实用新型名称
集流管及平行流换热器

摘要
本实用新型公开一种集流管，包括并排设置的第一腔体和第二腔体，所述第一腔体上设有用以插接扁平管的扁孔，所述第二腔体和第一腔体之间设有将两者连通的冷媒分配孔，所述集流管还包括设置在第一腔体下端的第三腔体，第三腔体与第一腔体间设置有喷射孔，冷媒从冷媒管路流进第三腔体，并从喷射孔向上喷入第一腔体，第二腔体与冷媒管路连通，来自冷媒管路的冷媒从第二腔体通过冷媒分配孔流进第一腔体。本实用新型还提供一种具有上述集流管的平行流换热器。本实用新型集流管可避免冷媒滞留，改善了平行流换热器的换热性能。
1. 一种集流管，其特征在于，包括并排设置的第一腔体和第二腔体，所述第一腔体上设有用以插入扁平管的扁孔，所述第二腔体和第一腔体之间设有将两者连通的内腔分隔孔，所述集流管还包括设置在第一腔体下端的第三腔体，第二腔体与第一腔体间设置有喷射孔，所述集流管还包括设置在第一腔体下端的第三腔体，第三腔体与第一腔体间设置有喷射孔，冷媒从冷媒管路流进第三腔体，并从喷射孔向上喷入第一腔体；第二腔体与冷媒管路连通，来自冷媒管路的冷媒从第二腔体通过冷媒分配孔流进第一腔体。

2. 如权利要求1所述的集流管，其特征在于，冷媒入口管插入第一腔体，该第一腔体与第二腔体的下端连通。

3. 如权利要求1所述的集流管，其特征在于，冷媒入口管的端口位于第三腔体内，且位于靠近喷射孔的位置，冷媒在喷射孔处有比第二腔体下端连接孔更大的静压。

4. 如权利要求1所述的集流管，其特征在于，冷媒入口管为顶端封闭的第二腔体，其设置在第一腔体内的部分设置有冷媒分配孔，冷媒入口管还位于第二腔体内，并且位于第二腔体内的管段上设置有分流孔。

5. 如权利要求1所述的集流管，其特征在于，所述第一腔体为设置有板状体，该板状体与腔体的内壁面连接并实现密封，其中有扁管插入孔侧为第一腔体，另一侧为第二腔体，在第一腔体的下端面和第二腔体之间设置有隔板，隔板连接并密封第一腔体的端面，隔板上有喷射孔连通第一腔体和第二腔体，上述板状体与另一侧腔体内部壁面围成连通第三腔体与第二腔体的连通孔。

6. 如权利要求1所述的集流管，其特征在于，所述第一腔体与第二腔体间设置有隔离板，所述隔离板上设置有喷射孔，该隔离板的边缘与所述腔体端口内壁面形状相匹配。

7. 如权利要求1至6中任一权利要求所述的集流管，其特征在于，所述第一腔体还设置有缩流板，该缩流板的边缘与第一腔体内部壁面形状相匹配，在缩流板设置有连通该缩流板上下腔冷媒的缩流板连通孔。

8. 如权利要求7所述的集流管，其特征在于，所述缩流板距离集流管冷媒入口端越远间距越小。

9. 如权利要求8所述的集流管，其特征在于，所述缩流板连通孔距离集流管冷媒入口端越远孔径越小。

10. 一种平行流换热器，其特征在于，包括如权利要求1至9中任一权利要求所述的集流管和一端插入在所述集流管上的若干扁平管，以及设置在所述若干扁平管之间的翅片。
集流管及平行流换热器

技术领域
[0001] 本实用新型涉及空调的热交换技术领域，具体涉及一种集流管及具有该集流管的平行流换热器。
[0002] 背景技术
[0003] 众所周知，平行流换热器由于换热效率高，加工性能好，广泛应用于汽车空调、工业生产以及家用和商用空调领域。在一些应用场合，为了确保板状翅片平行流换热器的排水性，有将集流管沿竖直方向配置的方法。这种结构的平行流换热器常作为蒸发器使用的时候，会出现以下问题：由于受重力影响，冷媒容易滞留集流管内空间下部，特别是冷媒的进口侧的集流管，由于高度较大，会出现明显的冷媒向下滞留的情况。特别是在冷媒流量不充足时，集流管下部的冷媒流量与上部的冷媒流量的差异非常明显，使换热器的整体换热性能下降。当前一般通过增加管中冷媒的流程来减少单集流管的长度，但是这样就会增加换热器的阻力，影响制冷的能效。所以，解决集流管内冷媒因重力而产生的滞留，就成了亟待解决的问题。
[0004] 实用新型内容
[0005] 本实用新型的主要目的在于针对现有技术中的上述问题，提供一种可解决集流管内冷媒因重力而产生的滞留，可改善平行流换热器换热性能的集流管。
[0006] 为了实现上述新型目的，本实用新型提供一种集流管，包括并排设置的第一腔体和第二腔体，所述第一腔体上设有用于插入扁平管的中心管，所述第二腔体和第一腔体之间设有将聚氨酯的冷媒分配孔，所述集流管还包括设置在第一腔体下端的第三腔体，所述第一腔体与第一腔体之间设置有喷射孔；所述冷媒从冷媒管路流进第一腔体，并从喷射孔向上喷入第一腔体；第二腔体与冷媒管路连通，来自冷媒管路的冷媒从第二腔体通过冷媒分配孔流进第一腔体。
[0007] 优选地，冷媒入口管插入第三腔体，该第三腔体与第二腔体的下端连通。
[0008] 优选地，冷媒入口管的端口位于第三腔体内，且位于靠近喷射孔的位置，冷媒在喷射孔处有比第二腔体下端连通孔更大的静压。
[0009] 优选地，冷媒入口管为顶端封闭的第二腔体，其设置在第一腔体内的部分设置有冷媒分配孔，冷媒入口管还位于第三腔体，并位于第三腔体内的管段上设置有连通孔。
[0010] 优选地，所述第一腔体内设置有板状体，该板状体与腔体的内壁面连接并实现密封，其中有扁管插入孔侧为第一腔体，另一侧为第二腔体，在第一腔体的下端面和第三腔体之间设置有隔板，隔板连接并密封第一腔体的端面，隔板上有喷射孔连通第一腔体和第三腔体，所述板状体与另一侧腔体内壁面连成连通第三腔体与第二腔体的连通孔。
[0011] 优选地，所述第一腔体与第三腔体之间设置有隔板，所述的隔板上设置有喷射孔，该隔板的边缘与第一腔体端口内壁面形状相匹配。
[0012] 优选地，所述第一腔体内还设置有缩流板，该缩流板的边缘与第一腔体内壁面形状相匹配，在缩流板设置有连通该缩流板上部冷媒的缩流板连通孔。
[0013] 优选地，所述缩流板距离集流管冷媒入口端越远间距越小；所述缩流板连通孔距
离集流管冷媒入口端越远孔径越小。

[0014] 优选地，所述铝板壁距离集流管冷媒入口端越远间距越小。

[0015] 优选地，所述铝板壁所述集流管冷媒入口端越远孔径越小。

[0016] 本实用新型另提供一种平行换热器，包括集流管和一端插接在所述集流管上的若干平行管，以及设置在所述若干平行管之间的翅片。所述集流管包括并排设置的第一腔体和第二腔体，所述第一腔体上设有用于插入平行管的扇孔，所述第二腔体和第一腔体之间设有将两者连通的冷媒分配孔，所述集流管还包括设置在第一腔体外端的第三腔体，第二腔体与第一腔体间设置有喷射孔，冷媒通过冷媒入口管从冷媒管路流进第三腔体，并从喷射孔向上喷入第一腔体；第二腔体与冷媒管路连通，来自冷媒管路的冷媒从第二腔体通过冷媒分配孔流进第一腔体。

[0017] 由上可知，本实用新型集流管中至少设置有第一腔体、第二腔体和第三腔体，冷媒可从第二腔体进到第一腔体，当第一腔体中的冷媒受到重力下落时，从第二腔体流向第一腔体的冷媒上冲，进而避免了冷媒滞留，从而避免了冷媒滞留，改善了平行流换热器的换热性能。

附图说明

[0018] 图 1 为本实用新型一较佳实施例中平行换热器的结构示意图；

[0019] 图 2 为本实用新型一较佳实施例中平行换热器的分解结构示意图；

[0020] 图 3 为图 2 中集流管的结构示意图；

[0021] 图 4 为本实用新型一较佳实施例中集流管的分解结构示意图；

[0022] 图 5 为本实用新型一较佳实施例中集流管的分解结构示意图；

[0023] 图 6 为本实用新型一较佳实施例中集流管的分解结构示意图。

[0024] 本实用新型目的的实现、功能特点及优点将结合实施例，参照附图做进一步说明。

具体实施方式

[0025] 应当理解，此处所描述的具体实施例仅用以解释本实用新型，并不用于限定本实用新型。

[0026] 本实用新型实施例提供一种集流管，参照图 1 至图 3 所示，在一较佳实施例中，该集流管包括并排设置的第一腔体 12 和第二腔体 11。第一腔体 12 上设有用于插入平行管 2 的扇孔，第二腔体 11 和第一腔体 12 之间设有将两者连通的冷媒分配孔 13。集流管还包括设置在第一腔体 12 下端的第三腔体 14，第二腔体 14 与第一腔体 12 之间设有喷射孔 142。冷媒从冷媒管路 30 流进第三腔体 14，并从喷射孔 142 向上喷入第一腔体 12；第二腔体 11 与冷媒管路连通，来自冷媒管路 30 的冷媒从第二腔体 11 通过冷媒分配孔 13 流进第一腔体 12。当第一腔体 12 中的冷媒受到重力下落时，冷媒从喷射孔 142 流向第二腔体 12 的冷媒上冲，将下落的冷媒托起，从而避免了冷媒滞留，改善了平行流换热器的换热性能。

[0027] 本实用新型实施例中，冷媒管路 30 分别与第二腔体 11 和第三腔体 14 连通，例如在一较佳实施例中，冷媒管路 30 的一部分与第二腔体 11 的中部连通。冷媒可通过该部分冷媒管路从第二腔体 11 的中部输入；冷媒管路 30 的另一部分冷媒入口管 3 与第一腔体 14 连通，向第二腔体 14 输入冷媒。在另一较佳实施例中，冷媒管路 30 可通过冷媒入
口管 3 (冷媒入口管 3 是冷媒管路 30 的一部分)插入第三腔体 14。该冷媒入口管 3 上设有分流结构，冷媒可从该冷媒入口管 3 分别流进第三腔体 14 和第二腔体 11。本实用新型在冷媒的输入结构上优选采用该方案。

具体工作流程如下：

作为蒸发器使用时，气体冷媒从出口管 4 进入，经过另一集流管 6 向集流管 1 方向流动，由介于中间的翅片 7 向外放热，然后冷凝，变成液态或气液相流状态，从喷射孔 142 进入第三腔体 14；同时，从第二腔体 11 上的多个冷媒分配孔 13 进入第三腔体 14，合流后的冷媒由冷媒入口管 3 导出。

作为冷凝器使用时，冷媒一部分从冷媒入口管 3 进入，经过上述第三腔体 14，从喷射孔 142 流入第一腔体 12，另一部分从第三腔体 14 进入第一腔体 11，然后从多个冷媒分配孔 13 喷出，经过第一腔体 12，进入多个管脚 2，流向另一集流管 6，并通过中间的翅片 7 从外部空气中吸热热量蒸发，形成气体从出口管 1 集体排出。

本实用新型实施例中，作为凝集器使用时，从集流管 1 的第二腔体 11 中的多个冷媒分配孔 13，冷媒可以很容易均等的进入管脚 2，从而实现管脚 2 的均等分流。并且，由于第三腔体 14 中设有喷射孔 142，从其中流入的混合冷媒有将集流管 1 内落下的冷媒立即喷回到第一腔体 12 的功能，可以解决集流管 1 内下部液体冷媒滞留的问题，改善平行流换热器的换热性能。而在空调制冷运转时，冷凝的液体冷媒或冷冻机油不会在集流管的下部积、滞留，能够顺利的流向冷媒入口管 3。

本实用新型实施例中，集流管 1 的形状和构造有多种形式，可灵活选择。参见图 2 所示。本实用新型—较佳实施例中，第一腔体 12 与第三腔体 14 之间设置有隔板 141，所述的隔板 141 上设置有喷射孔 142，该隔板 141 的边缘与第一腔体 12 端口内壁面形状相匹配。

请参照图 3，本实用新型—较佳实施例中，第二腔体 11 设置在第一腔体 12 中，与第一腔体 12 的一侧壁一体成型，该侧壁与具有管孔的一侧壁相对。本实用新型实施例中，集流管 1 的材质可以为铝合金，第一腔体 12 分体设置，包括设有多个管孔的弧形盖板 121 和敞口的空心本体 122 构成，弧形盖板 121 插接在本体 122 中，两者连接后形成第一腔体 12。第二腔体 11 由本体 122 中，与本体 122 通过模具一体成型，第二腔体 11 与第一腔体 12 之间的冷媒分配孔 13 也可通过机械加工的方式成型。由于本体 122 与第二腔体 11 一体成型，节约了成型工艺，节约了集流管 1 的制造成本。

参见图 4，本实用新型的另一较佳实施例中，第一腔体 12 内设置有板状体 15，该板状体 15 与腔体的内壁面连接并实现密封，其中有扁管插入孔侧为第一腔体 12，另一侧为第二腔体 11。在第一腔体 12 的下端和第三腔体 14 之间设置隔板 16，隔板 16 连接并密封第一腔体 12 的端面，隔板 16 上有喷射孔 142 连通第一腔体 12 和第三腔体 11，上述板状体
15 与另一侧腔体内壁面围成连通第三腔体 14 与第二腔体 11 的连通孔 143。本实用新型实施例中，板状体 15 上设有冷媒分配孔 13，冷媒可通过冷媒分配孔 13 流进第二腔体 12。冷媒入口管插入第三腔体 14，冷媒可从连通孔 143 流进第二腔体 11，并且从第三腔体 14 通过喷射孔 142 向上流进第一腔体 12。本实用新型实施例通过一板状体 15 插入集流管本体内，从而形成第一腔体 12 和第二腔体 11，成型工艺简单，集流管 1 的制造成本低。

[0036] 参见图 5，本实用新型的又一较佳实施例中，冷媒入口管 3 为顶端封闭的第二腔体 11，其设置在第一腔体 12 内的部分设置有冷媒分配孔 13，冷媒入口管 3 还流经第三腔体 14，并在第三腔体 14 内的管段上设置有分流孔 111。请参见图 5，本实施例中，冷媒入口管 3 弯折成两段，呈 “L” 形设置。一段设有冷媒分配孔 13，该段插入第一腔体 12，另一段位于第三腔体 14 中，该段设有分流孔 111。平行流换热器工作时，一部分冷媒可从该分流孔 111 输出至第三腔体 14，再由喷射孔 142 输入至第一腔体 12 并继续向上喷射；另一部分冷媒经冷媒入口管 3 的管壁向上喷射，并由冷媒分配孔 13 输出至第一腔体 12。

[0037] 参见图 6 所示，在前述实施例的基础上，本实用新型又一实施例中，在第一腔体 12 中设置有若干缩流板 5，该缩流板 5 的边缘与第一腔体 12 内壁面形状相匹配，在缩流板 5 设置有连通该缩流板 5 上下腔体的缩流板连通孔 51。本实用新型实施例中，缩流板 5 没有缩流板连通孔 51，可只供冷媒向上喷射。由于设置有缩流板 5，可更好的阻止冷媒向下滴落，避免冷媒滞留。并且，由于集流管 1 内空间有高缩流板 5，与没有缩流板 5 的情况相比，对扁管 2 的冷媒分流更均等。进一步的，缩流板 5 距离集流管冷媒入口端越远间距越小。由于缩流板 5 距离集流管 1 冷媒入口端越远间距越小，可使上下方向的液体冷媒越容易均等的分配，扁管 2 越容易均等分流。缩流板 5 上的缩流板连通孔 51 随着高度的增加，孔径也越小。

[0038] 进一步的，参见图 1 至图 6，本实用新型前述实施例中，冷媒分配孔 13 距离集流管 1 冷媒入口端越远处数量越多，或者距离集流管冷媒入口端越远处孔径越大。这样也可使上下方向的液体冷媒越容易均等的分配，扁管 2 越容易均等分流。

[0039] 前述实施例中，冷媒入口管 3 可插入第三腔体 14，将第三腔体 14 与第二腔体 11 的下端连通，使得流进第三腔体 14 的冷媒可分流至第二腔体 11。

[0040] 冷媒入口管 3 的端口可设置位于第三腔体 14 内，且位于靠近喷射孔 142 的位置，冷媒在喷射孔 142 处有比第二腔体 11 下端连通孔 143 更大的静压，这样可形成更大冷媒压力，从而提高冷媒向上冲击的强度，以承受下落的冷媒。

[0041] 本实用新型实施例中，还可将冷媒入口管 3 的轴中心线方向与第三腔体 14 内壁面圆弧的水平切线方向设置为基本平行，并插入第三腔体 14 内进行连接，这时在第三腔体 14 内形成的漩涡从喷射孔 142 喷出，这样能够促进冷媒的微粒化。因此液体冷媒在扁管 2 的微通道中很容易形成传热比较好的环状流，进而能够提高换热器的性能。

[0042] 本实用新型还提供一种平行流换热器，该平行流换热器至少包括前述实施例中所阐述的集流管 1 和一端插接在集流管 1 上的若干扁管 2，以及设置在若干扁管 2 之间的翅片 7。本实用新型平行流换热器实施例中，集流管 1 的结构和工作原理请参照前述图 1 至图 6 及其对应的实施例，在此不作详述。由于设置有前述集流管 1，本实用新型平行流换热器可避免冷媒滞留，改善换热性能。另外，由于设置有前述结构，本实用新型平行流换热器中的液体冷媒越容易均等的分配，扁管 2 越容易均等分流。应当说明的是，本实用新型实
例中，平行流换热器还至少包括与集流管 1 相对设置、与扇平管 2 另一端插接的另一集流管 6，该另一集流管 6 的中部设有冷媒出口管 4。由于冷媒出口管 4 位于该另一集流管 6 的中央位置，相对多个扁管 2 的流动阻力也变得均等，多个扁管 2 的冷媒分流也更容易均等。

【0043】本实用新型实施例还提供一种空调装置，该空调装置设置有前述平行流换热器，由于设有前述平行流换热器，本实用新型实施例中的空调装置可避免冷媒滴留在集流管，并且冷媒分流更为均等，因此换热性能更好。

【0044】以上仅为本实用新型的优选实施例，并非因此限制本实用新型的专利范围，凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换，或直接或间接运用在其他相关的技术领域，均同理包括在本实用新型的专利保护范围内。
图 6