(54) 发明名称
一种用于隔振的柔性装置及使用该装置的光刻设备
(57) 摘要
本发明公开一种用于隔振的柔性装置, 能有效将被隔振物体的六自由度模态控制在较低频率范围内, 包括: 第一接口、第二接口以及位于该第一第二接口中间的主体件, 该主体件包括一中空圆柱以及位于该中空圆柱外表面的螺纹坡口。本发明还公开一种使用该柔性装置的光刻设备。
1. 一种用于隔振的柔性装置，其特征在于，包括：第一接口、第二接口以及位于所述第一第二接口中间的主体件，所述主体件包括一中空圆柱以及位于所述中空圆柱外表面对的螺纹坡口。

2. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述主体件还包括一方形立柱，所述方形立柱的一端与所述中空圆柱连接，另一端与所述第二接口连接，所述方形立柱上包括至少一X向柔性坡口和一Y向柔性坡口。

3. 如权利要求2所述的用于隔振的柔性装置，其特征在于，所述X向、Y向柔性坡口均为中心对称的两个圆形开口。

4. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述中空圆柱还包括至少一X向柔性坡口和一Y向柔性坡口，所述X向、Y向柔性坡口均为中心对称的两个圆形开口。

5. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述螺旋坡口的圈数范围为1至30圈。

6. 如权利要求2或4所述的用于隔振的柔性装置，其特征在于，所述螺旋坡口的圈数范围为1至5圈。

7. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述螺旋坡口的截面宽度小于所述中空圆柱的厚度。

8. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述螺旋坡口的截面长度大于所述中空圆柱的厚度。

9. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述螺旋坡口的截面形状为圆形、椭圆形、三角形、正方形或梯形中的任意一种。

10. 如权利要求1所述的用于隔振的柔性装置，其特征在于，所述柔性装置的X、Y、Z以及Rx、Ry和Rz 6个自由度可以在材料允许的弹性范围内变形，在Z方向刚度范围为1×10⁹ N/mm至5×10⁹ N/mm，X和Y方向刚度基本相等，刚度范围为5×10⁹ N/mm至10×10⁹ N/mm。

11. 一种使用如权利要求1至10任一项所述的柔性装置的光刻设备，其特征在于，包括：
 一照射系统，用于形成一图案化的辐射束；
 一投影物镜，用于将所述图案化的辐射束投影到衬底的目标部分；
 一工件台，用于支持所述衬底；
 一框架减振系统，用于衰减至少部分所述投影物镜的振动，所述框架减振系统包括一减少基础框架上低频振动的主动减振器，以及隔离主体基板上余振动加速度的柔性装置。

12. 如权利要求11所述的光刻设备，其特征在于，所述柔性装置的数量为三组，所述三组柔性装置按圆周分布于所述投影物镜，所述三组柔性装置分布呈等边三角形。
一种用于隔振的柔性装置及使用该装置的光刻设备

[0001] _

技术领域
[0002] 本发明涉及一种集成电路装备制造领域，尤其涉及一种用于隔振的柔性装置及使用该装置的光刻设备。

背景技术
[0003] 光刻设备是一种将所需图案应用到衬底上，通常是衬底的目标部分上的机器。例如，可以将光刻设备用在集成电路（IC）的制造中。在这种情况下，可以将可选地称为掩模或掩模版（reticle）的图案形成装置用于生成对应于所述IC的单层的电路图案。可以将该图案成像到衬底（例如，硅晶片）上的目标部分（例如，包括一部分管芯、一个或多个管芯）上。图案成像是通过将图案成像到提供到衬底上的辐射敏感材料（抗蚀剂）层上进行的。通常，单独的衬底将包含被连续曝光的相邻目标部分的网络。常规的光刻设备包括：所谓步进机，通常在所述步进机中，通过将全部图案分次曝光到所述目标部分上来辐射每一个目标部分；以及所谓扫描机：在所述扫描机中，通过辐射束沿给定方向（“扫描”方向）扫描所述图案，同时沿与该方向平行或反向平行的方向扫描所述衬底来辐射每一个目标部分。也可能通过将图案压印（imprinting）到衬底的方式从图案形成装置将图案形成到衬底上。

[0004] 高精度和高分辨率作为光刻技术当前瞄准的目标需要光刻设备的各部件之间相互精确定位，例如保持图案形成装置（例如掩模）的掩模版台、投影系统和保持衬底的衬底台。除了例如掩模版台和衬底台的定位外，投影系统也面临这种需要。在当前设备中的投影系统包括承载体结构，例如透镜座架（透射光的情形）或反射镜框架（反射光的情形），和包括多个光学元件，例如透镜元件、反射镜等。

[0005] 通常在光刻机系统中，由于结构振动将会导致图像的短期误差，同时由于运动系统（如微动台、反射镜）的MA（Moving Average）和MSD（Moving Standard Deviation）的伺服位置误差将导致图像的畸变，降低和控制对整机动态性能，将误差降低到一个较低的水平。为了克服因结构振动所导致的图像畸变，通常使用柔性铰链来解决该技术问题。

[0006] 传统柔性铰链诞生并发展于六十年代前后。由于宇航和航空等技术发展的需要，对实现小范围内偏转的支承，不仅提出了高分辨率的要求，而且对其尺寸和体积提出了微型化的要求。人们在经过对各种类型的弹性支承的实验探索后，才逐步开发出体积小无机械摩擦、无间隙的柔性铰链，并获得了前所未有的高精度和稳定性。如利用柔性铰链原理研制的角度微调装置，在3角的范围内，达到了1000万分之一度的稳定分辨率。近年来，柔性铰链又在精密微位移工作台中得到了实用，开创了工作台进入毫米级的新时代。柔性铰链用于绕轴作复杂运动的有限位移；它的特点是：无机械摩擦、无间隙、运动灵敏度高。柔性铰链有很多种结构，最普通的形式是绕一个轴弹性弯曲，这种弹性变形是可逆的。

[0007] 传统柔性铰链以双轴柔性铰链为代表，是由两个互成90度的单轴柔性铰链组成的，如图1中a所示。对于大部分应用，这种设计的缺点是两个轴没有交叉。具有交叉轴的
最简单的双轴柔性铰链是把颈部作成圆杆状，见图 1 中 b，这种设计简单但加工容易，但它
的截面面积比较小，纵向强度相对弱的多。因此产生了需要垂直交叉和沿纵向轴高强度的
双轴柔性铰链，见图 1 中的 c 结构。

随着光刻领域对高精度和高稳定性的不断需求，开始将柔性铰链用在光刻设备之上。如图 2 中所示，美国专利 US7554105(B2) 中公开以下技术方案：提供一种 30Hz 柔性机
构的避免共振的方法，并提供了一种倒 T 型柔性机构的设计结构和布局。

如图 3 中所示，美国专利 US20090040638 中提供了一种典型的反作用力装置和柔
性元件。该反作用力装置是由弹簧支撑元件悬浮在周围环境之中。为使反作用力装置具
有抵抗外界干扰的能力，其必须具有解耦特性，而它的解耦率取决于反作用力装置
自身的力量和支撑弹簧的硬度性能。为了获取合适的反作用力装置就需要其体积尽量减
小，因而这就需要反应物料采用高密度的材料。柔性元件采用的是硬度软较的弹簧元件，它
可以描述 X、Y、Z 方向的平移和旋转六个自由度，通常可以根据需要设计其自由度，因而压
簧元件根据自由度的不同有多种结构形式。采用一种平面方螺旋装置的是一种六自由度
的弹簧柔性结构，它形成了执行器系统的方向的外部环境振动过滤特性。

发明内容

本发明的目的在于提供一种用于隔振的柔性装置及使用该装置的光刻设备，能有效将被隔振物件的六自由度模态控制在较低频率范围内。

为了实现上述发明目的，本发明公开一种用于隔振的柔性装置，包括：第一接口、第
二接口及位于该第一第二接口中间的主体件，该主体件包括一中空圆柱以及位于该
中空圆柱外表面上的螺旋坡口。

更进一步地，该主体件还包括一方形立柱，该方形立柱的一端与该中空圆柱连接，
另一端与该第二接口连接，该方形立柱上包括至少一 X 向柔性坡口和一 Y 向柔性坡口。

该 X 向、Y 向柔性坡口均为中心对称的两个圆形开口。

更进一步地，该中空圆柱还包括至少一 X 向柔性坡口和一 Y 向柔性坡口，该 X 向、
Y 向柔性坡口均为中心对称的两个圆形开口。

更进一步地，该螺旋坡口的圆数范围为 1 至 30 圈。

更进一步地，该螺旋坡口的圆数范围为 1 至 5 圈。

更进一步地，该螺旋坡口的截面长度小于该中空圆柱的厚度。

更进一步地，该螺旋坡口的截面长度大于该中空圆柱的厚度。

更进一步地，该螺旋坡口的截面形状为圆形、椭圆形、三角形和正方形或梯形中
的任意一种。

更进一步地，所述柔性装置的 X、Y、Z 以及 Rx、Ry 和 Rz 6 个自由度可以在材料允许的弹性范围内变形，在 Z 方向刚度范围为 1 ×10^3 N/mm 至 5 ×10^4 N/mm，X 和 Y 方向刚度基本相等，刚度范围为 5 ×10^3 N/mm 至 10 ×10^4
N/mm。

本发明同时公开一种使用上述柔性装置的光刻设备，包括：一照射系统，用于形成一图案化的辐射束；一投影物镜，用于将该图案化的辐射束投影到衬底的目标部分；工
件台，用于支持该衬底；一框架减震系统，用于衰减至少部分该投影物镜的振动，该框架减震系统包括一减少基础框架上低频振动的主动减振器，以及隔离主基板上残余振动加速度的柔性装置。

[0022] 更进一步地，该柔性装置的数量为三组，该三组柔性装置按圆周分布于该投影物镜，该三组柔性装置分布呈等边三角形。

[0023] 与现有技术相比较，本发明提供了一种30Hz柔性机构的避免共振的方法，并提出了一种管状螺旋形柔性机构的设计结构和布局，它是一种6自由度柔性装置结构，起到了快速机物镜在主基板支撑和减振的作用，解决了外部振动通过主基板向物镜进一步传递和隔离振动的作用，由于柔性装置自身的固有频率较高，大于1000Hz，远高于振源频率，能起到避免共振的效果。而3个柔性块同物镜装配后，整体模态频率较低在10-50Hz(6自由度)之间，起到了中频段振荡进一步隔离的作用，提高了物镜曝光的稳定性，降低因结构振动将会导致图像的短期误差，同时由于运动系统(如微动台、反射镜)的MA(Moving Average)和MSD(Moving Standard Deviation)的伺服位置误差将导致的图像畸变。该柔性装置的变形和柔性可调范围大，分布在三个维螺旋形长度积分范围内，该结构受力后，内部应力分散均匀，分布在三个维螺旋形的材料中，避免应力集中导致的材料断裂和疲劳失效，使用寿命长。

附图说明
[0024] 关于本发明的优点与精神可以通过以下的发明详述及所附图示得到进一步的了解。
[0025] 图1是现有技术中所使用的三种双轴柔性铰链的结构示意图；
图2是美国专利US7554105中所公开的柔性机构的结构示意图；
图3是美国专利US20090040638所公开的柔性元件的结构示意图；
图4是本发明所展示的包含该柔性装置的光刻设备的结构示意图；
图5是本发明所展示的柔性装置的结构原理图；
图6是本发明所展示的柔性装置的光刻设备上的位置布局示意图；
图7是本发明所展示的柔性装置的第一实施方式的立体图；
图8是本发明所展示的柔性装置的第一实施方式的AA剖面图及局部放大图；
图9是本发明所展示的柔性装置的第一实施方式的俯视图；
图10是本发明所展示的柔性装置的第二实施方式的AA剖面图及局部放大图；
图11是本发明所展示的柔性装置的第三实施方式的AA剖面图及局部放大图；
图12是本发明所展示的柔性装置的第四实施方式的立体图；
图13是本发明所展示的柔性装置的第四实施方式的AA剖面图；
图14是本发明所展示的柔性装置的第五实施方式的立体图；
图15是本发明所展示的柔性装置的第五实施方式的AA剖面图；
图16是本发明所展示的柔性装置的变形仿真示意图；
图17是本发明所展示的柔性装置的参数性质灵敏度分析示意图；
图18是本发明所展示的柔性装置的测试的频响结果示意图。
具体实施方式
[0026] 下面结合附图详细说明本发明的一种具体实施例的用于隔振的柔性装置及使用该装置的光刻设备。然而，应当将本发明理解成并不局限于以下描述的这种实施方式，并且本发明的技术理念可以与其他公知技术或功能与那些公知技术相同的其他技术组合实施。
[0027] 在以下描述中，为了清楚展示本发明的结构及工作方式，将借助于诸多方向性词语进行描述，但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语，而不应当理解为限制性词语。此外，在以下描述中所使用的“X向”一词主要指与水平向平行的方向；“Y向”一词主要指与水平向平行，且与X向垂直的方向；“Z向”一词主要指与水平向垂直，且与X、Y向均垂直的方向。
[0028] 光源系统（Source, 简称 SO）：这里使用的术语“辐射”和“束”包含全部类型的电磁辐射，包括紫外(UV)辐射（例如具有约 365、248、143、157 或 126 nm 的波长）和电子束（例如具有约 5-20nm 范围的波长），以及粒子束，例如离子束或电子束。

照射系统（Illuminator,简称 ILL）：所述照射系统可以包括各种类型的光学部件，例如折射型、反射型、磁性型、电磁型、静电型或其他类型光学元件，或所有这些元件的组合，以引导、成形、或控制辐射束。

投影系统（Projector Box, 简称 PO / POB）：这里使用的术语“投影系统”应广义地解释为包括各种类型的投影系统，包括折射型光学系统、反射型光学系统、反射延迟投影型光学系统、磁性型光学系统、电磁型光学系统和静电型光学系统，或所有这些系统的组合，如对用于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这里使用的任何术语“投影透镜”可以认为是与上位的术语“投影系统”同义。

[0029] 如上述所述的，设备是透射型的（例如采用透射式的掩模）。可选的，设备可以是反射型的（例如采用如上述的可编程反射镜阵列，或采用反射式掩模）。

[0030] 这里使用的术语“透镜”可以认为是一个或多种光学元件的组合体，包括折射型光学部件、反射型光学部件、磁性型光学部件、电磁型光学部件和静电型光学部件。

[0031] 框架减震系统（Frame System, 简称 SF）：通常在光刻机系统中，由于结构振动将会导致图像的短期误差，同时由于运动系统（如微动台、反射镜）的 MA（Moving Average）和 MSD（Moving Standard Deviation）的伺服位置误差将导致的图像畸变。降低和控制对整体动态性能，将误差降低到一个较低的水平。支撑结构 / 框架减震系统 SF，用于衰减至少部分所述投影系统的振动。

[0032] 掩模（Reticle）：这里所使用的术语“图案形成装置”应被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束，以便在衬底的目标部分上形成图案的任何装置。应当注意，被赋予辐射束的图案可能不与在衬底的目标部分上期望的图案完全相符，例如，图案包含相移特征或所谓的辅助特征。通常，被赋予辐射束的图案将与在目标部分上形成的器件中的特征的功能层相对应，例如集成电路。

[0033] 图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示（LCD）面板。掩模在光刻中是公知的，并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置，可以独立地倾斜每一个小反射镜，以便沿不同方向反射入射的辐射束。所述倾斜的反射镜把图案赋予到被反射镜阵列反
射的辐射束。
[0034] 撞模运动台(Reticle Stage,简称 RS):所述支撑结构以依赖于图案形成装置的取向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其他条件的方式保持图案形成装置。所述支撑结构可以采用机械的、真空的或其他夹持技术来保持图案形成装置。支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。支撑结构可以确保图案形成装置位于所需的位置上（例如相对于投影系统）。在这里任何使用的术语“撞模版”或“撞模”都可以认为与更上位的术语“图案形成装置”同义。
[0035] 硅片运动台(Wafer Stage,简称 WS):硅片运动台(工件台)的功能是携带硅片并运动到指定的位置(工件位置)进行相应工序的操作。所述光刻设备可以是具有两个 (双台)或多台底板台或“衬底支撑件” (和/或两个或更多的撞击台或 “撞击支撑件”)的类型二在这种“多台”的机器中,可以并行地使用附加的台和/或支撑结构,或可以在将一个或更多个其他台和/或支撑结构用于曝光的同时,在一个或更多个台和/或支撑结构上执行预备步骤。
[0036] 对准装置(Alignment):对准装置的功能是完成对硅片和撞击的水平位置对准。所述辐射束 B 入射到保持在支撑结构 (例如撞击台) MT 上的所述图案形成装置 (例如,撞击) MA 上,并被图案形成装置图案化。已经穿过图案形成装置 (例如,撞击) MA 之后,所述辐射束 B 通过投影系统 PS,所述 PS 将辐射束聚焦到衬底 W 的目标部分 C 上。通过第二定位装置 PW 和位置传感器 IF (例如,干涉仪或光敏元件或电容传感器) 的帮助,可以精确地移动所述衬底台 WT,例如以便不同的目标部分 C 定位于所述辐射束 PB 的路径中。类似地,例如在从撞击库的机械获取之后,或在扫描期间,可以将所述第一定位装置 PM 和另一个位置传感器 (图 1 中未明确示出) 用于将图案形成装置 MA 相对于所述辐射束 PB 的路径精确地定位。通常,可以通过形成所述第一定位装置 PM 的一部分的长行程模块 (粗定位) 和短行程模块 (精确定位) 的帮助来实现图案形成装置支撑结构 (例如,撞击台) MT 的移动。类似地,衬底台 WT 或衬底支撑的移动可以通过利用形成所述第二定位装置 PW 的一部分的长行程模块 (粗定位) 和短行程模块 (精确定位) 来实现。在步进机的情况下 (与扫描器相反),所述支撑结构 WT 可以仅与短行程致动器相关,或可以是固定的。可以使用图案形成装置对称标记 M1, M2 和衬底对称标记 P1, P2 来对准图案形成装置 MA 和衬底 Wo 虽然所示的衬底对称标记占用专用的目标部分,它们可以选择在目标部分 (熟知的划线对称标记) 之间的位置上。类似地,在提供多个一个管芯到图案形成装置 (例如,撞击) MA 的情形中,图案形成装置对称标记可以设置在管芯之间。
[0037] 浸没式装置 IM: 光刻设备也可以是其中的衬底的至少一部分被具有相对高的折射率的液体 (例如,水) 覆盖以填充位于投影系统和衬底之间位置的类型。浸没液体可以用于光刻设备中的其他位置,例如,图案形成装置 (例如,撞击) 和投影系统之间。浸没技术能够用来增大投影系统的孔径数值。这里用到的术语“浸没”不是指的一种结构,例如衬底,必须进入到液体中,而是仅表示在曝光时液体位于投影系统和衬底之间。
[0038] 本发明的目的在于提供一种用于隔振的柔性装置及使用该装置的光刻设备,能有效将被隔振物体的自自由度模态控制在较低频率范围内。以下将结合图 4 至图 15 详细说明如何实现该发明目的,并提供若干种较佳实施例。
[0039] 如图 4 中所示,图 4 是本发明所显示的包含该柔性装置的光刻设备的结构示意
图。该光刻设备还包括：照射系统（Illumination, ILL），构造成调节辐射束和辐射源 RS
（例如，紫外辐射或其他适当的辐射）；图案支撑和携带结构（Reticule Stage, RS），构造成
支撑和携带图案（例如掩模 Reticule）的装置，并与构造成根据特定参数精确定位图案
形成装置的第二定位装置 PM 相连。所述图案形成装置能将图案在辐射束的横截面上赋
予辐射束以形成图案化的辐射束；衬底台或工件台（Wafer Stage, WS），构造成保持衬底，
例如涂覆有抗蚀剂的晶片（Wafer），并与构造成根据特定参数精确地定位衬底的第二定位
装置 PW 相连；投影系统（Project System, PO），例如折射式投影透镜系统，构造成将图案
化的辐射束投影到衬底的目标部分，所述投影系统配置设置于将图案形成装置 MA 赋予辐
射束 B 的图案投影到衬底 W 的目标部分 C （例如包括一根或多根后芯）上：框架减震系统
(System Frame, SF)，用于衰减至少部分所述投影系统的振动。装置系统还包括真空环境系
统(System Vacuum/Environment, SV)，用于控制投影像曝光区域的环境压力、温度和污
染物。

[0040] 图 4 中仅示出光刻设备中与该隔振柔性装置相关的部件。图 4 中，投影物镜 40 通
过柔性装置 502 置于主基板 301 上。主基板 301 位于主动减震装置 302 上。主动减震装
置 302 被放置于基础框架 303 上。上述部件均位于真空腔 100 内。基础框架 303 位于地
基基础 304 上。该光刻设备采用两种隔振的系统方案，其中第一级采用主动减震器 302
（频率 0.5 Hz），用于各类基础框架上的低频振动。第二级采用柔性装置 502（频率 30 Hz），
用于隔离主基板 301 上的残余振动加速度。

[0041] 该柔性装置的详细结构如图 5 所示，图 5 是本发明所示出的柔性装置的结构原理
图。该柔性装置包括顶部一个法兰接口装置 520 同物镜相连接。底部一个法兰接口 530 装
置同主基板相连接。中间为一种圆柱体管状结构 510，参数包括了管状圆柱体的内径 d 和外
径 D。在圆柱体的外表面开有坡口 511，坡口截面中心距离管状圆柱体中心半径为 r，其坡口
截面形状可以是圆形的，椭圆形、三角形、正方形或梯形。坡口截面的最终形状取决于加工
铣削的刀具形状。其中重要的特征是这种坡口截面绕管状圆柱体呈现螺旋形的周围结构，通
过刀具铣削成形。两组螺旋线之间的间距为一个螺旋 P，其中螺旋的圈数（范围在 1-30 之
间）是决定柔性装置刚度的重要参数。

[0042] 该柔性装置的有效载荷约束范围在 600–1000 kg，其中反射式物镜的质量范围在
600–800 kg，和主基板顶部模块的质量范围在 100–200 kg。在本发明中提供两种柔性装置
的布局方式。第一种布局方式见图 6（a），物镜一般采用 3 组柔性装置。若物镜框架 40 为
圆形结构，则 3 组柔性装置按圆周均布。若物镜为多面体结构，则 3 组柔性装置 502 成等腰
三角形布置，并使物镜中心尽量与三角形中心重合。其相对于物镜 40 重心所在位置，三点
之间呈 120 度夹角，均匀分布。此外 501 为物镜运输过程中的一种限位和防冲击的保护装
置。第二种布局方式见图 6（b）。该布局方式适用于方形物镜结构。则 3 组柔性装置 502
成等腰、等边三角形布置，并使物镜中心尽量与三角形中心重合。共有三组柔性模块装置
502 呈三点布置，其三点之间呈现等腰、等边三角形分布。

[0043] 为根据体的说明柔性装置的特征其固有频率，单个柔性块固有频率范围在
1000–2000 Hz，而 3 个柔性装置其连同物镜 POB 装配后，它们整体模态 6 自由度的频率
25–50 Hz 的范围内，这里特指的 6 自由度包括平移自由度 X、Y、Z 和旋转自由度 Rx、Ry、和
Rz。
由刚度 m、质量 K 同频率 ω_n 的关系式由下式可知，

$$\omega_n = \sqrt{\frac{K}{m}}$$

当载荷给定的前提下，为了控制结构频率，可以通过精确控制刚度来实现。由此，为了使整体模态 6 自由度的频率 25-50 Hz 的范围内，控制其单个柔性装置的刚度范围。其 X Y 和 Z 向三个刚度的范围如下表所示。其 X、Y、Z 以及 Rx、Ry 和 Rz 6 个自由度可以在材料允许的弹性范围内变形，且具有在 Z 向相反的刚度（刚度范围 1 $\times 10^4$ N/mm 至 5 $\times 10^4$ N/mm），且 X 和 Y 方向较低的刚度（刚度范围 5 $\times 10^4$ N/mm 至 10 $\times 10^4$ N/mm），且由于结构的对称性，在 X 和 Y 方向刚度基本相等的特点。

该柔性装置的刚度指标数值如下表所示：

<table>
<thead>
<tr>
<th>方向</th>
<th>刚度值 (N/mm)</th>
<th>最小值</th>
<th>最大值</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1×10^4</td>
<td>5×10^4</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>1×10^4</td>
<td>5×10^4</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>5×10^4</td>
<td>10×10^4</td>
<td></td>
</tr>
</tbody>
</table>

图 7 是本发明所示出的柔性装置的第一实施方式的立体图；图 8 是本发明所示出的柔性装置的第一实施方式的剖面图及局部放大图；图 9 是本发明所示出的柔性装置的第一实施方式的俯视图。如图 7 至 9 所示，该柔性装置包括了所示顶部法兰接口 520、底部法兰接口 530 和中间管状圆柱 510。在圆柱的外表面开有圆形截面的螺旋坡口 511，其螺旋坡口围绕的圈数为 2 周。此外圆形截面的直径小于管状圆柱的壁厚，即管状圆柱整体连同，其圆形截面未穿透管状圆柱的外壁。这种情况适合于对刚性有较高需求的情况。该实施方式中，柔性装置的变形仿真示意图如图 16 所示，其中左图为 X 向和 Y 向的仿真示意图，右图为 Z 向的仿真示意图。参数性质灵敏度分析示意图如图 17 所示。频响结果示意图如图 18 中所示，该图表示了在收到外部激励后，物镜柔性装置的模态测试的频响结果。如图 18 所示，横轴表示频率，纵轴表示位移，其反映了整体的物镜柔性装置的模态的 X、Y 和 Z 以及 RX、Ry 和 Rz 6 个自由度的第一阶频率，都基本集中在 25-50 的频率范围中。

本发明提供该柔性装置的第二实施方式，如图 10 所示。该柔性装置包括了所示顶部法兰接口 520、底部法兰接口 530 和中间管状圆柱 510。在圆柱的外表面开有圆形截面的螺旋坡口 511，其螺旋坡口围绕的圈数为 4 周。此外圆形截面的直径大于管状圆柱的壁厚，即管状圆柱整体隔断，其圆形截面穿透管状圆柱的外壁。这种情况适合于对柔性有较高需求的情况。

本发明提供该柔性装置的第三实施方式，如图 11 所示。该柔性装置包括了所示顶部法兰接口 520、底部法兰接口 530 和中间管状圆柱 510。在圆柱的外表面开有方形截面的螺旋坡口 511，其螺旋坡口围绕的圈数为 2 周。此外矩形截面的长度大于管状圆柱的壁厚，即管状圆柱整体隔断，其方形截面穿透管状圆柱的外壁。这种情况适合于对柔性有较高需求的情况。
[0048] 本发明提供该柔性装置的第四实施方式，如图12至13中所示。图12是本发明所示出的柔性装置的第四实施方式的立体图，图13是本发明所示出的柔性装置的第四实施方式的AA剖面图。为一种XYZ三方向解耦的6自由度柔性装置较佳的实施例，其包括了所示顶部法兰接口520、底部法兰接口530和中间管状圆柱510和一种方形立柱540。在圆柱510的外表面开有方形截面的螺旋坡口511，其螺旋坡口511围绕的圈数为1-5周范围内。此外方形截面的长度大于管状圆柱的壁厚，即管状圆柱整体隔断，其方形截面穿透管状圆柱的外壁。顶部螺旋柔性主要承担X、Y和Z三个方向的刚度进行控制。这种情况适合于对柔性有较高需求的情况。

[0049] 此外在方形立柱上以中心对称开有两种圆形坡口，其中中间坡口柔性结构541主要控制X方向的刚度，底部坡口柔性结构542主要控制Y方向的刚度，这样的设计便于对X、Y和Z三个方向的刚度进行解耦和控制。

[0050] 以及采用类似方法对X、Y和Z方向串联产生的组合情况的解耦柔性装置。

[0051] 本发明提供该柔性装置的第五实施方式，如图14至15中所示。图14是本发明所示出的柔性装置的第五实施方式的立体图，图15是本发明所示出的柔性装置的第五实施方式的AA剖面图。为一种XYZ三方向解耦的6自由度柔性装置较佳的实施例，其包括了所示顶部法兰接口520、底部法兰接口530和中间管状圆柱510，在圆柱的外表面开有方形截面的螺旋坡口511，其螺旋坡口511围绕的圈数为1-5周范围内。此外方形截面的长度大于管状圆柱的壁厚，即管状圆柱整体隔断，其方形截面穿透管状圆柱的外壁。顶部螺旋柔性主要承担X、Y和Z三个方向的刚度进行控制。这种情况适合于对柔性有较高需求的情况。

[0052] 此外在管状圆柱上以中心对称开有两种圆形坡口，其中中间坡口柔性结构512主要控制X方向的刚度，底部坡口柔性结构513主要控制Y方向的刚度，这样的设计便于对X、Y和Z三个方向的刚度进行解耦和控制。

[0053] 以及采用类似方法对X、Y和Z方向串联产生的组合情况的解耦柔性装置。

[0054] 与现有技术相比较，本发明提供了一种30Hz柔性机构的避免共振的方法，并提出了一种管状螺旋形柔性机构的设计结构和布局，它是一种6自由度柔性装置机构，起到了光刻机物镜在主基板支撑和减振的作用，解决了外部振动通过主基板向物镜进一步传递和隔离振动的作用，由于柔性装置自身的固有频率较高，大于1000Hz，远高于振源频率，能起到避免共振的效果。而3个柔性块同物镜装配后，整体模态频率较低在10-50 Hz(6自由度)之前，起到了低中频段振动进一步隔离的作用，提高了物镜成像的稳定性，降低因结构振动将会导致图像的短期误差，同时由于运动系统（如微动台、反射镜）的MA（Moving Average）和MSD（Moving Standard Deviation）的伺服位置误差将导致的图像畸变。该柔性装置的变形和柔性可调范围大，分布在每个3维螺旋形长度积分范围内，其结构受力后，内部应力分散均匀，分布在3维螺旋形的材料中，避免应力集中导致的材料断裂和疲劳失效，使用寿命长。

[0055] 本说明书中所述的只是本发明的较佳具体实施例，以上实施例仅用以说明本发明的技术方案而非对本发明的限制。凡本领域技术人员依本发明的构思通过逻辑分析、推理或者有限的实验可以得到的技术方案，皆应在本发明的范围之内。
图 6

图 7
图 12