Title: AMINOTHIAZOLES AND THEIR USE AS ADENOSINE RECEPTOR ANTAGONISTS

Abstract: Compounds of formula (I) in free or salt form, where A is a C₆H₃ monovalent aromatic group, R₁ is hydrogen, phenyl optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl or acyloxy, or a 5- or 6-membered monovalent heterocyclic group, R₂ is hydrogen, C₁-C₆-alkyl, acyl or CON(R³)=R⁴, provided that R² is C₁-C₆-alkyl, acyl or CON(R³)=R⁴ when R¹ is hydrogen, R₂ and R⁴ are each independently hydrogen, or C₁-C₆-alkyl, together with the nitrogen atom to which they are attached denote a 5- or 6-membered heterocyclic group, and Z¹, Z², Z¹, and Z² are each independently N or CR₃, at least one of them being CR³, and R³ is hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy.

The compounds are useful as adenosine receptor antagonists, particularly in the treatment of inflammatory or obstructive airways diseases.
AMINOTHIAZOLES AND THEIR USE AS ADENOSINE RECEPTOR ANTAGONISTS

This invention relates to organic compounds, their preparation and their use as pharmaceuticals.

In one aspect, the present invention provides compounds of formula

\[
\begin{array}{c}
\text{Ar} \\
\text{Z}_1^2 \ \text{Z}_1 \ \text{Z}_4^3 \ \text{Z}_1 \ \\
\text{Z}_1 \ \\
\end{array}
\]

in free or salt form, where

Ar is a C₂⁻C₁₅ monovalent aromatic group,

R¹ is hydrogen, phenyl optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, C₁⁻C₆-alkyl, C₁⁻C₆-haloalkyl, C₁⁻C₆-alkoxy, C₁⁻C₆-alkoxy-C₁⁻C₆-alkyl or acyloxy, or a 5- or 6-membered monovalent heterocyclic group,

R² is hydrogen, C₁⁻C₆-alkyl, acyl or -CON(R³)R⁴, provided that R² is C₁⁻C₆-alkyl, acyl or -CON(R³)R⁴ when R¹ is hydrogen,

R³ and R⁴ are each independently hydrogen or C₁⁻C₆-alkyl, or together with the nitrogen atom to which they are attached denote a 5- or 6-membered heterocyclic group,

Z₁, Z₂, Z₃ and Z₄ are each independently N or CR⁵, at least one of them being CR⁵, and

R⁵ is hydrogen, C₁⁻C₆-alkyl or C₁⁻C₆-alkoxy.

Terms used in the specification have the following meanings:

“C₁⁻C₆-alkyl” as used herein denotes straight chain or branched C₁⁻C₆-alkyl, which may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, straight or branched pentyl, straight or branched hexyl, straight or branched heptyl, or straight or branched octyl. Preferably, C₁⁻C₆-alkyl is C₁⁻C₄-alkyl.

“C₁⁻C₆-alkoxy” as used herein denotes straight chain or branched C₁⁻C₆-alkoxy which may be, for example, methoxy, ethoxy, n-propoxy, isoproxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, straight or branched pentoxy, straight or branched hexyloxy, straight or branched heptyloxy, or straight or branched octyloxy. Preferably, C₁⁻C₆-alkoxy is C₁⁻C₄-alkoxy.
“C_{1}-C_{8}-haloalkyl” as used herein denotes C_{1}-C_{8}-alkyl as hereinbefore defined substituted by one or more halogen atoms, preferably one, two or three halogen atoms, preferably fluorine or chlorine atoms. Preferably C_{1}-C_{8}-haloalkyl is C_{1}-C_{4}-alkyl substituted by one, two or three fluorine or chlorine atoms.

“C_{1}-C_{8}-alkoxy-C_{1}-C_{8}-alkyl” as used herein denotes C_{1}-C_{8}-alkyl as hereinbefore defined substituted by C_{1}-C_{8}-alkoxy as hereinbefore defined.

“C_{1}-C_{8}-alkoxy-C_{1}-C_{8}-alkoxy” as used herein denotes C_{1}-C_{8}-alkoxy as hereinbefore defined substituted by C_{1}-C_{8}-alkoxy as hereinbefore defined.

“C_{1}-C_{8}-alkylcarbonyl”, “C_{1}-C_{8}-haloalkylcarbonyl” and “C_{1}-C_{8}-alkoxycarbonyl” as used herein denote C_{1}-C_{8}-alkyl, C_{1}-C_{8}-haloalkyl or C_{1}-C_{8}-alkoxy respectively as hereinbefore defined attached by a carbon atom to a carbonyl group.

“Acyl” as used herein denotes alkylcarbonyl, for example C_{1}-C_{8}-alkylcarbonyl where C_{1}-C_{8}-alkyl may be one of the C_{1}-C_{8}-alkyl groups hereinbefore mentioned, optionally substituted by one or more halogen atoms; cycloalkylcarbonyl, for example C_{3}-C_{8}-cycloalkylcarbonyl where C_{3}-C_{8}-cycloalkyl may be, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl; 5- or 6-membered heterocyclylcarbonyl having one or more, preferably one or two, hetero atoms selected from nitrogen, oxygen and sulfur in the ring, such as furylcarbonyl, methylthienylcarbonyl or pyridylcarbonyl; arylocarbonyl, for example C_{6}-C_{10}-arylcarbonyl such as benzoxy; or aralkylcarbonyl, for example C_{6} to C_{10}-aryl-C_{1}-C_{8}-alkylcarbonyl such as benzylcarbonyl or phenylethylcarbonyl.

“Acyloxy” as used herein denotes alkylcarbonyloxy, for example C_{1}-C_{8}-alkylcarbonyloxy where C_{1}-C_{8}-alkyl may be one of the C_{1}-C_{8}-alkyl groups hereinbefore mentioned, optionally substituted by one or more halogen atoms; cycloalkylcarbonyloxy, for example C_{3}-C_{8}-cycloalkylcarbonyloxy where C_{3}-C_{8}-cycloalkyl may be, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl; 5- or 6-membered heterocyclylcarbonyloxy having one or two hetero atoms selected from nitrogen, oxygen and sulfur in the ring, such as furylcarbonyloxy or pyridylcarbonyloxy; arylcarbonyloxy, for example C_{6}-C_{10}-arylcarbonyloxy such as benzoxyloxy; or aralkylcarbonyloxy, for example C_{6}
to C₉₋₁₅-aryl-C₁₋₄-alkylcarbonyloxy such as benzylcarbonyloxy or phenylethylcarbonyloxy. Preferably acyloxy is C₁₋₄-alkylcarbonyloxy.

"Halogen" as used herein may be fluorine, chlorine, bromine or iodine; preferably it is fluorine or chlorine.

Ar may be, for example, phenyl optionally substituted by one or more substituents, for example, one, two or three substituents selected from halogen, cyano, C₁₋₄-alkyl or C₁₋₄-haloalkyl, or Ar may be naphthyl. Ar is preferably phenyl optionally substituted by halogen, cyano or C₁₋₄-alkyl, preferably meta or para to the indicated thiazole ring.

R¹ may be, for example, hydrogen, phenyl optionally substituted by halogen, cyano, hydroxy, C₁₋₄-alkyl, C₁₋₄-haloalkyl, C₁₋₄-alkoxy, C₁₋₄-alkoxy-C₁₋₄-alkyl, carboxy, C₁₋₄-alkoxycarbonyl or C₁₋₄-alkylcarbonyloxy, or a monovalent 5- or 6-membered heterocyclic group having one, two or three ring hetero atoms selected from nitrogen, oxygen and sulfur, such as pyrrolyl, triazolyl, pyridyl, oxopyridyl, piperidyl, pyridazine, pyrimidinyl, pyrazinyl, pyrazolyl, pyrazoliny1, piperazinyl, morpholinyl, furyl, pyranyl, thieryl or thiazoyl, optionally substituted by one or more substituents selected from C₁₋₄-alkyl, hydroxy, C₁₋₄-alkoxy or C₁₋₄-alkoxy-C₁₋₄-alkoxy. Preferably R¹ is hydrogen, phenyl optionally substituted by cyano or C₁₋₄-alkoxy, or a monovalent 6-membered N-heterocyclic group, preferably a heteroaromatic group, especially pyridyl, C₁₋₄-alkylypyridyl, di(C₁₋₄-alkyl)pyridyl, C₁₋₄-alkoxypyridyl, pyrazinyl, C₁₋₄-alkylpyrazinyl, C₁₋₄-alkoxypyrazinyl or C₁₋₄-alkoxy-C₁₋₄-alkoxy.pyrazinyl.

R² may be, for example, hydrogen, C₁₋₄-alkyl, formyl, C₁₋₄-alkylcarbonyl, C₁₋₄-haloalkylcarbonyl, C₃₋₅-cycloalkylcarbonyl, phenylcarbonyl in which the phenyl moiety is optionally substituted by halogen, cyano, hydroxy, C₁₋₄-alkyl or C₁₋₄-alkoxy, heterocyclylcarbonyl in which the heterocyclyl group is 5- or 6-membered and has one or more, preferably one or two, ring hetero atoms selected from nitrogen, oxygen and sulfur, or a group -CON(R³)R⁴. Preferably R² is hydrogen, C₁₋₄-alkylcarbonyl, C₃₋₅-cycloalkylcarbonyl, phenylcarbonyl where the phenyl group is optionally substituted by C₁₋₄-alkoxy, or heterocyclylcarbonyl in which the heterocyclyl group is 5- or 6-membered and has a ring hetero atom selected from nitrogen, oxygen and sulfur, such as furylcarbonyl, tetrahydrofurylcarbonyl, C₁₋₄-alkylfurylcarbonyl, thienylcarbonyl, C₁₋₄-alkyl-thienylcarbonyl, N-(C₁₋₄-alkyl)pyrrolylcarbonyl and pyridylcarbonyl.
Where present, R³ and R⁴ may each independently be, for example, hydrogen or C₁-C₆-alkyl, or together with the nitrogen atom to which they are attached may denote a 5-membered heterocyclic group such as pyrrolyl or pyrrolidinyl or a 6-membered heterocyclic group such as pyridyl, piperidyl, piperazinyl or morpholinyl. Preferably R² and R⁴, where present, are each C₁-C₆-alkyl, especially methyl, or together with the nitrogen atom to which they are attached denote a 6-membered heterocyclic group, especially pyridyl.

When two or more of Z¹, Z², Z³ and Z⁴ denote CR⁵, the CR⁵ groups may be the same or different. Preferably R⁵ is hydrogen or C₁-C₆-alkyl. Preferably Z¹ and Z³ each denote N and Z² and Z⁴ each independently denote CR⁵, or Z² denotes N and Z¹, Z³ and Z⁴ each independently denote CR⁵ where R⁵ is hydrogen or C₁-C₆-alkyl. In especially preferred embodiments, Z¹ and Z³ each denote N and Z² and Z⁴ each denote CH, or Z¹ denotes CR⁵ where R⁵ is hydrogen or C₁-C₆-alkyl, Z² denotes N and Z³ and Z⁴ each denote CH.

Preferred compounds of formula I in free or salt form are those where
Ar is phenyl optionally substituted by halogen or cyano,
R¹ is hydrogen, phenyl optionally substituted by cyano or C₁-C₆-alkoxy, or a monovalent 6-membered N-heterocyclic group,
R² is hydrogen, C₁-C₆-alkylcarbonyl, C₁-C₆-cycloalkylcarbonyl, phenylcarbonyl where the phenyl group is optionally substituted by C₁-C₆-alkoxy, or heterocyclylcarbonyl where the heterocyclic group is 5- or 6-membered and has one or two ring hetero atoms selected from nitrogen, oxygen and sulfur, and
either Z¹ and Z³ each denote N and Z² and Z⁴ each denote CH, or Z¹ denotes CR⁵ where R⁵ is hydrogen or C₁-C₆-alkyl, Z² denotes N and Z³ and Z⁴ each denote CH.

Further preferred compounds of formula I in free or salt form are those where
Ar is phenyl substituted by halogen or cyano meta or para to the indicated thiazole ring,
R¹ is a monovalent 6-membered N-heterocyclic group,
R² is hydrogen and
either Z¹ and Z³ each denote N and Z² and Z⁴ each denote CH, or Z¹ denotes CR⁵ where R⁵ is hydrogen or C₁-C₆-alkyl, Z² denotes N and Z³ and Z⁴ each denote CH.

Other further preferred compounds of formula I in free or salt form are those where
Ar is phenyl substituted by halogen or cyano meta or para to the indicated thiazole ring,
R¹ is hydrogen,
R² is phenylcarbonyl where phenyl is optionally substituted by C₃-C₄-alkoxy, or
heterocyclic carbonyl where the heterocyclic group is 5- or 6-membered and has a ring hetero
atom selected from oxygen and sulfur, and
either Z¹ and Z³ each denote N and Z² and Z⁴ each denote CH, or Z¹ denotes CR² where
R⁵ is hydrogen or C₁-C₄-alkyl, Z₂ denotes N and Z³ and Z⁴ each denote CH.

Especially preferred specific compounds of formula I are those described hereinafter in the
Examples.

The compounds represented by formula I are capable of forming acid addition salts,
particularly pharmaceutically acceptable acid addition salts. Pharmaceutically acceptable
acid addition salts of the compound of formula I include those of inorganic acids, for
example, hydrohalic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or
hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid; and organic acids, for example
aliphatic monocarboxylic acids such as formic acid, acetic acid, trifluoroacetic acid,
propionic acid and butyric acid, aliphatic hydroxy acids such as lactic acid, citric acid,
tartaric acid or malic acid, dicarboxylic acids such as maleic acid or succinic acid, aromatic
carboxylic acids such as benzoic acid, p-chlorobenzoic acid, diphenylacetic acid or
triphenylactic acid, aromatic hydroxy acids such as o-hydroxybenzoic acid, p-
hydroxybenzoic acid, 1-hydroxynaphthalene-2-carboxylic acid or 3-hydroxynaphthalene-2-
carboxylic acid, and sulfonic acids such as methanesulfonic acid or benzenesulfonic acid.
These salts may be prepared from compounds of formula I by known salt-forming
procedures.

Compounds of formula I which contain acidic, e.g. carboxyl, groups, are also capable of
forming salts with bases, in particular pharmaceutically acceptable bases such as those well
known in the art; suitable such salts include metal salts, particularly alkali metal or alkaline
earth metal salts such as sodium, potassium, magnesium or calcium salts, or salts with
ammonia or pharmaceutically acceptable organic amines or heterocyclic bases such as
ethanolamines, benzylamines or pyridine. These salts may be prepared from compounds of
formula I by known salt-forming procedures.

The invention provides, in another aspect, a method of preparing a compound of formula I
in free or salt form which comprises
(i) (A) for the preparation of compounds of formula I where R¹ is optionally substituted phenyl or a 5- or 6- membered heterocyclic group, reacting a compound of formula

\[
\begin{align*}
\text{Ar} & \text{N}^2 \text{N}^1 \text{Z}^2 \text{Z}^1 \\
\text{Z}^4 \text{Z}^3
\end{align*}
\]

in the form of a salt, e.g. a hydrohalide salt thereof, where Ar, Z¹, Z², Z³ and Z⁴ are as hereinbefore defined and X is halogen, preferably bromine or iodine, with a compound of formula

\[
\begin{align*}
\text{H}_2\text{N} & \text{N}^2 \text{N}^1 \text{R}^1 \\
\text{R}^2
\end{align*}
\]

where R¹ is phenyl optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, C₅-C₉-alkyl, C₇-C₉-haloalkyl, C₇-C₉-alkoxy, C₇-C₉-alkoxy-C₁-C₄-alkyl and acyloxy or R² is a 5- or 6- membered monovalent heterocyclic group, and R² is H or C₁-C₄-alkyl or

(B) for the preparation of compounds of Formula I where R¹ is optionally substituted phenyl or a 5- or 6- membered heterocyclic group, reacting a compound of formula

\[
\begin{align*}
\text{Ar} & \text{N}^2 \text{N}^1 \text{R}^1 \\
\text{X} & \text{Z}^2 \text{Z}^3 \text{R}^2
\end{align*}
\]

where Ar, R¹, R² and X are as hereinbefore defined, with a compound of formula

\[
\begin{align*}
\text{Z}^4 \text{Z}^3 \text{NH} \\
\text{Z}^2 \text{Z}^1
\end{align*}
\]
where \(Z^1, Z^2, Z^3 \) and \(Z^4 \) are as hereinbefore defined or

(C) for the preparation of compounds of formula I where \(R^2 \) is acyl or \(-\text{CON}(R^3)R^4\), reacting a compound of formula

\[
\begin{array}{c}
\text{Ar} \\
\text{Z}^3 \text{Z}^4 \\
\text{Z}^2 \text{Z}^1
\end{array}
\]

where \(\text{Ar}, R^1, Z^1, Z^2, Z^3 \) and \(Z^4 \) are as hereinbefore defined with, respectively, an acylating derivative of a carboxylic acid, for example the anhydride or acid chloride thereof, or with a compound of formula \(\text{Cl-CON}(R^3)R^4 \) where \(R^3 \) and \(R^4 \) are as hereinbefore defined, and

(ii) recovering the resultant compound of formula I in free or salt form.

Process variant (A) may be carried out in an organic solvent, for example an alcohol such as ethanol, or a tertiary base such as pyridine. Suitable reaction temperatures are elevated temperatures, for example from 50\(^\circ\)C to reflux temperature of the solvent.

Process variant (B) may be carried out using known procedures, for example by heating the reactants, optionally in an inert solvent. Suitable reaction temperatures are, for example, from 80 to 160\(^\circ\)C.

Process variant (C) may be carried out using known procedures for reaction of amines with acylating agents.

Compounds of formula II may be prepared by reacting a compound of formula

\[
\begin{array}{c}
\text{Ar} \\
\text{Z}^3 \text{Z}^4 \\
\text{Z}^2 \text{Z}^1
\end{array}
\]
where Ar, Z', Z'', Z''' and Z'''' are as hereinbefore defined, with halogen X, preferably bromine. This halogenation may be effected using known procedures for alpha halogenation of ketones or analogously, for example as hereinafter described in the Examples. This reaction may be carried out in situ in the presence of the compound of formula III with which the compound of formula II is to be reacted to form a compound of formula I.

Compounds of formula III are thioureas which are either known or may be obtained by known procedures. For example they may be prepared by reaction of a compound of formula

\[
\begin{align*}
\text{H} & \quad \text{N} \\
& \quad \text{R'} \\
& \quad \text{R''}
\end{align*}
\]

where R' and R'' are as hereinbefore defined, with benzoyl isothiocyanate and hydrolysing the resulting product, for example with aqueous NaOH, to replace the benzoyl group by halogen. The reaction with benzoyl isothiocyanate may be carried out in an organic solvent, for example an alcohol such as ethanol. Suitable reaction temperatures are from room temperature to reflux temperature of the solvent, conveniently 35-45°C. The hydrolysis may be effected at elevated temperature, for example 70°C to reflux temperature, conveniently at reflux temperature.

Compounds of formula IV may be prepared by reacting a compound of formula

\[
\begin{align*}
\text{Ar} & \quad \text{O} \\
& \quad \text{X}
\end{align*}
\]

where Ar and X are as hereinbefore defined with a compound of formula III, for example using known procedures such as those hereinbefore described for reactions of compounds of formulae II and III, and brominating the resulting aminothiazole, for example using known procedures or variants thereof, e.g. as hereinafter described in the Examples.

Compounds of formula V are known compounds which are commercially available or may be prepared by known procedures. Compounds of formula VI may be prepared by process variant (A) or (B) as described above. Compounds of formula VII may be prepared by reaction of a compound or formula IX with the sodium derivative of a compound of
formula V, e.g. using a known procedure such as described hereinafter in the Examples. Compounds of formulae VIII and IX are known or may be obtained by known procedures such as described hereinafter in the Examples.

Compounds of formula I and their pharmaceutically acceptable salts are useful as pharmaceuticals. In particular, they exhibit inhibition of adenosine A2b receptor activation, i.e. they act as A2b receptor antagonists. Moreover, in general they selectively inhibit activation of A2b receptor over the adenosine A1 and A2a receptors. Their inhibitory properties may be demonstrated in the following test procedures:

Adenosine A2b Receptor Reporter Gene Assay

a) **Culturing of Chinese Hamster Ovary (CHO) A2b Cell Line**

CHO cells transfected with a Luciferase-expressing reporter plasmid (pCRE-LUCI) and with a plasmid carrying the human adenosine A2b receptor structural gene (pA2bRCV) are routinely cultured in Dulbecco's Modified Eagle Medium (DMEM) - supplemented with 10% v/v fetal calf serum (FCS), 2mM L-glutamine, 0.4 mg/ml L-proline, 1 nM sodium selenite, 0.5 mg/ml Hygromycin B and 1 mg/ml Geneticin - at 37°C, 5% CO₂ and 100% humidity. The cells are left to grow to confluence for 4-5 days. The cells obtained are passaged using trypsin/EDTA and split at a ratio of 1 in 5.

b) **Preparation of cells for assay**

Prior to the assay, the CHO-A2b cells are plated onto white 96-well View Plate tissue culture plates (Packard) at a density of 50,000 cells per well in 50 µl of DMEM, and the plates are incubated at 37°C, 5% CO₂ and 100% humidity.

c) **Preparation of Reference and Test Compounds**

10 mM solutions of the reference compound, Xanthine Amine Cogener (XAC), and the test compound in dimethyl sulfoxide (DMSO) are prepared. The solutions are further diluted with DMSO to 100 µM, then diluted to 10 µM, and finally to 250 nM or 2.5 µM with Assay Buffer (DMEM Phenol Red-free tissue culture media supplemented with 10 µM Rolipram and 10 U/ml adenosine deaminase (ADA). The resulting solutions (40 µl) are
added to the cells in the appropriate wells, the final concentration per well being 100 nM or 1 μM, and the plates are incubated at 37°C, 5% CO₂ and 100% humidity.

d) Luciferase Reporter Gene Assay

5'-N-ethylcarboxamidoadenosine (NECA), an adenosine A2b agonist, is prepared as a 10 nM solution in DMSO and then diluted to 100 μM with Assay Buffer. This solution is serially diluted in Assay Buffer to give a series of 10 NECA concentrations from 100 to 0.01 μM. 10 μl portions of the resulting NECA solutions are added to the mixtures of CHO-A2b cells and reference or test compound solutions prepared as described above (preincubated for 30 minutes), final concentrations ranging from 10 to 0.0005 μM per well. The cells are incubated at 37°C, 5% CO₂ and 100% humidity for 3 hours to induce release of cAMP, which then binds to cAMP binding protein (CBP) and the resulting complex interacts with the reporter plasmid to express Luciferase. 100 μl of Steady-Glo, a Luciferase assay substrate from Promega, is added to all wells to lyse the cells and generate luminescence in proportion to the amount of Luciferase produced. The plates are left for a minimum of 5 minutes before being read on the luminescence program of a Topcount NXT microplate scintillation counter (ex Packard). Concentration - response curves are plotted from the luminescence data using Activitybase software and Kᵦ values for the antagonists under test are calculated from the shifts of the curve at a particular concentration (Kᵦ = [agonist]/(concentration ratio -1))

Compounds of the Examples hereinbelow have Kᵦ values below 300nM in the reporter gene assay. For example, the compounds of Examples 12, 15, 16, 17, 27, 35, 36 and 38 have Kᵦ values of 31nM, 20nM, 24nM, 26.5nM, 10nM, 4nM, 17nM and 12nM respectively.

In general, compounds of formula I in free or pharmaceutically acceptable salt form also exhibit inhibition of adenosine A3 receptor activation, which may be demonstrated in the adenosine A3 receptor assay described in WO 99/64418. For instance, the compounds of Examples 7, 27, 30, 31, 34, 35 and 38 have Kᵦ values of 24nM, 16nM, 22nM, 11.5nM, 11nM, 10nM and 4nM in this assay.

Having regard to their inhibition of adenosine A2b receptor activation, and, in general, their inhibition of adenosine A3 receptor activation, compounds of formula I in free or pharmaceutically acceptable salt form, hereinafter alternately referred to as agents of the
invention, are useful in the treatment of conditions which are mediated by the activation of the adenosine A2b receptor or the adenosine A3 receptor, particularly inflammatory or allergic conditions. Treatment in accordance with the invention may be symptomatic or prophylactic.

Accordingly, agents of the invention are useful in the treatment of inflammatory or obstructive airways diseases, resulting, for example, in reduction of tissue damage, airways inflammation, bronchial hyperreactivity, remodelling or disease progression. Inflammatory or obstructive airways diseases to which the present invention is applicable include asthma of whatever type or genesis including both intrinsic (non-allergic) asthma and extrinsic (allergic) asthma, mild asthma, moderate asthma, severe asthma, bronchitic asthma, exercize-induced asthma, occupational asthma and asthma induced following bacterial infection. Treatment of asthma is also to be understood as embracing treatment of subjects, e.g. of less than 4 or 5 years of age, exhibiting wheezing symptoms and diagnosed or diagnosable as “wheezy infants”, an established patient category of major medical concern and now often identified as incipient or early-phase asthmatics. (For convenience this particular asthmatic condition is referred to as “wheezy-infant syndrome”.)

Prophylactic efficacy in the treatment of asthma will be evidenced by reduced frequency or severity of symptomatic attack, e.g. of acute asthmatic or bronchoconstrictor attack, improvement in lung function or improved airways hyperreactivity. It may further be evidenced by reduced requirement for other, symptomatic therapy, i.e. therapy for or intended to restrict or abort symptomatic attack when it occurs, for example anti-inflammatory (e.g. corticosteroid) or bronchodilatory. Prophylactic benefit in asthma may in particular be apparent in subjects prone to “morning dipping”. “Morning dipping” is a recognised asthmatic syndrome, common to a substantial percentage of asthmatics and characterised by asthma attack, e.g. between the hours of about 4 to 6 am, i.e. at a time normally substantially distant form any previously administered symptomatic asthma therapy.

Other inflammatory or obstructive airways diseases and conditions to which the present invention is applicable include acute lung injury (ALI), adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary, airways or lung disease (COPD, COAD or COLD), including chronic bronchitis or dyspnea associated therewith, emphysema, as well as exacerbation of airways hyperreactivity consequent to other drug therapy, in particular
other inhaled drug therapy. The invention is also applicable to the treatment of bronchitis of whatever type or genesis including, e.g., acute, arachidic, catarrhal, croupus, chronic or phthinoid bronchitis. Further inflammatory or obstructive airways diseases to which the present invention is applicable include pneumoconiosis (an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts) of whatever type or genesis, including, for example, aluminosis, anthracosis, asbestosis, chalicosis, ptilosis, siderosis, silicosis, tabacosis and byssinosis.

Having regard to their anti-inflammatory activity, in particular in relation to inhibition of eosinophil activation, agents of the invention are also useful in the treatment of eosinophil related disorders, e.g. eosinophilia, in particular eosinophil related disorders of the airways (e.g. involving morbid eosinophilic infiltration of pulmonary tissues) including hypereosinophilia as it effects the airways and/or lungs as well as, for example, eosinophil-related disorders of the airways consequent or concomitant to Löffler’s syndrome, eosinophilic pneumonia, parasitic (in particular metazoan) infestation (including tropical eosinophilia), bronchopulmonary aspergillosis, polyarteritis nodosa (including Churg-Strauss syndrome), eosinophilic granuloma and eosinophil-related disorders affecting the airways occasioned by drug-reaction.

Agents of the invention are also useful in the treatment of inflammatory or allergic conditions of the skin, for example psoriasis, contact dermatitis, atopic dermatitis, alopecia areata, erythema multiforma, dermatitis herpetiformis, scleroderma, vitiligo, hypersensitivity angiitis, urticaria, bullous pemphigoid, lupus erythematosus, pemphigus, epidermolysis bullosa acquisita, and other inflammatory or allergic conditions of the skin.

Agents of the invention may also be used for the treatment of other diseases or conditions, in particular diseases or conditions having an inflammatory component, for example, treatment of diseases and conditions of the eye such as conjunctivitis, keratoconjunctivitis sicca, and vernal conjunctivitis, diseases affecting the nose including allergic rhinitis, and inflammatory disease in which autoimmune reactions are implicated or having an autoimmune component or aetiology, including autoimmune haematological disorders (e.g. haemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), systemic lupus erythematosus, polychondritis, sclerodema, Wegener granulomatosis, dermatomyositis, chronic active hepatitis, myasthenia gravis, Steven-Johnson syndrome, idiopathic sprue,
autoimmune inflammatory bowel disease (e.g. ulcerative colitis and Crohn's disease),
endocrine ophthalmopathy, Grave's disease, sarcoidosis, alveolitis, chronic hypersensitivity
pneumonitis, multiple sclerosis, primary biliary cirrhosis, uveitis (anterior and posterior),
keratoconjunctivitis sicca and vernal keratoconjunctivitis, interstitial lung fibrosis, psoriatic
arthritis and glomerulonephritis (with and without nephrotic syndrome, e.g. including
idiopathic nephrotic syndrome or minimal change nephropathy).

Other diseases or conditions which may be treated with agents of the invention include
diabetes, e.g. diabetes mellitus type I (juvenile diabetes) and diabetes mellitus type II,
diarrheal diseases, ischemia/reperfusion injuries, retinopathy, such as diabetic retinopathy or
hyperbaric oxygen-induced retinopathy, and conditions characterised by elevated intraocular
pressure or secretion of ocular aqueous humor, such as glaucoma.

The effectiveness of an agent of the invention in inhibiting inflammatory conditions, for
example in inflammatory airways diseases, may be demonstrated in an animal model, e.g. a
mouse or rat model, of airways inflammation or other inflammatory conditions, for example

The agents of the invention are also useful as co-therapeutic agents for use in combination
with other drug substances such as anti-inflammatory, bronchodilatory or antihistamine
drug substances, particularly in the treatment of obstructive or inflammatory airways
diseases such as those mentioned hereinbefore, for example as potentiators of therapeutic
activity of such drugs or as a means of reducing required dosaging or potential side effects of
such drugs. An agent of the invention may be mixed with the other drug substance in a
fixed pharmaceutical composition or it may be administered separately, before,
simultaneously with or after the other drug substance. Accordingly the invention includes a
combination of an agent of the invention as hereinbefore described with an anti-
inflammatory, bronchodilatory or antihistamine drug substance, said agent of the invention
and said drug substance being in the same or different pharmaceutical composition. Such
anti-inflammatory drugs include steroids, in particular glucocorticosteroids such as
budesonide, beclamethasone, fluticasone, ciclesonide or mometasone, LTB4 antagonists
such as those described in US5451700, LTD4 antagonists such as montelukast and
zaflurukast, dopamine receptor agonists such as cabergoline, bromocriptine, ropinirole and
4-hydroxy-7-[[2-[[3-(2-phenylethoxy)propyl]-sulfonyl]ethyl]-amino]ethyl]-2(3H)-benzothiazolone and pharmaceutically acceptable salts thereof (the hydrochloride being Viozan® - AstraZeneca), and PDE4 inhibitors such as Ariflo® (GlaxoSmithKline), Roflumilast (Byk Gulden), V-11294A (Napp), BAY 19-8004 (Bayer), SCH-351591 (Schering-Plough), and PD189659 (Parke-Davis). Such bronchodilatory drugs include anticholinergic or antimuscarinic agents, in particular ipratropium bromide, oxitropium bromide and tiotropium bromide, and beta-2 adrenoceptor agonists such as salbutamol, terbutaline, salmeterol and, especially, formoterol and pharmaceutically acceptable salts thereof, and compounds (in free or salt or solvate form) of formula I of PCT International Publication No. WO00/75114, which document is incorporated herein by reference, preferably compounds of the Examples thereof, especially a compound of formula

![Chemical Structure](image)

and pharmaceutically acceptable salts thereof. Co-therapeutic antihistamine drug substances include cetirizine hydrochloride, acetaminophen, clemastine fumarate, promethazine, loratidine, desloratidine, diphenhydramine and fexofenadine hydrochloride. Combinations of agents of the invention and steroids, beta-2 agonists, PDE4 inhibitors or LTD4 antagonists may be used, for example, in the treatment of COPD or, particularly, asthma. Combinations of agents of the invention and anticholinergic or antimuscarinic agents, PDE4 inhibitors, dopamine receptor agonists or LTB4 antagonists may be used, for example, in the treatment of asthma or, particularly, COPD.

Other useful combinations of agents of the invention with anti-inflammatory drugs are those with antagonists of chemokine receptors, e.g. CCR-1, CCR-2, CCR-3, CCR-4, CCR-5, CCR-6, CCR-7, CCR-8, CCR-9 and CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, particularly CCR-5 antagonists such as Schering-Plough antagonists SC-351125, SCH-55700 and SCH-D, Takeda antagonists such as N-[4-[[[6,7-dihydro-2-(4-methylphenyl)-5H-benzocyclohepten-8-yl]carbonyl]amino]phenyl]-methyl]tetrahydro-N,N-dimethyl-2H-pyran-4-aminium chloride (TAK-770), and CCR-5 antagonists described in US6166037.
(particularly claims 18 and 19), WO00/66558 (particularly claim 8), and WO00/66559 (particularly claim 9).

In accordance with the foregoing, the invention also provides a method for the treatment of a condition mediated by activation of the adenosine A2b receptor, and/or the adenosine A3 receptor, for example an inflammatory or allergic condition, particularly an inflammatory or obstructive airways disease, which comprises administering to a subject, particularly a human subject, in need thereof a compound of formula I in free form or in the form of a pharmaceutically acceptable salt. In another aspect the invention provides a compound of formula I, in free form or in the form of a pharmaceutically acceptable salt, for use in the manufacture of a medicament for the treatment of a condition mediated by activation of the adenosine A2b receptor, and/or the adenosine A3 receptor, particularly an inflammatory or obstructive airways disease.

The agents of the invention may be administered by any appropriate route, e.g. orally, for example in the form of a tablet or capsule; parenterally, for example intravenously; by inhalation, for example in the treatment of inflammatory or obstructive airways disease; intranasally, for example in the treatment of allergic rhinitis; topically to the skin, for example in the treatment of atopic dermatitis; or rectally, for example in the treatment of inflammatory bowel disease.

In a further aspect, the invention also provides a pharmaceutical composition comprising a compound of formula I in free form or in the form of a pharmaceutically acceptable salt, optionally together with a pharmaceutically acceptable diluent or carrier therefor. The composition may contain a co-therapeutic agent such as an anti-inflammatory, bronchodilatory or antihistamine drug as hereinbefore described. Such compositions may be prepared using conventional diluents or excipients and techniques known in the galenic art. Thus oral dosage forms may include tablets and capsules. Formulations for topical administration may take the form of creams, ointments, gels or transdermal delivery systems, e.g. patches. Compositions for inhalation may comprise aerosol or other atomizable formulations or dry powder formulations.

Dosages of agents of the invention employed in practising the present invention will of course vary depending, for example, on the particular condition to be treated, the effect
desired and the mode of administration. In general, suitable daily dosages for oral
administration are of the order of 0.1 to 10 mg/kg.

The invention is illustrated by the following Examples.

Examples 1-38

Compounds of formula I which are also of formula

![Chemical Structure](image)

are shown in the following table, the method of preparation being described hereinafter.
The table also shows mass spectrometry (MH+) data. The Examples are in free form, with
the exception of Examples 10 and 25 which are in the form of salts with hydrobromic acid
and Example 33 which is in the form of a salt with trifluoroacetic acid.
<table>
<thead>
<tr>
<th>Ex</th>
<th>R^a</th>
<th>R^b</th>
<th>R'^1</th>
<th>R'^2</th>
<th>R'^3</th>
<th>Z^1</th>
<th>Z^2</th>
<th>Z^3</th>
<th>m/z</th>
<th>243</th>
<th>345</th>
<th>362</th>
<th>310</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>344</td>
<td>345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CN</td>
<td>H</td>
<td>3H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

1. Cyanide group (CN)
2. Hydrogen (H)
3. Nitrogen (N)
4. CH group
5. N-CO-C group
6. Phenyl group
7. Benzene ring
8. Heterocyclic ring
9. Ring with two nitrogen atoms
<table>
<thead>
<tr>
<th></th>
<th>355</th>
<th>402</th>
<th>356</th>
<th>366</th>
<th>402</th>
<th>373</th>
<th>562</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>HD</td>
<td>HD</td>
<td>CH</td>
<td>HD</td>
<td>HD</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CH</td>
<td>CH</td>
<td>HD</td>
<td>HD</td>
<td>CH</td>
<td>CH</td>
<td>HD</td>
<td>HD</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>[\text{structure}1]</th>
<th>H</th>
<th>[\text{structure}2]</th>
<th>H</th>
<th>[\text{structure}3]</th>
<th>H</th>
<th>H</th>
</tr>
</thead>
</table>

| H | \[\text{structure}4\] | H | \[\text{structure}5\] | H | \[\text{structure}6\] | H | H |

<table>
<thead>
<tr>
<th>Cl</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>H</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>CN</th>
<th>CN</th>
<th>NO</th>
<th>CN</th>
<th>CN</th>
<th>NO</th>
<th>NO</th>
</tr>
</thead>
</table>

<p>| 8 | 9 | 10 | 11 | 12 | 13 | 14 |</p>
<table>
<thead>
<tr>
<th>338</th>
<th>375</th>
<th>358</th>
<th>372</th>
<th>345</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>CH</td>
<td>H</td>
<td>OH</td>
<td>CH</td>
<td>OH</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

![Chemical Structures](image_url)
Preparation of Specific Examples:

Example 12: N-[4-(3-Cyano-phenyl)-5-[1,2,4]triazol-1-yl-thiazol-2-yl]-4-methoxy-benzamide
4-methoxybenzoyl chloride (0.16ml, 1.36 mmol) is added to a solution of 3-(2-amino-5-[1,2,4]triazol-1-yl-thiazol-4-yl)-benzonitrile (0.15g, 0.56mmol) in dry pyridine (1.5ml). After stirring for 2h, the reaction mixture is triturated with hot ethanol for 30min. followed by collection of a solid by filtration. Washing the solid with ethanol and drying gives the title compound, m.s. (MH+) 402, m.p.292-294°C.
Examples 5, 9, 11 and 22 are prepared analogously.
Starting material is prepared as follows:

3-(2-Amino-5-[1,2,4]triazol-1-yl-thiazol-4-yl)-benzonitrile
A mixture of 3-(2-bromo-2-[1,2,4]triazol-1-yl-acetyl)-benzonitrile hydrobromide (1.848g, 5.00mmol), thiourea (0.46g, 1.2mol) in ethanol is heated to 95°C for 8h. The solvent is removed under vacuum to give a foam which is dissolved in 3M hydrochloric acid. The product is precipitated as a white powder by the addition of concentrated aqueous ammonia to pH11. M.S. (MH+) 269.54.

Example 15: 3-[2-(6-Methyl-pyridin-2-ylamino)-5-[1,2,4]triazol-1-yl-thiazol-4-yl]-benzonitrile
3-(2-Bromo-2-[1,2,4]triazol-1-yl-acetyl)-benzonitrile hydrobromide (500mg, 1.34mmol) is dissolved in ethanol (5ml). (6-Methyl-pyridin-2-yl)-thiourea (208mg,1.34mmol) is added and the reaction heated to 90°C for 2hours. The precipitate is collected and washed with ethanol twice. The solid is suspended in water and basified with concentrated ammonium hydroxide and the resulting precipitate collected and washed with water to give the title compound after drying. Mass Spec (APCI+) 360.0, m.p.236-237°C.
The thiourea starting material is prepared as follows:

(6-Methyl-pyridin-2-yl)-thiourea
6-Methyl-pyridin-2-ylamine (1.0g, 9.2mmol) is dissolved in ethanol (10ml) and benzoylethioisocyanate (1.24ml, 9.2mmol) is added dropwise. The mixture is heated to 40°C with stirring for 10minutes then allowed to cool to room temperature. The solvent is removed in vacuo and the resulting solid dissolved in 1M sodium hydroxide (15ml) and heated under reflux for 2 hour. The resultant suspension is filtered and the solid washed copiously with
water and then with cold ethanol. The solid is dried in vacuo to yield the title compound. Mass Spec (APCI+) 168.

Example 27 : (3-[2-(Pyrazin-2-ylamino)-5-[1,2,4]triazol-1-yl-thiazol-4-yl]-benzonitrile):
3-[(1,2,4]Triazol-1-yl-acetyl)-benzonitrile (150mg, 0.7mmol) is dissolved in dioxane (640μl) and bromine (19μl) added dropwise. The mixture is then heated at 80°C for 6 hours. The resultant suspension is cooled to room temperature and the precipitate isolated by filtration. This precipitate, 3-(2-bromo-2-[1,2,4]triazol-1-yl-acetyl)-benzonitrile hydrobromide, (200mg, 0.5mmol) is dissolved in ethanol (2ml). Pyrazin-2-yl-thiourea (0.5mmol) is added and the reaction heated to 80°C for 10hours. The ethanol is removed in vacuo and the residue triturated thoroughly in 3M HCl. The resultant suspension is basified with concentrated ammonium hydroxide and the resulting precipitate filtered and washed with water then cold ethanol. The solid thus obtained is dried in vacuo to give the title compound, m.p. >250°C, m.s. (AP+) 347.

Examples 3, 6-8, 10, 13-14, 17-18, 20-21, 24-26 and 28-31 are prepared in an analogous manner from the appropriate compounds of formulae II and III.

Starting materials are prepared as follows:

3-[(1,2,4]Triazol-1-yl-acetyl)-benzonitrile:
3-Cyanoacetophenone (10.013g, 69mmol) is dissolved in dioxane (150ml) and bromine added (3.53ml). The mixture is stirred at room temperature for 30 minutes then the solvent is removed in vacuo and the residue taken up in acetonitrile (100ml). Sodium triazole (7g) is added and the mixture is stirred at room temperature overnight. The mixture is then filtered and the solid obtained discarded. The filtrate is evaporated to dryness and the solid residue taken up in 3M HCl (500ml) with heating. The aqueous layer is decanted from a gummy residue and washed with ethyl acetate. The aqueous layer is then basified with concentrated aqueous ammonia solution and the resultant precipitate filtered and washed with water. This precipitate is dried in vacuo to give 3-[(1,2,4]triazol-1-yl-acetyl)-benzonitrile, m.p.172-173°C, m.s. (AP+) 213.

Other compounds of formula II are prepared in an analogous manner from the appropriate acetophenone.

Pyrazin-2-yl-thiourea:
Aminopyrazine (2g, 21.03mmol) is dissolved in ethanol (20ml) and benzyolisothiocyanate (2.82ml) is added dropwise. The mixture is heated to 80°C with stirring for 10minutes then allowed to cool to room temperature. The solvent is removed in vacuo and the resulting solid
dissolved in 1M sodium hydroxide (30ml) and heated under reflux for 1 hour. The resultant suspension is filtered and the solid washed with water and a little cold methanol. The solid is dried in vacuum to yield the title compound, m.p. 239-239.5°C, m.s. (AP+) 138 (M⁺-NH₃). Other thioureas of formula III are prepared in an analogous manner from the appropriate starting amine.

Example 35: (3-[5-(2-Methyl-imidazol-1-yl)-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile):
3-[5-Bromo-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile (250mg, 0.698mmol) and 2-methylimidazole (573mg, 6.98mmol) are combined and heated as a melt at 150°C for 16h. The resulting solid is purified by flash chromatography to yield the title compound as a powder, m.p.276-276.5°C, m.s. 360 (TOF, ES+).

Examples 1,2 and 32-34 are prepared in an analogous manner by reaction of the appropriate compounds of formulae IV and V.
Starting materials are prepared as follows:

3-[2-(Pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile:
3-acetylbenzonitrile (1.0g, 6.88mmol) is taken up in dioxane (15ml) and bromine (353µl, 6.88mmol) is added dropwise with constant stirring. The reaction is stirred for 30 minutes, then the dioxane is evaporated at reduced pressure. The resulting slurry is taken up in ethanol (15ml) and pyrazinyl-2-thiourea (1.0g, 6.88mmol) is added. The reaction is then heated to 80°C for 30 minutes, cooled to room temperature and the ethanol distilled off at reduced pressure. The solid is suspended in 3M HCl and then basified with ammonia solution. The resulting precipitate is filtered and washed with copious amounts of water and cold ethanol. Hot titration with methanol and subsequent drying yields the title compound, m.p.203-204°C, m.s. 280 (ES+).

3-[5-Bromo-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile:
3-[2-(Pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile (1.5g, 5.36mmol) is suspended in hot glacial acetic acid (10ml) and bromine (0.275ml) is added dropwise at room temperature with stirring. The resultant suspension is stirred at room temperature for 10 minutes. Water (ca. 100ml) is added to the mixture, which is basified to pH9 with solid potassium carbonate. The resulting precipitate is filtered and washed with water to yield 3-[5-bromo-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile, m.p. 215°C (dec.), m.s. 279 (ES+, M⁺-Br).
Other compounds of formula IV are prepared in an analogous manner from the appropriate compounds of formulae IX and III.

Example 36: 1-Methyl-1H-pyrrole-2-carboxylic acid [4-(3-cyano-phenyl)-5-[1,2,4]triazol-1-yl-thiazol-2-yl]-amide

1-Methyl-1H-pyrrole-2-carbonyl chloride (110mg) is added to a solution of 3-(2-amino-5-[1,2,4]triazol-1-yl-thiazol-4-yl)-benzonitrile (50mg, 0.19mmol) in dry pyridine (0.5ml). After stirring for 16h, water (10ml) is added. After 3 days the precipitate is collected and washed with water. The resulting cake is triturated in refluxing ethanol for 20min., filtered and washed with ethanol. The solid is triturated with saturated aqueous sodium bicarbonate, filtered, washed with water and dried to give the title compound. Mass Spec. (MH+) 376, m.p.245-247°C.

Examples 4-5, 16, 19 and 23 are prepared analogously.

Example 37: 3-[2-(6-Methoxy-razin-2-ylamino)-5-[1,2,4]triazol-1-yl-thiazol-4-yl]benzonitrile

3-(2-Bromo-2-[1,2,4]triazol-1-yl-acetyl)-benzonitrile hydrobromide (250mg, 0.67mmol) is dissolved in ethanol (2ml). (6-Methoxy-pyrazin-2-yl)-thiourea (0.67mmol) is added and the reaction heated to 80°C for 10 hours. The ethanol is removed in vacuo and the residue triturated in 3M HCl. The resultant suspension is basified with concentrated ammonium hydroxide and the resulting precipitate filtered and washed with water then cold ethanol. The solid thus obtained is triturated with hot ethanol and dried in vacuo to give the title compound. Mass Spec (APCI+) 377.1.

Example 38 is prepared analogously.

The thiourea starting material is prepared as follows:

(6-Methoxy-pyrazin-2-yl)-thiourea

6-Methoxy-pyrazin-2-ylamine (0.85g, 6.8mmol) is dissolved in ethanol (7ml) and benzyloisothiocyanate (0.91ml) is added dropwise. The mixture is heated to 80°C with stirring for 10 minutes then allowed to cool to room temperature. The solvent is removed in vacuo and the resulting solid dissolved in 1M sodium hydroxide (15ml) and heated under reflux for 1 hour. The resultant suspension is filtered and the solid washed with water and a little cold ethanol. The solid is dried in vacuo to yield the title compound.
Example 39: (3-[5-(2-Methyl-imidazol-1-yl)-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile) methanesulfonate

(3-[5-(2-Methyl-imidazol-1-yl)-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile (lg, 2.78 mmol) is suspended in boiling pentanol (25 ml) and filtered hot to give a clear solution. Methanesulfonic acid (0.2 ml, 3.06 mmol) is added and the mixture allowed to cool to room temperature, when a solid is precipitated. Diethyl ether (25 ml) is added with stirring, and the solid is filtered off, washed with diethyl ether and then triturated with diethyl ether (25 ml). The solid obtained is filtered off, dried in vacuo and suspended in boiling acetone (20 ml). Water (2 ml), then acetone (5 ml) are added and the resulting solution allowed to cool to 4°C. The resulting solid is filtered off, washed with acetone and dried in vacuo at 80°C over P₂O₅ to give the title compound, m.p. 282°C.

Starting materials are prepared as follows:

3-(2-Methylimidazol-1-yl-acetyl)-benzonitrile

3-acetylbenzonitrile (50 g, 0.345 mol) is dissolved in dioxane (600 ml) with stirring at room temperature, bromine (17.7 ml, 0.345 mol) is added in and the mixture is stirred for 30 minutes. The dioxane is removed in vacuo to give a solid which is dissolved in acetonitrile (300 ml). 2-Methylimidazole (28.3 g, 0.345 mol) is added to the solution and the mixture is stirred for 1 hour, the temperature of the mixture rising to 45°C. The precipitated solid is filtered off, washed with acetonitrile, and slurried with methanol for 1 hour. After filtering to remove undissolved solid, the filtrate is evaporated in vacuo to leave a solid which is dried in vacuo at 40°C to give the title compound, m.s. 369 (MH+).

(3-[5-(2-Methyl-imidazol-1-yl)-2-(pyrazin-2-ylamino)-thiazol-4-yl]-benzonitrile):

3-(2-Methylimidazol-1-yl-acetyl)-benzonitrile (13.8 g, 0.06 mol) is mixed with pyrazinyl-2-thiourea (9.4 g, 0.06 mol), iodine (15.6 g, 0.06 mol) and pyridine (60 ml). The mixture is stirred, initially at room temperature and then at 60°C overnight (17.5 hours). The mixture obtained is allowed to cool to room temperature and water (50 ml) added. The solid obtained is filtered off, stirred in water (50 ml) for 30 minutes, and filtered off again. The resulting solid is dried at 40°C in vacuo over P₂O₅ to give the title compound.
Claims

1. A compound of formula

\[
\begin{array}{c}
\text{Ar} \\
\text{Z}^1 \text{Z}^2 \text{Z}^3 \\
\text{Z}^2 \text{Z}^1 \\
\text{N} \\
\text{N} \\
\text{R}^1 \text{R}^2 \text{R}^3 \text{R}^4
\end{array}
\]

in free or salt form, where
Ar is a C\textsubscript{6}-C\textsubscript{15} monovalent aromatic group,
R1 is hydrogen, phenyl optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, C\textsubscript{1}-C\textsubscript{6}-alkyl, C\textsubscript{1}-C\textsubscript{6}-haloalkyl, C\textsubscript{1}-C\textsubscript{6}-alkoxy, C\textsubscript{1}-C\textsubscript{6}-alkoxy-C\textsubscript{1}-C\textsubscript{6}-alkyl or acyloxy, or a 5- or 6- membered monovalent heterocyclic group,
R2 is hydrogen, C\textsubscript{1}-C\textsubscript{6}-alkyl, acyl or -CON(R3)R4, provided that R2 is C\textsubscript{1}-C\textsubscript{6}-alkyl, acyl or -CON(R3)R4 when R1 is hydrogen,
R3 and R4 are each independently hydrogen or C\textsubscript{1}-C\textsubscript{6}-alkyl, or together with the nitrogen atom to which they are attached denote a 5- or 6- membered heterocyclic group, and
Z1, Z2, Z3 and Z4 are each independently N or CR5, at least one of them being CR5, and
R5 is hydrogen, C\textsubscript{1}-C\textsubscript{6}-alkyl or C\textsubscript{1}-C\textsubscript{6}-alkoxy.

2. A compound according to claim 1, in which Ar is phenyl optionally substituted by one or more substituents selected from halogen, cyano, C\textsubscript{1}-C\textsubscript{6}-alkyl or C\textsubscript{1}-C\textsubscript{6}-haloalkyl.

3. A compound according to claim 1 in which Ar is phenyl optionally substituted by halogen, cyano or C\textsubscript{1}-C\textsubscript{6}-alkyl meta or para to the indicated thiazole ring.

4. A compound according to claim 1, 2 or 3, in which R1 is hydrogen, phenyl optionally substituted by cyano or C\textsubscript{1}-C\textsubscript{6}-alkoxy, or a monovalent 6-membered N-heterocyclic group.

5. A compound according to any one of Claims 1 to 4, in which R2 is hydrogen, C\textsubscript{1}-C\textsubscript{6}-alkylcarbonyl, C\textsubscript{3}-C\textsubscript{6}-cycloalkylcarbonyl, phenylcarbonyl where the phenyl group is optionally substituted by C\textsubscript{1}-C\textsubscript{6}-alkoxy, or heterocycliccarbonyl in which the heterocyclic group is 5- or 6- membered and has a ring hetero atom selected from nitrogen, oxygen and sulfur.
6. A compound according to claim 1, in which
Ar is phenyl optionally substituted by halogen or cyano,
R1 is hydrogen, phenyl optionally substituted by cyano or C$_1$-C$_4$-alkoxy, or a monovalent 6-membered N-heterocyclic group,
R2 is hydrogen, C$_1$-C$_4$-alkylcarbonyl, C$_3$-C$_6$-cycloalkylcarbonyl, phenylcarbonyl where the phenyl group is optionally substituted by C$_1$-C$_4$-alkoxy, or heterocyclylcarbonyl where the heterocyclyl group is 5- or 6-membered and has one or two ring hetero atoms selected from nitrogen, oxygen and sulfur, and
either Z1 and Z3 each denote N and Z2 and Z4 each denote CH, or Z1 denotes CR5 where R5 is hydrogen or C$_1$-C$_4$-alkyl, Z2 denotes N and Z3 and Z4 each denote CH.

7. A compound according to claim 1, in which
Ar is phenyl substituted by halogen or cyano meta or para to the indicated thiazole ring,
R1 is a monovalent 6-membered N-heterocyclic group,
R2 is hydrogen, and
either Z1 and Z3 each denote N and Z2 and Z4 each denote CH, or Z1 denotes CR5 where R5 is hydrogen or C$_1$-C$_4$-alkyl, Z2 denotes N and Z3 and Z4 each denote CH.

8. A compound according to claim 1, in which
Ar is phenyl substituted by halogen or cyano meta or para to the indicated thiazole ring,
R1 is hydrogen,
R2 is phenylcarbonyl where phenyl is optionally substituted by C$_1$-C$_4$-alkoxy, or heterocyclylcarbonyl where the heterocyclyl group is 5- or 6-membered and has a ring hetero atom selected from oxygen and sulfur, and
either Z1 and Z3 each denote N and Z2 and Z4 each denote CH, or Z1 denotes CR5 where R5 is hydrogen or C$_1$-C$_4$-alkyl, Z2 denotes N and Z3 and Z4 each denote CH.
9. A compound of formula XI

![Chemical Structure]

in free or salt form, where R^a, R^b, R^1, R^2, Z^1, Z^2, Z^3 and Z^4 are as shown in the following table

<table>
<thead>
<tr>
<th>R^a</th>
<th>R^b</th>
<th>R^1</th>
<th>R^2</th>
<th>Z^1</th>
<th>Z^2</th>
<th>Z^3</th>
<th>Z^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>COCH$_3$</td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td></td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CN</th>
<th>H</th>
<th>H</th>
<th>(\text{OCH}_3)</th>
<th>N</th>
<th>CH</th>
<th>N</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{CH}_3)</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{SCH}_3)</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>CN</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(\text{NM}_{\text{CH}_3})</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>(\text{CN})</td>
<td>H</td>
<td>OCH(_3)</td>
<td>F</td>
<td>H</td>
<td>OCH(_3)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H</td>
<td>(\text{CH}_2\text{CH}_3)</td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
<td>N</td>
<td>CH</td>
</tr>
</tbody>
</table>
10. A compound according to any one of the preceding claims for use as a pharmaceutical.

11. A compound according to any one of the preceding claims in combination with an anti-inflammatory, bronchodilatory or antihistamine drug substance, said compound and said drug substance being in the same or different pharmaceutical composition.

12. A pharmaceutical composition comprising as active ingredient a compound according to any one of claims 1 to 11, optionally together with a pharmaceutically acceptable diluent or carrier.
13. Use of a compound according to any one of claims 1 to 11 for the manufacture of a medicament for the treatment of a condition mediated by activation of the adenosine A2b receptor.

14. Use of a compound according to any one of claims 1 to 11 for the manufacture of a medicament for the treatment of a condition mediated by activation of the adenosine A3 receptor.

15. Use of a compound according to any one of claims 1 to 11 for the manufacture of a medicament for the treatment of an inflammatory or obstructive airways disease.

16. A method of preparing a compound of formula I in free or salt form which comprises

(i) (A) for the preparation of compounds of formula I where R^1 is optionally substituted phenyl or a 5- or 6-membered heterocyclic group, reacting a compound of formula

![Chemical Structure II](image)

in the form of a salt, where Ar, Z^1, Z^2, Z^3 and Z^4 are as defined in claim 1 and X is halogen, with a compound of formula

![Chemical Structure III](image)

where R^1 is phenyl optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, C$_1$-C$_8$-alkyl, C$_1$-C$_6$-haloalkyl, C$_1$-C$_8$-alkoxy, C$_1$-C$_8$-alkoxy-C$_1$-C$_8$-alkyl and acyloxy or R^1 is a 5- or 6-membered monovalent heterocyclic group, and R^2 is H or C$_1$-C$_8$-alkyl or

(B) for the preparation of compounds of Formula I where R^1 is optionally substituted phenyl or a 5- or 6-membered heterocyclic group, reacting a compound of formula

![Chemical Structure III](image)
where Ar, R^1, R^2 and X are as hereinbefore defined, with a compound of formula

where Z^1, Z^2, Z^3 and Z^4 are as hereinbefore defined or

(C) for the preparation of compounds of formula I where R^2 is acyl or $-\text{CON}(R^3)R^4$, reacting a compound of formula

where $\text{Ar}, R^1, Z^1, Z^2, Z^3$ and Z^4 are as defined in claim 1 with, respectively, an acylating derivative of a carboxylic acid, or with a compound of formula $\text{Cl-CON}(R^3)R^4$ where R^3 and R^4 are as defined in claim 1, and

(ii) recovering the resultant compound of formula I in free or salt form.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 99 64418 A (NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT MBH) 16 December 1999 (1999-12-16) cited in the application. the whole document ___</td>
<td>1,13</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 411 718 A (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.) 6 February 1991 (1991-02-06) example 3 ___</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patient family members are listed in annex.

Date of the actual completion of the International search 4 April 2002

Date of mailing of the International search report 18/04/2002

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL—2280 HV Rijswijk Tel. (+31—)70-340-3540, Fax. 31 651 epo nl, Authorized officer Allard, M
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9964418 A</td>
<td>16-12-1999</td>
<td>AU 4506399 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9964418 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3081268 A</td>
<td>05-04-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5332753 A</td>
<td>26-07-1994</td>
</tr>
</tbody>
</table>