2/23368 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 March 2002 (21.03.2002)

PCT

(10) International Publication Number

WO 02/23368 Al

(51) International Patent Classification’:
(21) International Application Number:

(22) International Filing Date:

GO6F 15/173

PCT/US01/28956

14 September 2001 (14.09.2001)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

60/232,733 15 September 2000 (15.09.2000)

(71) Applicant:

English

English

Us

WONDERWARE CORPORATION

[US/US]; 100 Technology Drive, Irvine, CA 92618 (US).

(72) Inventors: OMSHEHE, Barry; 25182 Fairgreen, Mis-
sion Viejo, CA 92692 (US). WEST, Janie; 18 Lawnridge,
Trabuco Canyon, CA 92679 (US). FORNEY, Paul, W.;

25112 Luna Bonita, Laguna Hills, CA 92653 (US).

)

@81

(84)

Agents: JOY, Mark et al.; Leydig, Voit & Mayer, Ltd.,
Two Prudential Plaza, Suite 4900, 180 North Stetson,
Chicago, IL. 60601-6780 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:

with international search report

[Continued on next page]

(54) Title: A METHOD AND SYSTEM FOR ADMINISTERING A CONCURRENT USER LICENSING AGREEMENT ON A
MANUFACTURING/PROCESS CONTROL INFORMATION PORTAL SERVER

10

100 \

Licensed Web Page
Resource Web |« » Script
Page

115

N

License Manager
System Wrapper

120
\

License

License Manager o
| Manager DLL

Service

(57) Abstract: Disclosed is a server that provides session-persistent concurrent licenses for resources accessed by clients. In one
embodiment, rather than requiring a license when the server is initially accessed, a license is not requested until a client seeks access
to a licensed resource (100). In one implementation, scripts for Web pages (105) associated with licensed resources (100) include
requests for licenses from a license management facility (115). Certain resources conditionally request a license based upon the
origin of the access request: the license request may be bypassed for access request from "pre-licensed" applications. Session-
based licensing allows equitable assessment of compensation to a service provider for use of the services. The server includes many
resources, some of which require a license for access while others do not. The services of premium value are the only ones for which

customers are expected to obtain/claim a license.

w0 02/23368 A1)OO0 000N O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/23368 PCT/US01/28956

A METHOD AND SYSTEM FOR ADMINISTERING
A CONCURRENT USER LICENSING AGREEMENT ON A
MANUFACTURING/PROCESS CONTROL INFORMATION PORTAL SERVER
CROSS REFERENCE TO RELATED APPLICATION
This application claims priority of Forney et al. U.S. provisional application Serial No.
60/232,733, filed on September 15, 2000, entitled "Extensible Manufacturing Portal Server,"
the contents of which are expressly incorporated herein by reference in their entirety including

the contents and teachings of any references contained therein.

FIELD OF THE INVENTION

The present invention generally relates to the field of computerized process control
networks. More particularly, the present invention relates to methods for enforcing concurrent
user access limits based upon an enterprise license definition. The present invention concerns
enforcing such limits with regard to users that concurrently access manufacturing/process

control information via a network (e.g., Internet/intranet) portal server.

BACKGROUND OF THE INVENTION

Significant advances in industrial process control technology have vastly improved all
aspects of factory and plant operation. Before the introduction of today's modern industrial
process control systems, industrial processes were operated/controlled by humans and
rudimentary mechanical controls. As a consequence, the complexity and degree of control over
a process was limited by the speed with which one or more people could ascertain a present
status of various process state variables, compare the current status to a desired operating level,
calculate a corrective action (if needed), and implement a change to a control point to affect a
change to a state variable.

Improvements to process control technology have enabled vastly larger and more
complex industrial processes to be controlled via programmed control processors. Control
processors execute control programs that read process status variables and execute control
algorithms based upon the status variable data and desired set point information to render output
values for the control points in industrial processes. Such control processors and programs

support a substantially self-running industrial process (once set points are established).

1

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

Notwithstanding the ability of industrial processes to operate under the control of
programmed process controllers at previously established set points without intervention,
supervisory control and monitoring of control processors and their associated processes are
desirable. Such oversight is provided by both humans and higher-level control programs at an
application/human interface layer of a multilevel process control network. Such oversight is
generally desired to verify proper execution of the controlled process under the lower-level
process controllers and to configure the set points of the controlled process.

Various data input/output servers, including for example data access servers, facilitate
placing process control data (both reading and writing) within reach of a variety of higher-level
monitor/control client applications. During the course of operation, process controllers
generate status and control information concerning associated processes. The controllers'
process status and control information is stored within process control databases and/or
distributed to a number of locations within the process control network. Other process
information is generated/stored within field devices (e.g., intelligent transmitters) having digital
data communication capabilities. The process information is retrieved from the process control
databases and field devices by data access servers for further processing/use by the process
control system. For example, the data access servers provide the retrieved information to a
variety of client applications providing high-level control and monitoring (both human and
computerized) services.

In systems containing data input/output servers, the high-level control and monitoring
applications rely upon the proper operation of the servers to provide the data upon which such
applications rely for decision-making. The information includes real-time process variable
values, alarms, etc. Data input/output servers are implemented in a number of forms. In some
systems, a single data access server operates upon a single node on a computer network from
which higher level supervisory control is implemented. In other systems, multiple data access
servers are located upon a local area network, and the multiple data access servers are accessed
by supervisory-level applications running on other nodes on a local control network. In yet
other systems, access to process control information/resources is achieved via temporary
sessions established via a wide area network link. One particular example is data access

provided via an Internet/intranet portal server.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

A portal site is an Internet/intranet site that provides access to a variety of information
from potentially many sources. Portal sites, referred to as vertical portals, are sometimes
designed to provide access to a particular type of information. Portal servers handle user traffic
at portal sites and provide user access over the Internet/intranet to the variety of data sources
exposed by the portal site. Such users generally access the portal site via remote computers
executing general browser software such as the well known MICROSOFT INTERNET
EXPLORER or NETSCAPE NAVIGATOR. Through the browsers the users access the data
sources exposed by the portal site/server.

Portal servers provide a wide variety of services. One example of such a service is
"content accessibility" that facilitates connectivity to information sources and/or content
providers. Content includes: online documents, libraries, databases, and government. Such
content can be located over a wide geographic area, but is connected via a network structure
(e.g., the Internet). Another example of a portal service is a search engine that enables users to
locate particular information within a vast amount of available content. A portal server often
maintains an index to enhance performance of searches. Another portal service is visualization
of available services (e.g., displaying various features available to users). A second aspect to
visualization is displaying documents and information retrieved at the request of a user. Yet
another portal server function is providing access to users from many parts of the world via the
World Wide Web. Such access includes both domestic and foreign users. A last example of a
portal function is support for personalization. A portal is used by many different people for
many purposes. Portal servers store user profile information to enhance user experiences.

An advantage of a portal server approach to accessing process control
information/resources is the ability of users to gain access from virtually any location in the
world. Such access enables specialists (both human and programmed) to obtain access to and
provide supervisory services without having to be physically present on the
manufacturing/industrial plant. Such accessibility can save an enterprise considerable time and
costs and avoid travel delays. Wide area network access of the type supported by a portal
server also enables centralized, coordinated, and highly integrated control of an enterprise
spread over a relatively wide geographic area. Notwithstanding the significant benefits of

providing Web access to a process control network, significant challenges are faced with regard

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

to regulating access to the process control network information and resources as well as to

properly charging customers for their use of such portal services.

SUMMARY OF THE INVENTION

The present invention offers a new way to monitor and regulate access by users to
manufacturing/process control portal services and fairly charging customers for their use of
premium resources accessed via the portals. A method and system are presented that facilitate
administering a session-based concurrent user licensing agreement on a manufacturing/process
control information portal such that a single logon during a session persists across multiple
distinct resources to which access is provided to a registered user via the plant information
portal site. After a portal server receives an access request to a resource for which a license is
required, the portal server invokes a license manager. Such invocation is triggered by an
embedded code, such as an executable script instruct. The license manager is associated with
restricted resources accessed via the portal.

After being invoked, the license manager confirms that an identified source associated
with the request does not possess a concurrent user license. The license manager also confirms
that a concurrent license is available to assign to the identified source. If such a license is both
needed by the requesting identified entity and all the concurrent licenses under a currently
enforced maximum concurrent user license have not been claimed, the license manager allows
the requesting identified entiry to claim a concurrent user license. The concurrent user license
persists by adding the identified source to a list of concurrent users to which a concurrent user

license is assigned.

BRIEF DESCRIPTION OF THE DRAWINGS

The appended claims set forth the features of the present invention with particularity.
The invention, together with its objects and advantages, may be best understood from the
following detailed description taken in conjunction with the accompanying drawings of which:

FIGURE 1 is a schematic drawing depicting an exemplary process control environment
for the present invention wherein a manufacturing/process control network includes a portal

server that provides a variety of portal services to browser clients;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

FIG. 2 is a schematic drawing summarizing the general license request passing
arrangement between executed portal server page scripts and a license manager for an
exemplary portal server embodying the present invention;

FIG. 3 summarizes a set of data structures maintained by a concurrent session-persistent
license management system;

FIG. 4 summarizes a set of fields maintained within a license log for a concurrent user
license management system;

FIG. 5 identifies a set of function calls supported by a concurrent user session-based
license management system embodying the present invention;

FIGs. 6A and 6B are flowcharts summarizing an exemplary two-part process for
installing a new/updated license definition enforced by a concurrent user license management
system; '

FIG. 7 is a flowchart summarizing a set of steps performed by the license management
system in response to an executed get license call;

FIG. 8 is a flowchart summarizing a set of steps performed by the license management
system in response to a release license call;

FIG. 9 is an illustrative administrative graphical user interface depicting a list of current
active concurrent user licenses and their associated user information;

FIG. 10 is an illustrative graphical user interface displaying a query interface enabling
an administrator to submit a query of a set of license records within the license log; and

FIG. 11 is an illustrative administrative graphical user interface depicting concurrent

user license record information over a specified time period.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

An exemplary manufacturing/process control information portal server incorporating the
present invention provides session-persistent concurrent user license allocation/enforcement
with regard to resources accessed by clients via the portal server site. Access to licensed portal
server resources is predicated upon the existence of an available concurrent user license (i.e.,
the maximum number of granted concurrent user licenses has not been reached). Furthermore,

a granted concurrent user license persists along with a particular user session as a user session

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

traverses other pages via the portal server. The concurrent user license grant persists for a
session until a license terminating condition is met that causes the portal server to release the
session's license. Examples of session-terminating events/conditions include: a user session
granted one of the licenses has not submitted a request or other session-sustaining message to
the portal site server for a period of time, the user session has exceeded a maximum time
period, the user session has logged off, etc.

In an embodiment of the present invention, rather than requiring grant of a license to a
user session when a portal site is initially accessed (e.g., a user logs onto the site), a concurrent
user license is not required, and thus not consumed, by a client of the portal server until the
client seeks access, via the portal server, to a resource that requires possession of one of the
concurrent user licenses. In a particular implementation of this delayed grant approach to
concurrent user licensing, scripts for Web pages associated with licensed resources include a
call to a "get license" function executed by a license management facility. In response to
receiving a get license function call the license management facility grants (if available) a
concurrent user license to the identified session with which the request is associated. The total
number of currently granted user licenses is incremented (or the available number of licenses is
decremented). The license management facility returns an "error code" stating that a license
was granted to the identified portal server session. Also, an identification of the session that
now possesses a concurrent user license is stored with a list of sessions that presently possess a
concurrent user license. In this way, the license grant persists across the user session on the
portal server's site.

The calling script associated with the requested portal server resource, upon receiving
the license management facility's response (with error code) executes conditional operations
based upon the error code. For example, if the error code indicates that a license was granted to
the session, then access to the licensed resource is allowed. If the license was denied, then
access to the resource is likewise denied. Of course the resource (i.e., the programmed script)
ultimately decides how to process a request in view of the license management facility's
returned error code.

There are many ways in which a portal server's licensed resources exercise their ultimate

control over whether a client user (requester) is granted access to the protected resource. For

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

example, certain portal server resources (Web pages) have associated scripts that conditionally
execute the "get license" function call based upon parameters identifying an access request's
origin. For example, the Web page scripts can bypass a get license function call when the
portal server resources are accessed by particular specified "pre-licensed" applications (or
"super user" classes) seeking access to the portal server (e.g., WonderWare's Licensed InTouch
nodes). While other requestors require possession of a license, in the case of defined exempt,
requestors no additional concurrent user license is required to access portal resources. J

The above-described session-based licensing scheme includes a number of attractive
features. One such feature is equitable assessment of value and compensation to a
software/service provider for use of the portal services. The portal server includes many
resources, some resources require a license for a user to gain access, while other resources do
not require a license. The portal services (or pages) that are considered of premium value to the
customer and/or the software/service provider are the only ones for which the customer is
expected to obtain concurrent user licenses.

Another feature, license persistence, enhances a user session experience. Because a
concurrent user license, once granted, persists across the user session at the portal, users need
not logon multiple times while accessing multiple resources provided by the
manufacturing/process control portal site. Nor does a user, once logged on, need to be
concerned that a license will be withdrawn merely because the user has left a Web page that
requires a license. A user's session license is ensured to persist until explicitly released or lost
through an extended period of inaction, and thus the session is unlikely to be halted due to a

lack of a license once a user receives the concurrent user license.

Turning to FIG. 1, an exemplary portal server arrangement is schematically depicted. A
portal server 10 provides ‘portal services to a manufacturing/process control environment. That
environment consists of a database server 20 and a data access server 30. The data access
server 30 in turn connects to process control equipment 40. The portal server 10 provides its
services to browser clients at locally connected workstations 50 and, via the Internet 60 or a

proprietary network, at remote work stations 70.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/23368 PCT/US01/28956

Turning to FIG. 2, an exemplary portal server license management implementation for
the portal server 10 is illustratively depicted. A Web page 100 on the portal server 10 includes
a script 105. Within the script 105 is a call to a GetLicense() function that is, by way of
example, a VBSCRIPT/ASP function. The GetLicense() function invokes a LicMgrWrpr 110
COM object. In general, the LicMgrWrpr 110 provides an interface to ASP pages. The
LicMgrWrpr 110 COM object calls a license manager service 115 supported by the
manufacturing/process control portal server 10. The license manager service 115 provides a
constantly running interface accessible to receive requests for license management services
such as modifying a concurrent user license, getting a concurrent user license, and releasing a
concurrent user license. The license manager service 115 calls a dynamically linked library
(LicMgr.dll) 120. The LicMgr.dll 120 performs the request received by the license manager
service 115. The LicMgr.dll 120, by way of example, executes requests to: read from a license
definition, write to a license definition (e.g., modify a maximum concurrent user license value),
grant a concurrent user license to an identified session, release a concurrent user license granted
to an identified session, etc. The LicMgr.dll 120 is loaded upon startup of the license manager
service 115 to avoid delays when it is called.

The above example concerns an exemplary structure for carrying out the GetLicense()
function. However, the LicMgrWrpr 110, license manager service 115, and LicMgr.dll 120 are
similarly invoked to perform any of a variety of calls to an exemplary license management
system. Such calls/functions initiate releasing a previously allocated concurrent user license in
response to, for example, a ReleaseLicense() function, requesting by an administrator summary
license information based upon license use records maintained by the license management
system, changing license terms (e.g., the number of installed concurrent user licenses), etc. In
the case of an administrator query to display historical license usage information, a
licenselog.asp page queries the use records via operations performed by the LicMgr.dll 120.

The present invention however, is not limited to the above-described implementation
path. Those skilled in the art will readily appreciate the existence of a variety of arrangements
for invoking and carrying out the functionality of a license management service for a portal

server that embodies the present invention in view of the disclosure herein. Such other

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

arrangements are contemplated in accordance with alternative embodiments of the present

invention.

With reference to FIG. 3, the following license data is maintained and accessed by the
LicMgr.dll 120 in carrying out its session-persistent concurrent user license management
responsibilities. A LicInfo structure 130 contains sessionID, timecreated, and userID values for
each user session possessing a concurrent user license on the manufacturing/process control
system portal server. This data structure (e.g., a string) is traversed in response to each request
to get or release a concurrent user license based upon an identified sessionID. An
ActiveLicenses structure 132 stores a value representing the number of currently granted
licenses. A TotalLicenses structure 134 stores a value containing the maximum number of
licenses that can be concurrently granted to distinct sessions. The ActiveLicenses structure 132
and TotalLicenses structure 134 facilitate the license management system's decision of whether
to grant an additional license. In an alternative embodiment of the invention, a single value,
representing the total remaining licenses is accessed to facilitate license grant determinations.
Yet another structure maintained by LicMgr.dll 120 is a license log 136. The license log 136
maintains a record of license management activity by the license manager. In an embodiment
of the invention, the license log 136 adds an entry each time a license is released. Utilizing the
information maintained in the ActiveLicenses structure 132, the license manager creates a log
entry in the license log 136 including the userlID, sessionID, start timé, and end time of a grant
of areleased license. In alternative embodiments of the invention a more extensive set of
events are registered (e.g., access denials). An exemplary set of fields for log records stored

within the license log 136 are described herein below with reference to FIG. 4.

As mentioned previously herein above, the license management system maintains a log
of license activity. Turning to FIG. 4, an exemplary license log record format is depicted. An
ID field 140 specifies an integer value identifying the record entry in the license log. A
timestart field 142 specifies a date and time at which a particular user session event
commenced. In the case of allocating a concurrent license to an identified session, the timestart

field 142 identifies the time at which the concurrent license was granted to an identified

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/23368 PCT/US01/28956

session. In an embodiment of the invention, the timestart field 142 can also identify when a
license request was denied, or a concurrent license definition for an enterprise was modified
(e.g., the maximum allowable number of concurrent licenses was updated). A timestop field
144 specifies a date and time at which a particular user session event ended. In the case of
allocating a concurrent license to an identified session, the timestop field 144 identifies the time
at which the concurrent license was released by an identified session. A duration value is
derived from the timestart field 142 and timestop field 144 for a particular license log record.

An eventID field 146 stores a character string (or alternatively a binary code) specifying
an event type for a logged event. The license log possesses the capability to store multiple
types of events, and the eventID field 146 enables filtering of particular events to render an
appropriate output for a system administrator.

A sessionlD field 148 stores a value uniquely identifying a particular user session. As
explained above, allocated concurrent user licenses persist across sessions. When a session is
allocated a concurrent user license, the session ID is stored in the LicInfo structure 130
maintained by the license manager. The stored session ID in the LicInfo structure 130 enables
the license manager function to identify sessions that have already acquired a concurrent license
and thus avoid allocating multiple concurrent licenses to the same session. When a license
grant is released, the session ID maintained in the LicInfo structure 130 is stored in the
sessionID 148 of a corresponding license log entry.

A userID 150 stores the logon user name associated with the session. The userID 150
value is not used for purposes of enforcing a licensing scheme. However, the userID 150
values are displayed when an administrator submits a request to the license management system
to display concurrent license allocation records.

An activecount field 152 stores a value indicating the number of concurrent licenses that
were granted at the time the entry was made. A maxcount field 154 stores a value indicating
the number of licenses installed (maximum allocatable concurrent licenses to sessions) for an
enterprise. In the case of a license denial event, the values of the activecount field 152 and the

maxcount field 154 are equal.

10

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

Turning to FIG. 5, an exemplary set of interface functions supported by the LicMgr.dll
120 is depicted. A GetLicense function 200 is a full service call to the LicMgr.dll to allocate a
license to an identified requesting session (to which the license is to be assigned). Other passed
parameters include a user ID (for logging), language code (for error messages), an "error" code
(returned value indicating success/failure of call), and an "error" message (returned text string
that is visually displayed for the user in the indicated language). An exemplary set of
error/status messages applicable to the functions identified in FIG. 5 comprises: successful
license grant, license unavailable, invalid/empty session ID, license already granted to session,
license successfully released, license not released (due to an error such as no prior license
grant). A GetLicenseEx function 202 performs the same function as the GetLicense function
200, but the GetLicenseEx function 202 does not return an error message.

A ReleaseLicense function 204 is a full service call to the LicMgr.dll to release/de-
allocate a concurrent user license previously given to an identified user session. Other
passed/returned parameters include a language code, an error code, and an error message. A
ReleaseLicenseEx function 206 performs the same function as the ReleaseLicense function 204,
but the ReleaseLicenseEx function 206 does not return an error message.

Two logging and information calls are provided to populate an administrator interface
displaying session-based concurrent user license allocation information. A GetLicInfo function
208 returns a string containing the sessionID values to which concurrent licenses are presently
allocated. Each string entry (per sessionlD) includes: time created, sessionID, and a userID.
The GetLicInfo function 208 also returns a string specifying the current number of granted
(active) concurrent licenses and a string specifying the current maximum number of concurrent
licenses that can be granted to sessions. When an application request generates an error, it may
call the GetErrorMsg function 210 with the error code and language code as inputs and receive
back the textual error message corresponding to the error.

The LicMgr.dll also includes encryption/decryption functions. These functions allow
utility programs to encrypt and then save a customer's user ID and password to the registry and
then later retrieve and provide decrypted values for the user ID and password. A
CryptSetRegKey function 212 encrypts a passed string. Passed parameters include a registry
key, a value under the registry key, and a string to be encrypted. An error code is returned. A

11

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

CryptGetRegKey function 214 decrypts an identified value. Passed parameters include a
registry key and a value under the registry key. A decrypted string and error cord are returned.

Turning to FIGs. 6A and 6B, these flowcharts depict an exemplary two-part process for
installing a new/updated license definition for an enterprise. Such requests are, by way of
example, submitted by a properly authenticated and authorized system administrator via an
administration interface page of the manufacturing/process control portal server. Such security
measures are well known to those skilled in the art and will not be addressed here.

The first part of the process updates the license definition file. Dufing step 300 of FIG.
6A, a new license definition is read from a license file. This file may be provided, for example,
on a floppy disk or on a Web site. Step 302 checks to see if the file contains a valid license
definition. If not, then control passes to step 304 wherein an error code is generated indicating
the failure. Control next passes to step 312 (see below). If, on the other hand, a valid new
license definition is read in step 302, then control passes to step 306 wherein the destination
computer that will receive the new license definition is selected. Next, in step 308, one of two
possible courses of action is taken, depending upon the circumstances. Either the new license
definition is appended to the existing license file on the destination computer, or the new
license definition completely replaces (overwrites) that license file. An error code indicating
success is set in step 310. The error code is reported in step 312 and the first part of the process
ends in step 314. Note that at this point, the destination computer is not using the updated
license file.

In the second part of the process, depicted in FIG. 6B, the updated license file comes
into use. This part may be invoked by selecting the “Re-Read License” button shown on the
screen in FIG. 9. (See that figure and the accompanying text below.) After the destination’s
license file is updated (appended to or overwritten), the LicMgr.dll 120 of FIG. 2 tells the
destination computer in step 316 to re-read its license file. Having done so, the destination
computer now operates with the updated file. In step 318, an error code is set indicating that
the new license definition was successfully installed. Control then passes to step 320 in which
aresponse is generated that includes the specified error code. Next, at step 322, if the request is

of a type that a text error message is requested, then control passes to step 324 wherein the

12

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

response initially built during step 320 is supplemented with error message text. The error
message text is provided in a language specified in the original request to the license manager.
Thereafter, control passes to step 326 wherein the previously built response is returned.

Control then passes to the End 328.

Turning to FIG. 7, a flowchart depicts a set of steps performed by the license
management system in response to an executed get license call within an accessed page script
executed by the portal server when a user accesses a portal-provided resource that requires an
active user license. The GetLicense (or abbreviated GetLicenseEx) call is, by way of example,
associated with user-client requests to view certain data-bound Web pages. In general, the
LicMgr.dll determines whether a user session identified in the request already has received a
concurrent user license. If the user session does not have such a license, then the license
manager determines whether such a license is available. If the maximum licensed user count
has not been reached for concurrent users, then the license manager allocates one of the
available concurrent user licenses to the session.

It is noted that in the exemplary embodiment of the invention, the license manager is a
supplementary service that facilitates management of concurrent user licenses. The license
manager accepts or denies a license request based upon the session ID and the availability of a
concurrent user license, and provides a corresponding response/error code. It is up to the
"calling" executed page script to determine how to handle the returned error code and either
allow or deny the user-client's request to access the resources associated with the Web page.
This division of responsibility between accessed Web page scripts and the license manager
enables programming of Web page access to manufacturing/process control data resources in a
highly customized manner. For example, a particular script is programmed to conditionally
exempt user session requests from particular applications or identified users/groups from a
cc;ncurrent user license requirement. In such instances, the get license call within the Web
page's associated script is conditionally bypassed for this particular set of "super users."

Referring to the steps summarized in FIG. 7, during step 400, a get license call is passed
via the program architecture depicted in FIG. 2 to the license manager 120. Such a call is, by

way of example, embedded within a Web page for which an active concurrent user license is

13

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

required. A get license call includes at least a session ID. A user name is passed as well (for
purposes of event logging). A language code is also supported to facilitate generation of error
messages according to supported local languéges.

In an embodiment of the invention, session ID values are used to track granted
concurrent user licenses. Therefore, the license manager is unable to make license grant
determinations without a session ID being furnished. At step 402, the request is examined to
ensure that a session ID is included. If a session ID is not specified, then control passes to step
404 wherein an error code is generated indicating that no session ID was present. Control then
passes to step 408, and a response is generated that includes the specified error code (in this
case the "no session ID" code). Next, at step 410 if the request is of a type that a text error
message is requested, then control passes to step 412 wherein the response initially built during
step 408 is supplemented with error message text. The error message text is provided in a
language specified in the original request to the license manager. Thereafter, control passes to
step 414 wherein the license manager returns the previously built response to the caller.
Control then passes to the End 416. As noted above with reference to FIG. 5, the get license
function call also has a short version that does not request error text. In that case, control
passes from step 410 directly to step 414 (the error message insertion step is bypassed).

Returning to step 402, if a session ID is provided in the get license function call, then
control passes to step 420. As mentioned previously above, allocated concurrent user licenses
persist over a user session (subject potentially to loss due to a period of inaction by a user) with
the portal server. Therefore, when a user accesses a license-restricted resource via the portal the
session may already possess an allocated license. To ensure that a same session does not
unnecessarily consume multiple licenses, during step 420 the submitted session ID is compared
to the session ID values in the LicInfo structure 130. If the session ID is located in the LicInfo
structure 130, then the identified session already possesses a concurrent user license, and
control passes to step 422 wherein an error code is generated indicating that the session already
possesses a license. Control then passes to step 408 where, as mentioned above, a response is
built according to a provided error code. |

If at step 420, the session ID is not found in the LicInfo structure 130, then control

passes to step 424. At step 424 the license manager determines whether a concurrent user

14

SUBSTITUTE SHEET (RULE 26)

10

15

20

25.

30

WO 02/23368 PCT/US01/28956

license is available. Such a determination is made, for example, by comparing the current
number of allocated (active) concurrent user licenses stored in the ActiveLicenses structure 132
to a maximum allowable number of concurrent licenses stored in the TotalLicenses structure
134. If the comparison indicates that all of the available licenses have been allocated to other
sessions, then control passes to step 426 wherein the license manager generates an error code
indicating that no licenses are available to grant. Control then passes to step 408. If, at step
424, licenses are available, then control passes to step 428 wherein the value stored in the
ActiveLicenses structure 132 is incremented to reflect granting of a concurrent user license.
Next, the sessionID, userID, and start time are added to the LicInfo structure 130 during step
430. Thereafter, during step 432 an error éode is set for a response indicating that a license was

successfully granted to the identified session. Control then passes to step 408.

Turning to FIG. 8, a flowchart depicts a set of steps performed by the license
management system in response to a release license call from the portal server when a license
previously granted to an identified session is released. The ReleaseLicense (or abbreviated
ReleaseLicenseEx) call is, by way of example, associated with termination of a user-client
session at the portal server site (either through an explicit user action or alternatively inaction at
the portal server site). In general, the LicMgr.dil determines whether a user session identified
in the request already has received a concurrent user license. If the user session does have such
a license, then the license manager releases the license, updates its licensing status variables,
and logs the user session license grant/release in the license log 136.

Referring to the steps summarized in FIG. 8, during step 500, a release license call is
passed via the program architecture depicted in FIG. 2 to the license manager dll 120. Such a
call, by way of example, arises from a user logging off the portal site (or a section thereof) or by
the portal server timing out the user session due to inaction. A release license call includes at
least a session ID. A language code is also supported to facilitate generation of error messages
according to supported local languages.

In an embodiment of the invention, session ID values are used to track granted
concurrent user licenses. Therefore, the license manager is unable to release a license without a

furnished session ID. At step 502, the release call is examined to ensure that a session ID is

15

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

included. If a session ID is not specified, then control passes to step 504 wherein an error code
is generated indicating that no session ID was present. Control then passes to step 508, and a
response is generated that includes the specified error code (in this case the "no session ID"
code). Next, at step 510 if the request is of a type that a text error message is requested, then
control passes to step 512 wherein the response initially built during step 508 is supplemented
with error message text. The error message text is provided in a language specified in the
original release license function call to the license manager. Thereafter, control passes to step
514 wherein the license manager returns the previously built response to the caller. Control
then passes to the End 516. As noted above with reference to FIG. 5, the release license
function call also has a short version that does not request error text. In that case, control
passes from step 510 directly to step 514 (the error message insertion step is bypassed).

Returning to step 502, if a session ID is provided in the release license function call,
then control passes to step 520. During step 520 the submitted session ID is compared to the
session ID values in the LicInfo structure 130. If the session ID is not located in the LicInfo
structure 130, then the identified session does not possess a concurrent user license (and
therefore cannot release a license). Control therefore passes to step 522 wherein an error code is
generated indicating that the session did not possess a license at the time the release request was
processed. Control then passes to step 508 where, as mentioned above, a response is built
according to a provided error code.

If at step 520, the session ID is found in the LicInfo structure 130, then control passes to
step 528. At step 528 the license manager decrements the number of granted licenses stored in
the ActiveLicenses structure 132 to reflect releasing the concurrent user license from the
identified session. Next, the sessionID, userID, and start time are deleted from the LicInfo
structure 130 during step 530. Next, during step 532 a log entry including the start time, stop
time, userID, and sessionID is added to the license log 136. Thereafter, during step 534 an error
code is set for a response indicating that a license was successfully released for the identified
session. Control then passes to step 508.

Having described a set of exemplary steps for maintaining concurrent user licenses with
reference to FIGs. 7 and 8, it is emphasized that the above steps comprise an exemplary

methodology for managing distribution of a set of session-persistent concurrent user licenses.

16

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/23368 PCT/US01/28956

Those skilled in the art will readily appreciate the breadth of alternative methodologies for
carrying out the present invention. For example, the choices of error conditions/codes and the
subsequent handling of those events (including logging) can be handled in a variety of manners

in accordance with various embodiments of the present invention.

A license management system includes monitoring features that record user session
information. The user session information includes, for example: user identities, time of
access, duration, number of currently licenses active, maximum allocated licenses during
session, and denials of access due to insufficient installed licenses. The license management
system will also provide aggregate system license information for an enterprise such as
allocated concurrent user licenses at any point in time, total licenses installed (maximum
concurrent license users). Such information is stored in a searchable database such as an SQL
database. The database utility accepts search queries and responds by displaying relevant
retrieved records and particular values. With reference to FIGs. 9, 10, and 11, exemplary
displays are provided for displaying responsive license information in responsé to user queries.

FIG. 9 displays a list of current active concurrent user licenses and their associated user
information. The license monitor interface depicted in FIG. 9 displays the current number of
installed licenses (e.g., 11). Thus, the current configuration will allow up to eleven concurrent
users. An expiration date for the installed licenses is also included. The monitor interface also
displays the current number of allocated concurrent user licenses (zero). The interface also
displays a maximum number of records the system is configured to maintain. This is the
maximum number of current license allocation record entries that the system will maintain. In
the present example, the maximum number of concurrent license records that are stored in a
license history is 100. A "Refresh” button causes the system to delete the oldest entries of the
license allocation records in the event that the records exceed 100. A "Re-Read Licenses"
button, when selected, forces the system to read and apply a new license definition (without

shutting down the license administration scheme).

Turning to FIG. 10, a second available monitor interface displays a query interface

enabling an administrator to submit a query of a set of license records within the license log

17

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 02/23368 PCT/US01/28956

136. The administrator defines a query according to one or more of the following: a start date,
start time, end date, end time, and a maximum number of retrieved entries. In alternative
embodiments of the invention, the query engine supports identifying particular users or user
groups and virtually any other parameter type supported by the concurrent user license

allocation records.

Turning now to FIG. 11, a license history monitor interface displays concurrent user
license record information over a specified time period. A first column depicts the start time of
the licensed activity for a particular session. A second column identifies the duration. A third
column displays a user ID. In most of the entries in FIG. 11, the number of currently active
licenses is zero because a license has been released. The manner of displaying such
information can take on virtually any of a number of forms. Thus, the list depicted in FIG. 11
is merely an illustrative example of a variety of interfaces suitable for displaying license record

information.

Illustrative embodiments of the present invention and certain variations thereof have
been provided in the Figures and accompanying written description. The present invention is
not intended to be limited to these embodiments. Rather the present invention is intended to
cover the disclosed embodiments as well as others falling within the scope and spirit of the
invention to the fullest extent permitted in view of this disclosﬁre and the inventions defined by

the claims appended herein below.

18

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/23368 PCT/US01/28956

WHAT IS CLAIMED IS:

1. A method for administering a session-based concurrent user licensing agreement
on a manufacturing/process control information portal such that a single logon during a session
persists across multiple distinct resources to which access is provided via the plant information‘
portal site, the method comprising the steps:

receiving, by the portal server, an access request to a resource for which a license is
required;

invoking, based upon a code within a sequence of commands associated with the
requested resource, a license manager associated with restricted resources associated with the
portal, the license manager performing the further steps of:

first confirming that an identified source associated with the request does not
possess a concurrent user license;

second confirming that a concurrent license is available to assign to the
identified source; and

adding the identified source to a persistent list of concurrent users to which a

concurrent user license is assigned.

2. The method of claim 1 wherein the second confirming step is based upon a
maximum number of allowed concurrent license claims under an established concurrent license
agreement maintained by the license manager. -

3. The method of claim 1 wherein the invoking step is performed in response to an

attempt by a particular identified user-session to access portal resources via a web page

provided by the portal.

19

SUBSTITUTE SHEET (RULE 26)

WO 02/23368 PCT/US01/28956

1/10

PCT/US01/28956

WO 02/23368

¢ 9Old

11Q Jebeuepyy IV EIS

esuaol] JeBeueyy osusor] j

Gl
/ 0cl

1duosg

laddeipp walsAs
abed gepn

Jabeuepy asuaol

d

o

abed
gSA\ 80in0say
pasusal

/ 00l

2/10

WO 02/23368

130
132
134
136

140
142
144
146
148
150
152
154

200
202
204
206
208
210
212
214

FIG. 3

Liclnfo (multi-element string)

ActiveLicenses (string)

TotalLicenses (string)

License Log (table)

FIG. 4

D

TimeStart

TimeStop

Eventld

Sessionld

Userld

ActiveCount

MaxCount

FIG. 5

GetLicense

GetLicenseEx

Releaselicense

ReleaseLicenseEx

GetLicInfo

GetErrorMsg

CryptSetRegKey

CryptGetRegKey

3/10

PCT/US01/28956

WO 02/23368

304

Set Error Code: No
New License
Definition

PCT/US01/28956

Read New License Definition
from License File

No g -
License Definition

Select Destination Computer for
Installation

\ J

Append New License to License
File or Overwrite File, as
Appropriate

v

Set Error Code: License
Definition Instalted

FIG. 6A

Y

Report Error Code

314

4/10

End

300

302

306

308

310

312

WO 02/23368 PCT/US01/28956

Tell Destination Computer to Re-
Read lts License File

Y

Set Error Code: License
Definition Installed

) J

Build Response with Error Code

324

k Supplement Response with Error Yes
Message Text in Specified Language

[

rror Message
Requested?

» No
\

'

Return Response

328 v
End

FIG. 6B

5/10

326

WO 02/23368

404\

Set Error Code: No
Session ID Provided

Set Error Code: License
Already Granted

422 -/

Set Error Code: No
Available Licenses

426/

A

PCT/US01/28956

ession Posseses
Active License?

Concurrent User
License Available?

Increment Granted Licenses

Y

Add Session ID to List of
Licensed Sessions

!

Set Error Code: License Granted

412

Supplement Response With Error
Message Text in Specified Language

|

Laat

Y

Build Response With Error Code

rror Message
Requested?

Yes

P

A

No

Pass Get License Call to ____,,400
License Manager
Session ID 402
Provided?
420

424

Return Response to Calling Entity

414

FIG. 7

6/10

416
End

WO 02/23368

504
\

Set Error Code: No
Session ID Provided

Set Error Code: Session
Did Not Possess a
License

522 -/

A

PCT/US01/28956

License Manager

Session ID
Provided?

ession Posseses
Active License?

Decrement Number of Granted
Licenses

500

Pass Release License Call to)

502

520

528

) J

530

Remove Session ID from List of
Sessions Possessing a License

v

Store Log Entry For Granted/
Released License of Session

\

Set Error Code: License Grant
Successfully Released

()]
N N

512

(Supplement Response with Error
Message Text in Specified Language

[

A

Build Response With Error Code

508

rror Message
Requested?

Yes

No

A4

510

Return Response to Calling Entity

s

FIG. 8

7/10

516
End

PCT/US01/28956

WO 02/23368

JoUBIU} 2007 ym [_D

auog (g

[

4o 6o O/

0002 LZ:S2:91 82 BNy UO oWl JoAIDS

moaqy [dieH]

awoH)

[(1epiod) 0002-08S-GL Saudx3 ‘pajejsul Sasuar] LL] $8Suadr snoy 0

[ssusorypeen-eu | [00}]SPiocm xe E

AoysiH ssuso| AoisiH asusol Aend EERTE R Y

uoneulol] ssusdt

l1810|dx3 18ulsiu| Yosoudiy - dse Bojasuadljasusoluiipe/Buasn/iabeAonslis/oa)eby:dny m_ mmm._vu<_u_

m _W_ E m »m__ EoﬁI@ sajuone [¥) :o._mmw@_ g @ ° 4 <& 4 egep

dpH slooL sejored maIA 1P Slid

18.10]dX3 1PUISU] PYOSOIDNN - n_wm.mo_mmcmom_\mwcmoﬁ\c_Evm\mcmw:tmmm>o>w«._w\om=_mm\\“atcm

6 Old

8/10

PCT/US01/28956

WO 02/23368

ouenur oo gm]|] suog (g

[*]

E SpIoSB: Xe _ AIo}s1H 95U891] MoYS J

& psez[°W [82-8-000z] ©°0 PUI @@y €[00:00|°Wi[gez-g-000z] Eea veIS

te_|oe |6z IW te_|oe |ez IR
9¢ |S¢ b2 |e2 |22 (L2 |0C 9¢ |SC |ve |[eC |22 |Le |02
6L 8L [ZL |9t [SL [PL |EL 6L 8L [ZL |9F |SL [¥L (€L
zr vt Jor [6 |8 |2 s zv (v for |6 |8 |z |o
El I I e s F £ [IF
eS| U4 {nyl [uspplend JUONuNS| eS| U4 [Nyl [Uspa|end [uoiy jung

0002 0002
[210002] [<] 105] sngimy [2T0002] [T sn80] sy

UOlJEWIoU] BSUSDIT [E01I0)SIH J0) Say pue seje pug pue Lels 10998

[SEYERS] AoisiH esusor] Aend IR ENENY

0002 6€:22:91 82 Bny uopy :awil Janes UOjBULIOJ] 8SU80IT
4o 6o Q/ noqy _H_ diaH _H_ swoH G

2Jm§<z

ANVdINOD

v

09 Ab _b_ dse*Bojosuaor/asusol]uupe/buasn/iabeloaspns/oaety.diy @ wmm._uu<=

m @ E m ;@: aem__._@ sojoned (&) r_o..mmw@_ [V ° 4 <o 2 pegmp m
u disH sicol sewosed meiA WPE eid]

1

XI=] a101dx3 Jouls oS0 pe/Bussn/iaBekonays/oaied/:dyud

0L ©Id

9/10

PCT/US01/28956

WO 02/23368

joueiy; 2007 | =u||_ - auog (¢

[]

37 I sueluelouuBu\DH FUYMYIANOM 02:€2:0 WY 90:6L:6 0002/82/8

L 0 JINYADH FUYMYIANOM €2:VE:0 WY 8FILE6 0002/82/8

1% 0 JINVAOH IHVMHUIANOM ¥S:02:0NY ¥LISSILL 0002/82/8

131 0 WsyseADH FUVMEIANOM LZ:1L2:0 INd LP:L2:L 0002/88/8

134 0 AINVAOH JUYMEIANOM 9¥:22:0 Wd 22:11:2 0002/82/8
0

1 AINVADH IHYMYIANOM 9S:€€:0 Wd 8Z:SH'E 0002/82/8
peiueq pallElsul eAlOY qliesn uopeing " sumums

BGEC 82-8-0002, O} ,00:00 82-8-002, WOHY Splodas asuasdl
KioysiH asuaan > Ao)s|H asuso1 Aslenp| sesusolT aAloy

0002 6£:22:91 82 BnY LOY oLl | JoA1eS UOIJBWLIOJ| 85USDI
#o B0 nogy [] dieH [] swon {J

| EvA YIOVAOAILING (557) o

-) <z
ooAb _b_ Jai0)dxg jaulaju] yosouol - dseGojasuaslyasuadljuiwupe/buasnyiabelons)is/oa)eby/:dyy m_ mmmgun<z
OE QG -5F| cosmg) seworesly wesstD | 7 @ © -« & + weam ﬁ
m | digH sjool sejuoARd MeIA WpT Blid ;

10/10

INTERNATIONAL SEARCH REPORT International application No.
PCT/USo01/28956

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GosF 15/178
US CL :709/225
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

us. :

709/225, 228, 224, 226, 217, 219, 208; 705/51-59, 77, 8; 718/200, 201, 1883; 710/200

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

sefrecet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PLUS SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,940,504 A (GRISWOLD) 17 August 1999, see abstract and | 1-3
col. 1-4.
Y US 6,029,145 A (BARRITZ ET AL) 22 February 2000, see col. 1- | 1-3

3.

D Further documents are listed in the continuation of Box C. D See patent family annex.

= Bpocial categories of oited d t " later document published after the international filing date or priority
. . . date and not in conflict with the application but eited to understand
"A" document defining the general state of the axt which is not considered the principle or theory underlying the invention
to be of particular relevance
s s . - as b document of particular relovance; the claimed invention cannat be
"B earlior document published oz or after the international filing date oonsidered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the docnment is taken alone
cifed {o establich the publication date of another citation or other . .
special Teason (as specifisd) "y document of partioular relevance; the claimed invention cannot be
considered to involve an inventivs step when the document iz combined
"o d t reforring to an oral disclosnre, use, exhibition or other with one or more other such documents, such combination being
meaus obvious to a person ekilled in the art
P document -published prior to the international filing date but late "gn documsnt member of the same patent family
than the priority date claimed .
Date of the actual completion of the international search Date of mailing of the international search report

o2 NOVEMBER 2001 2 1 NOV ZU[”

[}
Name and mailing address of the ISA/US Authorize oﬁicer N /»aﬂ(
Commissioner of Patents and Trademarks QLA

Box PCT
Washington, D.C. 20231 ARIO ETIENNE
Facsimile No. (708) 805-3230 Telephone No. (708) 508-7562

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

