINT OF THE | ~ 408
SOCKET CONNECTION h

h 4
RECEIVE TUNNEL-BASED PACKET FROM AN ENDPOINT
OF A SOCKET CONNECTION

> 410

PACKET
IDENTIFIED FOR PARTITION
MOBILITY?

UPDATE SOCKET TUPLE AND RESET FLAG
44 - INDICATING PARTITION RELOCATING FOR THE
SOCKET CONNECTION

416
/
) \ 4

- ~ TRANSMIT ANOTHER TUNNEL-BASED PACKET TO THE END POINT OF

END — THE SOCKET CONNECTION FROM WHICH THE TUNNEL-BASED

e PACKET WAS RECEIVED

FIG. 4

Patent Application Publication Mar. 15, 2012 Sheet S of 7 US 2012/0066389 A1

/'/ \
500 4 [\ BEGIN)

501 1 | REGCEIVE MIGRATION NOTIFICATION MESSAGE FROM A WORKLOAD
’ PARTITION AT THE OPPOSITE END OF A SOCKET CONNECTION

v

502 - RECEIVE TUNNEL-BASED PACKET

504 -,

SOCKET YES
TUPLE MATCH FOR
PACKET?

NO

PACKET NO
IDENTIFIED FOR PARTITION
MOBILITY?

YES

~ EXTRACT AND STORE OUTER HEADER OF THE TUNNEL-BASED

508
PACKET
510 -\ EXTRACT INNER IP HEADER OF THE TUNNEL-BASED PACKET
511 -
512 YES INNER IP HEADER

& ENCRYPTED?

DECRYPT INNER 1P
HEADER WITH

SCRAMBLER BITS

TUPLE
MATCH USING INNER
HEADER?

NO

\é

YES

514 -~ CREATE A TUNNEL-BASED PACKET, WHEREIN THE INNER HEADER
MAINTAINS THE PREVIOUS NETWORK ADDRESS AND THE OUTER
HEADER INCLUDES THE NEW NETWORK ADDRESS

v

TRANSMIT TUNNEL-BASED PACKET TO THE TARGET DEVICE

518 520 ﬂ@

FIG. 5

516 L.

Patent Application Publication Mar. 15, 2012 Sheet 6 of 7 US 2012/0066389 A1

5 06“\‘ 601

602 —_- RECEIVE ANOTHER TUNNEL-BASED PACKET FROM THE TARGET
DEVICE

SOCKET
TUPLE MATCH FOR
PACKET?

YES

NO

PACKET NO
IDENTIFIED FOR PARTITION
MOBILITY?

Y

608 YES “INNER IP HEADER
L ENCRYPTED?

7

DECRYPT INNER IP
HEADER WITH
SCRAMBLER BITS 609 -
. SECOND NO
TUNNEL-BASED PACKET
> FROM THE TARGET
DEVICE?

l YES

610 — . UPDATE SOCKET TUPLE TO REFLECT NETWORK ADDRESS CHANGE
FOR THE WORKLOAD PARTITION

l

RESET FLAG INDICATING THAT THE PARTITION IS ABOUT TO
MIGRATE BACK TO NULL

A 4

612 1

v
614 "’L@ »| END

FIG. 6

US 2012/0066389 Al

Patent Application Publication Mar. 15,2012 Sheet 7 of 7
700 4
702)
' y I~ 701
PROCESSOR |/
43| VIRTUAL)
l—\{ PARTITION ’\‘f 710
/ | VIRTUAL | ~ 744
V| PARTITION |~
0
0
VIRTUALIO 1 . o
706 - SERVER v A 3] VIRTUAL
N PARTITION [/ 712
A 3| NETWORK | _
4 /| INTERFACE [703
J> 718

NONVOLATILE
MACHINE-READABLE
MEDIUM

NONVOLATILE
MACHINE-READABLE
MEDIUM

708

VOLATILE MEMORY

0]
0
O

NONVOLATILE
MACHINE-READABLE
MEDIUM

FIG.7

US 2012/0066389 Al

MIGRATION OF LOGICAL PARTITIONS
BETWEEN TWO DEVICES

BACKGROUND

[0001] Various computing platforms for large processing
operations and data centers can provide services for data-
bases, web hosting, virtualized environments, etc. A number
of'these large computing platforms incorporate multiple serv-
ers. The processing operations and data can be spread across
these multiple servers. Some configurations can require that
the server be shut down for servicing (upgrades, repairs, etc.).
To enable this servicing without disrupting the services being
provided, the processes and data can be migrated from a first
hardware resource (e.g., a first server) to a second hardware
resource (e.g., a second server). In particular, the processes
and data can be part of a logical partition (e.g., a workload
partition (WPAR)) that is migrated from the first hardware
resource to the second hardware resource.

SUMMARY

[0002] Embodiments include a method comprising receiv-
ing a command to migrate a workload partition from a source
machine to a target machine. The source machine and the
target machine are communicatively coupled to a first sub-
network and a second subnetwork, respectively. The work-
load partition has a source network address defined by net-
work addressing of the first subnetwork and used while the
workload partition is executing on the source machine. The
method includes stopping execution of processes executing
onthe source machine. The method also includes determining
a socket connection providing network communication
between the workload partition and a host. The method
includes notifying the host that the workload partition is
migrating from the source machine to the target machine,
wherein in response to the notifying the host is on alert to
receive, through a network tunnel communication, an identi-
fication of a target network address that is assigned to the
workload partition after the workload partition is migrated to
the target machine. The method includes migrating the work-
load partition from the source machine to the target machine.
[0003] Embodiments include a method comprising receiv-
ing, into a target machine communicatively coupled to a first
subnetwork, data for migration of a virtual partition from a
source machine communicatively coupled to a second sub-
network. The virtual partition has a source network address
defined by network addressing of the second subnetwork and
used while the virtual partition is executing on the source
machine. The method includes initiating restart of the virtual
partition on the target machine. The initiating comprises
determining a socket connection providing network commu-
nication between the virtual partition and a host. The initiat-
ing also comprises transmitting, through a network tunnel
communication from the target machine to the host, a com-
munication providing a target network address that is
assigned to the virtual partition after the virtual partition is
migrated to the target machine. The method includes routing
a packet, from a process executing in the virtual partition of
the target machine, to the host based on the virtual partition
having the target network address.

[0004] Embodiments include a computer program product
for migration of a workload partition. The computer program
product comprises a computer readable storage medium hav-
ing computer readable program code embodied therewith.

Mar. 15, 2012

The computer readable program code is configured to receive
a command to migrate a workload partition from a source
machine to a target machine. The source machine is commu-
nicatively coupled to a first subnetwork. The target machine is
communicatively coupled to a second subnetwork. The work-
load partition has a source network address defined by net-
work addressing of the first subnetwork and used while the
workload partition is executing on the source machine. The
computer readable program code is configured to stop execu-
tion of processes executing on the source machine. The com-
puter readable program code is configured to determine a
socket connection providing network communication
between the workload partition and a host. The computer
readable program code is also configured to notify the host
that the workload partition is migrating from the source
machine to the target machine. In response to the notification
the host is on alert to receive, through a network tunnel
communication, an identification of a target network address
that is assigned to the workload partition after the workload
partition is migrated to the target machine. The computer
readable program code is configured to migrate the workload
partition from the source machine to the target machine.
[0005] Embodiments include a target machine comprising
a processor. The target machine also comprises a checkpoint
module executable on the processor and configured to
receive, into the target machine communicatively coupled to
a first subnetwork, data for migration of a virtual partition
from a source machine communicatively coupled to a second
subnetwork. The virtual partition has a source network
address defined by network addressing of the second subnet-
work and used while the virtual partition is executing on the
source machine. The checkpoint module is configured to
initiate restart of the virtual partition on the target machine. As
part of the initiation of the restart, the checkpoint module is
configured to determine a socket connection providing net-
work communication between the virtual partition and a host.
As part of the initiation of the restart, the checkpoint module
is configured to transmit, through a network tunnel commu-
nication from the target machine to the host, a communication
providing a target network address that is assigned to the
virtual partition after the virtual partition is migrated to the
target machine. The target machine also includes a process
executable on the processor and within the virtual partition.
The process is configured to route a packet to the host based
on the virtual partition having the target network address.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present embodiments may be better under-
stood, and numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the accom-
panying drawings.

[0007] FIG. 1is ablock diagram illustrating migration of a
workload partition from a source machine to a target
machine, according to some example embodiments.

[0008] FIG. 2 is a block diagram illustrating machines on
multiple subnetworks (subnets) for migration of a workload
partition, according to some example embodiments.

[0009] FIG. 3 is a flowchart illustrating migration of a
workload partition from a source machine in a first subnet-
work into a target machine in a second subnetwork, according
to some example embodiments.

[0010] FIG. 4 is a flowchart illustrating processing of a
migrated workload partition received from a source machine

US 2012/0066389 Al

in a first subnetwork into a target machine in a second sub-
network, according to some example embodiments.

[0011] FIGS. 5-6 are flowcharts illustrating processing at
an endpoint opposite a workload partition when the workload
partition migrates to a different having a different subnet-
work, according to some example embodiments.

[0012] FIG. 7 is a block diagram illustrating a computer
device with a virtualized environment, according to some
example embodiments.

DESCRIPTION OF EMBODIMENT(S)

[0013] The description that follows includes exemplary
systems, methods, techniques, instruction sequences, and
computer program products that embody techniques of the
present inventive subject matter. However, it is understood
that the described embodiments may be practiced without
these specific details. In other instances, well-known instruc-
tion instances, protocols, structures, and techniques have not
been shown in detail in order not to obfuscate the description.
[0014] Some example embodiments include a virtual input
output server (VIOS). A VIOS allows sharing of physical
resources between logical partitions (LPAR). An LPAR is
generally a subset of a computer’s hardware resources, where
the subset is virtualized and an L.PAR can operate as a sepa-
rate computing device. In effect, a physical machine can be
partitioned into multiple LPARs, each housing a separate
operating system. A VIOS can operate as a partitioned hard-
ware adapter and can service end devices or logical devices
such as an Internet small computer system interface (iISCSI)
adapter, compatible disks, Fibre-Channel disks, Ethernet
drives, compact disks (CD), digital video disks (DVD), and
optical drives or devices. A VIOS, therefore, can allow for
sharing of physical resources of the device(s) among multiple
virtual machines. For instance, a computer device can execute
multiple operating system images at a same time while the
operating systems are isolated from each other across mul-
tiple virtual machines.

[0015] The LPARs can include multiple workload parti-
tions (WPARs). In particular, one feature that can facilitate
moving a workload or a workload partition from hardware
resource to hardware resource is code that is set up to operate
as a workload partition. Accordingly an LPAR can be broken
up into multiple WPARSs. Generally, mobile WPARs are
WPARs that have characteristics that allow the workload
partition to be moved or migrated from physical machine to
physical machine, or from a source machine to a target
machine. WPARs can be multiple virtualize operating sys-
tems that operate within a single copy of an operating system.
Applications can have a private execution environment. The
applications can be isolated in terms of process, signal and file
system. Further, applications can have their own unique
users, groups, and dedicated network addresses. Inter-process
communication can be restricted to processes executing in the
same workload partition. Accordingly, a WPAR can be trans-
parent as most applications are unaware of the software cre-
ating the workload partition and thus most application can
run, unmodified in a WPAR. Workload partitions can estab-
lish limits on threads, processes, etc. To migrate the mobile
WPARs, data (known as checkpoint data) is transferred from
the source machine to a common repository. The target
machine can then access the checkpoint data from the com-
mon repository. While described such that the checkpoint
data is stored and then retrieved from the repository 108, in
some other example embodiments, the source machine can

Mar. 15, 2012

transmit the checkpoint data directly to the target machine.
Examples described herein include migration of a WPAR
from one machine to a different machine. Embodiments are
not so limited. In particular, example embodiments can be
migrated any type of virtual partition (e.g., WPAR, LPAR,
etc.), virtual machine, etc.

[0016] Conventional systems are limited to migration of
partitions (LPAR, WPAR, etc.) within a subnetwork (subnet).
As described below, some example embodiments enable the
migration of partitions beyond a given subnet. In some
example embodiments, socket connections (e.g., Transmis-
sion Control Protocol (TCP), User Datagram Protocol
(UDP), Stream Control Transmission Protocol (SCTP), etc.)
can continue to operate even when the Internet Protocol (IP)
address changes for a logical partition. Specifically, the
socket connections can continue when logical partitions are
migrated outside a subnet boundary. Connection-oriented
protocols (e.g., TCIP, SCTP, etc.) and connection-less proto-
cols (e.g., UDP) identify connection identifications (IDs)
using a tuple (protocol, source IP address, source port, desti-
nation IP address, and destination port). Accordingly, prob-
lems can occur in continuing the connection IDs from the new
logical partition location, because the network prefixes are
changed when the logical partition is migrated beyond a
subnet. Also, a network address for a logical partition can be
aliased as long as the logical partition remains in a same
subnet. Therefore, anetwork address on one subnet is unalias-
able to a network address on a different subnet.

[0017] Some example embodiments renegotiate socket
connections, wherein the workload is one endpoint of the
socket connections. Some example embodiments notify the
other endpoint (e.g., another machine) of the socket connec-
tion using network tunnel communications (e.g., IP-in-IP
tunneling). In particular, this tunneling provides notification
to the other endpoint that the network address of the workload
partition is changing along with the new network address
itself. As further described below, in some example embodi-
ments, a three-way connection handshake is used to renego-
tiate the socket connections.

[0018] Therefore, some example embodiments facilitate
socket renegotiation after migration of a partition from one
device to a different device. Also, some example embodi-
ments are applicable to a partition that is multi-homed. In
particular, a multi-home partition is communicatively
coupled to at least two different subnets. Some example
embodiments allow for a partition that is multi-homed to
multiple subnets to be migrated to a machine that is not
multi-homed to those same subnets. Also, some example
embodiments are applicable to other areas of network tech-
nology including managing connections over changing tem-
porary addresses. Further, some example embodiments can
be applicable to any network technology wherein existing
socket connections can change for any number of reasons
(e.g., relocation, new temporary address assigned, interface
network address change, etc.).

[0019] FIG. 1is ablock diagram illustrating migration of a
workload partition from a source machine to a target
machine, according to some example embodiments. A source
machine 102 is communicatively coupled over a network to a
transfer module 106 and a repository 108. Similarly, the target
machine 104 is communicatively coupled over a network to
the transfer module 106 and the repository 108. As further
described below, the source machine 102 and the target
machine 104 are part of two different subnetworks (i.e., sub-

US 2012/0066389 Al

nets). The transfer module 106 and the repository 108 can be
on one of the two subnets for the source machine 102 and the
target machine 104 or on a separate subnet. The transfer
module 106 and repository 108 can be on same or different
machines (e.g., servers).

[0020] The source machine 102 includes a workload parti-
tion 112 and a checkpoint module 110. The workload parti-
tion 112 can include one to N number of processes executing
therein (process A 114, process N 116, etc.). While not
shown, the workload partition 112 can be part of a logical
partition (LPAR). Also not shown, the source machine 102
can have one to N number of logical partitions that can
include one to N number of workload partitions. The target
machine 104 includes a checkpoint module 130. As shown,
the workload partition 112 is migrated from the source
machine 102 to the target machine 104 (shown as a workload
partition 132). Accordingly, the process A 114, the process N
116, etc. correspond to a process A 134, a process N 136, etc.,
respectively.

[0021] The checkpoint module 110 creates checkpoint data
118 based on the data associated with and the processes
executing in the workload partition 112. The checkpoint data
118 includes instructions to restart the processes, recreate the
data, etc. on the target machine 104. For example, the check-
point data 118 can include loader data (e.g., shared library
data), the heap and stack for a given process, etc. In this
example embodiment, the transfer module 106 stores the
checkpoint data 118 in the repository 108. The checkpoint
module 130 can then retrieve the checkpoint data (138) to
recreate the workload partition 132 on the target machine
104.

[0022] While described such that the checkpoint data is
stored and then retrieved from the repository 108, in some
other example embodiments, the source machine 102 can
transmit the checkpoint data directly to the target machine
104. Also, the source machine 102 and the target machine 104
can include a number of different other components (not
shown). A more detailed example of one of these machines
having multiple logical partitions is described below in con-
junction with FIG. 7.

[0023] FIG. 2 is a block diagram illustrating machines on
multiple subnetworks (subnets) for migration of a workload
partition, according to some example embodiments. FIG. 2
includes a system 200 that includes four different machines
(the source machine 102, a machine B 212, a machine C 206,
and a machine 7 270). These machines can be servers, client
devices, or any other type of computer or resource that can
communicate over a network. The machines can include one
or more WPARs and LPARs that can be migrated to another
machine. The source machine 102 includes the workload
partition 112. The machine B 212 includes a workload parti-
tionY 214 that is representative of the workload partition 112
if workload partition 112 is migrated from the source machine
102 to the machine B 212. The machine C 206 includes a
workload partition X 208 that is representative of the work-
load partition 112 if the workload partition 112 is migrated
from the source machine 102 to the machine C 206.

[0024] The source machine 102 is multi-homed having
interfaces to two different subnets. In particular, the source
machine 102 has a first Internet Protocol (IP) address 192.1.
2.36 (reference 232) at an interface 230 having an IP address
192.1.2.5 for a subnet 220 having IP addresses 192.1.2.0/24.
The source machine 102 has a second IP address 9.0.1.112

Mar. 15, 2012

(reference 234) at an interface 236 having an IP address
9.0.1.5 for a subnet 222 having IP addresses 9.0.1.0/24.
[0025] The machine B 212 has an interface 244 having an
IP address 15.1.1.7 to one subnet (a subnet 224 having IP
addresses 15.1.1.0/24). The associated IP address for the
interface 244 for the machine B 212 is 15.1.1.218 (reference
246). Also, the subnet 222 is communicatively coupled to the
subnet 224 through a router 210. The router has an interface
280 into the subnet 222 and an interface 282 into the subnet
224. The machine C 206 has an interface 240 having an IP
address 9.0.1.2 to one subnet (the subnet 222). The associated
IP address for the interface 240 for the machine C 106 is
9.0.1.112 (reference 238). The machine Z 270 is communi-
catively coupled to each of the subnets 220-224 through a
network 268. The machine Z 270 has an interface 272 having
an [P address 1.2.3.4. In this example, there is a socket con-
nection between one or more processes in the workload par-
tition 112 and the machine Z 270. Therefore, the workload
partition 112 and the machine 270 are the endpoints of the
socket connection. The example provided herein is relative to
one socket connection. However, in some example embodi-
ments, there could be multiple logical partitions with multiple
workload partitions, wherein each workload partition has
numerous processes. Accordingly, in some applications,
there could be any number of socket connections.

[0026] Operations for migration of a workload partition
into a different subnet are now described. In certain embodi-
ments, the operations can be performed by executing instruc-
tions residing on machine-readable media (e.g., software),
while in other embodiments, the operations can be performed
by hardware and/or other logic (e.g., firmware). In some
embodiments, the operations can be performed in series,
while in other embodiments, one or more of the operations
can be performed in parallel. Moreover, some embodiments
can perform less than all the operations shown in any flow-
chart. Three different flowcharts across four different figures
are now described. FIG. 3 illustrates a first flowchart that is
from a perspective of the source machine from which the
workload partition migrates. FIG. 4 illustrates a second flow-
chart that is from a perspective of the target machine to which
the workload partition is migrating. FIGS. 5-6 illustrate a
third flowchart that is from a perspective of an endpoint of a
socket connection that is communicatively coupled to one or
more processes of the workload partition. FIGS. 3-6 are
described in reference to migration of one workload partition
having one socket connection. However, the operations
described below can be performed on one to N number of
workload partitions having one to N number of socket con-
nections.

[0027] Inparticular, FIG. 3 is aflowchart illustrating migra-
tion of a workload partition from a source machine in a first
subnetwork into a target machine in a second subnetwork,
according to some example embodiments. A flowchart 300
includes operations that can be performed by components on
the source machine 102 described in reference to FIGS. 1 and
2, respectively. Therefore, FIG. 3 is described with reference
to FIGS. 1-2.

[0028] The checkpoint module 110 in the source machine
102 receives a command to migrate a workload partition from
the source machine in a first subnet to a target machine in a
second subnet (302). For example, the command can be
received in response to a determination that the source
machine 102 is being shut down for maintenance, upgrade to
hardware, software, or firmware, etc. Accordingly, the work-

US 2012/0066389 Al

load partition is to be migrated so that the processes can
continue running without materially affecting the users
executing the processes. FIG. 2 provides two examples of
target machines on different subnets relative to the source
machine. With reference to FIG. 2, assume the workload
partition 112 is migrated to the machine B 212. In the source
machine 102, the workload partition 112 is either communi-
cating over the subnet 220 (192.1.2.0/24) and/or the subnet
222 (9.0.1.0/24). When migrated to the machine B 212, the
workload partition (shown as 214) is communicating over a
different subnet, the subnet 224 (15.1.1.0/24). As an alterna-
tive example, assume that the workload partition 112 is being
migrated to the machine C 206. Also, assume in the source
machine 102 that the workload partition 112 is multi-homed
(communicating over both the subnet 220 and the subnet
222). When migrated to the machine C 206, the workload
partition (shown as 208) is only communicating over the
subnet 222. The workload partition 208 is not communicating
on the subnet 220. Therefore, in both of these examples, the
workload partition is moving to a different subnet. In either
scenario, the network address needs to be changed and cannot
be simply aliased after relocation because of the subnet is
changing. Operations of the flowchart 300 continue.

[0029] The checkpoint module 110 determines whether
there are socket connections for the workload partition that is
being migrated (304). In some example embodiments, this
determination occurs during the checkpoint operations for
migration of the workload partition. A protocol control block
(not shown) can maintain a list of the different socket con-
nections. Accordingly, the checkpoint module 110 can query
the protocol control block on whether there are any socket
connections for the workload partition 112. In some example
embodiments, a socket connection has an associated socket
tuple that defines the protocol, the network addresses and the
ports on each side of the socket connection. For example, the
socket tuple can include (protocol, source network address,
source port, destination network address, destination port). If
there are no socket connections for the workload partition
112, the operations of the flowchart 300 are complete. Oth-
erwise, operations continue.

[0030] The checkpoint module 110 transmits a migration
notification message to the endpoint on the opposite end of
the socket connection (306). This notification message alerts
the endpoint that the network address for the workload parti-
tion is about to change. In response, the endpoint will be on
notice that a tunnel communication will follow that provides
this new network address. In some example embodiments, the
tunnel communication is an IP-in-IP tunnel packet. This tun-
nel communication is further described below. In particular,
the receiving of this migration notification message initiates
the operations of a flowchart 500 of FIG. 5 (described in more
detail below). With reference to FIGS. 1-2, assume that there
is a socket connection between the workload partition 112
(the first endpoint) and the machine Z 270 (the second end-
point). The checkpoint module 110 on the source machine
102 transmits the migration notification message to the
machine Z 270. Operations of the flowchart 300 continue.

[0031] The checkpoint module 110 transmits scrambler
bits to the endpoint of the socket connection of the workload
partition (308). The scrambler bits can be a32 bit value. As
further described below, the scrambler bits can be used as
identification bits for matching with the packets. Also, the
scrambler bits can be used for encryption to secure the inner
IP header. As an example, the scrambler bits can be used in an

Mar. 15, 2012

XOR operation on the encapsulated network address. This
encryption can protect the socket connection from being
moved to an unauthorized network address. In some example
embodiments, the migration notification message and the
scrambler bits are sent as separate messages. Operations of
the flowchart 300 continue.

[0032] The checkpoint module 110 marks the socket con-
nection and stores the associated scrambler bits (310). In
particular, the checkpoint module 110 can store this mark and
associated scrambler bits within the checkpoint data that is
transmitted from the source machine to the target machine (as
part of the migration of the workload partition). With refer-
ence to FIG. 1, the checkpoint module 110 can store this
information as part of the checkpoint data 118 that is trans-
mitted to the target machine 104. Operations of the flowchart
300 continue.

[0033] The checkpoint module 110 migrates the workload
partition from the source machine to the target machine. As
described above, this migration includes the transfer of
checkpoint data to the target machine to enable the target
machine to reinstantiate the different processes and their
states in the workload partition on the target machine. With
reference to FIGS. 1-2, the workload partition 112 is migrated
from the source machine 102 to the machine B 212 or the
machine C 206. For example, the checkpoint module 110 can
output the checkpoint data 118 for storage in the repository
108. Alternatively or in addition, the checkpoint module 110
can output the checkpoint data 118 directly to the target
machine 104. The operations of the flowchart 300 are com-
plete.

[0034] Operations from the perspective of the target
machine are now described. In particular, FIG. 4 is a flowchart
illustrating processing of a migrated workload partition
received from a source machine in a first subnetwork into a
target machine in a second subnetwork, according to some
example embodiments. A flowchart 400 includes operations
that can be performed by components on the target machine
104 described in reference to FIG. 1 and components of either
the machine C 206 or the machine B 212 (considered target
machines) in reference to FIG. 2. Therefore, FIG. 4 is
described with reference to FIGS. 1-2.

[0035] The checkpoint module 130 on the target machine
initiates a restart of the workload partition on the target
machine (402). With reference to FIG. 2, assume that the
machine B 212 is the target machine. The workload partition
would be workload partition 214 having a new network
address of 15.1.1.218. The restart operation can include rein-
stantiating the processes of the workload partition 214 and
their prior states on the source machine 102 after execution
was stopped. Operations of the flowchart 400 continue.
[0036] The checkpoint module 130 determines whether
there are any socket connections for the workload partition
(404). As describe above, the checkpoint module 130 can
make this determination based on the checkpoint data
received as part of the migration of the workload partition. If
there are no socket connections for the workload partition,
operations of the flowchart 400 are complete. Otherwise,
operations of the flowchart 400 continue.

[0037] The checkpoint module 130 creates a tunnel-based
packet for transmission to the endpoint at the opposite end of
the socket connection from the workload partition 406). In
some example embodiments, the tunnel-based packet com-
prises an IP-in-IP tunnel packet, wherein IP addresses (both
source and destination) are encapsulated in an [P packet. With

US 2012/0066389 Al

reference to FIG. 2, the outer IP header comprises the new
network address for the workload partition. Accordingly, the
outer socket tuple includes (source address=15.1.1.218; des-
tination address=1.2.3.4). The inner IP header comprises the
original network address for the workload partition. Accord-
ingly, the inner socket tuple includes (source address=192.1.
2.36; destination address=1.2.3.4). To help identify the tun-
nel-based packet, the packet comprises a destination header
option that indicates that the packet type is “partition mobil-
ity.”” Also, the destination header option can comprise a flag
that indicates whether the inner IP header is encrypted. For
example, the flag can be a single bit—1 indicating the inner [P
header is scrambled or 2 indicating the inner IP header is not
scrambled. Therefore, in some example embodiments, the
inner IP header is encrypted with the scrambler bits that was
previously transmitted to the other endpoint (see 308 of FIG.
3). Such encryption is to protect false IP-in-IP packets that
cause IP security vulnerability by malicious intruders on the
network. Operations of the flowchart 400 continue.

[0038] The checkpoint module 130 transmits the tunnel-
based packet to the other endpoint of the socket connection
(408). With reference to FIG. 2, the checkpoint module 130
transmits the tunnel-based packet to the machine Z 270. The
routing ofthe packet is based on the outer header with a socket
tuple that includes (source address=15.1.1.218; destination
address=1.2.3.4). As further described below, the machine Z
270 will not recognize this socket tuple based on the source
address. However, because of the migration notification that
was previously sent by the source machine prior to migration
(see 306 of FIG. 3), the machine Z 270 does not discard the
packet. Rather, the machine Z 270 performs additional pro-
cessing of this packet, which is further described below in
reference to FIGS. 5-6. Operations of the flowchart 400 con-
tinue.

[0039] The checkpoint module 130 receives a tunnel-based
packet back from the endpoint of the socket connection (410).
This tunnel-based packet is transmitted from the endpoint in
response to receiving the tunnel-based packet transmitted
previously (see 408 above). This transmission of this tunnel-
based packet is further described below in reference to FIGS.
5-6. With reference to FIG. 2, the machine Z 270 transmits
this tunnel-based packet back to the workload partition 214.
The outer IP header comprises the new network address for
the workload partition. Accordingly, the outer socket tuple
includes (source address=1.2.3.4; destination address=15.1.
1.218). The inner IP header comprises the original network
address for the workload partition. Accordingly, the inner
socket tuple includes (source address=1.2.3.4; destination
address=192.1.2.36). Operations of the flowchart 400 con-
tinue.

[0040] The checkpoint module 130 determines whether
this tunnel-based packet is identified for partition mobility
(412). In particular, the checkpoint module 130 determines
whether the packet type in the destination header option is
“partition mobility.” If the tunnel-based packet is not identi-
fied for partition mobility, the operations of the flowchart 400
are complete. Otherwise, the operations of the flowchart 400
continue.

[0041] The checkpoint module 130 updates the socket tuple
and resets the flag (indicating partition relocating) for the
socket connection (414). In particular, the checkpoint module
130 updates the socket tuple to include the new network
address for the workload partition because of the migration of
the partition. With reference to FIG. 2, the socket tuple for this

Mar. 15, 2012

socket connection would be changed (source address=15.1.
1.218; destination address=1.2.3.4). Also, the checkpoint
module 130 updates the flag for this socket connection that
indicates that the associated workload partition is not relocat-
ing. Operations of the flowchart 400 continue.

[0042] The checkpoint module 130 transmits another tun-
nel-based pack back to the endpoint of the socket connection
from which the tunnel-based packet was received (416). With
reference to FIG. 2, the checkpoint module 130 transmits the
tunnel-based packet to the machine Z 270. The routing of the
packet is based on the outer header with a socket tuple that
includes (source address=15.1.1.218; destination address=1.
2.3.4). As further described below, the machine Z 270 will not
recognize this socket tuple based on the source address. How-
ever, because of the migration notification that was previously
sent by the source machine prior to migration (see 306 of FIG.
3), the machine Z 270 does not discard the packet. Rather, the
machine Z 270 performs additional processing of this packet,
which is further described below in reference to FIGS. 5-6.
Operations of the flowchart 400 are complete.

[0043] Operations from the perspective of the endpoint
opposite the workload partition on the socket connection are
now described. In particular, FIGS. 5-6 are flowcharts illus-
trating processing at an endpoint opposite a workload parti-
tion when the workload partition migrates to a different hav-
ing a different subnet, according to some example
embodiments. A flowchart 500 includes operations that can
be performed by components on the machine Z 270 described
in reference to FIG. 2. Therefore, FIGS. 5-6 are described
with reference to FIGS. 1-2.

[0044] The machine Z 270 receives a migration notification
message from a workload partition at the opposite end of a
socket connection (to which the machine Z 270 is coupled)
(501). With reference to FIGS. 1-2, this message is received
from the checkpoint module 110 executing on the source
machine 102 (also see 306 in FIG. 3). Operations of the
flowchart 500 continue.

[0045] The machine Z 270 receives a tunnel-based packet
from the target device (502). With reference to FIGS. 1-2, the
checkpoint module 130 executing on the target device trans-
mits the tunnel-based packet (also see 408 of FIG. 4). The
routing of the packet is based on the outer header with a socket
tuple that includes (source address=15.1.1.218; destination
address=1.2.3.4). Operations of the flowchart 500 continue.
[0046] The machine Z 270 determines whether there is a
socket tuple match for the received packet (504). In particular,
the machine Z 270 determines whether this packet is a non-
tunnel-based packet that is transmitted between one of its
socket connections. If there is a socket tuple match, the opera-
tions of the flowchart 500 continue at B (520), which is the
end of the operations for the flowcharts 500 and 600. In
particular, if there is a socket tuple match, the machine Z 270
can process this packet as a non-tunnel-based packet received
along one of its socket connections. If there is no socket tuple
match, operations of the flowchart 500 continue.

[0047] The machine Z 270 determines whether this packet
is a tunnel-based packet identified for partition mobility
(506). In particular, the machine Z 270 determines whether
the packet type in the destination header option is “partition
mobility.”” If the tunnel-based packet is not identified for
partition mobility, the operations of the flowchart 500 con-
tinue at B (520), which is the end of the operations for the
flowcharts 500 and 600. Otherwise, the operations of the
flowchart 500 continue.

US 2012/0066389 Al

[0048] The machine 7Z 270 extracts and stores an outer
header of this tunnel-based packet (508). In some example
embodiments, the tunnel-based packet comprises an IP-in-IP
tunnel packet, wherein IP addresses (both source and desti-
nation) are encapsulated in an IP packet. With reference to
FIG. 2, the outer IP header comprises the new network
address for the workload partition. Accordingly, the outer
header includes (source address=15.1.1.218; destination
address=1.2.3.4). This data is subsequently used to reassign
the network address for the workload partition (as further
described below). In particular, the new network address for
the workload partition will be 15.1.1.218. The operations of
the flowchart 500 continue.

[0049] The machine Z 270 extracts an inner header of this
tunnel-based packet (510). As noted above, the tunnel-based
packet can comprise an IP-in-IP tunnel packet, wherein IP
addresses (both source and destination) are encapsulated in
an IP packet. The inner IP header comprises the original
network address for the workload partition. Accordingly, the
inner socket tuple includes (source address=192.1.2.36; des-
tination address=1.2.3.4). In some example embodiments,
the inner IP header is encrypted with the scrambler bits that
was previously transmitted to the other endpoint (see 308 of
FIG. 3). Such encryption is to protect false IP-in-IP packets
that cause IP security vulnerability by malicious intruders on
the network. Operations of the flowchart 500 continue.
[0050] The machine Z 270 determines whether the inner IP
header is encrypted with the scrambler bits (511). As
described above, the destination header option can comprise
a flag that indicates whether the inner IP header is encrypted.
Accordingly, the machine Z 270 can make this determination
based on this flag in the destination header option. If
encrypted, operations of the flowchart 500 continue at 512.
Otherwise, operations of the flowchart 500 continue at 513.
[0051] The machine Z 270 decrypts the inner IP header
with the scrambler bits (512). As described above, these
scrambler bits were previous transmitted to the machine Z
270. Operations of the flowchart 500 continue.

[0052] The machine Z 270 determines whether there is a
socket tuple match using the inner header (513). In particular,
the machine Z 270 determines whether this socket tuple
matches the socket tuple from a previous packet that com-
prises a migration notification message (see 501 above). If so,
this is considered as a first successful socket renegotiation
packet (similar to a syncing in a three-way handshake). If
there is not a socket tuple match, the operations of the flow-
chart 500 continue at B (520), which is the end of the opera-
tions for the flowcharts 500 and 600. Otherwise, the opera-
tions of the flowchart 500 continue.

[0053] The machine Z 270 creates a tunnel-based packet,
wherein the inner header maintains the previous network
address and the outer header includes the new network
address for the workload partition (514). In some example
embodiments, the tunnel-based packet comprises an IP-in-IP
tunnel packet, wherein IP addresses (both source and desti-
nation) are encapsulated in an IP packet. With reference to
FIG. 2, the outer IP header comprises the new network
address for the workload partition. Accordingly, the outer
socket tuple includes (source address=1.2.3.4; destination
address=15.1.1.218). The inner IP header comprises the
original network address for the workload partition. Accord-
ingly, the inner socket tuple includes (source address=1.2.3.4;
destination address=192.1.2.36). To help identify the tunnel-
based packet, the packet comprises a destination header

Mar. 15, 2012

option that indicates that the packet type is “partition mobil-
ity.”” With reference to a three-way handshake, this packet can
be considered the sync-acknowledgement segment. Opera-
tions of the flowchart 500 continue.

[0054] The machine Z 270 transmits the tunnel-based
packet to the other endpoint of the socket connection—the
target device (516). With reference to FIG. 2, the machine Z
270 transmits the tunnel-based packet to the machine B 212.
The routing of the packet is based on the outer header with a
socket tuple that includes (source address=1.2.3.4; destina-
tion address=15.1.1.218). Operations of the flowchart 500
continue at B (518). This is a completion of the flowchart 500
and the start of the flowchart 600 that is now described.

[0055] In particular, the flowchart 600 is a continuation of
the flowchart 500. The flowchart 600 includes a continuation
of the operations from the perspective of the endpoint oppo-
site the workload partition on the socket connection. Like the
flowchart 500, the flowchart 600 includes operations that can
be performed by components on the machine Z 270 described
in reference to FIG. 2.

[0056] The machine Z 270 receives another tunnel-based
packet from the target device (602). In particular, the machine
7. 270 receives this packet in response to the previous trans-
mission of the tunnel-based packet to the target device (see
416 of FIG. 4). In some example embodiments, the tunnel-
based packet comprises an IP-in-IP tunnel packet, wherein IP
addresses (both source and destination) are encapsulated in
an IP packet. The routing of the packet is based on the outer
header with a socket tuple that includes (source address=15.
1.1.218; destination address=1.2.3.4). With reference to a
three-way handshake, this packet can be considered the
completion of the renegotiation. Operations of the flowchart
600 continue.

[0057] The machine Z 270 determines whether there is a
socket tuple match for the received packet (604). In particular,
the machine Z 270 determines whether this packet is a non-
tunnel-based packet that is transmitted between one of its
socket connections. If there is a socket tuple match, the opera-
tions of the flowchart 600 are complete. In particular, if there
is a socket tuple match, the machine Z 270 can process this
packet as a non-tunnel-based packet received along one of its
socket connections. If there is no socket tuple match, opera-
tions of the flowchart 600 continue.

[0058] The machine Z 270 determines whether this packet
is a tunnel-based packet identified for partition mobility
(606). In particular, the machine Z 270 determines whether
the packet type in the destination header option is “partition
mobility.”” If the tunnel-based packet is not identified for
partition mobility, the operations of the flowchart 600 are
complete. Otherwise, the operations of the flowchart 600
continue.

[0059] The machine Z 270 determines whether the inner IP
header is encrypted with the scrambler bits (607). As
described above, the destination header option can comprise
a flag that indicates whether the inner IP header is encrypted.
Accordingly, the machine Z 270 can make this determination
based on this flag in the destination header option. If
encrypted, operations of the flowchart 600 continue at 608.
Otherwise, operations of the flowchart 600 continue at 609.
[0060] The machine Z 270 decrypts the inner IP header
with the scrambler bits (608). As described above, these
scrambler bits were previous transmitted to the machine Z
270. Operations of the flowchart 600 continue.

US 2012/0066389 Al

[0061] The machine Z 270 determines whether this packet
is the second tunnel-based packet identified for partition
mobility from the target device (609). In particular, the
machine Z 270 determines whether this packet is considered
the completion of the renegotiation of the three-way hand-
shake between the two endpoints of the socket connection.
The machine 7Z 270 determines whether this socket tuple
matches the socket tuple from the previous tunnel-based
packet (see 502 of FIG. 5). If this packet is not the second
tunnel-based packet identified for partition mobility, the
operations of the flowchart 600 are complete. Otherwise, the
operations of the flowchart 600 continue.

[0062] The machine Z 270 updates the socket tuple for this
socket connection to reflect the network address change for
the workload partition (610). The socket tuple is updated to
include (source address=15.1.1.218; destination address=1.
2.3.4). The operations of the flowchart 600 continue.

[0063] The machine Z 270 resets the flag indicating that the
workload partition is about to migrate back to NULL.
Accordingly, the socket connection between the workload
partition on the machine 7Z 270 are back to normal network
communications wherein the new network address for the
workload partition is being used. Now, a process executing in
the workload partition of the target machine and the machine
Z 270 can route packets between each other based on the
workload partition having its new network address from the
target machine (15.1.1.218). The operations of the flowchart
600 are complete.

[0064] Error or packet loss (e.g., TCP/IP level errors,
exceptions, packet loss, protocol deviations, etc.) can occur
during this three-way connection handshake is used to rene-
gotiate the socket connections. Some example embodiments
incorporate operations to handle such error or packet loss that
are similar to those operations for a three-way connection
establishment, wherein such messaging are encapsulated
using [P-in-1P.

[0065] FIG. 7 is a block diagram illustrating a computer
device with a virtualized environment, according to some
example embodiments. A computer device 700 includes a
processor 702 (possibly including multiple processors, mul-
tiple cores, multiple nodes, and/or implementing multi-
threading, etc.). The computer device 700 includes a nonvola-
tile machine-readable medium 718, a nonvolatile machine-
readable medium 720 and a nonvolatile machine-readable
medium 722 that are communicatively coupled to the bus 701
through an adapter 724. The nonvolatile machine-readable
media 718-722 can be various types of hard disk drives (e.g.,
optical storage, magnetic storage, etc.). The computer device
700 also includes a bus 701 (e.g., PCI, ISA, PCI-Express,
HyperTransport®, InfiniBand®, NuBus, etc.) and a network
interface 703 (e.g., an ATM interface, an Ethernet interface, a
Frame Relay interface, SONET interface, wireless interface,
etc.).

[0066] The computer device 700 includes a virtual /O
server 706 and a number of virtual partitions (a virtual parti-
tion 710, a virtual partition 711 and a virtual partition 712). In
some example embodiments, each of the virtual partitions
710-712 serves as a software implementation of a machine.
Each of the virtual partitions 710-712 can provide a system
platform that enables execution of an operating system. The
virtual partitions 710-712 share physical resources of the
computer device 700. The virtual partitions can be a logical
partition, workload partition, etc.

Mar. 15, 2012

[0067] The operations of the virtual partitions 710-712 are
described in more detail above. Any one of these operations
can be partially (or entirely) implemented in hardware and/or
on the processor 702. For example, the operations can be
implemented with an application specific integrated circuit,
in logic implemented in the processor 702, in a co-processor
on a peripheral device or card, etc. The computer device 700
includes a volatile memory 708. The volatile memory 708 can
be system memory (e.g., one or more of cache, SRAM,
DRAM, zero capacitor RAM, Twin Transistor RAM,
eDRAM, EDO RAM, DDR RAM, EEPROM, NRAM,
RRAM, SONOS, PRAM, etc.) or any one or more of the
below described possible realizations of machine-readable
media.

[0068] Further, realizations may include fewer or addi-
tional components not illustrated in FIG. 7 (e.g., video cards,
audio cards, additional network interfaces, peripheral
devices, etc.). The processor 702, the volatile memory 708,
the nonvolatile machine-readable media 718-722, the virtual
1/O server 706, the virtual machines 710-712, and the network
interface 703 are coupled to the bus 701. Although illustrated
as being coupled to a bus 701, the volatile memory 708 can be
coupled to the processor 702.

[0069] As will be appreciated by one skilled in the art,
aspects of the present inventive subject matter may be embod-
ied as a system, method or computer program product.
Accordingly, aspects of the present inventive subject matter
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, aspects of the present inventive subject matter may
take the form of'a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

[0070] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0071] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable

