发明名称
摄像光学透镜组、取像装置及电子装置

摘要
一种摄像光学透镜组、取像装置及电子装置，摄像光学透镜组，由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜，第一透镜具屈折力，其物侧表面为近光轴处为凸。第二透镜、第三透镜、第四透镜和第五透镜具屈折力。第六透镜具负屈折力，其物侧表面为近光轴处为凹，其像侧表面为近光轴处为凸，其两表面为球面。第七透镜具屈折力，其像侧表面为近光轴处为凹，其两表面为非球面，其像侧表面为离轴处具至少一凹面。本发明还公开具有上述摄像光学透镜组的取像装置及具有取像装置的电子装置，满足上述条件，有利修正摄像光学透镜组在配置大光圈所生的像差，更均匀配置靠近成像面透镜的屈折力以降低敏感度。
1. 一种摄像光学透镜组，其特征在于，由物侧至像侧依序包含：
 一第一透镜，具有屈折力，其物侧表面于近光轴处为凸面；
 一第二透镜，具有屈折力，其像侧表面于近光轴处为凹面；
 一第三透镜，具有屈折力；
 一第四透镜，具有屈折力；
 一第五透镜，具有屈折力；
 一第六透镜，具有负屈折力，其物侧表面于近光轴处为凹面，其像侧表面于近光轴处为
 凸面，其物侧表面与像侧表面皆为非球面；以及
 一第七透镜，具有屈折力，其物侧表面于近光轴处为凸面，其像侧表面于近光轴处为凹
 面，其像侧表面于离轴处具有至少一凸面，其物侧表面与像侧表面皆为非球面；

 其中，该摄像光学透镜组中具有屈折力的透镜为七片，该第一透镜、该第二透镜、该第
 三透镜、该第四透镜、该第五透镜、该第六透镜及该第七透镜中任两相邻的透镜间于光轴上
 均具有一定间隔；

 其中，该第一透镜物侧表面至一成像面于光轴上的距离为TL，该摄像光学透镜组的最
 大成像高度为ImgH，该第七透镜像侧表面至该成像面于光轴上的距离为BF，该摄像光学透
 镜组的焦距为f，该第一透镜物侧表面至该第七透镜像侧表面于光轴上的距离为Td，该摄像
 光学透镜组的入瞳孔径为EPD，其满足下列条件：

 TL/ImgH<3.0；
 BF/f<0.35；以及
 Td/EPD≤2.37。

2. 根据权利要求1所述的摄像光学透镜组，其特征在于，该摄像光学透镜组的焦距为f，
 该第一透镜与该第二透镜的合成焦距为f12，其满足下列条件：

 0.25f/f12<1.5。

3. 根据权利要求2所述的摄像光学透镜组，其特征在于，该第五透镜物侧表面于近光轴
 处为凹面，该第五透镜像侧表面于近光轴处为凸面。

4. 根据权利要求2所述的摄像光学透镜组，其特征在于，该第一透镜的色散系数为V1，
 该第二透镜的色散系数为V2，该第五透镜的色散系数为V5，该第六透镜的色散系数为V6，其
 满足下列条件：

 1.5<(V1+V2)/(V5+V6)<3.0。

5. 根据权利要求1所述的摄像光学透镜组，其特征在于，该第一透镜物侧表面至该成像
 面于光轴上的距离为TL，该摄像光学透镜组的最大成像高度为ImgH，其满足下列条件：

 TL/ImgH<2.2。

6. 根据权利要求1所述的摄像光学透镜组，其特征在于，该摄像光学透镜组的焦距为f，
 该第六透镜的焦距为f6，其满足下列条件：

 f6/f<-1.0。

7. 根据权利要求1所述的摄像光学透镜组，其特征在于，该摄像光学透镜组的焦距为f，
 该第六透镜的焦距为f6，该第七透镜的焦距为f7，其满足下列条件：

 -1.8<(f/f6)+(f/f7)<0.5。

8. 根据权利要求1所述的摄像光学透镜组，其特征在于，该第六透镜像侧表面于离轴处
具有至少一凹面。

9. 根据权利要求1所述的模像光学透镜组，其特征在于，该第六透镜的色散系数为V6，其满足下列条件：
 \[10 \leq V6 \leq 32. \]

10. 根据权利要求1所述的模像光学透镜组，其特征在于，该模像光学透镜组的焦距为f，该第七透镜的焦面的曲率半径为R14，其满足下列条件：
 \[0.20 \leq R14 f \leq 0.60. \]

11. 根据权利要求1所述的模像光学透镜组，其特征在于，该第六透镜于光轴上的厚度为CT6，该第七透镜于光轴上的厚度为CT7，其满足下列条件：
 \[0.75 \leq CT6 / CT7 \leq 1.33. \]

12. 根据权利要求1所述的模像光学透镜组，其特征在于，该模像光学透镜组的光圈值为Fno，其满足下列条件：
 \[Fno \leq 2.0. \]

13. 根据权利要求1所述的模像光学透镜组，其特征在于，该第一透镜至该第七透镜分别于光轴上的透镜厚度的总和为ΣCT，该第一透镜于侧表面至该第七透镜于侧表面于光轴上的距离为Td，其满足下列条件：
 \[0.60 \leq \Sigma CT / Td \leq 0.85. \]

14. 根据权利要求1所述的模像光学透镜组，其特征在于，更包含：
一光圈，其中该光圈设置于一被摄物和该第三透镜于侧表面之间。

15. 一种取像装置，其特征在于，包含：
如权利要求1所述的模像光学透镜组；以及
一电子感光元件，其中该电子感光元件设置于该模像光学透镜组的该成像面上。

16. 一种电子装置，其特征在于，包含：
如权利要求15所述的取像装置。
摄像光学透镜组、取像装置及电子装置

技术领域
【0001】本发明涉及一种摄像光学透镜组、取像装置及电子装置，特别涉及一种适用于电子装置的摄像光学透镜组及取像装置。

背景技术
【0002】近年来，随着小型化摄像镜头的蓬勃发展，微型取像模块的需求日益提高。而一般摄像镜头的感光元件不外乎是感光耦合元件（Charge Coupled Device，CCD）或互补性氧化金属半导体元件（Complementary Metal-Oxide Semiconductor Sensor，CMOS Sensor）两种，且随着半导体工艺技术的精进，使得感光元件的像素尺寸缩小，再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势，因此，具备良好成像品质的微型化摄像镜头俨然成为目前市场上的主流。
【0003】由于多年来智能手机（Smart Phone）与穿戴型装置（Wearable Device）等规格的电子产品为满足高成像品质，搭配有大光圈、大感光元件的取像装置的需求于是便随着提升，使得取像装置中构成的镜片数也跟着增加，造成镜头小型化的困难，且大光圈亦可能会产生像差。因此，如何使光学系统在配置多枚镜片、大光圈且大感光元件的情况下同时维持成像品质及其小型化，实为目前业界欲解决的问题之一。

发明内容
【0004】本发明的目的在于提供一种摄像光学透镜组、取像装置以及电子装置，摄像光学透镜组由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜。摄像光学透镜组中具有屈折力的透镜为七片，其中第六透镜具有负屈折力。当满足上述条件，有利于修正摄像光学透镜组在大光圈的配置下所发生的像差，更可让摄像光学透镜组靠近成像面透镜的屈折力配置较为均匀，有效降低摄像光学透镜组的敏感度。
【0005】本发明提供一种摄像光学透镜组，由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜。第一透镜具有屈折力，其物侧表面于近光轴处为凸面。第二透镜具有屈折力。第三透镜具有屈折力。第四透镜具有屈折力。第五透镜具有屈折力。第六透镜具有负屈折力，其物侧表面于近光轴处为凹面，其像侧表面于近光轴处为凸面，其物侧表面与像侧表面皆为非球面。第七透镜具有屈折力，其像侧表面于近光轴处为凹面，其像侧表面于离光轴处具有至少一凸面，其物侧表面与像侧表面皆为非球面。当第一透镜物侧表面至一成像面于光轴上的距离为TL，摄像光学透镜组的最大成像高度为ImgH，其满足下列条件：
【0006】TL/ImgH≤3.0。
【0007】本发明另提供一种取像装置，其包含前述的摄像光学透镜组以及一电子感光元件，其中，该电子感光元件设置于摄像光学透镜组的一成像面上。
【0008】本发明另提供一种电子装置，其包含前述的取像装置。
当TL/Imgt满足上述条件时，可有利于小型化，避免镜头体积过大，使取像用光学镜组更适合应用于电子装置。

以下结合附图和具体实施例对本发明进行详细描述，但不作为对本发明的限定。

附图说明

图1示出依照本发明第一实施例的取像装置示意图；
图2由左至右依序为第一实施例的球差、像散以及畸变曲线图；
图3示出依照本发明第二实施例的取像装置示意图；
图4由左至右依序为第二实施例的球差、像散以及畸变曲线图；
图5示出依照本发明第三实施例的取像装置示意图；
图6由左至右依序为第三实施例的球差、像散以及畸变曲线图；
图7示出依照本发明第四实施例的取像装置示意图；
图8由左至右依序为第四实施例的球差、像散以及畸变曲线图；
图9示出依照本发明第五实施例的取像装置示意图；
图10由左至右依序为第五实施例的球差、像散以及畸变曲线图；
图11示出依照本发明第六实施例的取像装置示意图；
图12由左至右依序为第六实施例的球差、像散以及畸变曲线图；
图13示出依照本发明第七实施例的取像装置示意图；
图14由左至右依序为第七实施例的球差、像散以及畸变曲线图；
图15示出依照本发明第八实施例的取像装置示意图；
图16由左至右依序为第八实施例的球差、像散以及畸变曲线图；
图17示出依照本发明第九实施例的取像装置示意图；
图18由左至右依序为第九实施例的球差、像散以及畸变曲线图；
图19示出依照本发明第十实施例的取像装置示意图；
图20由左至右依序为第十实施例的球差、像散以及畸变曲线图；
图21示出依照本发明的一种电子装置的示意图；
图22示出依照本发明的另一种电子装置的示意图；
图23示出依照本发明的再另一种电子装置的示意图。

其中，附图标记

取像装置：10
光圈：100、200、300、400、500、600、700、800、900、1000
第一透镜：110、210、310、410、510、610、710、810、910、1010
物侧表面：111、211、311、411、511、611、711、811、911、1011
像侧表面：112、212、312、412、512、612、712、812、912、1012
第二透镜：120、220、320、420、520、620、720、820、920、1020
物侧表面：121、221、321、421、521、621、721、821、921、1021
像侧表面：122、222、322、422、522、622、722、822、922、1022
第三透镜：130、230、330、430、530、630、730、830、930、1030
物侧表面：131、231、331、431、531、631、731、831、931、1031
说明书

[0045] 像侧表面：132.232.332.432.532.632.732.832.932.1032
[0047] 物侧表面：141.241.341.441.541.641.741.841.941.1041
[0048] 像侧表面：142.242.342.442.542.642.742.842.942.1042
[0049] 第五透镜：150.250.350.450.550.650.750.850.950.1050
[0050] 物侧表面：151.251.351.451.551.651.751.851.951.1051
[0051] 像侧表面：152.252.352.452.552.652.752.852.952.1052
[0054] 像侧表面：162.262.362.462.562.662.762.862.962.1062
[0055] 第七透镜：170.270.370.470.570.670.770.870.970.1070
[0056] 物侧表面：171.271.371.471.571.671.771.871.971.1071
[0057] 像侧表面：172.272.372.472.572.672.772.872.972.1072
[0058] 红外线滤除滤光元件：180.280.380.480.580.680.780.880.980.1080
[0059] 成像面：190.290.390.490.590.690.790.890.990.1090
[0061] BF：第七透镜像侧表面至成像面于光轴上的距离
[0062] CT6：第六透镜于光轴上的厚度
[0063] CT7：第七透镜于光轴上的厚度
[0064] EPD：摄像光学透镜组的入瞳径
[0065] f：摄像光学透镜组的焦距
[0066] f12：第一透镜与第二透镜的合成焦距
[0067] f6：第六透镜的焦距
[0068] f7：第七透镜的焦距
[0069] F0：摄像光学透镜组的最大视角
[0070] Fno：摄像光学透镜组的光圈值
[0071] HFOV：摄像光学透镜组中最大视角的一半
[0072] ImgH：摄像光学透镜组的最大成像高度
[0073] Nmax：第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜的折射率中的最大值
[0074] Nmin：第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜的折射率中的最小值
[0075] R14：第七透镜像侧表面的曲率半径
[0076] Ring：摄像光学透镜组的成像面的曲率半径
[0077] TL：第一透镜物侧表面至成像面于光轴上的距离
[0078] Td：第一透镜物侧表面至第七透镜像侧表面于光轴上的距离
[0079] V1：第一透镜的色散系数
[0080] V2：第二透镜的色散系数
[0081] V5：第五透镜的色散系数
具体实施方式

下面结合附图对本发明的结构原理和工作原理作具体的描述：

摄像光学透镜组由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。摄像光学透镜组中具屈折力的透镜为七片。

第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中任两相邻透镜间于光轴上均具有一空气间隔，亦即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜可为七枚单一非接合的具屈折力透镜。由于接合透镜的制程较非接合透镜复杂，特别在两透镜的接合面需拥有高准度的曲面，以便达到两透镜接合时的高密合度，且在接合的过程中，更也可能因位差而造成移轴缺陷，影响整体光学成像品质。因此，取像用光学镜组中的第一透镜至第七透镜可为七枚单一非接合的具屈折力透镜，进而有效改善接合透镜所产生的问题。

第一透镜具有屈折力，其物侧表面于近光轴处为凸面。借此，可避免屈折力过度集中而使像差增加，并可降低摄像光学透镜组的敏感度。

第二透镜具有屈折力。借此，可配合第一透镜的屈折力作调整，以修正第一透镜产生的像差。

第三透镜具有屈折力。借此，可有效降低摄像光学透镜组的敏感度，并可调和摄像光学透镜组屈折力的分布以避免影像周边像散与畸变的过度增大，进而提升成像品质。

第四透镜具有屈折力。借此，可配合第三透镜的屈折力作调整，使摄像光学透镜组屈折力的分布较为平均。

第五透镜具有屈折力，其物侧表面于近光轴处可为凹面，其像侧表面于近光轴处可为凸面。借此，有助于修正摄像光学透镜组的像散，以提高成像品质。

第六透镜具有负屈折力，其物侧表面于近光轴处为凹面，其像侧表面于近光轴处为凸面，其像侧表面于离轴处可具有至少一凹面。借此，有利于修正摄像光学透镜组在配置大光圈时所产生的像差，使摄像光学透镜组靠近成像面的屈折力配置较为均匀，有效降低摄像光学透镜组的敏感度。

第七透镜具有屈折力，其像侧表面于近光轴处为凹面，其物侧表面于离轴处具有至少一凸面。其物侧表面与像侧表面皆为非球面。借此，可使摄像光学透镜组的主点远离摄像光学透镜组的像侧端，以缩短摄像光学透镜组的光学总长度，并可有效缩短后焦，避免摄像光学透镜组的体积过大。

第一透镜物侧表面至一成像面于光轴上的距离为TL，摄像光学透镜组的最大成像高度为ImgH（即为电子感光元件之有效感测区域对角线总长的一半），其满足下列条件：TL/ImgH<3.0。借此，可有利于小型化以避免镜头体积过大，使取像用光学镜组更适合应用于电子装置。较佳地，其满足下列条件：TL/ImgH<2.2。

摄像光学透镜组的焦距为f，第一透镜与第二透镜的合成焦距为f12，其满足下列条件：0.25×f/f12<1.5。借此，可适当配置第一透镜与第二透镜的屈折力，进一步修正摄像光学透镜组的像差，并且有助于缩短摄像光学透镜组的后焦距，以维持其小型化。
[0098] 摄像光学透镜组的焦距为f，第六透镜的焦距为f6，第七透镜的焦距为f7，其满足下列条件：
- 1.8＜(f/f6)/(f/f7)＜-0.5。借此，可避免增加透镜的色散系数过低。
- 1.60＜Nmax＜1.70，以及1.50＜Nmin＜1.60。借此，可避免折射率过小，有助于修正像差。同时也可以避免因折射率过大造成透镜的色散系数过低。

[0100] 第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜各具有一个折射率，该折射率中的最大值为Nmax，该折射率中的最小值为Nmin，其满足下列条件：
- 1.60＜Nmax＜1.70，以及1.50＜Nmin＜1.60。借此，可避免折射率过小，有助于修正像差，同时也可以避免因折射率过大造成透镜的色散系数过低。
有远心(Telecentric)效果，并可增加电子感光元件的CCD或CMOS接收影像的效率；若为中
置光圈，有助于扩大系统的视场角，使摄像光学透镜组具有广角镜头的优势。
【0109】本发明揭露的摄像光学透镜组中，透镜的材质可为塑胶或玻璃。当透镜的材质为
玻璃，可以增加屈折力配置的自由度。另当透镜材质为塑胶，则可以有效降低生产成本。此
外，可于透镜表面上设置非球面，非球面可以容易制作成球面以外的形状，获得较多的控制
变数，用以减低虚影，进而减缩所需使用透镜的数目，因此可以有效降低光学总长度。
【0110】本发明揭露的摄像光学透镜组中，若透镜表面为凸面且未界定该凸面位置时，则
表示该透镜表面于近轴处为凸面；若透镜表面为凹面且未界定该凹面位置时，则表示该
透镜表面于近轴处为凹面。若透镜之屈折力或焦距未界定其区域位置时，则表示该透镜
的屈折力或焦距为透镜于近轴处的屈折力或焦距。
【0111】本发明揭露的摄像光学透镜组中，摄像光学透镜组的成像面(Image Surface)依
其对应的电子感光元件的不同，可为一平面或有任一曲率的曲面，特别是指凹面朝向物侧
方向的曲面。
【0112】本发明摄影光学透镜组中，可设置有至少一光阑，其位置可设置于第一透镜之前、
各透镜之间或最后一透镜之后均可，该光阑的种类如耀光光阑(Glare Stop)或视场光阑
(Field Stop)等，用以减少散射光，有助于提升影像品质。
【0113】本发明更提供一种取景装置，其包含前述摄像光学透镜组以及电子感光元件，其
中电子感光元件设置于摄像光学透镜组的成像面上。较佳地，该取景装置可进一步包含镜
筒(Barrel Member)、支持装置(Holder Member)或其组合。
【0114】本发明更提供一种电子装置，其包含前述取景装置。电子装置可包含但不限于：智
能型手机(如图21所示)、平板电脑(如图22所示)与穿戴式装置(如图23所示)等。请参照图
21、图22与图23，取景装置10可多方面应用于智能型手机(如图21所示)、平板电脑(如图22所
示)与穿戴式装置(如图23所示)等。较佳地，该电子装置可进一步包含控制单元(Control
Units)、显示单元(Display Units)、随机存取存储器(Storage Units)、暂储存单元(RAM)
或其组合。
【0115】本发明的摄像光学透镜组更可改良应用于移动对焦的光学系统中，并兼具优良
像差修正与良好成像品质的特征。本发明亦可多方面应用于三维(3D)影像摄取、数码相机、
移动装置、平板计算机、智能型电视、网路监控设备、体感游戏机、行车记录器、倒车显影装
置与穿戴式装置等电子装置中。前揭电子装置仅是示范性地说明本发明的实际运用例子，
并非限制本发明的取景装置的运用范围。
【0116】根据上述实施方式，以下提出具体实施例并配合附图予以详细说明。
【0117】〈第一实施例〉
【0118】请参照图1及图2，其中图1示出本发明第一实施例的取景装置示意图，图2由
左至右依序为第一实施例的球差、像散以及畸变曲线图，由图1可知，取景装置包含摄像光
学透镜组(未另标号)与电子感光元件195。摄像光学透镜组由物侧至像侧依序包含光圈
100、第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、
第七透镜170、红外线滤除滤光元件(IR-cut Filter)180与成像面190。其中，电子感光元件
195设置于成像面190上。摄像光学透镜组中具屈折力的透镜为七片(110~170)，且第一透镜
110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160与第七透镜170
中任两相邻透镜间于光轴上均具有一空气间隔。

【0119】第一透镜110具有正屈折力，且为塑胶材质，其物侧表面111于近光轴处为凸面，其像侧表面112于近光轴处为凹面，其两表面皆为非球面。

【0120】第二透镜120具有正屈折力，且为塑胶材质，其物侧表面121于近光轴处为凸面，其像侧表面122于近光轴处为凹面，其两表面皆为非球面。

【0121】第三透镜130具有负屈折力，且为塑胶材质，其物侧表面131于近光轴处为凸面，其像侧表面132于近光轴处为凹面，其两表面皆为非球面。

【0122】第四透镜140具有正屈折力，且为塑胶材质，其物侧表面141于近光轴处为平面，其像侧表面142于近光轴处为凸面，其两表面皆为非球面。

【0123】第五透镜150具有负屈折力，且为塑胶材质，其物侧表面151于近光轴处为凹面，其像侧表面152于近光轴处为凹面，其两表面皆为非球面。

【0124】第六透镜160具有负屈折力，且为塑胶材质，其物侧表面161于近光轴处为凹面，其像侧表面162于近光轴处为凸面，其像侧表面162于离轴处具有至少一凹面，其两表面皆为非球面。

【0125】第七透镜170具有负屈折力，且为塑胶材质，其物侧表面171于近光轴处为凸面，其像侧表面172于近光轴处为凹面，其像侧表面172于离轴处具有至少一凸面，其两表面皆为非球面。

【0126】红外线滤除滤光元件180的材质为玻璃，其设置于第七透镜170及成像面190之间，并不影响摄像光学透镜组的焦距。

【0127】上述各透镜的非球面的曲线方程式表示如下：

\[X \left(Y \right) = \left(Y / R \right) \left(1 + \sqrt{1 - \left(1 + k \right) \left(Y / R \right)^2} \right) + \sum_{i=1}^{n} \left(A_i \right) \left(Y^i \right) \]

【0128】；其中；
X：非球面上距离光轴为Y的点，其与相切于非球面光轴上交点的切面的相对距离；
Y：非球面曲线上的点与光轴的垂直距离；
R：曲率半径；
k：锥面系数；以及
Ai：第i阶非球面系数。

【0129】第一实施例的摄像光学透镜组中，摄像光学透镜组的焦距为f，摄像光学透镜组的光圈值(F-number)为Fno，摄像光学透镜组中放大视角的一半为HFOV，其数值如下：f = 5.30毫米(㎜)，Fno = 2.10，HFOV = 37.5度(deg.)。

【0130】第一透镜110，第二透镜120，第三透镜130，第四透镜140，第五透镜150，第六透镜160与第七透镜170各具有一折射率，该些折射率中的最大值为Nmax，该些折射率中的最小值为Nmin，其满足下列条件：Nmax = 1.63，以及Nmin = 1.54。

【0131】第六透镜160的色散系数为V6，其满足下列条件：V6 = 23.4。

【0132】第一透镜110的色散系数为V1，第二透镜120的色散系数为V2，第五透镜150的色散系数为V5，第六透镜160的色散系数为V6，其满足下列条件：(V1+V2) / (V5+V6) = 2.39。

【0133】第六透镜160于光轴上的厚度为CT6，第七透镜170于光轴上的厚度为CT7，其满足下列条件：CT6 / CT7 = 1.14。
[0140] 第一透镜110，第二透镜120，第三透镜130，第四透镜140，第五透镜150，第六透镜160与第七透镜170分别于光轴上的透镜厚度的总和为ΣCT，第一透镜物侧表面111至第七透镜像侧表面172于光轴上的距离为Td，其满足下列条件：ΣCT/Td = 0.634。

[0141] 摄像光学透镜组的成像面190的曲率半径为Rimg，其满足下列条件：Rimg = ∞毫米。

[0142] 第七透镜像侧表面172的曲率半径为R14，摄像光学透镜组的焦距为f，其满足下列条件：R14/f = 0.41。

[0143] 摄像光学透镜组的焦距为f，第一透镜110与第二透镜120的合成焦距为f12，其满足下列条件：f/f12 = 1.05。

[0144] 摄像光学透镜组的焦距为f，第六透镜160的焦距为f6，其满足下列条件：f6/f = -4.00。

[0145] 摄像光学透镜组的焦距为f，第六透镜160的焦距为f6，第七透镜170的焦距为f7，其满足下列条件：(f/f6) + (f/f7) = -1.46。

[0146] 第七透镜像侧表面172至成像面190于光轴上的距离为BF，摄像光学透镜组的焦距为f，其满足下列条件：BF/f = 0.21。

[0147] 摄像光学透镜组的最大成像高度为ImgH，第一透镜物侧表面111至成像面190于光轴上的距离为TL，其满足下列条件：TL/ImgH = 1.73。

[0148] 第一透镜物侧表面111至第七透镜像侧表面172于光轴上的距离为Td，摄像光学透镜组的入瞳径为EPD，其满足下列条件：Td/EPD = 2.29。

[0149] 配合参照下列表一以及表二。

<table>
<thead>
<tr>
<th>表一、第一实施例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>角度 (焦距)=5.30 毫米 (mm)，Fno (光圈 数)=2.10，HFOV (半视 角)=37.5 度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>表面</td>
<td>曲率半径</td>
<td>厚度</td>
<td>材质</td>
<td>折射率</td>
<td>色散系数</td>
<td>焦距</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>被摄物</td>
<td>平面</td>
<td>无限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>-0.308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透镜</td>
<td>2.654 (ASP)</td>
<td>0.452</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.716 (ASP)</td>
<td>0.059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透镜</td>
<td>3.744 (ASP)</td>
<td>0.625</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>96.858 (ASP)</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透镜</td>
<td>2.738 (ASP)</td>
<td>0.260</td>
<td>塑胶</td>
<td>1.633</td>
<td>23.4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.846 (ASP)</td>
<td>0.722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透镜</td>
<td>∞ (ASP)</td>
<td>0.963</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-1.633 (ASP)</td>
<td>0.078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>第五透镜</td>
<td>-1.256 (ASP)</td>
<td>0.614</td>
<td>塑胶</td>
<td>1.633</td>
<td>23.4</td>
</tr>
</tbody>
</table>

11
说明书

<table>
<thead>
<tr>
<th>表二、非球面系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>表面</td>
</tr>
<tr>
<td>k =</td>
</tr>
<tr>
<td>A4 =</td>
</tr>
<tr>
<td>A6 =</td>
</tr>
<tr>
<td>A8 =</td>
</tr>
<tr>
<td>A10 =</td>
</tr>
<tr>
<td>A14 =</td>
</tr>
<tr>
<td>表面</td>
</tr>
<tr>
<td>k =</td>
</tr>
<tr>
<td>A4 =</td>
</tr>
<tr>
<td>A6 =</td>
</tr>
<tr>
<td>A8 =</td>
</tr>
<tr>
<td>A10 =</td>
</tr>
<tr>
<td>A12 =</td>
</tr>
<tr>
<td>A14 =</td>
</tr>
<tr>
<td>A16 =</td>
</tr>
</tbody>
</table>
表一为图1第一实施例详细的结构数据，其中曲率半径、厚度及焦距的单位为mm，且表面0到18依序表示由物侧至像侧的表面。表二为第一实施例中的非球面数据，其中，k为非球面曲线方程式中的锥面系数，A4到A16则表示各表面第4到16阶非球面系数。此外，以下各实施例表格乃对应各实施例的示意图与像差曲线图，表格中数据的定义皆与第一实施例的表一及表二的定义相同，在此不加以赘述。

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.0000E+01</td>
<td>7.5348E-01</td>
<td>-6.1423E+00</td>
<td>-6.2822E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-2.5444E-02</td>
<td>-7.4794E-03</td>
<td>-6.4411E-02</td>
<td>-3.5213E-02</td>
</tr>
<tr>
<td>A6</td>
<td>5.9287E-03</td>
<td>-6.9438E-03</td>
<td>1.1584E-02</td>
<td>8.5452E-03</td>
</tr>
<tr>
<td>A8</td>
<td>2.4093E-03</td>
<td>9.5491E-03</td>
<td>-9.4024E-04</td>
<td>-1.6035E-03</td>
</tr>
<tr>
<td>A10</td>
<td>-1.4394E-03</td>
<td>-3.6088E-03</td>
<td>4.1629E-05</td>
<td>1.9535E-04</td>
</tr>
<tr>
<td>A12</td>
<td>-5.3124E-05</td>
<td>6.7027E-04</td>
<td>-1.0641E-06</td>
<td>-1.5661E-05</td>
</tr>
<tr>
<td>A14</td>
<td>7.1367E-05</td>
<td>-6.2123E-05</td>
<td>1.8240E-08</td>
<td>7.3114E-07</td>
</tr>
<tr>
<td>A16</td>
<td>-6.2088E-06</td>
<td>2.2913E-06</td>
<td>-2.5563E-10</td>
<td>-1.4448E-08</td>
</tr>
</tbody>
</table>

【0154】参照图3及图4，其中图3绘示依照本发明第二实施例的取像装置示意图，图4由左至右依序为第二实施例的球差、像散以及畸变曲线图。由图3可知，取像装置包含摄像光学透镜组（未另标号）与电子感光元件295。摄像光学透镜组由物侧至像侧依序包含光圈200、第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250、第六透镜260、第七透镜270、红外线滤除滤光元件280与成像面290。其中，电子感光元件295设置于成像面290上。摄像光学透镜组中其一透镜的透镜为七片（210-270），且第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250、第六透镜260与第七透镜270中任两相邻透镜间于光轴上均具有一空隙间隔。

【0157】第一透镜210具有正屈折力，且为塑胶材质，其物侧表面211于近光轴处为凸面，其像侧表面212于近光轴处为凹面，其两表面皆为非球面。

【0158】第二透镜220具有正屈折力，且为塑胶材质，其物侧表面221于近光轴处为凸面，其像侧表面222于近光轴处为凹面，其两表面皆为非球面。

【0159】第三透镜230具有负屈折力，且为塑胶材质，其物侧表面231于近光轴处为凸面，其像侧表面232于近光轴处为凹面，其两表面皆为非球面。

【0160】第四透镜240具有正屈折力，且为塑胶材质，其物侧表面241于近光轴处为凸面，其像侧表面242于近光轴处为凹面，其两表面皆为非球面。

【0161】第五透镜250具有正屈折力，且为塑胶材质，其物侧表面251于近光轴处为凹面，其像侧表面252于近光轴处为凸面，其两表面皆为非球面。

【0162】第六透镜260具有负屈折力，且为塑胶材质，其物侧表面261于近光轴处为凹面，其像侧表面262于近光轴处为凸面，其像侧表面262于离轴处具有至少一凹面，其两表面皆为非球面。
第七透镜270具有负屈折力，且为塑胶材质，其物侧表面271于近光轴处为凹面，其像侧表面272于近光轴处为凹面，其像侧表面272于离轴处具有至少一凸面，其两表面皆为非球面。

红外线滤除滤光元件280的材质为玻璃，其设置于第七透镜270及成像面290之间，并不影响摄像光学透镜组的焦距。

请配合参照下列表三以及表四。

<table>
<thead>
<tr>
<th>表三、第二实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(焦距) = 4.88)毫米((\text{mm})), (\text{Fno(光圈值)} = 1.85), (\text{HFOV(半视角)} = 38.7)度</td>
</tr>
<tr>
<td>表面</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

参考波长(\(d \)-line)为 587.6 nm
表四、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.7451E+00</td>
<td>-1.9655E+01</td>
<td>-2.5770E-01</td>
<td>-1.0000E+00</td>
<td>-1.3273E+00</td>
</tr>
<tr>
<td>A4</td>
<td>1.0276E-02</td>
<td>-1.7113E-02</td>
<td>-4.1113E-02</td>
<td>7.6708E-03</td>
<td>-8.0332E-02</td>
</tr>
<tr>
<td>A6</td>
<td>5.0161E-03</td>
<td>6.7710E-03</td>
<td>2.4687E-02</td>
<td>-9.8820E-03</td>
<td>2.8575E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-4.7219E-03</td>
<td>-4.9153E-03</td>
<td>-1.7480E-02</td>
<td>5.2450E-03</td>
<td>-2.7172E-02</td>
</tr>
<tr>
<td>A10</td>
<td>7.5324E-04</td>
<td>4.9011E-03</td>
<td>1.2130E-02</td>
<td>-7.4098E-03</td>
<td>1.5269E-02</td>
</tr>
<tr>
<td>A12</td>
<td>7.7979E-04</td>
<td>5.1669E-04</td>
<td>-7.7254E-04</td>
<td>5.3379E-03</td>
<td>-5.2607E-03</td>
</tr>
<tr>
<td>A14</td>
<td>-2.5945E-04</td>
<td>-5.7063E-04</td>
<td>-1.4847E-03</td>
<td>-2.1020E-03</td>
<td>9.8332E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.1251E+00</td>
<td>-1.0000E+00</td>
<td>-3.6390E+00</td>
<td>-1.7015E+00</td>
<td>-1.6803E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-6.5141E-02</td>
<td>-1.2916E-02</td>
<td>4.6925E-02</td>
<td>1.1659E-01</td>
<td>7.6154E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.3547E-02</td>
<td>-3.7104E-04</td>
<td>-6.9878E-02</td>
<td>-8.2545E-02</td>
<td>-3.1006E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-1.6516E-02</td>
<td>-5.0636E-04</td>
<td>4.9275E-02</td>
<td>4.2257E-02</td>
<td>1.0306E-02</td>
</tr>
<tr>
<td>A10</td>
<td>5.6137E-03</td>
<td>7.1659E-04</td>
<td>-2.5903E-02</td>
<td>-1.5583E-02</td>
<td>-4.0548E-03</td>
</tr>
<tr>
<td>A12</td>
<td>-6.7538E-04</td>
<td>2.1274E-04</td>
<td>9.7449E-03</td>
<td>3.4836E-03</td>
<td>8.4339E-04</td>
</tr>
<tr>
<td>A16</td>
<td>3.2881E-05</td>
<td>5.5234E-05</td>
<td>1.9954E-04</td>
<td>1.0294E-05</td>
<td>-2.0939E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>2.0000E+01</td>
<td>6.5216E-01</td>
<td>4.7498E+00</td>
<td>-7.1215E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-2.7210E-02</td>
<td>-3.1242E-02</td>
<td>-1.0723E-01</td>
<td>-3.8828E-02</td>
</tr>
<tr>
<td>A6</td>
<td>2.8341E-02</td>
<td>2.1812E-02</td>
<td>2.6057E-02</td>
<td>8.0516E-03</td>
</tr>
<tr>
<td>A8</td>
<td>-1.8703E-02</td>
<td>-7.3064E-03</td>
<td>-2.1234E-03</td>
<td>-8.5785E-04</td>
</tr>
<tr>
<td>A10</td>
<td>6.5928E-03</td>
<td>1.1931E-03</td>
<td>-2.6011E-05</td>
<td>2.0475E-05</td>
</tr>
<tr>
<td>A12</td>
<td>-1.6661E-03</td>
<td>-4.3125E-05</td>
<td>1.4789E-05</td>
<td>2.7881E-06</td>
</tr>
<tr>
<td>A14</td>
<td>2.3570E-04</td>
<td>-8.4472E-06</td>
<td>-8.2708E-07</td>
<td>-1.7148E-07</td>
</tr>
<tr>
<td>A16</td>
<td>-1.2301E-05</td>
<td>6.7621E-07</td>
<td>1.3310E-08</td>
<td>1.9342E-09</td>
</tr>
</tbody>
</table>

[0169] 第二实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
[0171]

<table>
<thead>
<tr>
<th>第二实施例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f (毫米)</td>
<td>4.88</td>
<td>Ring (毫米)</td>
<td>∞</td>
</tr>
<tr>
<td>Fno</td>
<td>1.85</td>
<td>R14/f</td>
<td>0.42</td>
</tr>
<tr>
<td>HFOV (度)</td>
<td>38.7</td>
<td>f/f12</td>
<td>1.07</td>
</tr>
<tr>
<td>Nmax</td>
<td>1.64</td>
<td>f6/f</td>
<td>-9.60</td>
</tr>
<tr>
<td>Nmin</td>
<td>1.54</td>
<td>(f/f6)+(f/f7)</td>
<td>-1.51</td>
</tr>
<tr>
<td>V6</td>
<td>23.5</td>
<td>BF/f</td>
<td>0.23</td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>2.38</td>
<td>TL/ImgH</td>
<td>1.65</td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>0.80</td>
<td>Td/EPD</td>
<td>2.09</td>
</tr>
<tr>
<td>ΣCT/Td</td>
<td>0.712</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0172] 〈第三实施例〉

[0173] 请参照图5及图6，其中图5绘示依样本发明第三实施例的取像装置示意图，图6由左至右依序为第三实施例的球差、像散以及畸变曲线图。由图5可该，取像装置包含摄像光学透镜组(未另标号)与电子感光元件395。摄像光学透镜组由物侧至像侧依序包含光圈300、第一透镜310、第二透镜320、第三透镜330、第四透镜340、第五透镜350、第六透镜360、第七透镜370、红外线滤除滤光元件380与成像面390。其中，电子感光元件395设置于成像面390上。摄像光学透镜组中具屈折力的透镜为七片(310-370)，且第一透镜310、第二透镜320、第三透镜330、第四透镜340、第五透镜350、第六透镜360与第七透镜370中任两相邻透镜间于光轴上均具有一空气间隔。

[0174] 第一透镜310具有正屈折力，且为塑胶材质，其物侧表面311于近光轴处为凸面，其像侧表面312于近光轴处为凹面，其两表面皆为非球面。

[0175] 第二透镜320具有正屈折力，且为塑胶材质，其物侧表面321于近光轴处为凹面，其像侧表面322于近光轴处为凸面，其两表面皆为非球面。

[0176] 第三透镜330具有负屈折力，且为塑胶材质，其物侧表面331于近光轴处为凸面，其像侧表面332于近光轴处为凹面，其两表面皆为非球面。

[0177] 第四透镜340具有正屈折力，且为塑胶材质，其物侧表面341于近光轴处为凸面，其像侧表面342于近光轴处为凹面，其两表面皆为非球面。

[0178] 第五透镜350具有负屈折力，且为塑胶材质，其物侧表面351于近光轴处为凹面，其像侧表面352于近光轴处为凸面，其两表面皆为非球面。

[0179] 第六透镜360具有负屈折力，且为塑胶材质，其物侧表面361于近光轴处为凹面，其像侧表面362于近光轴处为凸面，其像侧表面362于离轴处具有至少一凹面，其两表面皆为非球面。

[0180] 第七透镜370具有负屈折力，且为塑胶材质，其物侧表面371于近光轴处为凹面，其像侧表面372于近光轴处为凹面，其像侧表面372于离轴处具有至少一凸面，其两表面皆为非球面。
红外线滤除滤光元件380的材质为玻璃，其设置于第七透镜370及成像面390之间，并不影响摄像光学透镜组的焦距。

请配合参照下列表五以及表六。

表五、第三实施例

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半径</th>
<th>厚度</th>
<th>材质</th>
<th>折射率</th>
<th>色散系数</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被摄物</td>
<td>平面</td>
<td>无限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>-0.519</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透镜</td>
<td>2.654 (ASP)</td>
<td>0.687</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>14.875 (ASP)</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透镜</td>
<td>-96.942 (ASP)</td>
<td>0.526</td>
<td>塑胶</td>
<td>1.514</td>
<td>56.8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-32.999 (ASP)</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透镜</td>
<td>2.864 (ASP)</td>
<td>0.330</td>
<td>塑胶</td>
<td>1.640</td>
<td>23.3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.917 (ASP)</td>
<td>0.577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透镜</td>
<td>18.964 (ASP)</td>
<td>1.187</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-1.776 (ASP)</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>第五透镜</td>
<td>-1.409 (ASP)</td>
<td>0.643</td>
<td>塑胶</td>
<td>1.640</td>
<td>23.3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-1.829 (ASP)</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>第六透镜</td>
<td>-8.873 (ASP)</td>
<td>0.400</td>
<td>塑胶</td>
<td>1.640</td>
<td>23.3</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-17.994 (ASP)</td>
<td>1.073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>第七透镜</td>
<td>-32.658 (ASP)</td>
<td>0.500</td>
<td>塑胶</td>
<td>1.535</td>
<td>55.7</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2.551 (ASP)</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>红外线滤除滤光元件</td>
<td>平面</td>
<td>0.300</td>
<td>玻璃</td>
<td>1.517</td>
<td>64.2</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>平面</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>成像面</td>
<td>平面</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

参考波长(d-line)为 587.6 nm
表六、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-1.7181E+00</td>
<td>1.1104E+00</td>
<td>-2.0000E+01</td>
<td>-1.0000E+00</td>
<td>-8.9149E-02</td>
</tr>
<tr>
<td>A4</td>
<td>9.5611E-03</td>
<td>-2.4090E-02</td>
<td>-3.4435E-03</td>
<td>3.6835E-02</td>
<td>-7.0674E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.7019E-03</td>
<td>1.8135E-02</td>
<td>2.0716E-02</td>
<td>-1.3171E-02</td>
<td>2.5334E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-2.1882E-03</td>
<td>-7.5777E-03</td>
<td>-1.6290E-02</td>
<td>4.7648E-03</td>
<td>-2.6272E-02</td>
</tr>
<tr>
<td>A10</td>
<td>1.6773E-04</td>
<td>5.4750E-03</td>
<td>1.1487E-02</td>
<td>-6.6511E-03</td>
<td>1.4841E-02</td>
</tr>
<tr>
<td>A12</td>
<td>5.6189E-04</td>
<td>5.6842E-04</td>
<td>-5.6982E-04</td>
<td>5.3854E-03</td>
<td>-5.2035E-03</td>
</tr>
<tr>
<td>A14</td>
<td>-1.6823E-04</td>
<td>-7.5474E-04</td>
<td>-1.2285E-03</td>
<td>-2.1163E-03</td>
<td>1.0445E-03</td>
</tr>
<tr>
<td>A16</td>
<td>1.2862E-05</td>
<td>7.4297E-05</td>
<td>2.3330E-04</td>
<td>3.5464E-04</td>
<td>-7.4689E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-1.9940E+00</td>
<td>-1.0000E+00</td>
<td>-3.4848E+00</td>
<td>-1.3857E+00</td>
<td>-3.6772E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-5.7775E-02</td>
<td>-9.4863E-03</td>
<td>8.5885E-03</td>
<td>1.2328E-01</td>
<td>5.9384E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.3846E-02</td>
<td>3.0457E-03</td>
<td>-2.9727E-02</td>
<td>-7.7829E-02</td>
<td>-3.0931E-02</td>
</tr>
</tbody>
</table>

A8	-1.8688E-02	-1.0812E-02	1.7657E-02	4.2569E-02	1.1483E-02
A10	5.8132E-03	1.3845E-02	-2.4281E-03	-1.5673E-02	-3.9964E-03
A12	-5.0051E-04	-8.6161E-03	-1.5652E-03	3.4435E-03	8.0624E-04
A14	-6.4496E-05	2.5655E-03	6.3476E-04	-3.7128E-04	-6.7726E-05
A16	3.2961E-06	-2.8547E-04	-6.4192E-05	1.1565E-05	7.2106E-07

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-9.9342E+00</td>
<td>-2.0000E+01</td>
<td>2.6238E+00</td>
<td>-9.2828E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-1.3120E-02</td>
<td>-6.5533E-02</td>
<td>-8.3641E-02</td>
<td>-3.3705E-02</td>
</tr>
<tr>
<td>A6</td>
<td>4.5857E-03</td>
<td>3.0002E-02</td>
<td>1.6838E-02</td>
<td>7.2650E-03</td>
</tr>
<tr>
<td>A8</td>
<td>-7.5794E-03</td>
<td>-1.1493E-02</td>
<td>-6.8703E-04</td>
<td>-9.9339E-04</td>
</tr>
<tr>
<td>A10</td>
<td>4.3871E-03</td>
<td>2.9666E-03</td>
<td>-1.7616E-04</td>
<td>8.0847E-05</td>
</tr>
<tr>
<td>A12</td>
<td>-1.5578E-03</td>
<td>-4.1297E-04</td>
<td>2.9158E-05</td>
<td>-3.9800E-06</td>
</tr>
<tr>
<td>A14</td>
<td>2.7939E-04</td>
<td>2.8544E-05</td>
<td>-1.8236E-06</td>
<td>1.1008E-07</td>
</tr>
<tr>
<td>A16</td>
<td>-1.8643E-05</td>
<td>-7.8531E-07</td>
<td>4.3320E-08</td>
<td>-1.3508E-09</td>
</tr>
</tbody>
</table>

[0187] 第三实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
请参照图7及图8，其中图7绘示依照本发明第四实施例的取景装置示意图，图8由左至右依序为第四实施例的透光度，像散及畸变曲线图，由图7可知，取景装置包含摄像光学透镜组（未另标号）与电子感光元件495。摄像光学透镜组由物侧至像侧依序包含光圈400，第一透镜410，第二透镜420，第三透镜430，第四透镜440，第五透镜450，第六透镜460，第七透镜470，红外线滤除滤光元件480与成像面490。其中，电子感光元件495设置于成像面490上。摄像光学透镜组中具屈折力的透镜为七片（410-470），且第一透镜410，第二透镜420，第三透镜430，第四透镜440，第五透镜450，第六透镜460与第七透镜470中任两相邻透镜间于光轴上均具有一空气间隔。

第一透镜410具有正屈折力，且为塑胶材质，其物侧表面411于近光轴处为凸面，其像侧表面412于远光轴处为凸面，其两表面皆为非球面。

第二透镜420具有负屈折力，且为塑胶材质，其物侧表面421于近光轴处为凸面，其像侧表面422于远光轴处为凹面，其两表面皆为非球面。

第三透镜430具有正屈折力，且为塑胶材质，其物侧表面431于近光轴处为凸面，其像侧表面432于远光轴处为凹面，其两表面皆为非球面。

第四透镜440具有正屈折力，且为塑胶材质，其物侧表面441于近光轴处为凹面，其像侧表面442于远光轴处为凸面，其两表面皆为非球面。

第五透镜450具有负屈折力，且为塑胶材质，其物侧表面451于近光轴处为凹面，其像侧表面452于远光轴处为凸面，其两表面皆为非球面。

第六透镜460具有负屈折力，且为塑胶材质，其物侧表面461于近光轴处为凹面，其像侧表面462于远光轴处为凸面，其像侧表面462于离轴处具有至少一凹面，其两表面皆为非球面。

第七透镜470具有负屈折力，且为塑胶材质，其物侧表面471于近光轴处为凸面，其像侧表面472于近光轴处为凹面，其像侧表面472于离轴处具有至少一凸面，其两表面皆为非球面。
红外线滤除滤光元件480的材质为玻璃，其设置于第七透镜470及成像面490之间，并不影响摄像光学透镜组的焦距。

请配合参照下列表七以及表八。

<table>
<thead>
<tr>
<th>表七，第四实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(焦距)=4.95毫米(mm)，Fno(光圈值)=2.20，HFOV(半视角)=39.5度</td>
</tr>
<tr>
<td>表面</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

参考波长(d-line)为 587.6 nm
表八、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.1984E+00</td>
<td>-2.0000E+01</td>
<td>-3.9539E+00</td>
<td>-1.0000E+00</td>
<td>-7.3872E-02</td>
</tr>
<tr>
<td>A4</td>
<td>1.8254E-02</td>
<td>5.8522E-03</td>
<td>-1.4416E-02</td>
<td>-3.2867E-02</td>
<td>-6.9502E-02</td>
</tr>
<tr>
<td>A6</td>
<td>7.4376E-03</td>
<td>2.0056E-02</td>
<td>1.0732E-02</td>
<td>5.1758E-03</td>
<td>2.3333E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-1.6497E-03</td>
<td>-1.4594E-02</td>
<td>-1.9617E-02</td>
<td>-6.1430E-03</td>
<td>-2.3749E-02</td>
</tr>
<tr>
<td>A10</td>
<td>2.1642E-03</td>
<td>4.2827E-03</td>
<td>8.1120E-03</td>
<td>-3.7714E-03</td>
<td>1.6324E-02</td>
</tr>
<tr>
<td>A12</td>
<td>4.5510E-04</td>
<td>1.7723E-03</td>
<td>-1.4627E-03</td>
<td>7.2644E-03</td>
<td>-4.1381E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>6.4058E-02</td>
<td>-1.0000E+00</td>
<td>-3.1892E+00</td>
<td>-2.4337E+00</td>
<td>-3.6426E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-5.7246E-02</td>
<td>-2.4257E-02</td>
<td>-6.9393E-03</td>
<td>1.0999E-01</td>
<td>7.5494E-02</td>
</tr>
<tr>
<td>A6</td>
<td>1.5067E-02</td>
<td>6.3470E-03</td>
<td>-3.0051E-02</td>
<td>-8.6853E-02</td>
<td>-3.4080E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-1.0411E-02</td>
<td>-2.8602E-02</td>
<td>1.5502E-02</td>
<td>4.1811E-02</td>
<td>1.0509E-02</td>
</tr>
<tr>
<td>A10</td>
<td>7.5888E-03</td>
<td>4.2214E-02</td>
<td>-5.6934E-03</td>
<td>-1.5470E-02</td>
<td>-4.0222E-03</td>
</tr>
<tr>
<td>A12</td>
<td>-4.1515E-04</td>
<td>-3.5163E-02</td>
<td>1.5975E-03</td>
<td>3.5363E-03</td>
<td>8.2851E-04</td>
</tr>
<tr>
<td>A14</td>
<td>-2.9198E-04</td>
<td>1.5258E-02</td>
<td>-3.3630E-03</td>
<td>-3.5931E-04</td>
<td>-6.3399E-05</td>
</tr>
<tr>
<td>A16</td>
<td>-1.3612E-04</td>
<td>-2.4925E-03</td>
<td>4.5399E-05</td>
<td>5.1908E-06</td>
<td>7.0454E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.0000E+01</td>
<td>1.6638E+00</td>
<td>-1.0056E+01</td>
<td>-4.1433E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-1.3110E-02</td>
<td>-1.3679E-02</td>
<td>-1.0199E-01</td>
<td>-4.6717E-02</td>
</tr>
<tr>
<td>A6</td>
<td>4.1663E-03</td>
<td>6.0142E-03</td>
<td>2.2107E-02</td>
<td>1.2403E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-2.5839E-03</td>
<td>4.9766E-04</td>
<td>-2.0722E-03</td>
<td>-2.3856E-03</td>
</tr>
<tr>
<td>A10</td>
<td>1.6573E-03</td>
<td>-4.2592E-04</td>
<td>9.7566E-05</td>
<td>3.1173E-04</td>
</tr>
<tr>
<td>A14</td>
<td>2.0555E-04</td>
<td>-1.3798E-05</td>
<td>1.8356E-07</td>
<td>1.3335E-06</td>
</tr>
<tr>
<td>A16</td>
<td>-1.4473E-05</td>
<td>7.2597E-07</td>
<td>-6.7482E-09</td>
<td>-2.7588E-08</td>
</tr>
</tbody>
</table>

[0204] 第四实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第四实施例

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
<th>表达式</th>
<th>参数</th>
<th>值</th>
<th>表达式</th>
</tr>
</thead>
<tbody>
<tr>
<td>f (毫米)</td>
<td>4.95</td>
<td>Rimg (毫米)</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fno</td>
<td>2.20</td>
<td>R14/f</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPOV (度)</td>
<td>39.5</td>
<td>f/f12</td>
<td>21.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nmax</td>
<td>1.64</td>
<td>f6/f</td>
<td>-1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nmin</td>
<td>1.54</td>
<td>(f/f6)+(f/f7)</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td>26.6</td>
<td>BF/f</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(V1+V2)/(V5+V6) | 1.58 | TL/ImgH | 1.69 |
CT6/CT7 | 0.58 | Td/EPD | 2.45 |
ΣCT/Td | 0.732 | | |

<第五实施例>

请参照图9及图10，其中图9示示依照本发明第五实施例的取像装置示意图，图10由左至右依序为第五实施例的球差、像散以及畸变曲线图。由图9可知，取像装置包含摄像光学透镜组（未另标号）与电子感光元件595。摄像光学透镜组由物侧至像侧依序包含第一透镜510、光圈500、第二透镜520、第三透镜530、第四透镜540、第五透镜550、第六透镜560、第七透镜570、红外线滤光元件580与成像面590。其中，电子感光元件595设置于成像面590上。摄像光学透镜组中具屈折力的透镜为七片（510~570），且第一透镜510、第二透镜520、第三透镜530、第四透镜540、第五透镜550、第六透镜560与第七透镜570中任两相邻透镜间于光轴上均具有一空气间隔。

第一透镜510具有正屈折力，且为塑胶材质，其物侧表面511于近光轴处为凸面，其像侧表面512于近光轴处为凹面，其两表面皆为非球面。

第二透镜520具有负屈折力，且为塑胶材质，其物侧表面521于近光轴处为凸面，其像侧表面522于近光轴处为凹面，其两表面皆为非球面。

第三透镜530具有负屈折力，且为塑胶材质，其物侧表面531于近光轴处为凸面，其像侧表面532于近光轴处为凹面，其两表面皆为非球面。

第四透镜540具有正屈折力，且为塑胶材质，其物侧表面541于近光轴处为凹面，其像侧表面542于近光轴处为凸面，其两表面皆为非球面。

第五透镜550具有负屈折力，且为塑胶材质，其物侧表面551于近光轴处为凹面，其像侧表面552于近光轴处为凸面，其两表面皆为非球面。

第六透镜560具有负屈折力，且为塑胶材质，其物侧表面561于近光轴处为凹面，其像侧表面562于近光轴处为凸面，其像侧表面562于离轴处具有至少一凹面，其两表面皆为非球面。

第七透镜570具有正屈折力，且为塑胶材质，其物侧表面571于近光轴处为凸面，其像侧表面572于近光轴处为凹面，其像侧表面572于离轴处具有至少一凸面，其两表面皆为
非球面。

[0216] 红外线滤除滤光元件580的材质为玻璃，其置于第七透镜570及成像面590之间，
并不影响摄像光学透镜组的焦距。

[0217] 请配合参照下列表九以及表十。

[0218]

表九、第五实施例

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半径</th>
<th>厚度</th>
<th>材质</th>
<th>折射率</th>
<th>色散系数</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被摄物</td>
<td>平面</td>
<td>无限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>第一透镜</td>
<td>2.504 (ASP)</td>
<td>0.604</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>98.192 (ASP)</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透镜</td>
<td>2.846 (ASP)</td>
<td>0.186</td>
<td>塑胶</td>
<td>1.639</td>
<td>23.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.828 (ASP)</td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透镜</td>
<td>2.837 (ASP)</td>
<td>0.260</td>
<td>塑胶</td>
<td>1.650</td>
<td>21.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2.658 (ASP)</td>
<td>0.513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透镜</td>
<td>-129.662 (ASP)</td>
<td>0.900</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-2.857 (ASP)</td>
<td>0.566</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>第五透镜</td>
<td>-2.049 (ASP)</td>
<td>0.320</td>
<td>塑胶</td>
<td>1.634</td>
<td>23.8</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-3.696 (ASP)</td>
<td>0.096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>第六透镜</td>
<td>-4.162 (ASP)</td>
<td>0.400</td>
<td>塑胶</td>
<td>1.583</td>
<td>30.2</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-4.634 (ASP)</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>第七透镜</td>
<td>2.248 (ASP)</td>
<td>1.342</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.850 (ASP)</td>
<td>0.750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>红外线滤除</td>
<td>平面</td>
<td>0.175</td>
<td>玻璃</td>
<td>1.517</td>
<td>64.2</td>
</tr>
<tr>
<td>17</td>
<td>滤光元件</td>
<td>平面</td>
<td>0.342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>成像面</td>
<td>平面</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

参考波长(d-line)为 587.6 nm

表十、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

23
第五实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k =</td>
<td>-2.5815E-01</td>
<td>-1.0000E+00</td>
<td>-4.4231E-01</td>
<td>-5.0321E-01</td>
<td>-1.2251E+01</td>
</tr>
<tr>
<td>A4 =</td>
<td>-6.9049E-02</td>
<td>-2.8863E-02</td>
<td>-1.3631E-02</td>
<td>8.4734E-02</td>
<td>6.4030E-02</td>
</tr>
<tr>
<td>A6 =</td>
<td>2.4276E-02</td>
<td>-4.2932E-03</td>
<td>-2.4127E-02</td>
<td>-7.6811E-02</td>
<td>-4.7353E-02</td>
</tr>
<tr>
<td>A8 =</td>
<td>-1.3529E-02</td>
<td>-1.7619E-02</td>
<td>1.6044E-02</td>
<td>4.4771E-02</td>
<td>2.1002E-02</td>
</tr>
<tr>
<td>A10 =</td>
<td>5.2102E-03</td>
<td>2.8895E-02</td>
<td>-8.3899E-03</td>
<td>-1.9403E-02</td>
<td>-9.7513E-03</td>
</tr>
<tr>
<td>A12 =</td>
<td>-1.3698E-04</td>
<td>-2.7156E-02</td>
<td>2.0384E-03</td>
<td>6.0043E-03</td>
<td>3.0120E-03</td>
</tr>
<tr>
<td>A14 =</td>
<td>3.9368E-04</td>
<td>1.1735E-02</td>
<td>-2.2973E-04</td>
<td>-1.0345E-03</td>
<td>-4.7896E-04</td>
</tr>
<tr>
<td>A16 =</td>
<td>1.0254E-04</td>
<td>-1.6835E-03</td>
<td>2.9140E-05</td>
<td>6.6727E-05</td>
<td>2.9759E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k =</td>
<td>-2.0000E+01</td>
<td>1.8773E+00</td>
<td>-1.0000E+01</td>
<td>-2.5740E+00</td>
</tr>
<tr>
<td>A4 =</td>
<td>1.0306E-01</td>
<td>-4.5589E-02</td>
<td>-1.0325E-01</td>
<td>-5.5129E-02</td>
</tr>
<tr>
<td>A6 =</td>
<td>-1.0804E-01</td>
<td>1.0615E-02</td>
<td>2.0506E-02</td>
<td>1.4051E-02</td>
</tr>
<tr>
<td>A8 =</td>
<td>6.9813E-02</td>
<td>2.8774E-03</td>
<td>-1.0636E-04</td>
<td>-2.4716E-03</td>
</tr>
<tr>
<td>A10 =</td>
<td>-3.0504E-02</td>
<td>-1.0310E-03</td>
<td>-4.2373E-04</td>
<td>2.8356E-04</td>
</tr>
<tr>
<td>A12 =</td>
<td>7.9275E-03</td>
<td>1.0351E-04</td>
<td>5.7518E-05</td>
<td>-2.1232E-05</td>
</tr>
<tr>
<td>A14 =</td>
<td>-1.1124E-03</td>
<td>-3.2345E-06</td>
<td>-3.1704E-06</td>
<td>9.3736E-07</td>
</tr>
<tr>
<td>A16 =</td>
<td>6.4862E-05</td>
<td>2.5919E-08</td>
<td>6.4419E-08</td>
<td>-1.8065E-08</td>
</tr>
<tr>
<td>参数</td>
<td>值</td>
<td>参数</td>
<td>值</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>5.10</td>
<td>Rimg</td>
<td>无穷</td>
<td></td>
</tr>
<tr>
<td>Fno</td>
<td>2.32</td>
<td>R14/f</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>HFOV</td>
<td>38.0</td>
<td>f/f12</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Nmax</td>
<td>1.65</td>
<td>f6/f</td>
<td>-20.0</td>
<td></td>
</tr>
<tr>
<td>Nmin</td>
<td>1.54</td>
<td>(f/f6)+(f/f7)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td>30.2</td>
<td>BF/f</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>1.47</td>
<td>TL/ImgH</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>0.30</td>
<td>Td/EPD</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>ΣCT/Td</td>
<td>0.731</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0224] 请参照图11及图12，其中图11示出依照本发明第六实施例的取像装置示意图，图12示出第二实施例的图示，其示出依照本发明第六实施例的取像装置示意图，图12示出第二实施例的图示。由图11及图12可知，取像装置包含摄像光学透镜组(未另标示)与电子感光元件695。摄像光学透镜组由物侧至像侧依序包含光圈600、第一透镜610、第二透镜620、第三透镜630、第四透镜640、第五透镜650、第六透镜660、第七透镜670、红外线滤除滤光元件680与成像面690。其中，电子感光元件695设置于成像面690上。摄像光学透镜组中具有光轴的透镜为七片(610～670)，且第一透镜610、第二透镜620、第三透镜630、第四透镜640、第五透镜650、第六透镜660与第七透镜670中任两相邻透镜间于光轴上均具有一定一空气间隔。

[0226] 第一透镜610具有正屈折率，且为玻璃材质，其物侧表面611于近光轴处为凸面，其像侧表面612于远光轴处为凹面，其两表面皆为非球面。

[0227] 第二透镜620具有负屈折率，且为塑胶材质，其物侧表面621于近光轴处为凹面，其像侧表面622于远光轴处为凸面，其两表面皆为非球面。

[0228] 第三透镜630具有负屈折率，且为塑胶材质，其物侧表面631于近光轴处为凸面，其像侧表面632于远光轴处为凹面，其两表面皆为非球面。

[0229] 第四透镜640具有正屈折率，且为塑胶材质，其物侧表面641于近光轴处为凹面，其像侧表面642于远光轴处为凸面，其两表面皆为非球面。

[0230] 第五透镜650具有负屈折率，且为塑胶材质，其物侧表面651于近光轴处为凹面，其像侧表面652于远光轴处为凹面，其两表面皆为非球面。

[0231] 第六透镜660具有负屈折率，且为塑胶材质，其物侧表面661于近光轴处为凹面，其像侧表面662于远光轴处为凸面，其像侧表面662于离轴处具有至少一凹面，其两表面皆为非球面。

[0232] 第七透镜670具有正屈折率，且为塑胶材质，其物侧表面671于近光轴处为凸面，其像侧表面672于远光轴处为凹面，其像侧表面672于离轴处具有至少一凸面，其两表面皆为非球面。

[0233] 红外线滤除滤光元件680的材质为玻璃，其设置于第七透镜670及成像面690之间，并不影响摄像光学透镜组的焦距。
请配合参照下列表十一以及表十二。

<table>
<thead>
<tr>
<th>表十一. 第六实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>f(焦距)=5.56毫米(mm)；Fno(光圈值)=2.02；HFOV(半视角)=35.5度</td>
</tr>
<tr>
<td>表面</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

参考波长(d-line)为587.6 nm
表十二、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-1.1813E+00</td>
<td>5.0000E+00</td>
<td>-2.0000E+01</td>
<td>-1.0000E+00</td>
<td>-1.4393E+00</td>
</tr>
<tr>
<td>A4</td>
<td>1.2132E-02</td>
<td>-1.8007E-02</td>
<td>1.7602E-02</td>
<td>4.0614E-02</td>
<td>-7.6971E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.0374E-03</td>
<td>3.1016E-02</td>
<td>1.5857E-02</td>
<td>-1.5376E-02</td>
<td>3.0306E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-6.5296E-04</td>
<td>-2.0414E-02</td>
<td>-1.9551E-02</td>
<td>4.7550E-03</td>
<td>-2.2099E-02</td>
</tr>
<tr>
<td>A10</td>
<td>1.8544E-04</td>
<td>4.7545E-03</td>
<td>9.9894E-03</td>
<td>-4.5014E-03</td>
<td>1.3608E-02</td>
</tr>
<tr>
<td>A12</td>
<td>4.0026E-04</td>
<td>3.5216E-03</td>
<td>-9.0284E-04</td>
<td>5.3073E-03</td>
<td>-5.0663E-03</td>
</tr>
<tr>
<td>A14</td>
<td>-2.3397E-04</td>
<td>-2.8093E-03</td>
<td>-1.1730E-03</td>
<td>-2.5802E-03</td>
<td>1.3619E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-3.2512E+00</td>
<td>-1.0000E+00</td>
<td>-2.1713E+00</td>
<td>-1.2168E+00</td>
<td>-4.9363E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-5.5979E-02</td>
<td>-1.9923E-02</td>
<td>5.8113E-02</td>
<td>1.7429E-01</td>
<td>9.5272E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.5605E-02</td>
<td>9.9231E-03</td>
<td>-6.9149E-02</td>
<td>-1.2763E-01</td>
<td>-7.4941E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-1.8492E-02</td>
<td>-2.2781E-02</td>
<td>2.9768E-02</td>
<td>5.7755E-02</td>
<td>3.5033E-02</td>
</tr>
<tr>
<td>A10</td>
<td>7.0880E-03</td>
<td>2.3805E-02</td>
<td>-7.9752E-03</td>
<td>-1.7052E-02</td>
<td>-1.0742E-02</td>
</tr>
<tr>
<td>A12</td>
<td>-3.2849E-04</td>
<td>-1.5228E-02</td>
<td>1.4310E-03</td>
<td>3.2518E-03</td>
<td>2.1626E-03</td>
</tr>
<tr>
<td>A14</td>
<td>-1.7340E-04</td>
<td>5.1929E-03</td>
<td>-1.8320E-04</td>
<td>-3.5057E-04</td>
<td>-2.5246E-04</td>
</tr>
<tr>
<td>A16</td>
<td>-3.2043E-05</td>
<td>-6.7214E-04</td>
<td>1.5070E-05</td>
<td>1.4724E-05</td>
<td>1.2558E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-9.9342E+00</td>
<td>-2.0000E+01</td>
<td>-1.0000E+01</td>
<td>-7.3715E+00</td>
</tr>
<tr>
<td>A4</td>
<td>7.5893E-02</td>
<td>1.4884E-02</td>
<td>-1.4877E-01</td>
<td>-6.1044E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-7.4416E-02</td>
<td>-2.2606E-02</td>
<td>4.3400E-02</td>
<td>1.8517E-02</td>
</tr>
<tr>
<td>A8</td>
<td>3.4393E-02</td>
<td>6.9648E-03</td>
<td>-5.6536E-03</td>
<td>-3.1990E-03</td>
</tr>
<tr>
<td>A10</td>
<td>-1.1119E-02</td>
<td>-1.0599E-03</td>
<td>3.5101E-04</td>
<td>3.3505E-04</td>
</tr>
<tr>
<td>A12</td>
<td>2.2788E-03</td>
<td>9.2994E-05</td>
<td>-5.3341E-06</td>
<td>-2.2349E-05</td>
</tr>
</tbody>
</table>

[0238]

| A14 | -2.6134E-04 | -4.7387E-06 | -4.5200E-07 | 8.9583E-07 |
| A16 | 1.2819E-05 | 1.1372E-07 | 1.7050E-08 | -1.6354E-08 |

[0239] 第六实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第八实施例

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
<th>值</th>
<th>注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>f（毫米）</td>
<td>5.56</td>
<td>R14/f</td>
<td>∞</td>
</tr>
<tr>
<td>Fno</td>
<td>2.02</td>
<td>R14/f</td>
<td>0.35</td>
</tr>
<tr>
<td>HFOV（度）</td>
<td>35.5</td>
<td>π/f12</td>
<td>1.06</td>
</tr>
<tr>
<td>Nmax</td>
<td>1.64</td>
<td>f6/f</td>
<td>-7.07</td>
</tr>
<tr>
<td>Nmin</td>
<td>1.54</td>
<td>(f/f6)+(f/f7)</td>
<td>-1.41</td>
</tr>
<tr>
<td>V6</td>
<td>55.9</td>
<td>BF/f</td>
<td>0.19</td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>1.09</td>
<td>TL/ImgH</td>
<td>1.79</td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>1.37</td>
<td>Td/EPD</td>
<td>2.21</td>
</tr>
<tr>
<td>ΣCT/Td</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【0241】《第七实施例》

【0242】请参照图13及图14，其中图13绘示依照本发明第七实施例的取像装置示意图，图14由左至右依次为第七实施例的球差、象散以及畸变曲线图。由图13可知，取像装置包含摄像光学透镜组(未另标号)与电子感光元件795。摄像光学透镜组由物侧至像侧依序包含第一透镜710、光圈700、第二透镜720、第三透镜730、第四透镜740、第五透镜750、第六透镜760、第七透镜770、红外线滤除滤光元件780与成像面790。其中，电子感光元件795设置于成像面790上。摄像光学透镜组中具屈折力的透镜为七片(710-770)，且第一透镜710、第二透镜720、第三透镜730、第四透镜740、第五透镜750、第六透镜760与第七透镜770中任两相邻透镜间于光轴上均具有一空气间隔。

【0243】第一透镜710具有正屈折力，且为塑胶材质，其物侧表面711于近光轴处为凸面，其像侧表面712于近光轴处为凹面，其两表面皆为非球面。

【0244】第二透镜720具有负屈折力，且为塑胶材质，其物侧表面721于近光轴处为凸面，其像侧表面722于近光轴处为凹面，其两表面皆为非球面。

【0245】第三透镜730具有正屈折力，且为塑胶材质，其物侧表面731于近光轴处为凹面，其像侧表面732于近光轴处为凸面，其两表面皆为非球面。

【0246】第四透镜740具有负屈折力，且为塑胶材质，其物侧表面741于近光轴处为凹面，其像侧表面742于近光轴处为凹面，其两表面皆为非球面。

【0247】第五透镜750具有正屈折力，且为塑胶材质，其物侧表面751于近光轴处为凹面，其像侧表面752于近光轴处为凸面，其两表面皆为非球面。

【0248】第六透镜760具有负屈折力，且为塑胶材质，其物侧表面761于近光轴处为凹面，其像侧表面762于近光轴处为凸面，其像侧表面762于离轴处具有至少一凹面，其两表面皆为非球面。

【0249】第七透镜770具有负屈折力，且为塑胶材质，其物侧表面771于近光轴处为凸面，其像侧表面772于近光轴处为凸面，其像侧表面772于离轴处具有至少一凸面，其两表面皆为非球面。
红外线滤除滤光元件780的材质为玻璃，其设置于第七透镜770及成像面790之间，并不影响摄像光学透镜组的焦距。

请配合参照下列表十三以及表十四。

表十二、第7实施例

<table>
<thead>
<tr>
<th>表面</th>
<th>表面</th>
<th>曲率半径</th>
<th>厚度</th>
<th>材质</th>
<th>折射率</th>
<th>色散系数</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被摄物</td>
<td>平面</td>
<td>无限</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>第一透镜</td>
<td>2.714 (ASP)</td>
<td>0.453</td>
<td>塑胶</td>
<td>1.570</td>
<td>57.0</td>
<td>5.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>53.896 (ASP)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透镜</td>
<td>3.480 (ASP)</td>
<td>0.240</td>
<td>塑胶</td>
<td>1.670</td>
<td>20.0</td>
<td>-15.11</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2.518 (ASP)</td>
<td>0.320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透镜</td>
<td>-46.634 (ASP)</td>
<td>0.552</td>
<td>塑胶</td>
<td>1.570</td>
<td>57.0</td>
<td>5.40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-2.902 (ASP)</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透镜</td>
<td>3.908 (ASP)</td>
<td>0.240</td>
<td>塑胶</td>
<td>1.670</td>
<td>20.0</td>
<td>-10.13</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2.419 (ASP)</td>
<td>0.584</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>第五透镜</td>
<td>-2.563 (ASP)</td>
<td>0.300</td>
<td>塑胶</td>
<td>1.670</td>
<td>20.0</td>
<td>19.05</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-2.235 (ASP)</td>
<td>0.276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>第六透镜</td>
<td>-7.575 (ASP)</td>
<td>0.820</td>
<td>塑胶</td>
<td>1.570</td>
<td>57.0</td>
<td>-14.59</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-88.329 (ASP)</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>第七透镜</td>
<td>2.600 (ASP)</td>
<td>0.810</td>
<td>塑胶</td>
<td>1.570</td>
<td>57.0</td>
<td>-10.28</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.597 (ASP)</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>红外线滤除滤光元件</td>
<td>平面</td>
<td>0.300</td>
<td>玻璃</td>
<td>1.517</td>
<td>64.2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>平面</td>
<td>0.331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>成像面</td>
<td>平面</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

参考波长(d-line)为 587.6 nm
表十四、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>2.6177E-01</td>
<td>-6.5250E+00</td>
<td>1.8576E+00</td>
<td>-1.6501E-01</td>
<td>-5.0000E+01</td>
</tr>
<tr>
<td>A4</td>
<td>-2.5356E-02</td>
<td>-5.7176E-02</td>
<td>-7.1846E-02</td>
<td>-4.5661E-02</td>
<td>1.6108E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-1.9213E-02</td>
<td>4.5632E-02</td>
<td>7.5251E-02</td>
<td>3.2750E-02</td>
<td>-1.7588E-02</td>
</tr>
<tr>
<td>A8</td>
<td>7.6342E-03</td>
<td>-4.7487E-02</td>
<td>-4.2279E-02</td>
<td>-1.4867E-02</td>
<td>1.6199E-02</td>
</tr>
<tr>
<td>A10</td>
<td>-1.7463E-02</td>
<td>2.0988E-02</td>
<td>1.5502E-02</td>
<td>8.2797E-03</td>
<td>-9.0024E-03</td>
</tr>
<tr>
<td>A12</td>
<td>1.1330E-02</td>
<td>-3.1010E-03</td>
<td>-2.7759E-03</td>
<td>-3.8785E-03</td>
<td>7.0617E-03</td>
</tr>
<tr>
<td>表面</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>k</td>
<td>-2.1206E+01</td>
<td>3.0000E+00</td>
<td>-1.3362E+01</td>
<td>2.7888E-01</td>
<td>-4.3508E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-6.0409E-02</td>
<td>-1.0368E-01</td>
<td>-1.3129E-02</td>
<td>9.7307E-02</td>
<td>1.1018E-01</td>
</tr>
<tr>
<td>A6</td>
<td>2.1610E-02</td>
<td>-2.6568E-03</td>
<td>-2.7323E-02</td>
<td>-8.9401E-02</td>
<td>-2.1346E-01</td>
</tr>
<tr>
<td>A8</td>
<td>-6.9670E-03</td>
<td>4.9067E-03</td>
<td>1.6072E-02</td>
<td>8.8811E-02</td>
<td>2.2001E-01</td>
</tr>
<tr>
<td>A10</td>
<td>-2.8227E-03</td>
<td>1.5674E-04</td>
<td>-3.9654E-03</td>
<td>-5.9419E-02</td>
<td>-1.4556E-01</td>
</tr>
<tr>
<td>A12</td>
<td>2.3977E-03</td>
<td>-3.4866E-03</td>
<td>-8.8260E-04</td>
<td>1.8121E-02</td>
<td>5.9059E-02</td>
</tr>
<tr>
<td>A14</td>
<td>-9.5273E-04</td>
<td>6.2578E-04</td>
<td>3.1609E-04</td>
<td>-1.6988E-03</td>
<td>-1.4344E-02</td>
</tr>
<tr>
<td>A16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2.6189E-04</td>
<td>1.6581E-03</td>
</tr>
<tr>
<td>表面</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>-1.3240E+01</td>
<td>3.0000E+00</td>
<td>-1.6524E+01</td>
<td>-6.5146E+00</td>
<td></td>
</tr>
</tbody>
</table>

[0255]

A4	1.8781E-01	4.1508E-02	-1.0099E-01	-5.6450E-02
A6	-3.1018E-01	-5.6846E-02	1.9853E-02	1.7962E-02
A8	2.7789E-01	2.8227E-02	-5.9820E-04	-4.3557E-03
A10	-1.7179E-01	-8.4691E-03	-2.0738E-04	7.0226E-04
A12	6.7580E-02	1.4798E-03	2.3117E-05	-6.9730E-05
A14	-1.5523E-02	-1.3453E-04	-6.2287E-07	3.7963E-06
A16	1.5532E-03	4.8827E-06	-1.0998E-08	-8.6093E-08

[0256]

第七实施例中，非球面的曲线方程式表示为第一实施例的形式，此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第七实施例

<table>
<thead>
<tr>
<th></th>
<th>f （毫米）</th>
<th>Rimg （毫米）</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fno</td>
<td>2.28</td>
<td>R14/f</td>
<td>0.34</td>
</tr>
<tr>
<td>HFOV</td>
<td>39.5</td>
<td>f/f12</td>
<td>0.69</td>
</tr>
<tr>
<td>Nmax</td>
<td>1.67</td>
<td>f6/f</td>
<td>-3.08</td>
</tr>
<tr>
<td>Nmin</td>
<td>1.57</td>
<td>(f/f6)+(f/f7)</td>
<td>-0.78</td>
</tr>
<tr>
<td>V6</td>
<td>57.0</td>
<td>BF/f</td>
<td>0.24</td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>1.00</td>
<td>TL/ImgH</td>
<td>1.48</td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>1.01</td>
<td>Td/EPD</td>
<td>2.31</td>
</tr>
<tr>
<td>ΣCT/Td</td>
<td>0.713</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

〈第八实施例〉

请参照图15及图16，其中图15经示依照本发明第八实施例的取像装置示意图，图16由左至右依序为第八实施例的球差、像散以及畸变曲线图。由图15可知，取像装置包含摄像光学透镜组（未另标号）与电子感光元件385。摄像光学透镜组由物侧至像侧依序包含光圈800，第一透镜810，第二透镜820，第三透镜830，第四透镜840，第五透镜850，第六透镜860，第七透镜870，红外线滤除滤光元件880与成像面890。其中，电子感光元件385设置于成像面890上。摄像光学透镜组中具屈折力的透镜为七片（810-870），且第一透镜810，第二透镜820，第三透镜830，第四透镜840，第五透镜850，第六透镜860与第七透镜870中任两相邻透镜间于光轴上均具有一空气间隔。

第一透镜810具有正屈折力，且为塑胶材质，其物侧表面811于近光轴处为凸面，其像侧表面812于近光轴处为凹面，其两表面皆为非球面。

第二透镜820具有负屈折力，且为塑胶材质，其物侧表面821于近光轴处为凹面，其像侧表面822于近光轴处为凹面，其两表面皆为非球面。

第三透镜830具有正屈折力，且为塑胶材质，其物侧表面831于近光轴处为凸面，其像侧表面832于近光轴处为凸面，其两表面皆为非球面。

第四透镜840具有正屈折力，且为塑胶材质，其物侧表面841于近光轴处为凸面，其像侧表面842于近光轴处为凹面，其两表面皆为非球面。

第五透镜850具有正屈折力，且为塑胶材质，其物侧表面851于近光轴处为凹面，其像侧表面852于近光轴处为凸面，其两表面皆为非球面。

第六透镜860具有正屈折力，且为塑胶材质，其物侧表面861于近光轴处为凹面，其像侧表面862于近光轴处为凸面，其像侧表面862于离轴处具有至少一凹面，其两表面皆为非球面。

第七透镜870具有负屈折力，且为塑胶材质，其物侧表面871于近光轴处为凸面，其像侧表面872于近光轴处为凹面，其像侧表面872于离轴处具有至少一凸面，其两表面皆为非球面。
红外线滤除滤光元件880的材质为玻璃，其设置于第七透镜870及成像面890之间，并不影响摄像光学透镜组的焦距。

请配合参照下列表十五以及表十六。

表十五、第八实施例

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半径</th>
<th>厚度</th>
<th>材质</th>
<th>折射率</th>
<th>色散系数</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被摄物</td>
<td>平面</td>
<td>无限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>-0.299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透镜</td>
<td>2.126 (ASP)</td>
<td>0.586</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>35.690 (ASP)</td>
<td>0.152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透镜</td>
<td>-123.305 (ASP)</td>
<td>0.240</td>
<td>塑胶</td>
<td>1.639</td>
<td>23.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6.004 (ASP)</td>
<td>0.275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透镜</td>
<td>19.420 (ASP)</td>
<td>0.501</td>
<td>塑胶</td>
<td>1.544</td>
<td>55.9</td>
</tr>
</tbody>
</table>

7	-63.149 (ASP)	0.085					
8	第四透镜	7.941 (ASP)	0.291	塑胶	1.544	55.9	26.46
9		17.484 (ASP)	0.545				
10	第五透镜	-3.202 (ASP)	0.300	塑胶	1.639	23.5	15.46
11		-2.507 (ASP)	0.228				
12	第六透镜	-5.237 (ASP)	1.002	塑胶	1.639	23.5	-8.85
13		-75.680 (ASP)	0.050				
14	第七透镜	2.405 (ASP)	0.803	塑胶	1.535	55.7	-19.16
15		1.721 (ASP)	0.500				
16	红外线滤除 滤光元件	平面	0.145	玻璃	1.517	64.2	-
17		平面	0.726				
18	成像面	-100.000	-				

参考波长(d-line)为 587.6 nm
表六，非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k =</td>
<td>-8.4792E-01</td>
<td>-5.0000E+01</td>
<td>-5.0000E+01</td>
<td>3.0000E+00</td>
<td>-5.0000E+01</td>
</tr>
<tr>
<td>A4 =</td>
<td>-1.2217E-02</td>
<td>-3.4832E-02</td>
<td>-6.8738E-02</td>
<td>-5.1022E-02</td>
<td>-1.9883E-02</td>
</tr>
<tr>
<td>A6 =</td>
<td>-9.6481E-03</td>
<td>2.7307E-02</td>
<td>8.6151E-02</td>
<td>6.6668E-02</td>
<td>-1.7993E-02</td>
</tr>
<tr>
<td>A8 =</td>
<td>9.2871E-03</td>
<td>-2.5878E-02</td>
<td>-4.8806E-02</td>
<td>-3.8122E-02</td>
<td>3.3538E-03</td>
</tr>
<tr>
<td>A10</td>
<td>-1.7884E-02</td>
<td>1.5484E-02</td>
<td>1.7252E-02</td>
<td>1.3892E-02</td>
<td>-5.8137E-03</td>
</tr>
<tr>
<td>A12</td>
<td>1.1448E-02</td>
<td>-7.1978E-03</td>
<td>-2.2554E-04</td>
<td>1.3060E-03</td>
<td>5.6484E-03</td>
</tr>
<tr>
<td>A14</td>
<td>-4.1224E-03</td>
<td>8.9157E-04</td>
<td>-7.5028E-04</td>
<td>-7.2811E-05</td>
<td>9.1087E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k =</td>
<td>3.0000E+00</td>
<td>-3.1927E+01</td>
<td>-2.0000E+01</td>
<td>1.3188E+00</td>
<td>-4.1566E+00</td>
</tr>
<tr>
<td>A4 =</td>
<td>-8.6021E-02</td>
<td>-1.2520E-01</td>
<td>-5.2992E-02</td>
<td>8.8621E-02</td>
<td>1.8450E-01</td>
</tr>
<tr>
<td>A6 =</td>
<td>1.8783E-02</td>
<td>2.4221E-02</td>
<td>-9.8960E-03</td>
<td>-1.2699E-01</td>
<td>-2.9164E-01</td>
</tr>
<tr>
<td>A8 =</td>
<td>-1.0889E-02</td>
<td>6.9390E-03</td>
<td>2.5370E-02</td>
<td>1.0551E-01</td>
<td>2.3118E-01</td>
</tr>
<tr>
<td>A10</td>
<td>-2.4480E-03</td>
<td>3.9572E-04</td>
<td>-8.8653E-03</td>
<td>-5.5011E-02</td>
<td>-1.2069E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k =</td>
<td>-2.0000E+01</td>
<td>3.0000E+00</td>
<td>-1.8695E+00</td>
<td>-5.1032E+00</td>
</tr>
<tr>
<td>A4 =</td>
<td>2.0036E-01</td>
<td>6.2486E-02</td>
<td>-1.1617E-01</td>
<td>-5.1914E-02</td>
</tr>
<tr>
<td>A6 =</td>
<td>-2.8545E-01</td>
<td>-5.4661E-02</td>
<td>1.9734E-02</td>
<td>8.9068E-03</td>
</tr>
<tr>
<td>A8 =</td>
<td>2.1870E-01</td>
<td>2.0497E-02</td>
<td>-5.5266E-04</td>
<td>-7.1281E-04</td>
</tr>
<tr>
<td>A10</td>
<td>-1.2110E-01</td>
<td>-4.5895E-03</td>
<td>-2.0462E-04</td>
<td>-5.9099E-05</td>
</tr>
<tr>
<td>A12</td>
<td>4.5063E-02</td>
<td>6.1766E-04</td>
<td>2.2917E-05</td>
<td>1.7836E-05</td>
</tr>
<tr>
<td>A14</td>
<td>-1.0025E-02</td>
<td>-4.6399E-05</td>
<td>-6.6368E-07</td>
<td>-1.3597E-06</td>
</tr>
<tr>
<td>A16</td>
<td>9.7469E-04</td>
<td>1.4967E-06</td>
<td>-1.2720E-08</td>
<td>3.4399E-08</td>
</tr>
</tbody>
</table>

[0273] 第八实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第八实施例

<table>
<thead>
<tr>
<th>参数</th>
<th>数值</th>
<th>参数</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>f（毫米）</td>
<td>5.42</td>
<td>Rimg（毫米）</td>
<td>-100.00</td>
</tr>
<tr>
<td>Fno</td>
<td>2.40</td>
<td>R14/f</td>
<td>0.32</td>
</tr>
<tr>
<td>HFOV（度）</td>
<td>36.0</td>
<td>f/f12</td>
<td>0.81</td>
</tr>
<tr>
<td>Nmax</td>
<td>1.64</td>
<td>f6/f</td>
<td>-1.63</td>
</tr>
<tr>
<td>Nmin</td>
<td>1.54</td>
<td>(f/f6)+(f/f7)</td>
<td>-0.90</td>
</tr>
<tr>
<td>V6</td>
<td>23.5</td>
<td>BF/f</td>
<td>0.25</td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>1.69</td>
<td>TL/ImgH</td>
<td>1.61</td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>1.25</td>
<td>Td/EPD</td>
<td>2.24</td>
</tr>
<tr>
<td>ΣCT/Td</td>
<td>0.736</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0275] 《第九实施例》
[0276] 请参照图17及图18，其中图17绘示依照本发明第九实施例的取像装置示意图，图18由左至右依序为第九实施例的球差、像散以及畸变曲线图。由图17可知，取像装置包含摄像光学透镜组（未另标号）与电子感光元件995。摄像光学透镜组由物侧至像侧依序包含第一透镜910、第二透镜920、光圈900、第三透镜930、第四透镜940、第五透镜950、第六透镜960、第七透镜970、红外线滤除滤光元件980与成像面990。其中，电子感光元件995设置于成像面990上。摄像光学透镜组中具屈折力的透镜为七片（910-970），且第一透镜910、第二透镜920、第三透镜930、第四透镜940、第五透镜950、第六透镜960与第七透镜970中任两相邻透镜间于光轴上均具有一空气间隔。
[0277] 第一透镜910具有负屈折力，且为塑胶材质，其物侧表面911于近光轴处为凸面，其像侧表面912于近光轴处为凹面，其两表面皆为非球面。
[0278] 第二透镜920具有正屈折力，且为塑胶材质，其物侧表面921于近光轴处为凸面，其像侧表面922于近光轴处为凸面，其两表面皆为非球面。
[0279] 第三透镜930具有负屈折力，且为塑胶材质，其物侧表面931于近光轴处为凸面，其像侧表面932于近光轴处为凹面，其两表面皆为非球面。
[0280] 第四透镜940具有正屈折力，且为塑胶材质，其物侧表面941于近光轴处为凸面，其像侧表面942于近光轴处为凸面，其两表面皆为非球面。
[0281] 第五透镜950具有负屈折力，且为塑胶材质，其物侧表面951于近光轴处为凹面，其像侧表面952于近光轴处为凸面，其两表面皆为非球面。
[0282] 第六透镜960具有负屈折力，且为塑胶材质，其物侧表面961于近光轴处为凹面，其像侧表面962于近光轴处为凸面，其像侧表面962于离轴处具有至少一凹面，其两表面皆为非球面。
[0283] 第七透镜970具有负屈折力，且为塑胶材质，其物侧表面971于近光轴处为凸面，其像侧表面972于近光轴处为凹面，其像侧表面972于离轴处具有至少一凸面，其两表面皆为非球面。
[0284] 红外线滤除滤光元件的材质为玻璃，其设置于第七透镜770及成像面990之间，并不影响摄像光学透镜组的焦距。

[0285] 请配合参照下列表十七以及表十八。

<table>
<thead>
<tr>
<th>表十七，第九实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(焦距) = 4.66 毫米(mm)，Fno(光圈值) = 1.95，HFOV(半视角) = 36.8 度</td>
</tr>
<tr>
<td>表面</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2	2.890 (ASP)	0.072					
3	第二透镜	3.740 (ASP)	0.745	塑胶	1.544	55.9	5.22
4	-10.951 (ASP)	-0.005					
5	光圈	平面	0.055				
6	第三透镜	2.196 (ASP)	0.351	塑胶	1.639	23.5	-8.84
7	1.482 (ASP)	0.474					
8	第四透镜	15.242 (ASP)	1.291	塑胶	1.544	55.9	2.49
9	-1.456 (ASP)	0.050					
10	第五透镜	-1.435 (ASP)	0.545	塑胶	1.639	23.5	-19.95
11	-1.856 (ASP)	0.050					
12	第六透镜	-4.999 (ASP)	0.400	塑胶	1.639	23.5	-18.65
13	-8.879 (ASP)	0.922					
14	第七透镜	7.627 (ASP)	0.400	塑胶	1.530	55.8	-4.43
15	1.762 (ASP)	0.500					
16	红外线滤除滤光元件	平面	0.200	玻璃	1.517	64.2	-
17	平面	0.402					
18	成像面	平面	-				

参考波长(d-line)为 587.6 nm
表十八、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=`</td>
<td>-1.1705E+01</td>
<td>-2.0000E+01</td>
<td>2.2375E-01</td>
<td>-1.0000E+00</td>
<td>1.3528E+00</td>
</tr>
<tr>
<td>A4=`</td>
<td>3.2982E-03</td>
<td>-1.6039E-02</td>
<td>-4.7497E-02</td>
<td>4.5035E-02</td>
<td>-1.1238E-01</td>
</tr>
<tr>
<td>A6=`</td>
<td>1.1557E-02</td>
<td>1.2545E-02</td>
<td>6.2982E-02</td>
<td>-1.8793E-02</td>
<td>4.1436E-02</td>
</tr>
<tr>
<td>A8=`</td>
<td>-1.4484E-02</td>
<td>-1.1491E-02</td>
<td>-6.1821E-02</td>
<td>5.5471E-03</td>
<td>-7.0479E-02</td>
</tr>
<tr>
<td>A10=</td>
<td>5.9430E-03</td>
<td>1.8071E-02</td>
<td>4.5620E-02</td>
<td>-1.7910E-02</td>
<td>5.6089E-02</td>
</tr>
<tr>
<td>A12=</td>
<td>4.9135E-03</td>
<td>1.7784E-03</td>
<td>-2.7134E-03</td>
<td>3.0907E-02</td>
<td>-3.0752E-02</td>
</tr>
<tr>
<td>A14=</td>
<td>-3.4688E-03</td>
<td>-4.3473E-03</td>
<td>-8.9671E-03</td>
<td>-2.1003E-02</td>
<td>9.8645E-03</td>
</tr>
<tr>
<td>A16=</td>
<td>5.5356E-04</td>
<td>9.5771E-04</td>
<td>2.7975E-03</td>
<td>5.4203E-03</td>
<td>-1.8627E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=`</td>
<td>-1.6625E+00</td>
<td>-1.0000E+00</td>
<td>-4.9104E+00</td>
<td>-1.1741E+00</td>
<td>-1.1941E+00</td>
</tr>
<tr>
<td>A4=`</td>
<td>-9.9903E-02</td>
<td>-1.6102E-02</td>
<td>-4.6491E-02</td>
<td>1.6986E-01</td>
<td>1.0892E-01</td>
</tr>
<tr>
<td>A6=`</td>
<td>7.2799E-02</td>
<td>5.3928E-03</td>
<td>-2.4264E-02</td>
<td>-1.7177E-01</td>
<td>-6.3928E-02</td>
</tr>
<tr>
<td>A8=`</td>
<td>-5.6398E-02</td>
<td>-1.1821E-02</td>
<td>1.7606E-02</td>
<td>1.2676E-01</td>
<td>3.3001E-02</td>
</tr>
<tr>
<td>A10=</td>
<td>2.3849E-02</td>
<td>1.4516E-02</td>
<td>4.6438E-03</td>
<td>-6.2592E-02</td>
<td>-1.6464E-02</td>
</tr>
<tr>
<td>A12=</td>
<td>-3.1719E-03</td>
<td>-1.2458E-02</td>
<td>-9.1623E-03</td>
<td>1.8705E-02</td>
<td>4.4010E-03</td>
</tr>
<tr>
<td>A14=</td>
<td>-1.3939E-03</td>
<td>5.7388E-03</td>
<td>3.5777E-03</td>
<td>-2.8008E-03</td>
<td>-4.7337E-04</td>
</tr>
<tr>
<td>表面</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>k=`</td>
<td>-1.8750E+01</td>
<td>2.1037E+00</td>
<td>-9.9792E+00</td>
<td>-3.7549E+00</td>
<td></td>
</tr>
<tr>
<td>A4=`</td>
<td>-1.8971E-02</td>
<td>-4.8658E-02</td>
<td>-1.2393E-01</td>
<td>-7.9116E-02</td>
<td></td>
</tr>
<tr>
<td>A6=`</td>
<td>2.0994E-03</td>
<td>2.9408E-02</td>
<td>2.6316E-02</td>
<td>2.5575E-02</td>
<td></td>
</tr>
<tr>
<td>A8=`</td>
<td>-1.2686E-03</td>
<td>-1.6135E-02</td>
<td>-2.9623E-03</td>
<td>-5.9009E-03</td>
<td></td>
</tr>
<tr>
<td>A10=</td>
<td>8.9254E-04</td>
<td>7.5006E-03</td>
<td>5.9593E-04</td>
<td>8.7901E-04</td>
<td></td>
</tr>
<tr>
<td>A12=</td>
<td>-1.0535E-03</td>
<td>-1.8630E-03</td>
<td>-1.1805E-04</td>
<td>-8.0630E-05</td>
<td></td>
</tr>
<tr>
<td>A14=</td>
<td>3.5660E-04</td>
<td>2.2402E-04</td>
<td>1.1148E-05</td>
<td>4.0481E-06</td>
<td></td>
</tr>
</tbody>
</table>

[0290] 第九实施例中，非球面的曲线方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第9实施例

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>f（毫米）</td>
<td>4.66</td>
</tr>
<tr>
<td>Fno</td>
<td>1.95</td>
</tr>
<tr>
<td>HFOV（度）</td>
<td>36.8</td>
</tr>
<tr>
<td>Nmax</td>
<td>1.64</td>
</tr>
<tr>
<td>Nmin</td>
<td>1.53</td>
</tr>
<tr>
<td>V6</td>
<td>23.5</td>
</tr>
<tr>
<td>(V1+V2)/(V5+V6)</td>
<td>2.38</td>
</tr>
<tr>
<td>CT6/CT7</td>
<td>1.00</td>
</tr>
<tr>
<td>f/f12</td>
<td>0.49</td>
</tr>
<tr>
<td>f6/f</td>
<td>-4.00</td>
</tr>
<tr>
<td>(f/f6)+(f/f7)</td>
<td>-1.30</td>
</tr>
<tr>
<td>BF/f</td>
<td>0.24</td>
</tr>
<tr>
<td>TL/ImgH</td>
<td>1.96</td>
</tr>
<tr>
<td>Td/EPD</td>
<td>2.35</td>
</tr>
</tbody>
</table>

ΣCT/Td | 0.712 |

[第10实施例]

请参照图19及图20，其中图19示示依照本发明第10实施例的取像装置示意图，图20由左至右依序为第10实施例的取像装置示意图。由图19可知，取像装置包含取像光学装置组（未另标号）与电子感光元件1095。每取像光学装置组由物侧至像侧依序包含光圈1000、第一透镜1010、第二透镜1020、第三透镜1030、第四透镜1040、第五透镜1050、第六透镜1060、第七透镜1070、红外线滤光元件1080与成像面1090。其中，电子感光元件1095设置于成像面1090上。取像光学装置组中每取像装置为七片（1010-1070），且第一透镜1010、第二透镜1020、第三透镜1030、第四透镜1040、第五透镜1050、第六透镜1060与第七透镜1070中任两相邻透镜间于光轴上均具有一空气间隔。

第一透镜1010具有正屈折力，且为塑胶材质，其物侧表面1011于近光轴处为凸面，其像侧表面1012于近光轴处为凹面，其两表面均具有非球面。

第二透镜1020具有负屈折力，且为塑胶材质，其物侧表面1021于近光轴处为凸面，其像侧表面1022于近光轴处为凹面，其两表面均具有非球面。

第三透镜1030具有正屈折力，且为塑胶材质，其物侧表面1031于近光轴处为凸面，其像侧表面1032于近光轴处为凹面，其两表面均具有非球面。

第四透镜1040具有正屈折力，且为塑胶材质，其物侧表面1041于近光轴处为凸面，其像侧表面1042于近光轴处为凹面，其两表面均具有非球面。

第五透镜1050具有正屈折力，且为塑胶材质，其物侧表面1051于近光轴处为凹面，其像侧表面1052于近光轴处为凸面，其两表面均具有非球面。

第六透镜1060具有负屈折力，且为塑胶材质，其物侧表面1061于近光轴处为凹面，其像侧表面1062于近光轴处为凸面，其像侧表面1062于离轴处具有至少一凹面，其两表面均具有非球面。

第七透镜1070具有负屈折力，且为塑胶材质，其物侧表面1071于近光轴处为凸面，其像侧表面1072于近光轴处为凹面，其像侧表面1072于离轴处具有至少一凹面，其两表面
皆为非球面。

[0302] 红外线滤除滤光元件1080的材质为玻璃，其设置于第七透镜1070及成像面1090之间，并不影响摄像光学透镜组的焦距。

[0303] 请配合参照下列表十九以及表二十。

[0304]

<table>
<thead>
<tr>
<th>表十九，第十实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>表面</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

参考波长(d-line)为 587.6 nm
表二十、非球面系数

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1.2795E+00</td>
<td>3.0000E+00</td>
<td>3.0000E+00</td>
<td>2.1013E+00</td>
<td>3.0000E+00</td>
</tr>
</tbody>
</table>

A4	-1.7964E-02	-1.6633E-02	-4.6330E-02	-4.3608E-02	-1.1446E-02
A6	-1.1636E-02	4.0182E-02	6.6914E-02	4.1860E-02	9.0632E-03
A8	6.5110E-03	-3.5528E-02	-5.2155E-02	-2.8023E-02	1.9374E-03
A10	-1.4533E-02	1.5392E-02	2.2288E-02	1.3064E-02	-3.0781E-03
A12	9.4285E-03	-1.7136E-03	-2.6671E-03	-5.5873E-04	5.9431E-03
A14	-3.2815E-03	-1.5988E-04	-6.7937E-04	-1.3447E-03	-1.9927E-03

<table>
<thead>
<tr>
<th>表面</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>3.0000E+00</td>
<td>-2.2256E+00</td>
<td>-2.0000E+01</td>
<td>7.2558E+00</td>
<td>-3.5437E+01</td>
</tr>
<tr>
<td>A4</td>
<td>-6.9669E-02</td>
<td>-1.1202E-01</td>
<td>-5.3757E-02</td>
<td>-8.8729E-03</td>
<td>7.0055E-02</td>
</tr>
<tr>
<td>A6</td>
<td>9.3767E-03</td>
<td>-4.1968E-03</td>
<td>-1.3177E-02</td>
<td>-6.6651E-02</td>
<td>-1.9934E-01</td>
</tr>
<tr>
<td>A8</td>
<td>-4.2644E-03</td>
<td>-2.8045E-03</td>
<td>-2.5870E-02</td>
<td>1.0343E-01</td>
<td>2.0364E-01</td>
</tr>
<tr>
<td>A10</td>
<td>-3.7333E-03</td>
<td>4.2764E-03</td>
<td>-8.7450E-03</td>
<td>-5.5950E-02</td>
<td>-1.1460E-01</td>
</tr>
<tr>
<td>A12</td>
<td>4.7940E-03</td>
<td>-3.4222E-03</td>
<td>-1.5846E-03</td>
<td>1.5114E-02</td>
<td>4.0676E-02</td>
</tr>
<tr>
<td>A14</td>
<td>-1.7823E-03</td>
<td>4.8777E-04</td>
<td>8.8938E-04</td>
<td>-2.9119E-03</td>
<td>-9.2587E-03</td>
</tr>
<tr>
<td>A16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2925E-04</td>
<td>9.9766E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.0000E+01</td>
<td>3.0000E+00</td>
<td>-9.6671E-01</td>
<td>-6.0208E+00</td>
</tr>
<tr>
<td>A4</td>
<td>1.3868E-01</td>
<td>2.0378E+00</td>
<td>-1.5455E-01</td>
<td>-5.1381E+00</td>
</tr>
<tr>
<td>A6</td>
<td>-2.4791E-01</td>
<td>-1.2082E+01</td>
<td>7.0878E-02</td>
<td>1.5217E+01</td>
</tr>
<tr>
<td>A8</td>
<td>2.0515E-01</td>
<td>3.1258E+01</td>
<td>-2.6132E-02</td>
<td>-3.4030E+01</td>
</tr>
<tr>
<td>A10</td>
<td>-1.0836E-01</td>
<td>-5.1373E+01</td>
<td>6.3128E-03</td>
<td>4.5838E-01</td>
</tr>
<tr>
<td>A12</td>
<td>3.5958E-02</td>
<td>5.4387E+01</td>
<td>-8.9322E-04</td>
<td>-3.6590E+01</td>
</tr>
<tr>
<td>A14</td>
<td>-6.9704E-03</td>
<td>-3.3677E+01</td>
<td>6.6739E-05</td>
<td>1.5235E+01</td>
</tr>
<tr>
<td>A16</td>
<td>5.9046E-04</td>
<td>9.0973E+00</td>
<td>-2.0236E-06</td>
<td>-2.2687E+00</td>
</tr>
</tbody>
</table>

[0307] 第十实施例中，非球面的圆方程式表示如第一实施例的形式。此外，下表所述的定义皆与第一实施例相同，在此不加以赘述。
第十实施例

<table>
<thead>
<tr>
<th>f (毫米)</th>
<th>Rimg (毫米)</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.55</td>
<td>0.14/f</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HFOV (度)</th>
<th>f/f12</th>
<th>0.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nmax</th>
<th>f6/f</th>
<th>-1.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nmin</th>
<th>(f/f6)+(f/f7)</th>
<th>-1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V6</th>
<th>BF/f</th>
<th>0.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V1+V2)/(V5+V6)</th>
<th>TL/ImgH</th>
<th>1.63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CT6/CT7</th>
<th>Td/EPD</th>
<th>2.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΣCT/Td</th>
<th></th>
<th>0.750</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0309] 上述取像装置可设置于电子装置内。本发明提供的摄像光学透镜组使用七片具屈折力的透镜，其中第六透镜具有负屈折力。当满足上述条件，有利于修正摄像光学透镜组在配置大光圈时所产生的像差，使摄像光学透镜组靠近成像面的屈折力配置较为均匀，有效降低摄像光学透镜组的敏感度。

[0310] 当然，本发明还可有其他多种实施例，在不背离本发明精神及其实质的情况下，熟悉本领域技术人员当可根据本发明作出各种相应的改变和变形，但这些相应的改变和变形都应属于本发明所附的权利要求书的保护范围。

[0311] 虽然本发明已以实施方式揭露如上，然其非用以限定本发明，任何熟悉此技艺者，在不脱离本发明的精神和范围内，当可作各种的更动与润饰，因此本发明的保护范围当视所附的权利要求书所界定的范围为准。
图1
图2
图3
图4
图5
图6
图7
图8
图9
图10
图11
图12
图13
图14
图15
图17
图18
图19