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Internal Power Source for Downhole Detection
System

Cross-Reference to Other Application

This application claims priority from U.S. provisional
applications 60/247,263, 60/246,681, 60/246,656 and 60/247,042,
all filed 11/07/2000 and all hereby incorporated by reference.

Background and Summary of the Invention

The present invention relates to systems, methods, and
subassemblies for drilling oil, gas, and analogous wells, and more
particularly to downhole failure detection.

Background: Downhole Bit Failure

When drilling a well it is desirable to drill as long as possible
without wearing the bit to the point of catastrophic bit failure.
Optimum bit use occurs when a bit is worn sufficiently that the
useful life of the bit has been expended, but the wear is not so
extensive that there is a high likelihood of mechanical failure which
might result in leaving a portion of the bit in the well. Poor drilling
performance, increased BHA (Bottom Hole Assembly) wear, and
more frequent fishing jobs all result from continued drilling with bits
which are in the process of mechanical failure. A system capable
of detecting the early stages of bit failure, with the additional
capability of warning the operator at the surface, would be of great
value solving the problem of drilling to the point of catastrophic bit
failure.

The innovations in this application provide a reliable,
inexpensive means of early detection and operator warning when
there is a roller cone drill bit failure. This system is technically and

1
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economically suitable for use in low cost rotary land rig drilling
operations as well as high-end offshore drilling. The solution is
able to detect impending bit failure prior to catastrophic damage to
the bit, but well after the majority of the bit life is expended. In
addition to failure detection, the innovative system is able to alert
the operator at the surface once an impending bit failure is detected.

The problem of downhole bit failure can be broken down into
two parts. The first part of the problem is to develop a failure
detection method and the second part of the problem is to develop
a method to warn the operator at the surface. Several approaches
for detecting bit failure have been considered.

It appears that some work has been done on placing sensors
directly in the drill bit assembly to monitor the bit condition. There
is some merit in placing sensors in the bit assembly, but this
methodology also has some distinct disadvantages. The main
disadvantage is the necessity of redesigning every bit which will use
the method. In addition to being costly, each new bit design will
have to accommodate the embedded sensors which might
compromise the overall design. A second disadvantage arises from
the fact that sensor connections and/or data transmission must be
made across the threaded connection on the bit to a data processing
or telemetry unit. This is difficult in practice.

Downhole Power

In any system that uses electronic components there must be
a power source. In many downhole tools disposable batteries are
used to power electronics. Batteries have the desirable
characteristics of high power density and ease of use. Batteries that
are suitable for high-temperature, downhole use have the undesirable
characteristics of high cost and difficulty of disposal. Batteries are
often the only solution for powering downhole tools requiring
relatively high power levels.

PCT/US01/47282
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Internal Power Source for Downhole Detection System
In a preferred embodiment, an instrumented sub assembly is
located above a drill bit on a drill string, the sub assembly
containing an internal power source. In this embodiment, the power
5 source converts vibrations from drilling activity into electrical
energy to power instrumentation on the sub. One embodiment
accomplishing this is with a mass-spring system where a magnet
oscillates near a coil, generating current. Of course, other variations
are possible, e.g., a coil oscillating near a stationary magnet. A

10 capacitor can be used for power storage and/or filtering.

The disclosed innovations, in various embodiments, provide
one or more of at least the following advantages:
® improved temperature range;
® battery lifetime is longer a design constraint;
15 @ cost reduction and reliability improvement in "smart" downhole
systems generally.
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Brief Description of the Drawing

The disclosed inventions will be described with reference to
the accompanying drawings, which show important sample em-
bodiments of the invention and which are incorporated in the
specification hereof by reference, wherein:

~ Figure 1 shows the sensor placement relative to the bit.

Figure 2 shows a process flow for the spectral power ratio
analysis method.

Figure 3 shows the frequency band arrangement for the
spectral power ratio analysis method.

Figure 4 shows frequency band ratios and thresholds for bit
failure detection.

Figure 5 shows monitoring of standard deviation of frequency
ratios to determine bit failure. .

Figure 6 shows a process flow for the spectral power ratio
analysis method. '

Figure 7 shows a graph of normalized bit vibrations.

Figure 8 shows a Fourier transform of the data from Figure

Figure 9 shows spectral power. analysis for sample bearings.

Figure 10 shows normalized bit vibrations with slight bearing
damage.

Figure 11 shows a fast Fourier transform of vibration data
with initial bearing damage.

Figure 12 shows spectral power analysis for sample damaged
bearings.

Figure 13 shows normalized bit vibrations with moderate
bearing damage.

Figure 14 shows a fast Fourier transform of vibration data
with moderate bearing damage.

Figure 15 shows spectral power analysis for moderately
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damaged bearings.

Figure 16 shows a drill string and sensor placement on an
instrumented sub.

Figure 17 shows the mean strain ratio method failure
indication, plotted as normalized strain against time.

Figure 18 shows a process flow for the mean strain ratio
failure detection scheme.

Figure 19 shows a section of a baseline strain gauge signal.

Figure 20 shows a plot of the frequency spectrum of the data
from Figure 19.

Figure 21 shows a time series plot of the mean strain ratio for
each of the strain gauges.

Figure 22 shows a plot of normalized strain data from one
gauge. .

Figure 23 shows a fast Fourier transform of the strain gauge
data from Figure 22.

Figure 24 shows mean strain analysis for a bearing with light
damage.

Figure 25 shows a strain gauge signal for a bearing with
moderate damage.

Figure 26 shows a fast Fourier transform of the strain data
from Figure 25.

Figure 27 shows a mean strain analysis for a bearing with
moderate damage.

Figure 28 shows analysis of data recorded under set drilling
conditions.

Figure 29 shows a strain gauge signal for a bit in the early
stages of failure. ,

Figure 30 shows mean strain analysis for a bearing in early
failure.

Figure 31 shows a mean strain analysis for a shifting load



WO 02/057589 PCT/US01/47282

10

15

20 -

25

30

condition.

Figure 32 shows an adaptive filter prediction method process
flow.

Figure 33 shows a neural net schematic.

Figure 34 shows failure indications in the adaptive filter
prediction method.

Figure 35 shows acceleration sensor readings for a bit.

Figure 36 shows acceleration prediction error for a bearing
with no damage.

Figure 37 shows a matlab simulation of an example neural
net.

Figure 38 shows acceleration data for a bit with light bearing
damage. |

Figure 39 shows acceleration prediction error. .

Figure 40 shows acceleration data for a bit with moderate
bearing damage.

Figure 41 shows acceleration prediction error.

Figure 42 shows acceleration data for a bit with heavy
bearing damage.

Figure 43 shows acceleration prediction error.

Figure 44 shows a coil power generator.

Figure 45 shows the power generator output.

Figure 46 shows an example of an open port failure
indication.

Figure 47 shows a downhole tool schematic.

Figure 48 shows a closed-open-closed port signal.

Figure 49 shows an example of binary data transmission using
static pressure levels.

Figure 50 shows an example of sensor placement on a bit.

Figure 51 shows an example failure indication with
differential sensor measurements.
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Figure 52 shows a neural net modeling a real system.

Figure 53 shows a non-recurrent real-time neural network.

Figure 54 shows a basic linear network.

Figure 55 shows a nonlinear feedforward network.

Figure 56 shows a standard "hello" signal for testing
purposes.

Figure 57 shows a corrupted and filtered signal of the
"hello."

Figure 58 shows a corrupted and filtered signal of the
"hello."

Figure 59 shows a corrupted and filtered signal of the
"hello."

Figure 60 shows the results of a linear filter.
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Detailed Description of the Preferred Embodiments

The numerous innovative teachings of the present application
will be described with particular reference to the presently preferred
embodiment (by way of example, and not of limitation).

Further Background: Adaptive Filters (Neural Networks)

A neural network can be generally described as a very flexible
nonlinear multiple input, multiple output mathematical function
which can be adjusted or “tuned” in an organized fashion to emulate
a system or process for which an input/output relationship exists.
For a given set of input/output data, a neural network is “trained”
until a particular input produces a desired output which matches the
response of the system which is being modeled. After a network is
trained, inputs which are not present in the training data set will
produce network outputs which closely match the corresponding
outputs of the actual system under the same inputs. Figure 52
illustrates the process.

Neural networks can be devised to .produce binary (1/0,
yes/no), or continuous outputs. One idea is that a mathematical
model, which describes a possibly very complex input/output
relationship, can be constructed with little or no understanding of
the input/output relationship involved in the actual system. This
ability provides a very powerful tool, which can be used to solve a
variety of problems in many fields.

Background: Artificial Intelligence (Smart System)
Applications

Artificial intelligence (where human expertise or behavior is
captured and used in decision making, design optimization, or other
complex qualitative human thinking) is one type of application in
which neural networks have been used successfully. In these
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applications the goal is usually to capture some human expertise
which is typically hard to quantify in terms of exact numerical
terms. One example of this is in the design of printed circuit
boards. There are many software packages which use numerical
optimization techniques to automatically place components and route
traces in an electronic circuit board design. The most successful of
these software packages use a neural network-based auto-router to
perform the automatic design generation. In developing this
software, a great number board designs from the best printed circuit
board designers in the world were used to train the neural network-
based auto-router. In this way the very best human capabilities
which were developed through many years of circuit board design
experience were captured to produce the best automatic routing
software on the market. This is only one of many examples in
which some human quality, skill or capability has been captured
using a neural network so the expertise can be used by others.
There are almost certainly many applications of this type in the oil
field service industry. A few examples might include: well log
interpretation, drilling operations decision making, reservoir data
interpretation, production planning, etc. In these application the
network output usually appears in the form of a yes/no answer, or
a confidence factor that a particular condition or state in a system
exists. This is in contrast to a hard numerical output that can be
used to quantify some property or state in the system being
modeled.

Background: Function Approximation Applications

Neural networks are most commonly used in what are known

as function approximation problems. In this type of application a
neural network is trained using experimental data to produce a
mathematical function which approximates an unknown real system.
This capability provides a very useful engineering tool particularly

9
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when the system is a multiple-input, and/or multiple-output system.
Again, it must be stressed that a very attractive feature of a neural
network model is that very little and sometimes no understanding of
the physical relationship between a measured system output and the
system input is required. The only real requirement is that
sufficient training data is available, and that a complex enough
neural network structure is used to model the real system.

Nonlinear transducer calibration is a common function
approximation application for neural networks. Many times a
transducer output is affected by tempefature. This means there are
actually two inputs which each have an effect on the output of the
transducer. In the case of a pressure transducer, both temperature
and pressure change the output of the transducer. Sometimes the
pressure and temperature response of the transducer can be very
nonlinear. So in this case we have two inputs which are nonlinear
which affect the output which somehow must be related to the state
in the system we are interested in which is pressure. This nonlinear
transducer would be a very good candidate for neural network
calibration. In order to use a neural network to calibrate the
transducer output the transducer would need to be placed inside a
controlled calibration bath in which temperature and pressure could
be varied over the range in which the transducer is to be used. As
the pressure and temperature are varied the actual temperature and
pressure of the bath must be carefully recorded along with the
corresponding transducer outputs. This recorded data could then be
used to form the input/output data needed to train the neural
network which could then be used to correct the raw transducer
readings.

This same concept can be applied to situations where it is
possible to take several measurements in a system which are
somehow related to a state in the system which may be extremely
difficult to measure. In this case many different transducer

10
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measurements could be combined to estimate the state which is hard
or expensive to measure. An example of this might be an
application in which an extremely high oven temperature must be
known, but the harshness of the environment precludes reliable
long-term temperature measurement inside the oven. One solution
might be to use external temperature transducers in combination
with some sort of optical transducer which detects light energy
within the oven from a safe distance. All the transducer inputs
could then be combined with measured oven temperature data to
train a neural network to estimate the internal oven temperature
based on the external transducer measurements.

Another type of function approximation problem in which
neural networks are often well suited is in inverse function
approximation. In this type of problem an input/output relationship
is known or can be numerically simulated using Monte-Carlo or
similar computer intensive simulation techniques. This data can
then be used to train a neural network to approximate the inverse of
this function. In other words, instead of only knowing the system
outputs for a given set of inputs, the system inputs can be
determined using a set of outputs. This may seem strange at first,
but it can be very useful. For example, consider a logging tool in
which transducer measurements are used to estimate some formation
property or set of properties. In this case, it may be possible to
simulate or experimentally measure the transducer outputs for a
range of formation properties. This data could then be used to
construct an inverse neural network model which describes the
formation properties which produce particular transducer outputs.
This can be a powerful modeling tool provided that the system has
an inverse. In some cases there is a unique forward mapping, but
no unique inverse mapping.

Background: Signal Processing Applications
11
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Adaptive signal processing is another area where neural
networks can be used with great effectiveness. Transmitted signals
are often contaminated with unwanted noise. Sometimes the noise
enters a signal at the transducer, and sometimes the noise enters a
transmission channel as electromagnetic interference. Many times
the contaminating noise is due to a repetitive noise source. For
example, internal combustion engines are notoriously loud, but
generate sound that is repetitive in nature. In fact, repetitive noise
is present in most fans, generators, power tools, hydraulic systems,
mechanical drive trains, and vehicles. Classical filtering of these
noise sources is not possible because many times these noises appear
in the same frequency range as the communication carrier frequency
etc. A technique known as adaptive signal processing may be used
to remove periodic and semi-periodic noise from a signal. In this
method a mathematical model is used to predict the incoming signal
value shortly before is arrives. A neural network can be used as the
mathematical prediction model. In this case a multiple inputs neural
network is used. Past values of the signal are used to predict future
signal values in advance. This prediction is then subtracted from
the corrupted noisy signal at the next instant in time. Because the
periodic noise is more predictable than the desired component
contained in the noisy signal, the unwanted noise is removed from
the corrupted signal leaving the desired signal. The adaptation
speed of the filter can be adjusted so that the desired portion of the
signal is not filtered away. After the unwanted noise is removed the
“clean” signal which has been extracted from the noisy signal is
recovered. A filter which is adaptive must be used because noise
source and the physical environment around the system are subject
to change. For this reason the adaptive model must change to
mode] the noise source and transmission environment.

Sometimes the undesirable noise in an environment is random
in nature. In this case, again an adaptive filter may be used to filter

12
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out the random or colored noise. For random noise the adaptive
filter is used differently. The adaptation speed is maximized so that
the desired component in a noisy signal is predicted by the filter.
The random components in the signal cannot be predicted, so the
prediction contains only the non-random components in the signal.
In the case only the prediction is then presented as the recovered
signal. This prediction will contain only non-random components
which would include the signals of many telemetry schemes.
There are many types of adaptive filters which may be used.
The most common filter structure is a linear structure known as the
adaptive finite impulse response (FIR) filter structure. Because of
the linear nature of this filter structure it can only be used to
approximate nonlinear signal sources and sound environments. For
this reason a more sophisticated nonlinear filter structure can exhibit
higher filtering performance than a simple linear filter. Recent
developments in digital signal processing equipment have made it
possible to consider using adaptive neural network filters. These
filters are computationally burdensome to implement in real-time,
and it has just recently become practical to use them in this manner.
Neural network models can be very nonlinear in nature making them
very flexible in being able to monitor real systems which often
contain nonlinearities. Real environments are often very nonlinear.
For this reason adaptive neural network filters are more effective
than conventional linear adaptive filters. |
Network training is accomplished, e.g., using an approximate
steepest descent method. At each time step the measured error is
used to calculate a local gradient estimation which is used to update
the network weights. For networks which are non-recurrent (i.e.,
having no feedback), standard back propagation may be used to
calculate the necessary gradient terms used in training. Figure 53
shows a basic non-recurrent network as well as the system inputs,
outputs, and measurements which are used in training the network.

13
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The npetwork could have multiple input channels and output
channels. The error e(n) in Figure 53 is the difference between the
desired network output, and the actual network output. In a
predictive signal filtering system the prediction error is calculated
by subtracting the predicted future value from the actual measured
value after it arrives. This error measurement is used to adjust the
neural network weights to minimize the prediction error. Neural
networks can be linear or nonlinear in nature. Figure 54 shows a
basic linear network. In this network the output is a weighted sum
of the past inputs to the network. The samples y(n-1), y(n-2),....
represent past values of the signal being filtered.

Figure 55 shows a nonlinear network. This network has a
non-recurrent two layer structure which contains nonlinear log-
sigmoid functions of the form:

1
l+e™

f)=

The structure of neural network filters can be varied in many
ways. The number of past samples used, the number of internal
activation functions, and the number of internal layers in the
network can be varied.

To provide an example of adaptive neural network filtering
simulation was performed. Simulations were performed using both
linear and nonlinear network structures A noise-free recording was
made of the word “hello” then contaminated with varying types and
levels of noise. The corrupted signal was then filtered and the
results examined. Figure 56 shows the standard “hello” wave form
used in all simulations.

Noise was recorded from a small “shopvac” style wet/dry

14
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vacuum cleaner. An analysis of the noise revealed significant
random and periodic noise components. Figures 57, 58, and 59
show the “Hello” standard corrupted by the recorded noise to
varying degrees, and also the recovered signals after filtering using
a 70 tap nonlinear neural network having 2 hidden neurons.
Significant improvement can be seen even when the signal to noise
ratio in the corrupted signal is .06 as is indicated in Figure 59.

A standard linear tapped delay line adaptive filter was also
implemented. The same input data that appears in Figure 59 was
filtered using a 70 tap linear filter. The results are shown in Figure
60.

Several variations embodying the present innovations are
described below with reference to the numbered figures. Tests were
conducted to obtain experimental data to validate the chosen
detection methods. In three of these tests bits were run until a
failure was obtained. In addition to bit failure detection tests, tests
concerned with the generation of power using the vibrations pro-
duced by the drilling operation were conducted. A vibrations-driven
power generation device was designed, constructed and tested. The
purpose of this device is to power the downhole instrumentation,
which will be required in the final detection/warning system. The
idea here is to eliminate the need for batteries and to allow the
electronics chamber to be hermetically sealed.

In one example embodiment, sensors are placed in a sub
assembly located above and separate from the drill bit. Data from
the sensors in the sub are fed into a filter (e.g., an adaptive neural
net). The adaptive filter uses past signal measurements to predict
future signal measurements. The difference between the predicted
sensor readings and the actual sensor readings is used to compute a
prediction error.

The value of the prediction error is used to detect probable bit
failure during drilling. Bit failure can be indicated by spikes in the

15
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prediction error that exceed a predetermined threshold value with an
average frequency of occurrence that also exceeds a threshold
frequency value. Alternatively, failure can be indicated when the
standard deviation of the predicted error grows large enough. Thus
the change in prediction error can indicate bit failure.

In another embodiment, sensors are placed in a sub assembly
located above and separate from the drill bit itself. The bit and sub
are connected by threading, and no active electrical connections
between them are needed. Data from the sensors in the sub are
collected and undergo a fast Fourier transform to analyze them in
the frequency domain. The spectral power of the signal from each
sensor is divided into different frequency bands, and the power
distribution within these bands is used to determine changes in the
performance of the bit.

The signal power in each frequency band is computed and a
ratio of the power in a given band relative to that in another band
is corhputed. For a bit in good working condition, the majority of
spectral energy is in lower frequency bands. As a bearing starts to
fail, it produces a greater level of vibrational energy in higher
frequency bands, as demonstrated in tests. A dramatic change in the
relative spectral energies of the semsors occurs when a bearing
begins to fail. Therefore, by monitoring these relative power
distributions, bit failure can be detected.

Failure can be detected in a number of ways, depending on
the particular application and hardware used. As an example, failure
can be detected by observing a threshold for the spectral energy
distributions. When the spectral energy threshold is exceed a given
number of times, or when the threshold is exceeded with a high
enough frequency, a failure is indicated.

In another variation, sensors are placed on a separate sub
assembly, which detect changes in induced bending and axial
stresses which are related to roller cone bearing failure.

16
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Each cone on a bit supports an average percentage of the total
load on the bit. As one of the cones begins to fail, the average load
it supports changes. This change causes a variation in the bending
strain induced by the eccentric loading of the bit. An average value
of strain for each of the strain gauges is computed, then divided by
a similar average strain value for each of the other strain gauges.
This value remains constant in a properly working bit, even if the
load on the bit changes. However, as an individual cone wears out
and the average percentage of the load changes, the ratio of the
average strain at each of the strain gauge locations will change.

Failure can be indicated in a number of ways, for example,
when the monitored ratios experience a change that exceeds a
predetermined threshold.

In another variation, downhole sensors located in a sub
assembly are monitored, and cross comparisons between sensors are
performed. Sensors might include temperature, acceleration, or any
other type of sensor that will be affected by a bit failure. An
absolute sensor reading from any one sensor is not used to
determine bit failure. Instead, a measurement of one sensor relative
to the other sensors is used.

The changes in sensor readings which do indicate failure are
reported to the operator through variations in downhole pressure.
The pressure is controlled with a bypass port located above the bit.
Opening the port decreases pressure, closing the port restores it.
Such changes in pressure are easily detected by the operator.

Other methods of indicating bit failure include placing sensors
inside the bit to detect failures, then transmitting via a telemetry
system to the surface to warn the operator, or placing a tracer into
the bearing grease and monitoring the mud system at the surface to
detect the release of the tracer in the event of a bearing seal failure.
Both of these methods involve modification of current bit designs,
or involve expensive or impractical detection equipment at the

17
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surface to complete the warning system.

One method chosen for signaling the surface operator is
relatively inexpensive and simple. Upon detection of a bit failure,
a port will be opened above the drill bit. This will cause a dramatic
decrease in surface pump pressure. This decrease in pressure can
easily be detected at the surface and can be used to indicate
problems with the bit. If desired, the downhole tool can be
designed to open and close repeatedly. In this way it is possible for
binary data to be slowly transmitted to the surface by opening and
closing the bypass port.

To further simplify operation and to reduce operating costs,
consideration has been given to using the downhole vibration
produced by drilling to generate the power used to operate the
downhole detection/signaling tool electronics. This has the obvious
advantage of eliminating the need for batteries. An experimental
vibration activated power generation device was built and tested.
This device verified that vibrations produced during drilling can be
used to generate power.

Methods for Detecting Bit Failure
Three subheadings below classify the many embodiments used

to describe several of the innovations within this application. The
subheadings are Spectral Power Ratio Analysis (SPRA), Mean
Strain Ratio Analysis (MSRA) and Adaptive Filter Prediction .
Analysis (AFPA). Each method will be presented in detail later in
this section.
One innovation in failure detection methodology which is herein
disclosed can be considered the use of an “indirect” method of
detection in which the sensors used to measure signals produced by
the bit are located directly above the drill bit in a special
sensor/telemetry sub and NOT within the bit itself.

In another example the measurements that are being made are

18



WO 02/057589 PCT/US01/47282

10

15

20

25

30

not direct measurements of bearing parameters (i.e. wear, position,
journal temperature etc.), but of symptoms of bit failure such as
vibration and induced strain above the bit. This type of arrangement
has some very desirable features. The most significant advantage
of this method over other methods is the characteristic that this
method may be used with any bit without modifying the bit design
in any way. This effectively separates the bit design from the
detection/warning system so the most desirable bit design can be
achieved without concern for the accommodation of embedded
Sensors.

Figure 1 shows the physical arrangement of apparatus relative
to the bit. The drill pipe 102 connects to the instrumented sub
assembly 104, which contains the sensors 106 and telemetry
apparatus for relaying a failure signal to the surface. The sensors are
preferably located in the sub assembly in a symmetric fashion, but
other embodiments can use asymmetric configurations. The sub
assembly is connected to the drill bit 108 through a threaded
connection 110. No electrical connections are necessary between the
bit and sub in this embodiment.

Spectral Power Ratio Analysis
The first class of embodiments discussed for detecting

impending bit failure has been named the Spectral Power Ratio
Analysis (SPRA) method. Figure 2 illustrates the process.

Figure 2 shows an overview of the process by which failure
is detected and indicated to the operator in this class of
embodiments. The sensors in the drill assembly include circuitry
which performs a fast Fourier transform on the data (step 202) to
thereby translate the data into the frequency domain. A spectral
power comparison is then performed (step 204) which allows the
data to be put into spectral power ratios. A failure detection
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algorithm (step 206) checks to see if the failure condition(s) is (are)
met. If a failure is indicated, the telemetry system relays the failure
indication signal to the surface operator (step 208).

In this method sensor data (primarily from accelerometers) is
collected in blocks, and then analyzed in the frequency domain.
The frequency spectrum of a window of fictitious sensor data is
broken up into bands as shown in Figure 3.

Figure 3 shows three frequency bands, with frequency plotted
along the x-axis, and amplitude plotted on the y-axis. In this figure,
the majority of vibrational power is located in the lowest frequency
band. The two higher frequency bands have low spectral power
relative to the first band. In this figure, the frequency bands are
shown to be of the same width, but they can vary in width, and any
number of bands can be chosen. ‘

The signal power in each of the frequency bands is then
computed and a ratio of the power contained in each of the
frequency bands to the power contained in each of the other
frequency bands is then computed. The results obtained from
processing each block of data are the ratios R1, R2, and R3 which
written in equation form are:

R1 = (Power in band 2) / (Power in band 1)
R2 = (Power in band 3) / (Power in band 1)
R3 = (Power in band 3) / (Power in band 2)

Of course, these are example ratios, and other ratios can be used as
well. The idea is that when the bearings in a bit are in good
mechanical shape most of the spectral energy found in the bit
vibration is contained in the lowest frequency band. As a bearing
starts to fail it produces a greater level of vibration in the higher
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frequency bands. This phenomenon has been demonstrated in lab
tests as will be shown below. If the frequency band ratios R1, R2
and R3 are constantly monitored, a dramatic change in these ratios
will occur when a bit begins to prbduce high-frequency vibrations
(“squeaking™) as a bearing begins to fail. The ratios R1 and R2,
which involve ratios of the lowest frequency band with the higher
frequency bands are in practice the most important indicators of
bearing failure. Of course the frequency spectrum of the sensor
signals can be broken into more or fewer frequency bands as
desired.

A failure can be detected in at least two ways. The first
method is to simply set a threshold value for the frequency band
ratios R1, R2 and then monitor the number of times or the
frequency with which the threshold is exceeded. After the threshold
is exceeded a certain number of times or is exceeded with high
enough frequency a bearing failure is indicated. Figure 4 illustrates
this method.

Figure 4 shows one method of determining failure in the bit.
The frequency band ratios R1 and R2 are shown plotted against
time. Thresholds are set for R1 and R2. At the locations indicated
by arrows, each respective frequency ratio exceeds its threshold,
which in some embodiments indicates failure.

Another way of detecting a failure is to monitor the standard
deviation of the frequency ratios. When the standard deviation
becomes high enough, a failure is indicated.

Figure S illustrates this method. The figure shows one such
frequency ratio, R1. At some point in the plot, the signal begins to
vary. Once the standard deviation exceeds a certain limit, a failure
is indicated. Alternatively, the failure can be indicated once the
standard deviation has been exceed a specific number of times.

In the actual downhole tool implementation, it is preferable to
perform “real-time” on-the-fly fast Fourier transforms (FFT).
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Approximately the same result can be obtained in another
embodiment by using a set of analog filters to separate the frequency
bands of the sensor signals. Figure 6 shows a block schematic of
this type of system.

Sensor signals from the sub assembly are directed to filters of
varying pass bands (step 602), passing signals limited in frequency
range by the filters. Three different pass bands are shown in this
example, producing three band limited signals. These are passed to
circuitry which performs spectral power computations and compari-
sons (step 604), producing spectral power ratios. These ratios are
monitored for failure indicators with a failure detection algorithm
(step 606). If a failure is detected, a failure indication signal is
passed to the telemetry system (step 608) which sends a warning
signal to the surface operator. N

The example system shown in Figure 6 can be implemented
with minimal hardware requirements. The amount of digital signal
processing required directly impacts the amount of downhole
electrical power needed to power the electronics and the cost
associated with the processing electronics. There is little interest in
the phase relationship of the different frequency bands of the sensor
signals so simple analog low-pass, band-pass and high-pass filters
can be used to separate the signal components contained in each of
the bands. Each of the filtered signals are then squared and
summed over the window of time for which spectral power is to be
compared. Ratios of these squared sums are then computed to form
the R1, R2 and R3 spectral power ratios described above. These
ratios are then used as previously described to detect a bearing
failure. This type of analysis will be demonstrated on actual test
data in the next section.

SPRA Method Experimental Verification
To verify the validity of the SPRA method, experimental data
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was collected from a laboratory test of an actual drill bit in
operation. In this section the performance results of the SPRA
method when applied to experimental data will be presented.
Experimental data was collected while using an actual roller cone bit
to drill into a cast iron target. Sensors were mounted to a sub
directly above the bit and a data acquisition system was used to
record the sensor readings. Accelerometers were attached to the sub
directly above the bit. Both single axis and tri-axial accelerometers
were used. The bit was held stationary in rotation and loaded
vertically into the target while the target was turned on a rotary
table.

The sampling rate for most of the data recorded was 5000
hertz. Test data was recorded at sample rates of 5000, 10,000,
20,000 and 50,000 hertz. A frequency analysis showed that a very
high percentage of the total signal power was below 2000 hertz.
For this reason and to reduce unnecessary data storage, a sample
rate of 5000 hertz was used for most of the tests.

An IADC class 117W 12-1/4” XP-7 bit was used for all tests.
The test procedure consisted of flushing the number 3 bearing with
solvent to remove most of the grease and then running the test bit
with a rotational speed of 60 rpm and a constant load of 38,000
pounds. Cooling fluid was pumped over the bit throughout the test.
Under these drilling conditions the contamination level in the
number three bearing was increased in steps. This process
continued until the number 3 bearing was very hot, and was
beginning to lock up. Baseline data with the bit in good condition
and the bearing at a low temperature was taken before any
contamination was introduced to the bit. A section of this data is
shown in Figure 7. Figure 8 shows a Fourier transform of the data
shown in Figure 7.

Notice in Figure 8 that most of the spectral power is located
from O - 500 hertz. This is typical for normal drilling operations.
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The SPRA method was applied to this data. The 2500-hertz
frequency spectrum was broken into three bands. The frequency
range for each of the bands was 10-500 Hz, 750-1500 Hz and 1600-
2400 Hz. A normalized spectral power was computed for a one-
second window of data centered on each sample in time. A time-
series plot of the spectral power for each frequency band is shown
in Figure 9a. It is apparent from this plot that the majority of the
spectral power is located in the lower frequency range. The
normalized low range average power level is about 1.5. The mid
and high range average power levels stay below about 0.5. Figure
9b shows a plot of the spectral power ratio R1 that was previously
defined as the ratio of the midrange (750-1500 Hz) spectral power
to the low range (10-500 Hz) spectral power. We can see here that
as expected, the ratio is fairly low. The same is true for the ratio
R2 that is the ratio of high range (1600-2300Hz) to the low range
power (10-500 Hz). If the level of high frequency power increases
(i.e. during a bearing failure) the ratios R1 and R2 should increase.

Testing continued for several hours. Twice during the test a
drilling mud consisting of 1.4 liters of water, 100 grams of
bentonite and 1.1 grams of sodium hydroxide was pumped into the
number 3 bearing area. After the addition of the mud and after
extended drilling some bearing failure indications were indicated by
“squeaks” in the accelerometer data shown in Figure 10.

These “squeaks” in the bearing can be detected quantitatively
by examining the discrete Fourier transform of this data as shown
in Figure 11.

The high frequency contributed by the bearing noise can
clearly be seen as increased high frequency content in the spectral
plot. Applying the SPRA method we obtain the series of plots
shown in Figure 12. In Figure 12a it is obvious that the energy in
the mid and high frequency bands has increased relative to the low
frequency power. This is directly related to the bearing noise. We
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can also see that the power ratios R1 and R2 have increased from
an approximate average of .3 and .2 to .75 and .65 respectively.
We can also see qualitatively that the standard deviation of the
power ratios has increased as well.

After a fairly long period of drilling the test was halted and
a solution of 1.4 liters of water, 100 grams of bentonite, 1.1 grams
of sodium hydroxide, and about a gram of sand was pumped into
the number 3 bearing area. Drilling resumed, and the bearing
quickly began to show signs of increasing failure. The squeaking
frequency increased and became audible. Figure 13 shows a plot
of the accelerometer data. Figure 14 shows the discrete Fourier
transform of the data.

"Applying the SPRA method we obtain the series of plots
shown in Figure 15. Notice in Figure 15a that the power contained
in the mid and high frequency bands now exceeds the power
contained in the low frequency band. Looking at the power ratio
plots we see that the R1 and R2 ratios are now very high (3.5 and
4) compared to these ratios in the undamaged bearing (.3 and .2).
This is a clear indication of a bearing failure in progress.
Additionally, the standard deviation of the power ratios has
increased dramatically.

Mean Strain Ratio Analysis

This class of example embodiments demonstrating innovations
of the present application are herein referred to as the Mean Strain
Ratio Analysis (MSRA) method. Though the innovations are
described using the particular examples given, it should be
understood that these examples do not limit the implementation of
the innovative ideas of this application. In an exemplary embodiment
of this method strain measurements taken from an instrumented sub
directly above the bit are used to detect changes in induced bending
and axial stresses which are related to a roller cone bearing failure.
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In one embodiment, the strain gauges are located 120° apart around
the instrumented sub (though this is not required, and asymmetric
arrangements work as well, as discussed below). Figure 16 shows
the placement of the strain gauges in a sample embodiment.

Figure 16 shows a drill string with a sub assembly 1602 and
drill bit 1604. The cross sectional view (along A A) shows the
placement of strain gauges 1606, here shown as symmetrically
distributed around the sub 1602. Of course, the strain gauges 1606
need not be symmetrically placed, since failures are detected by
relative changes in the readings.

There is an average percentage of the total load on the bit that
each of the cones on a roller cone bit will support. The axial strain
detected at one of the strain gauge locations shown in Figure 16 will
depend on three main factors. These are the location of the strain
gauge relative to the cones on the bit in the made up BHA, the
weight on the bit, and the bending load produced by eccentric
loading on the cones. Other factors can also produce axial strain
components but less significantly than those noted above. The strain
gauges are not set up to measure torsion-induced shear strains. As
one cone in the bit begins to fail, the average share of the total load
on the bit that the failing cone can support will change. This change
will cause a change in the bending strain induced by the eccentric
loading on the cones. When a bit is new (i.e. no bearing failure),
the average amount of strain measured by each strain gauge in
Figure 16 will maintain a fairly constant percentage of the average
strain in each of the other strain gauges. In other words, if an
average value of strain for each of the strain gauges is computed,
then divided by a similar average strain value for each of the other
strain gauges, this ratio will remain fairly constant, even if the load
on the bit is varied. However, when the percentage of the load
changes as an individual cone wears faster than the other cones or
suffers dramatic bearing wear, the ratio of the average strain at each
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of the strain gauge locations will change. These ratios can be
defined as:

SR1 = (Average Strain in Gauge 2) / (Average Strain in Gauge 1)
SR2 = (Average Strain in Gauge 3) / (Average Strain in Gauge 1)
SR3 = (Average Strain in Gauge 3) / (Average Strain in Gauge 2).

The strain at any one strain gauge is approximately linearly depen-
dent on the weight on the bit for moderate loads, so a relative strain
induced at any one of the strain gauges as compared to any other of
the strain gauges is independent of the weight on the bit. On the
other hand, this ratio is highly dependent on the percentage of the
load supported by each of the cones. If one cone tends to support
more or less of the total load on the bit (as we would expect during
a cone failure), this change in loading will translate to a change in
relative average strain at the strain gauge locations. It is this change
that is monitored in the MSRA method to detect bit failure. Figure
17 illustrates the detection method in a qualitative way. Quantitative
results will be presented in a later section. As Figure 17 shows, the
strain measured by the gauges changes relative to the others at a
certain point indicated by the arrow. This change in relative
measurements indicates failure.

A flow showing an example of the MSRA detection scheme
is shown in Figure 18. In this embodiment, the strain gauges send
data to a low pass filter which filters the sensor signals (step 1802)
and passes the result to circuitry which computes the mean strain
ratios (step 1804). These are used by the failure detection algorithm
to detect a bit failure (step 1806). If a failure is detected, the
telemetry systém sends a warning signal to the surface (step 1808).

One disadvantage of the MSRA detection scheme is that it will
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work best after significant bearing wear has occurred. A major
advantage of the MSRA method is the low required digital sampling
rate, which translates to low computational and electrical power
requirements. This makes the system less expensive and smaller.

MSRA Method Experimental Verification
To verify the validity of the MSRA method, experimental data

was collected from a laboratory test of an actual drill bit in
operation. In this section the performance results of the MSRA
method when applied to experimental data will be presented.
Experimental data was collected while using an actual roller cone bit
to drill into a cast iron target. Sensors were mounted to a sub
directly above the bit and a data acquisition system was used to
record the sensor readings. Strain gauges were attached to the sub
with 120° phasing directly above the bit. The bit was held
stationary in rotation and loaded vertically into

the target while the target was turned on a rotary table.

The sampling rate for most of the data recorded was 5000
hertz. Test data was recorded at sample rates of 5000, 10,000,
20,000 and 50,000 hertz. A frequency analysis showed that a very
high percentage of the total strain gauge signal power was below
250 hertz. For this reason and to demonstrate the effectiveness of
the method with very low sampling rates, most of the data analysis
was performed on 5000 Hz data, which was down-sampled to 500
Hz. '

An IADC class 117W 12-1/4” XP-7 bit was used for all tests.
The test procedure consisted of flushing the number 3 bearing with
solvent to remove most of the grease and then running the test bit
with a rotational speed of 60 rpm and a constant load of 38,000
pounds. Cooling fluid was pumped over the bit throughout the test.
Under these drilling conditions the contamination level in the
number three bearing was increased in steps. This process -
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continued until the number 3 bearing was very hot, and was
beginning to lock up. Baseline data with the bit in good condition
and the bearing at a low temperature was taken before any
contamination was introduced to the bit. Figure 19 shows a section
of the baseline #1 strain gauge signal. The vertical axis is not
scaled to any actual strain level, as the absolute magnitude is not
critical for the MSRA method. This plot reveals the periodic nature
of the strain in the BHA. Figure 20 shows a plot of the frequency
spectrum of the window of data shown in Figure 19. Notice the
concentration of spectral energy below 40 Hz and the “spike” at 1
Hz, which corresponds, with the rotational speed of the bit at 60
rpm. Figure 21a shows a time series plot of the normalized mean
strain for each of the strain gauges. These plots represent the
average strain for each gauge location over time. The mean values
are fairly constant. Figure 21b, Figure 21c¢ and Figure 21d show
time series plots of the strain ratios SR1, SR2 and SR3 respectively.
We can see that these ratios do not change dramatically over the
100-second window data represented by the data in the plots.

This apparent lack of change in the strain ratios over a small
100-second window is not surprising. Significant changes in the
bearings and hence their effect on the average strain ratio levels
between the strain gauges can not be expected to occur over such a
short period of time. In fact, large changes in the strain ratios can
be expected to occur only over 1000s of seconds of drilling.

In the next phase of the test drilling mud consisting of 1.4
liters of water, 100 grams of bentonite and 1.1 grams of sodium
hydroxide was pumped into the number 3 bearing area at two
different times during a 40 minute drilling session. Strain data was
collected throughout the test. Figure 22 and Figure 23 show plots
of the normalized strain indicated by one of the strain gauges and
the Fourier transform of the same data. Again, the periodicity of
the strain signal and the sharp peaks in the FFT representing the
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fundamental and some harmonic frequencies are apparent. We can
also see a shift in the mean strain level, which appears as a DC
offset in Figure 22. Figure 24a shows the mean strain values as a
function of time. Comparing Figure 24a to Figure 21a we can see
a shift in the average strain levels. This change occurred over the
40 minutes of drilling with mud present in the number 3 bearing.
We can also see a change in the mean strain ratios of Figures 24b,
¢, and d as compared to Figures 21b, ¢, and d. This indicates a
change in the average loading conditions in the instrumented sub.
We can also see more erratic changes in the strain ratios.

Testing continued for another 30 to 40 minutes. Figures 25,
26, and 27 show more test data. Figure 27 shows more change in
the mean strain ratios. The mean strain ratio plots continue to show
an increase in erratic fluctuations of the signal. .

In the last phase of the test drilling was halted and a solution
of 1.4 liters of water, 100 grams of bentonite, 1.1 grams of sodium
hydroxide, and about a gram of sand was pumped into the number
3 bearing area. Drilling resumed, and the bearing quickly began to
show signs of increasing failure. The number 3 bearing began to
produce steam as it heated up. Figures 28, 29, and 30 represent
the analysis of data recorded under these conditions. Notice that the
mean strain levels for each of the strain gauges have shifted
dramatically from the start of the test. Two of the mean strain plots
now lie on top of each other. These large changes represent a
different loading condition within the bit and instrumented sub. It
is obvious that significant changes in the bit loading conditions will
effect the mean strain ratios. For instance, if a roller cone bearing
has failed to the point that the bearing has become “sloppy”, there
will be a marked change in the portion of the vertical load supported
by the individual cones. This change will be reflected in the strain
gauge measurements taken within the instrumented sub.
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Figure 31 illustrates what happens when the loading
conditions on the bit change. During this portion of the test the bit
started out in a condition where the bit was not fully made-up to the
sub. During the test, the bit rotated about 70 degrees and made-up
to the sub. Because the relative location of the cones to the strain
gauges in the sub changed, an abrupt change in the strain measured

- was recorded. Of course all the mean strain ratios changed as well,

as Figure 31 illustrates.

Adaptive Filter Prediction Analysis

In this application, reference is frequently made to neural
networks and other adaptive filters. It should be noted that though
neural nets are the most frequent example referred to herein, the use
of this term is not meant to limit the embodiments to those which
include neural nets. In most cases, any type of adaptive filter may
be substituted for a true neural network. This method of detecting
drill bit failure is referred to as the Adaptive Filter Prediction
Analysis (AFPA) method. In this method an adaptive filter (prefera-
bly an adaptive neural network) is used to process sensor signals as
part of an overall scheme to detect drill bit failure. This section
contains a general description of an example implementation using
a neural network or other adaptive filter.

Figure 32 shows a schematic of an example embodiment
failure detection system. Sensor signals from the instrumented sub
are received by the adaptive filter, which uses past signal
measurements to predict the next sensor value (step 3202). The
adaptive filter (preferably a neural net) attempts to predict sensor
readings one step ahead in time using older sensor readings (step
3204). The resulting prediction error statistics are analyzed by the
failure detection algorithm for failure (step 3206), and if a failure is
detected, the telemetry system sends a warning signal to the surface
(step 3208).
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Figure 33 shows a sample sensor data prediction scheme
using a neural network (or other adaptive filter). The past sensor
3302 values are stored in a memory structure known as a tapped-
delay-line 3304. These values are then used as inputs to the neural
network 3306. The neural network 3306 then predicts the next
value expected from each of the sensors 3302. The value (P1(n),
P2(n), P3(n)) predicted for each of the sensors 3302 is then
subtracted from the actual sensor readings to compute a prediction
error (el(n), €2(n), e3(n)). If the neural network prediction is good,
the computed prediction error will be small.

If the prediction is poor, the prediction error will be high.
Typically, the square of the prediction error is computed and
analyzed to avoid negative numbers. If the signal being predicted
is fairly repetitive (periodic) it is poséible to successfully predict
future signal values. If there is a large random component in the
signal being predicted, or if the nature of the signal changes rapidly,
it is very difficult to successfully predict future signal values. The

_ innovative method exploits this characteristic to detect bit failures.

Under normal drilling conditions with a bit in good condition,
the vibration in the bit is fairly periodic with a significant random
component added in. If an adaptive filter prediction is performed
on a time-series of vibration measurements taken near the bit, there
will be a level of prediction error, which does not change rapidly
over a short period of time. This is because the filter will be
capable of predicting much of the periodic vibration associated with
the bit. However, random vibrations due to the drilling environment
such as rock type, fluid noise, etc. will not be predictable and will
result in prediction errors. Test data has shown that when a bearing
in a cone starts to fail, it will generally emit bursts of high-
frequency vibration or will cause the cone to lockup. Either of
these occurrences will cause an abrupt and unpredictable change in
the pattern of vibrations produced by the bit. If the prediction error
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of a adaptive filter that is being used to predict bit vibration is
monitored, momentary increases (“spikes”) in the prediction error
will be observed. These observations can be used to detect roller
cone bit failure. Figure 34 illustrates the prediction error for
normal running conditions and spikes in the prediction error related
to failures.

One way to determine if a failure is in progress is to look for
spikes in the prediction error which exceed a threshold value with
an average frequency of occurrence that also exceeds a threshold
frequency value. In other words if a high enough spike in the
prediction error occurs often enough this means there is a failure in
progress. Another way to detect failure is to monitor the standard
deviation of the prediction error. If the standard deviation gets large
enough, a failure is indicated. In addition to monitoring a threshold
value for the prediction error it is useful to monitor the change in
prediction error. As the following section will show, this method
may be more effective at detecting bearing failure than looking at
prediction error alone. These methods are examples of the many
potential ways to analyze the filter prediction error to detect bit
failure.

AFPA Method Experimental Verification
To verify the validity of the AFPA method, experimental data

was collected from a laboratory test of an actual drill bit in
operation. In this section the performance results of the AFPA
method when applied to experimental data will be presented.
Experimental data was collected while using an actual roller cone bit
to drill into a cast iron target. - Sensors were mounted to a sub
directly above the bit and a data acquisition system was used to
record the sensor readings. Accelerometers were attached to the sub
directly above the bit. Both single axis and tri-axial accelerometers
were used. The bit was held stationary in rotation and loaded
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vertically into the target while the target was turned on a rotary
table.

The sampling rate for most of the data recorded was 5000
hertz. Test data was recorded at sample rates of 5000, 10,000,
20,000 and 50,000 hertz. A frequency analysis showed that a very
high percentage of the total signal power was below 2000 hertz.
For this reason and to reduce unnecessary data storage, a sample
rate of 5000 hertz was used for most of the tests.

An JADC class 117W 12-1/4” XP-7 bit was used for all tests.
The test procedure consisted of flushing the number 3 bearing with
solvent to remove most of the grease and then running the test bit
with a rotational speed of 60 rpm and a constant load of 38,000
pounds. Cooling fluid was pumped over the bit throughout the test.
Under these drilling conditions the contamination level in the
number three bearing was increased in steps. This process
continued until the number 3 bearing was very hot, and was
beginning to lock up. Baseline data with the bit in good condition
and the bearing at a low temperature was taken before any
contamination was introduced to the bit. A section of this data is
shown in Figure 35. Figure 36 shows the filter prediction error
produced by the adaptive filter shown in Figure 37.

A variation of the Levenberg-Marquart algorithm was used to
train the network. As Figure 36 reveals, the prediction error was
very small when there was no bearing damage.

Testing continued for several hours. Twice during the test a
drilling mud mixture consisting of 1.4 liters of water, 100 grams of
bentonite and 1.1 grams of sodium hydroxide was pumped into the
number 3 bearing area. After the addition of the mud and after
extended drilling some bearing failure, occasional “spikes” in the
accelerometer data indicated early bearing failure. Figures 38 and
39 show accelerometer data and the corresponding adaptive filter
prediction error.
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In the last phase of the test drilling was halted and a solution
of 1.4 liters of water, 100 grams of bentonite, 1.1 grams of sodium
hydroxide, and about a gram of sand was pumped into the number
3 bearing area. Drilling resumed, and the bearing quickly began to
show signs of increasing failure. The number 3 bearing began to
produce steam as it heated up. Figures 40 and 41 show the
accelerometer data and prediction results for the data recorded under
these conditions.

The last test data was recorded after significant bearing wear.
This data was recorded just prior to bearing lockup. The
“squeaking” in the bearing is obvious in Figure 42. Numerous
failure indications can be seen in Figure 43 which is a plot of the
adaptive filter prediction error. It must be noted that the “slop” in
the number 3 bearing is still very small. This means that a very
definite failure detection was indicated long before catastrophic
bearing separation.

Downhole Power Generation Using BHA Vibration

The innovations in this application have unique operating
requirements, which makes the use of vibration as a power source
an attractive option. For instance, we know that we will always be
starting out with a reasonably good bit. This means that there will
always be sufficient time to “charge” the power system in the tool
before failure detection is required. In other words we know that
we will always have the opportunity to drill for a sufficiently long
period of time prior to bearing failure that the detection electronics
will be charged and running when a failure occurs. The detection
electronics will not have to be run continuously so that power
consumption will be inherently low. Another factor which may
make it possible to use vibration as a power source, is the fact that
in this application there is a high ambient vibration level.

A miniature, scaled down prototype vibration-based power
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generator was designed and built. This unit was “strapped” to the
bit assembly during one of the bit tests.

The device contains a coil magnet pair in which the magnet is
supported by two springs such that it may vibrate freely in the axial
direction. As the magnet moves relative to the coil, current is
generated in the coil. Figure 44 depicts the device schematically.
The magnet 4402 is supported by two springs 4404 at top and
bottom. The magnet is surrounded by a conducting coil 4406, which
is connected to external contacts 4408 for the output.

The magnet and springs constitute a simple spring-mass
system. This system will have a resonant natural frequency of
vibration. For successful operation the mass of the magnet and the
spring rate for the supporting springs will be selected so that the
resonant frequency of the assembly will fall within the band of
highest vibration energy produced by the bit. Test data indicates
that this will occur somewhere between 1 and 400 Hz. Matching
the resonant frequency of the spring-magnet assembly to the highest
magnitude BHA vibration will cause the greatest motion in the
generator and hence, the largest level of power generation will occur
under these conditions. The AC power produced by the generator
must be rectified and converted to DC for use in charging a power
storage device or for direct use by the electronic circuitry. " The
basic idea is to have a small (short duration) power storage device
which “smoothes” and extends power delivery to the electronics for
short periods of time when vibration levels are low. If drilling
operations are suspended for a long enough period of time, the
power will be exhausted and the electronics will shut down. When
drilling resumes, the power storage device will be recharged, the
electronics will restart, and the failure detection process will
resume.

Test results show that this type of device can be used to
generate reasonable power levels. Figure 45 shows a plot of the
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prototype power generator output over a short period of time. A
1000 2 resistor was used as a load element.

It must be noted that the test unit was not “tuned” for
optimum use in the vibration field produced by the drilling test, so
performance was fairly low. A quick calculation can be made that
shows the peak power output represented in Figure 45 is
approximately 16 mw, with an average power of approximately 1
mw. A larger, properly tuned generator could produce a great deal
more power.

Downhole Tool and Warning System Description

In this section a method and apparatus for signaling the
operator at the surface is described. Under normal rotary drilling
operations surface pump pressure is applied to the drill string which
creates a high-pressure jet via nozzles in the drill bit. This is also
true when drilling is performed using a mud motor. A large
pressure drop is present across the nozzles in the bit. For example,
a pump pressure of 2500 psi might be applied to the drill string at
the surface. This applied pressure will be seen at the bit, minus fluid
friction and other pressure losses. So the flowing pressure drop
across the bit might be around 1200 psi. If a non-restrictive port is
opened above the bit, the flowing pressure within the entire system
will be reduced. In other words, if a large port is opened above the
bit, the 2500 psi applied at the surface will drop to say 1800 psi.
This pressure drop can be used as a signal to the operator that the
port has opened indicating a particular condition downhole such as
a bearing failure.

In the example embodiment of Figure 46, the basic detec-
tion/warning system operation follows a sequence. First the sensor
data is monitored while the drilling operation proceeds. The
detection method previously described is used to detect a failure in
progress. If a failure is detected a port is opened which causes a
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drop in the surface pump pressure. This drop in pressure can easily
be seen by the surface operator, serving as a warning that a failure
is in progress in the bit. A schematic of the downhole tool
apparatus is shown in Figure 47. The workstring 4702 contains a
fluid passage which allows fluid to reach the drill bit 4704, passing
through the instrumented sub 4706. The sub 4706 includes a fluid
bypass port 4708 and a sleeve 4710 or valve which opens or closes
the fluid bypass port 4708. An actuator 4712 is connected to both
the sleeve 4710 and the detection electronics 4714. Sensors 4716 are
also located in the sub 4706 (in this embodiment).

In this embodiment a sleeve valve can be opened and closed
repeatedly to cause corresponding low and high pressure pumping
pressure levels at the surface. A microprocessor or digital signal
processor is used to implement the detection algorithm and monitor
the sensors. Additionally the processor will control the actuator,
which opens and closes the sleeve valve. Of course any valve type
could be used. It may be desirable in some cases to close the bypass
valve after a certain delay, so normal drilling can proceed if desired.
Figure 48 shows the surface pressure sequence associated with this
type of operation.

In another embodiment a “one-shot” pilot valve is used to
initiate a fluid metering system which lets the sleeve valve slowly
meter into the open position, then continue into the closed position
for normal drilling to resume. This type of design will be much less
complex than a system with a multiple open and close capability.
Likewise, another intermediate state can be added to such a
mechanism, so the pressure drop appears to go through two stages
before returning to normal pressure.

The signaling idea just described can be extended to binary
data transmission. In this embodiment the sleeve valve is used to
“transmit” binary encoded data by alternately shifting between open
and closed valve positions thereby causing corresponding low and
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high surface flowing pressures which can be observed at the surface.

The type of information to be transmitted could be of any type.

For instance, bit condition ratings, pressures, temperatures,

vibration information, strain information, formation characteristics,

stick-slip indications, bending, torque and bottom hole weight-on-

bit, etc, could be transmitted. Figure 49 illustrates this transmission

scheme. This type of transmission is different that standard mud-

pulse technology which is used in MWD systems. The difference

lies in the fact that static pump pressure levels are monitored rather

than transient acoustic pressure pulses. This type of transmission
will be much slower than mud-pulse telemetry systems, but is

suitable for low tech, low cost settings where complex and

expensive surface receivers are not economically practical. Of
course, the detection schemes described herein are suitable for

integration into a full-blown MWD system as well.

Differential Sensor Method '

In the preferred embodiment, the sensors in the instrumented
sub are used to detect downhole drill bit failure. This innovation can
be implemented by monitoring a downhole sensor close to each of
the bearings and performing a cross-comparison between the sensor
measurements. Sensor measurements might include temperature,
acceleration, or any other parameter that will be affected by a
bearing or bit failure. If a change in the difference between one of
the bearing sensors and the other two exceeds a threshold value, a
failure is indicated. If a failure is detected, a mechanism that alters
the hydraulic characteristics of the bottom hole assembly is
activated, indicating the failure on the surface.

An absolute sensor measurement is not used to determine a
failure in progress. A measurement relative to each of the other
sensors is used. This scheme eliminates concerns about unknown
ambient conditions accidentally causing a false failure detection or
a missed failure detection. This means that the system is self-
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calibrating so a sensor threshold is set as a relative measurement
rather than an absolute sensor measurement which is subject to
change during the different drilling conditions, depths, fluid
temperatures, and other variables.

Figure 50 shows a possible placement of sensors on the drill
bit, with the sensors labeled T1-T3. In this example, the sensor
placement is symmetric, but it need not be symmetric in other
embodiments. The innovative differential sensor measurement
scheme is shown graphically in Figure 51. Three signals are shown
as the lines labeled T1-T3. At a failure, one of the signals undergoes
a change with respect to the others, indicating the failed condition.
This condition is relayed to the surface to the operator.

Definitions: .
Following are short definitions of the usual meanings of some

of the technical terms which are used in the present application.

(However, those of ordinary skill will recognize whether the context

requires a different meaning.) Additional definitions can be found

in the standard technical dictionaries and journals.

BHA: Bottom Hole Assembly (e.g. bit and bit sub).

Telemetry: Transmission of a signal by any means, not limited to
radio waves.

Transform: A mathematical operation which maps a data set from
one basis to another, e.g. from a time domain to or from a
frequency domain.

Modifications and Variations

As will be recognized by those skilled in the art, the
innovative concepts described in the present application can be
modified and varied over a tremendous range of applications, and
accordingly the scope of patented subject matter is not limited by
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any of the specific exemplary teachings given.

Two types of detection scheme can be combined to give
warnings at different times, depending on how each individual
scheme detects failure. Some detection methods present failure
evidence at an earlier time during the failure process than other
schemes. Combining two schemes (an early detection and a later
detection scheme) will allow the operator to know when a failure
first begins, and when that failure is imminent. This information can
be useful, for example, so that a bit is fully used before it is
removed from a hole, or in data gathering for fine tuning other
detection schemes.

The valves used to alter the downhole pressure mentioned
herein can be one-way valves, or (in some embodiments) valves
capable of both opening and closing. In the most preferred
embodiment the valve cycles through an irreversible movement
which includes both open and closed positions, e.g. from a first
state (e.g. closed) to a second state (e.g. open) and on to a third
(closed) state, at which point the valve is permanently closed. (This
can be implemented mechanically by a sleeve valve in which fluid
pressure from mud flow cooperates with an electrical actuator to
move the valve through its states, but does not permit the valve to
reverse its movement.) Alternatively, the valve can be designed
with a reversible movement from a first state (e.g. closed) to a
second state (e.g. open) and back to the first (closed) state. This
allows normal drilling to proceed even after a failure is indicated by
the system. Such post-warning drilling may be necessary to obtain
the full use of the bit, especially in a scheme that uses two detection
schemes. For example, an early detection scheme (such as the
spectral power ratio analysis method) can advantageously be used in
combination with a late detection scheme (such as the mean strain
ratio analysis method).

The placement of the strain gauges need not be symmetric
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about the sub, nor must they match the journal arms. Non-
orthogonal or non-symmetric gauge placement, especially when
coupled with the relative sensor reading self-calibration, can be
employed within the concept of the present innovations.

Spectral and other types of analysis of the sensor data can be
used. The data may be transformed in a number of possible ways to
pick out a particular signal from the readings. For example, the AC
component of the gauge readings can be separated from the total
readings and analyzed separately, or in concert with other data.

In time series data, an intermediate point can be estimated
rather than simply predicting a future data point. Having data points
from before and after a data point to be estimated (rather than
predicted) can be advantageous, for example, in reducing prediction
error under extremely noisy conditions.

The methods herein described are depicted as being used to
detect catastrophic failure, but other conditions of downhole
equipment can also be detected. For example, the characteristics of
the sensor data may also indicate mere wearout rather than imminent
catastrophic failure.

Though the example embodiments herein described use ratios
of energy or power to make their predictions or estimations, other
functions can be used, such as peaks, envelope tracking, power,
energy, or other functions, including exponentially weighted
functions.

The term acoustic is used to describe the data monitored by
several embodiments. In this context, acoustic refers to a wide range
of vibrational energy. Likewise, the acoustic data need not
necessarily be gathered by sensors on the downhole assembly itself,
but could also be gathered in other ways, including the use of
hydrophones to listen to vibrations in the fluid itself rather than just
bit acoustics. Strain gauges can also be sampled at acoustic rates or
frequencies.
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As mentioned, strain gauge placement can vary with the
application, including single or multiple axis placement.

Different types of transforms (other than the examples
mentioned like fast Fourier transforms) can be used to analyze the
data from the sensors. For example, various filters can be used to
separate the sensor data into different frequency bands for analysis.
Likewise, the data can be transformed into other domains than
frequency. Though fast Fourier transforms are depicted in the
described embodiments, other kinds of transforms are possible,
including wavelet transforms, for example.

Though in some applications of the present innovations the
sensor placement may necessarily be near the drill bit itself to
collect the relevant data, this is not an absolute restriction. Sensors
can also be placed higher up on the drill string, which can be
advantageous in filtering some kinds of noise and give better
readings in different drilling environments. For example, sensors
can be placed above the mud motor, or below the mud motor but
above the bit.

Though the signalling embodiments disclosed herein for
notifying the operator of the sensor calculations and/or results prefer
a reduction of mud flow impedance (i.e. opening a valve from the
drillstring interior into the well bore) over a restriction of mud flow
(closing a vlavle), restriction of mud flow is a possible method
within the contemplation of the present innovations.

The choke or valve assembly used to vary mud flow or mud
pressure can be of various makes, including a sliding sleeve
assembly that reversibly or irreversibly moves from one position to
another, or a ball valve which allows full open or partially open
valves. Valve assemblies with no external path (which can allow
infiltration into the interior system) are preferred, but do not limit
the ideas herein.

At least some of the disclosed innovations are not applicable
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only to roller-cone bits, but are also applicable to fixed-cutter bits.

The adaptive algorithms used to implement some embodiments
of the present innovations can be infinite impulse response, or finite
impulse response. In embodiments which employ neural networks
as adaptive algorithms, infinite impulse response implementations
tend to be more common.

Additional general background, which helps to show the
knowledge of those skilled in the art regarding the system context,
and of variations and options for implementations, may be found in
the following publications, all of which are hereby incorporated by
reference: HAGAN, DEMUTH, and BEALE, Neural Network
Design, PWS Publishing Company, 1996, ISBN 0-534-94332-2;
LUA and UNBEHAUN, R., Applied Neural Networks for Signal
Processing, Cambridge University Press, 1997.

None of the description in the present application should be
read as implying that any particular elément, step, or function is an
essential element which must be included in the claim scope: THE
SCOPE OF PATENTED SUBJECT MATTER IS DEFINED ONLY
BY THE ALLOWED CLAIMS. Moreover, none of these claims
are intended to invoke paragraph six of 35 USC section 112 unless
the exact words "means for" are followed by a participle.
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CLAIMS

What is claimed is:

1. A system for downhole power generation, comprising:
a bottom hole assembly;
a downhole power source which collects vibrational energy from
said bottom hole assembly and converts said vibrational
5 energy into electrical energy.

2. The system of Claim 1, wherein said electrical energy powers
sensors located on said bottom hole agsembly.

3. The system of Claim 1, wherein said electrical energy powers
sensors located on said bottom hole assembly, said sensors
measuring vibrational frequency.

4. The system of Claim 1, wherein said electrical energy powers
sensors located on said bottom hole assembly, said sensors
measuring axial strain.

5. The system of Claim 1, wherein said source collects said energy
using a spring-mass system, wherein said mass has magnetic
properties, and wherein vibrations cause said mass to oscillate
near a coil to thereby generate current.
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6. A system for downhole power generation, comprising:
a downhole assembly, said assembly having sensors which
collect data during drilling;
wherein said sensors are electrically connected to a downhole
5 power source; and
wherein said source powers said sensors using vibrations from
said bottom hole assembly.

7. The system of Claim 6, wherein said power source comprises a
spring mass system which generates electricity by movement
of a magnet near a coil, said movement provided by drilling

activity.

8. The system of Claim 6, wherein said bottom hole assembly
comprises a drill bit and an instrumented sub.

9. The system of Claim 6, wherein sensors measure axial strain.

10. The system of Claim 6, wherein sensors measure vibrational
energy.

11. The system of Claim 6, wherein said sensors measure data for
detecting drill bit failure.
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12. A system for downhole power generation, comprising:

a drill string connecting a drill bit to the surface;

a sub assembly on the lower end of said string above said drill
bit;

5 a detection platform on said sub assembly which receives data

from one or more sensors;

wherein said sub assembly has an independent refreshable
internal power source.

13. The system of Claim 12, wherein said sensors are not located
on said drill bit.

14. The system of Claim 12, wherein said power source comprises
a spring-mass system which converts vibrations into
electricity.

15. The system of Claim 12, wherein said power source has no
electrical connections external to said sub assembly.

16. A system for downhole power generation, comprising:
a bottom hole assembly having a drill bit and a sub assembly;
sensors connected to monitor said bottom hole assembly;
an elastically positioned mass, having magnetic properties which
5 generate a current in a nearby coil as said mass oscillates;
wherein said current provides electricity to said sensors.

17. The system of Claim 16, wherein said sensors collect data
- relevant to prediction of drill bit failure.

18. The system of Claim 16, wherein said sensors measure
vibrational frequency.
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19. The system of Claim 16, wherein said sensors measure axial
strain.

20. A method of generating power in a downhole assembly,
comprising the steps of:
collecting vibrational energy from drilling operation; and
converting said vibrational energy into electrical current using a
5 magnet and coil.

21. The method of Claim 20, wherein said vibrational energy is
collected by a spring mass system causing said mass to

oscillate.

22. The method of Claim 20, wherein said electrical energy is
collected by a capacitor.
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