
(2>UK Patent (19)GB .,.2542173 (13)B
(45) Date of B Publication 14.08.2019

(54) Title of the Invention: Method and apparatus for categorising a download of a 
resource

(51) INT CL: H04L 29/08 (2006.01)

(21) Application No: 1516070.8

(22) Date of Filing: 10.09.2015

(43) Date of A Publication 15.03.2017

(56) Documents Cited:
US 7664048 B1 US 20140321290 A1
LIN Y-D et al: Application classification using packet 
size distribution and port association. Journal of 
network and computer applications, Academic press, 
New York, US.
MANUEL CROTTI et al: Traffic classification through 
simple statistical fingerprinting. COMPUTER 
COOMUNICATION REVIEW, ACM, NEW YORK, US

(58) Field of Search:
As for published application 2542173 A viz:
INT CL H04L
Other: WPI EPODOC TXTE
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):
Shaun McGinnity
Matt Halligan
Fergus Wills

(73) Proprietor(s):
Openwave Mobility, Inc.
1600 Seaport Boulevard, Suite 400, 
Redwood City 94063, California, 
United States of America

(74) Agent and/or Address for Service:
EIP
Fairfax House, 15 Fulwood Place, LONDON, 
WC1V 6HU, United Kingdom

G
B 

2542173



1/8

σ>

Fi
gu

re
 1



2/8

Fi
gu

re
 2

LD



3/8

LD

co

Fi
gu

re
 3



4/8

Fi
gu

re
 4



5/8

Fi
gu

re
 5



6/8

m

Fi
gu

re
 6



7/8

Fi
gu

re
 7



8/8

Φi— Φ
o ro
S M— i_

■M Φ
Φ ■M
Z. c

50
0 

Fi
gu

re
 8



METHOD AND APPARATUS FOR CATEGORISING A DOWNLOAD OF A 

RESOURCE

5

10

15

20

25

30

Technical Field

The present invention relates to a method of categorising a download of a 

resource. More particularly, the invention relates to a method of categorising a 

download of a resource to a user device in a data network.

Background

Application layer protocols (commonly referred to as Layer 7 protocols in the 

Open Systems Interconnection model (OSI Model)) are used to exchange data between 

processes (i.e. applications) running on different devices on a data network, for example 

the Internet. A typical Application layer protocol will specify what request a first 

process running on a first device may send to a second process running on a second 

device over a data network and what response the second process may send back in 

return. There are many well-known Application layer protocols including the 

HyperText Transfer Protocol (HTTP), the File Transfer Protocol (FTP) and the Real 

Time Streaming Protocol (RTSP).

Transport layer protocols (commonly referred to as Layer 4 protocols in the OSI 

Model) are used to establish data transfer channels between processes running on 

devices on a data network and to manage (e.g. provide reliability, flow control and 

multiplexing) of the data exchanged between those processes. There are many well- 

known Transport layer protocols including the Transmission Control Protocol (TCP) 

and the User Datagram Protocol (UDP).

Application layer protocols and Transport layer protocols are designed within 

the framework of a Protocol Suite (e.g. the TCP/IP suite) used for communications over 

a data network. A Transport layer protocol is first used to establish a channel or 

connection between two processes running on two different devices and an Application 

layer protocol is then used to exchange messages between the two processes.



2

5

10

15

20

25

30

Typically, an Application layer protocol functions as a request-response 

protocol in a client-server model. A first application running on a first device may be 

the client and a second application running on a second device may be the server. The 

client submits a request message to the server and the server returns content to the client 

in a response message.

A Transport layer protocol accepts data from the Application layer protocol 

(note that there may be further layers between the two) that is running over it, divides 

that data into chunks and adds a Transport layer header to each chunk to create a 

Transport layer packet. Each Transport layer packet is then encapsulated in a Network 

layer (commonly referred to as Layer 3) protocol packet and transmitted from the 

sender to the receiver. At the receiver, the Transport layer protocol receives the payload 

of each Network layer protocol packet, removes the Transport layer header, 

reassembles the chunks into the data and passes that data to the Application layer 

protocol running above it.

The term ‘proxy server’ is often used to refer to an intermediate device or server 

that acts to arbitrate communications between devices on a network. For example, a 

proxy server may act as an intermediary for requests received from a client device and 

addressed to a remote origin server, such as a video server, or other type of content­

serving server. Such requests are typically requests for resources (e.g. Web pages, 

multimedia files including video files, apps etc) or services which are stored or accessed 

via the remote server.

For several reasons (for example, access control, content enrichment, network 

management or analytics) it may be advantageous for a proxy server to be able to 

characterise the nature of a download occurring through it between a client device and 

a server (i.e. to identify the nature of the data being downloaded i.e. whether it is a web 

page, or an adaptive bit rate video stream or an app etc).

Many connections between a client device and a server are secure so that the 

Layer 7 messages exchanged between the two are encrypted. A proxy server is 

incapable of decrypting the messages and therefore cannot inspect the headers or 

content of the Layer 7 messages (e.g. a HTTP message header). This makes it difficult 

for a proxy server to characterise an encrypted download between a server and a client. 

Even if a connection is a non-secure one it is inconvenient for a proxy server to



3

20
 0

8 1
8

characterise a download based on the inspection of Layer 7 message headers because 

this requires the proxy server having to reassembly the Layer 7 messages from the Layer 

4 packets that make them up and this might not always be desirable to do. In some 

instances, it may not be possible to determine or infer the nature of a download based 

5 on information obtained from Layer 7 message headers.

Summary

In accordance with the invention, there is provided a method according to 

claim 1.

10 In accordance with the invention, there is also provided an intermediate network

device comprising a processing system arranged to implement the method.

In accordance with the invention, there is also provided a computer programme 

comprising a set of instructions, which, when executed by a processing system causes 

the system to implement the method.

15 Advantageously, this approach allows the intermediate network device to be

able to categorise the download without having to inspect the headers of the requests or 

responses for information identifying the nature of the download, which may not even 

be possible if the requests or the responses are encrypted.

20 Brief Description of the Drawings

Further features and advantages of the invention will become apparent from the 

following description of preferred embodiments of the invention, given by way of 

example only, which is made with reference to the accompanying drawings.



4

5

10

15

20

25

30

Figure 1 is a schematic diagram of a system comprising a proxy server in 

accordance with an embodiment of the invention;

Figure 2 is a schematic diagram of a proxy server in accordance with an 

embodiment of the invention;

Figure 3 is a signalling diagram showing an exchange of messages in 

accordance with a first example of characterising a download in accordance with an 

embodiment of the invention;

Figure 4 is a signalling diagram showing an exchange of messages in 

accordance with a second example of characterising a download in accordance with an 

embodiment of the invention;

Figure 5 is a signalling diagram showing an exchange of messages in 

accordance with a third example of characterising a download in accordance with an 

embodiment of the invention;

Figure 6 is a schematic diagram of a system comprising a proxy server in 

accordance with an embodiment of the invention;

Figure 7 is signalling diagram showing an exchange of handshake messages to 

set up a secure connection;

Figure 8 is a schematic diagram of a proxy server in accordance with an 

embodiment of the invention.

Several parts or components appear in more than one of the above Figures and 

for clarity the same reference numeral is used to refer to the same part or component in 

all of the Figures.

Detailed Description

Embodiments of the invention utilise an intermediate server to categorise the 

downloading of a resource to a user device from a resource server in a data network. 

The proxy server receives data of one or more Layer 7 protocol requests from the client 

device, each of which is a request for a different portion of (or, in the case of a single 

request, the whole of) the resource to be downloaded to the client device. The 

intermediate server forwards the data of each Layer 7 protocol request to the resource 

server. The intermediate server receives data of a Layer 7 response for each request 

and determines for each Layer 7 response the size of or an estimate of the size of that 



5

5

10

15

20

25

30

response. The intermediate sever categorises the downloading of the resource to the 

client device as one of one or more of pre-defined download categories based on a count 

of the one or more Layer 7 protocol responses and the determined data sizes or estimates 

of the data sizes of the Layer 7 protocol responses.

It will be readily understood that the components of the embodiments as 

generally described herein and illustrated in the appended figures could be arranged 

and designed in a wide variety of different configurations. Thus, the following more 

detailed description of various embodiments, as represented in the figures, is not 

intended to limit the scope of the present disclosure, but is merely representative of 

various embodiments. While the various aspects of the embodiments are presented in 

drawings, the drawings are not necessarily drawn to scale unless specifically 

indicated.

The described embodiments are to be considered in all respects only as 

illustrative and not restrictive. The scope of the invention is, therefore, indicated by 

the appended claims rather than by this detailed description. All changes which come 

within the meaning and range of equivalency of the claims are to be embraced within 

their scope.

Reference throughout this specification to features, advantages, or 

similar language does not imply that all of the features and advantages that may be 

realized with the present invention should be or are in any single embodiment. 

Rather, language referring to the features and advantages is understood to mean that a 

specific feature, advantage, or characteristic described in connection with an 

embodiment is included in at least one embodiment. Thus, discussions of the features 

and advantages, and similar language, throughout this specification may, but do not 

necessarily, refer to the same embodiment.

Furthermore, the described features, advantages, and characteristics of 

the invention may be combined in any suitable manner in one or more embodiments. 

One skilled in the relevant art will recognize, in light of the description herein, that the 

invention can be practiced without one or more of the specific features or advantages 

of a particular embodiment. In other instances, additional features and advantages 

may be recognized in certain embodiments that may not be present in all 

embodiments of the invention.



6

5

10

15

20

25

30

Reference throughout this specification to “one embodiment,” “an 

embodiment,” or similar language means that a particular feature, structure, or 

characteristic described in connection with the indicated embodiment is included in at 

least one embodiment. Thus, the phrases “in one embodiment,” “in an embodiment,” 

and similar language throughout this specification may, but do not necessarily, all 

refer to the same embodiment.

Fig. 1 depicts a data network 1 in accordance with an embodiment of the 

invention. As described in more detail below, the data network 1 includes a user 

device 3, an intermediate network device 5, and an origin server 7. Although Fig. 1 is 

described with respect to one client device, one intermediate network device and one 

origin server, the description is not limited to a single client device, intermediate 

network device, and origin server.

In this example, the user device 3 is a client device and may be any 

networked device including, without limitation, a mobile phone, a smart phone, a 

personal digital assistant (PDA), a tablet, a set-top box, a video player, a laptop, or a 

personal computer (PC). In one embodiment, the client device 3 is a wireless device 

that can support at least one of various different radio frequency (RF) 

communications protocols, including without limitation, Global System for Mobile 

communications (GSM), Universal Mobile Telecommunications System (UMTS), 

Code Division Multiple Access (CDMA), Worldwide Interoperability for Microwave 

Access (WiMax) and communications protocols as defined by the 3rd Generation 

Partnership Project (3GPP) or the 3rd Generation Partnership Project 2 (3GPP2), 4G 

Long Term Evolution (LTE) and IEEE 802.16 standards bodies.

Although some wireless communications protocols are identified herein, 

it should be understood that the present disclosure is not limited to the cited wireless 

communications protocols. In another embodiment, the client device 3 is a wired 

device that communicates with the intermediate network device 5 through a 

communication interface, such as analog modem, ISDN modem or terminal adapter, 

DSL modem, cable modem, Ethernet/IEEE 802.3 interface, or a combination thereof. 

In another embodiment, the client device 3 is connected to the intermediate network 

device 5 via a combination of wireless and wired communication interfaces.



7

5

10

15

20

25

30

The client device 3 runs a client application 3a for requesting resources 

from the origin server 7. The client application 3a may for example be a web browser 

for requesting web pages from the origin server 7 if the origin server 7 is a web page 

7, an adaptive bit rate (ABR) video streaming player for requesting an ABR video 

stream from the origin server 7 if the origin server 7 is an ABR video stream server, 

or an app store app (e.g. Apple’s (RTM) app store app or Google’s (RTM) Google 

play app) for requesting an app from the origin server 7 if the origin server 7 is an app 

store or indeed any suitable application for requesting content from an origin server.

In this example, the intermediate network device 5 is a proxy server 5 in 

the data communications path between the client device 5 and the origin server 7 and 

is implemented in, for example, a gateway server. In one embodiment, the proxy 

server 5 is a transparent proxy server that passes requests and responses (e.g., HTTP 

requests and responses) between client devices such as the client device 3 and host 

servers such as the origin server 7 without modifying the requests and responses. A 

proxy server 5 that simply passes requests and responses is often referred to as a 

gateway or a tunneling proxy. In another embodiment, the proxy server 5 is a non­

transparent proxy that can modify requests and responses between client devices and 

host servers in order to provide additional services. For example, a non-transparent 

proxy may provide media caching services, group annotation services, media type 

transformation services, or protocol reduction services.

In one embodiment, the proxy server 5 is part of a wireless service 

provider network and the client device 3 is a wireless device, such as a mobile phone, 

that is a recognized/authorized subscriber to the wireless service provider network.

In one embodiment, the proxy server 5 is part of an access network 9, 

which provides a communications interface for the client device 3 to access the 

Internet or an intranet.

Typical access networks include wireless service provider networks 

(e.g., that offer 3G, 4G and/or WiFi access) and Internet Service Providers (ISPs, e.g., 

that offer dial-up, DSL, and cable modem access). A private enterprise network can 

also serve as the access network if client devices within the private enterprise network 

can access the Internet through the private enterprise network. In one embodiment, 

the access network 9 is a wireless service provider network that provides a wireless 



8

5

10

15

20

25

30

communications interface for the client device. The wireless service provider 

network is accessible on a subscription basis (e.g., prepaid or post-paid) as is known 

in the field.

In an embodiment, the wireless service provider network is a closed 

domain that is accessible only by a subscriber (e.g. a user of the user device) that is in 

good standing with the operator of the wireless service provider network. The 

wireless service provider network may include a radio access network (not shown) 

and an Internet gateway (not shown). The radio access network includes one or more 

base stations to facilitate communications among wireless devices that are within a 

communication range of the base stations. Each base station has at least one RF 

transceiver and the base stations communicate with the wireless devices using RF 

communication signals. The radio access network facilitates network 

communications among multiple wireless devices within the same wireless service 

provider network and between wireless devices in other wireless service provider 

networks and provides interfaces to facilitate communications with other entities, such 

as a Public Switched Telephone Network (PSTN), a Wide Area Network (WAN), the 

Internet, Internet servers, hosts, etc., which are outside of the wireless service provider 

network. In an embodiment, the wireless service provider network is operated by a 

single wireless service provider, such as, for example, AT&T, VERIZON, T- 

MOBILE, and SPRINT. The Internet gateway (not shown) of the access network 

provides a gateway for communications between the client device 3 and Internet- 

connected hosts and/or servers, which can also be referred to as the “cloud.” The 

Internet gateway may include a Serving General Packet Radio Service (GPRS) 

Support Node (SGSN) and a Gateway GPRS Support Node (GGSN).

The origin server 7 can be any device or system that hosts digital 

resources, which can be stored in various formats, such as video files, audio files, 

and/or text files, apps etc. In one embodiment, the origin server 7 is an Internet- 

connected host or server that hosts Internet accessible content elements. The origin 

server 7 may be a server that can be accessed via, for example, Layer 7 protocols such 

as HTTP, Internet Message Access Protocol (IMAP), or File Transfer Protocol (FTP). 

A content element is any set of digital data suitable for transfer in a networked 

environment, such as video files, markup language files, scripting language files,



9

5

10

15

20

25

30

music files, image files or any other type of element that can be located and addressed 

through, for example, the Internet.

Referring now to Figure 2, the proxy server 5 may comprise a data flow 

registration component 20, a request monitoring component 22, a response monitoring 

component 24 and a download categorising component 26.

The data flow registration component 20 is configured to detect and 

register a data flow between the client device 3 and the origin server 7. In this 

context, a data flow is associated with an ‘end-to-end’ exchange of data between the 

client device 3 and the origin server 7. This exchange of data is performed using an 

Application Layer (Layer 7) protocol (e.g. HTTP or HTTPS) and a Transport Layer 

Protocol (Layer 4) (e.g. TCP or UDP). Accordingly, a data flow may be defined as 

the flow of data between a client side endpoint at the client device 3 and a server side 

end-point at the origin server 7. The client side end point may be a client socket (e.g. 

a transport layer socket such as a TCP socket) defined by a client IP address and client 

port number and likewise the server side end point a server socket (e.g. a transport 

layer socket such as a TCP socket) defined by a server IP address and server port 

number. The data flow is thus identifiable by virtue of the 4-tuple comprising: client 

IP address, client port number, origin server IP address, origin server port number 

contained in the headers of packets of the data flow.

A data flow may comprise a number or requests sent from the client 

device 3, for the client application 3a, to the origin server 7 using a Layer 7 protocol 

and a corresponding number of Layer 7 responses sent form the origin server 7 to the 

client device 3 in reply. The request monitoring component 22 monitors for and 

keeps a record of each Layer 7 request message sent from the client device 3 to the 

origin server 7 for a given data flow. The response monitoring component 24 

monitors each Layer 7 response message to a given Layer 7 request message, 

correlates it with its associated Layer 7 request message, and determines the data size 

of that Layer 7 response message.

The download categorising component 26 categorises a data download 

from the origin server 7 to the client device 3 for a given flow based on a number of 

request messages associated with the download monitored by the request monitoring 

component 22 and the size of the received responses.



10

5

10

15

20

25

30

In one example, a download may be categorised as one of (a) a web page 

download, (b) an ABR video streaming download or (c) a large single file download.

Each of these types of download will now be briefly described.

Web Page Download

As is very well known, a web browser is an application that is used to 

display web pages on a monitor of a client computing device. A typical web page is 

rendered by a web browser using multiple components or portions of that web page 

including a web document (i.e. a computer file) usually written in the mark-up 

language HTML (or other such similar mark-up language) that defines the web page 

and includes text to be displayed on the web page. A web document typically 

specifies links to one or more other portions of the web page that are required by the 

web browser to render the web page and which are stored in separate files to the web 

document itself, either on the same server as the one that stores the web document or 

on a different server or servers. These portions can include (but are not limited to):

(a) Cascading Style Sheet (CSS) instructions which provide layout, 

typographic and colour scheme information to a browser;

(b) Scripts - usually written in Javascript and which provide interactivity 

and functionality;

(c) Static images which are typically provided as GIF, JPEG or PNG files;

(d) Video files;

(d) Audio files.

A web browser will request a web document from a server (typically in 

response to a user inputting a URL or clicking on a link to that web document) by 

sending a HTTP request for the web document and will receive the web document in a 



11

5

10

15

20

25

30

HTTP response. The web browser will then process the received document and send 

a separate request for each additional component referenced in the web document. 

Once a response for each additional component has been received by the browser, the 

browser can fully render the web page.

Accordingly, in order to render a web page as a resource, a web browser 

will send multiple HTTP requests for the components or portions that make up that 

web page and receive multiple HTTP responses containing those portions.

Notwithstanding the fact that one or more of those portions might be a 

relatively large video file, many web pages comprises one or more scripts, a stylesheet 

and multiple images. Files of this nature tend to have a data size in the range of 500 

bytes to 50Kbytes. Accordingly, multiple Layer 7 requests and corresponding Layer 

7 responses that each has a data size within range of 500 bytes to 50Kbytes is 

therefore a characteristic of a typical ‘web page download’.

Adaptive Bit Rate (ABR) Streaming

ABR streamlining, for example, Hyper Text Transfer Protocol (HTTP) 

Adaptive Video Streaming (AVS) is a known technique used to stream video content 

over the Internet and other communications networks. In order to support ABR 

streaming, typically, a video server, in a communication network, makes available for 

download multiple versions or streams of the same video content, each version having 

one or more characteristics associated therewith that are different to those of the other 

versions. For example, the one or more characteristics may relate to video quality, as 

indicated, for example, by the playback bit rate of the video, or resolution (e.g. 1080p, 

720p, etc).

Each version is sub divided into a plurality of consecutive smaller multi­

seconds parts known as segments or chunks. Each segment is typically between 2 to 

10 seconds of duration. The video server also makes available a so called manifest 

file which contains information (e.g. meta-data) describing each and every available 

segment which is to be used by a client device in order to play back segments. A 

manifest file also contains a different pointer to or an address (typically a Uniform 

Resource Locator (URL)) for each segment of each version of the video content, or 



12

5

10

15

20

25

30

alternatively, a different pointer to or an address (again typically a URL) for each 

version of the video content and a byte range for each different segment within each 

version. This segment pointer information enables a client device to individually 

request segments from the server.

Prior to downloading desired video content from the video server, a 

player application on a client device first downloads the manifest file for that video 

content and uses the manifest file to identify the different available versions of the 

video content. Based on the information in the manifest file, the client sends 

sequential HTTP requests for segments of the video content, the segments being those 

that have a quality level, as indicated by playback bit rate or resolution, most 

appropriate for the download bandwidth currently available to the client device. 

Typically, in HTTP adaptive streaming, a HTTP GET request will only be issued by a 

client device for the next segment in the sequent when the complete previous segment 

has been received.

The client device continuously monitors the available download 

bandwidth and if it finds that the bandwidth has deteriorated to an extent that it is now 

too low for the quality level of the segments currently being downloaded, the client 

device starts to request the next segments for displaying the video content from a 

lower quality level (e.g. lower playback bit rate or resolution) if available.

Conversely, if it finds that the bandwidth has improved to an extent that 

it can accommodate higher quality segments than those segments currently being 

downloaded, the client device starts to request the next segments for displaying the 

video content from a higher quality stream (if available).

Accordingly, ABR streaming enables a user device to dynamically select 

the best available stream according to network throughput. Requesting segments one 

after the other at possibly different resolutions can result in a smoother video 

experience for a user even if the available bandwidth varies.

Current proprietary implementations of ABR streaming include 

Microsoft’s ‘Smooth Streaming’ implemented by its Silverlight player, Apple’s 

‘HTTP Adaptive BitRate Streaming’ implemented in its desktop and mobile products, 

and Adobe’s ‘HTTP Dynamic Streaming’ implemented by its Flash player (vlO.l and 



13

5

10

15

20

25

30

later). All three of these implementations support H.264 as a video codec and 

Advanced Audio Coding (AAC) as an audio codec.

In addition, the standards body 3GPP has defined its standard ‘Dynamic 

Adaptive Streaming over HTTP’ and the standards body MPEG its standard 

‘Dynamic Adaptive HTTP Streaming’.

The data size of a typical segment will vary from between 102401 bytes 

for a short (e.g. 2s) Tow quality’ segment to 5 Mbytes value for a long (e.g. 10s) ‘high 

quality’ segment. A video rendering app will send a request for each segment (i.e. 

portion) that makes up a video file and hence, typically, will need to send multiple 

HTTP requests and receive multiple HTTP responses containing those segments in 

order to render a video resource using ABR streaming. For example, assuming that a 

segment contains 10s of video playback time, six requests will have to be sent for 

each minute of video to be played. Accordingly, multiple requests and corresponding 

responses each having a data size within the range 102401bytes to 5 Mbytes is 

therefore a characteristic of a typical ‘ABR streaming’ download of a resource.

Large Single File Download

Many client device requests for relatively large objects stored on a 

remote server involve the client device sending only a small number of requests to the 

server for the object and receiving the object in a small number of relatively large 

responses from the server.

A first example is that of a request sent from a client device for an app 

stored at an app store. Android Application Package (APK) is the package file format 

used to distribute and install apps onto user devices that use Google’s (RTM) Android 

operating system. APK files are in ZIP format and are requested by a user device via 

a single HTTPs request and are delivered using a single HTTPS response. Similarly, 

an .ipa file is an iOS application archive file which stores an iOS app which generally 

can only be installed on Apple’s (RTM) iOS devices, .ipa files are also requested by a 

user device via a single HTTPs request and are delivered using a single HTTPS 

response. Such app files tend to be larger than 1,000,000 bytes



14

5

10

15

20

25

30

A second example is that of a request for a video file to be downloaded 

as a single file from a video store. A typical HD feature film length video file is 

typically larger than 20 Mbytes.

In order to obtain a single large file of this nature, an application will 

send a single request for the whole portion of that file and receive a single response 

containing that file.

Accordingly, a single request and a corresponding response containing a 

large amount of data is therefore a characteristic of a typical Targe single file 

download’ of a resource.

Examples of an embodiment of the invention

Following on from the discussion above, it will be appreciated therefore 

that in general:

(i) a web page download may be characterised by a relatively large 

number of Layer 7 requests (e.g. one for a HTML document and one for each further 

component referenced in the HTML document) and a corresponding number of Layer 

7 responses that are relatively small in data size;

(ii) an ABR streaming download may be characterised by a relatively 

large number of Layer 7 requests (e.g. each one for a different segment of the video 

file) and a corresponding number of Layer 7 responses that are relatively large in data 

size; and

(iii) a large single file download may be characterised by a relatively 

small number of Layer 7 requests and a corresponding number of Layer 7 responses 

that are very large in data size

Based on this insight, in one example, the proxy server 5 categorises a 

download in accordance with the criteria set out in Table A below.



15

Download 
Category

Lower bound 
of Required 
Number of 
Consecutive 
Requests/Resp 
onses

Upper bound 
of Required 
Number of 
Consecutive 
Requests/Resp 
onses

Lower bound 
of data size of 
Layer 7 
Response 
(bytes)

Upper bound 
of data size of 
Layer 7 
Response 
(bytes)

Web Page 3 No upper limit 0 102400

Streaming 3 No upper limit 102401 5242880

Single File 
Download

1 1 1048577 No limit

Table Λ

5

10

15

20

Accordingly, if for a given data flow between the client device 3 and the 

origin server 7 the response monitoring component 24 identifies or infers:

(a) 3 consecutive Layer 7 responses each of which has a data size within the range 0 

to 102400 bytes, the download categorising component 26 categorises the download 

as being a web page download;

(b) 3 consecutive Layer 7 responses each of which has a data size within the range 

102401 to 5242880bytes, the download categorising component 26 categorises the 

download as being an adaptive video streaming download;

(c) 1 (and only 1) consecutive Layer 7 response which has a data size greater than 

1048577 bytes, the download categorising component 26 categorises the download as 

being a large single file download;

If for a given data flow between the client device 3 and the origin server 

7, the response monitoring component 24 does not identify any of (a) to (c), the data 

flow is not categorised.



16

5

10

15

20

25

30

It will be appreciated that the above described response patterns are 

examples only and other different response patterns might be used to categorise a 

download. For example, the pattern x out of y consecutive responses (e.g. 5 out of 7) 

in the range of 102401 to 5242880 Bytes may be used to categorise the dataflow as an 

ABR dataflow or in the range of 0 to 102400 bytes as being a web page download.

It will be appreciated that the data range sizes are also examples only.

In some examples, the reception of a plurality of request/responses at 

regular time intervals may be used categorise the download an ABR streaming 

download.

Each of the examples (a) to (c) will now be described in more detail with 

respect to Figures 3 to 5.

Example 1 - Characterising a Web Page Download

Figure 3 shows the flow of data through the proxy server 5 when the client 

device 3 downloads a web page from the origin server 7. In this example, the client 

application 3a is a web browser. The client device 3 sends a first HTTP request RQ 1 

for a HTML document stored at the origin server 7. The data of the first HTTP request 

RQ1 is received by the proxy server 5 and the proxy server 5 forwards the first HTTP 

request RQ1 to the origin server 7. In response to receiving the first HTTP request 

RQ1, the origin server 7 sends a first HTTP response RP1 which comprises a HTML 

document. The first HTTP response RP1 comprises 687 bytes of data and is transmitted 

through the network encapsulated in a single TCP/IP packet as indicated in Figure 3 by 

the use of a single arrow. The proxy server 5 receives the data of the first HTTP 

response RP1 and forwards it to the client device 3.

The client device 3 receives the first HTTP response RP1, processes it and then 

sends five further HTTP requests RQ2 to RQ6 to the origin sever 7 each one of the five 

further HTTP requests RQ2 to RQ6 being for a component of the web page referenced 



17

5

10

15

20

25

30

in the HTML document. The data of each of the five further HTTP requests RQ2 to 

RQ6 is received by the proxy server 5 and is forwarded by the proxy server 5 to the 

origin server 7. In response to receiving each one of the further HTTP requests RQ2 to 

RQ6, the origin server 7 sends a respective further HTTP response RP2 to RP6 which 

includes the component requested by the request corresponding to that response.

In this example, the second HTTP response RP2 includes a script, comprises 

7.7 kbytes of data and is transmitted through the network encapsulated in a small 

number (for example 3) TCP/IP packets (as represented in Figure 3 by the use of three 

arrows); the third HTTP response RP3 includes a Stylesheet, comprises 14.2 kbytes of 

data and is transmitted through the network encapsulated in a number (for example five) 

TCP/IP packets (as represented in Figure 3 by the use of five arrows); the fourth HTTP 

response RP4 includes an image, comprises 1.1 kbytes of data and is transmitted 

through the network encapsulated in a single TCP/IP packet (as represented in Figure 

3 by the use of a single arrow); the fifth HTTP response RP5 includes an image, 

comprises 7.2 kbytes of data and is transmitted through the network encapsulated in a 

number (for example three) TCP/IP packets (as represented in Figure 3 by the use of 

three arrows); and the sixth HTTP response RP6 includes a script, comprises 12.2 

kbytes of data and is transmitted through the network encapsulated in a number (for 

example five) TCP/IP packets (as represented in Figure 3 by the use of five arrows).

The proxy server 5 receives the data of each of the further HTTP responses RP2 

to RP6 and forwards the data of each of them to the client device 3.

In this example, for each HTTP response, the proxy 5 monitors, at the Transport 

Layer (Layer 4) the data flowing through the proxy 5 and determines the data size of 

the payload of the Layer 4 data. It will be appreciated that because a Layer 7 response 

is conveyed as payload at Layer 4, a measurement of Layer 4 payload data size will 

give the size of the Layer 7 response being conveyed (either exactly if the Layer 4 

payload only comprises Layer 7 data, or approximately if the Layer 4 payload is also 

carrying over head from other Layers between Layer 4 and Layer 7 e.g. Layer 5 

overhead).

In this first example, because three consecutive responses are received that in 

respect of each there is a TCP payload data size (i.e. a Layer 4 payload data size) in the 

range Ob to 50kbytes, the download is classified as a Web page download.



18

5

10

15

20

25

30

Second Example - characterising an ABR streaming download

Figure 4 shows a flow of data through the proxy server 5 when the client device 

3 downloads a video file from the origin server 7 using HTTP adaptive bitrate 

streaming. In this example, the client application 3a is a dedicated video rendering 

application.

The client device 3 sends a first HTTP request RQ100 to the origin server 7 to 

initiate the downloading of the video file. The data of the first HTTP request RQ100 is 

received by the proxy server 5 and the proxy server 5 forwards the data of the first 

HTTP request RQ100 to the origin server 7. In response to receiving the first HTTP 

requestRQlOO, the origin server 7 sends a first HTTP response RP100 which comprises 

a manifest file for the video file. The first HTTP response RP100 is relatively small 

and is transmitted through the network encapsulated in two TCP/IP packets as indicated 

in Figure 4 by the use of two arrows. The proxy server 5 receives the data of first HTTP 

response RP100 and forwards it to the client device 3.

The client device 3 receives the first HTTP response RP100, processes it and 

then sends a second HTTP request RQ102 to the origin sever 7 for a first segment of 

the video file. The proxy server 5 receives and forwards the data of the second HTTP 

request RQ102 to the origin server 7. In response to receiving the second HTTP request 

RQ102, the origin server 7 sends a respective second HTTP response RP102 which 

includes the first video segment requested by the second HTTP request RQ102.

The second HTTP response RP102 comprises 277793 bytes of data and is 

transmitted through the network encapsulated in a relatively large number of TCP/IP 

packets as indicated in Figure 4 by the use of multiple arrows and dots. The proxy 

server 5 receives the data of the second HTTP response RP102 and forwards it to the 

client device 3.

After receiving the second HTTP response RP102, the client device 3 then sends 

a third HTTP requests RQ104 to the origin sever 9 for a second segment of the video 

file. The proxy server 5 receives forwards the data of the third HTTP request RQ104 

to the origin server 7. In response to receiving the third HTTP request RQ104, the 



19

5

10

15

20

25

30

origin server 7 sends a respective third HTTP response RP104 which includes the 

second video segment requested by the third HTTP request RQ104.

The third HTTP response RP104 comprises 183560 bytes of data and is 

transmitted through the network encapsulated in a relatively large number of TCP/IP 

packets as indicated in Figure 4 by the use of multiple arrows and dots. The proxy 

server 5 receives the data of the third HTTP response RP104 and forwards it to the 

client device 3.

After receiving the third HTTP response RP104, the client device 3 then sends 

a fourth HTTP requests RQ106 to the origin sever 7 for a third segment of the video 

file. The proxy server 5 receives and forwards the data of the fourth HTTP request 

RQ106 to the origin server 7. In response to receiving the fourth HTTP requestRQ106, 

the origin server 7 sends a respective fourth HTTP response RP106 which includes the 

third video segment requested by the fourth HTTP request RQ106.

The fourth HTTP response RP106 comprises 579885 bytes of data and is 

transmitted through the network encapsulated in a relatively large number of TCP/IP 

packets as indicated in Figure 4 by the use of multiple arrows and dots. The proxy 

server 5 receives the data of the fourth HTTP response RP106 and forwards it to the 

client device 3.

In this second example, again, for each HTTP response, the proxy 5 monitors, 

at the Transport Layer, the data flowing through the proxy 5 determines the size 

(expressed as a number of bytes) of, or an estimate of the size of, the HTTP response 

by determining the size of the TCP payload data that the proxy 5 receives from the 

origin server 7 and forwards to the client application 3a. In this example, because three 

consecutive responses are received that in respect of each of which there is a TCP 

payload data size in the range 100k to 5Mb, the download is classified as an ABR 

streaming download.

It will be appreciated that in the case of ABR streaming, determining that there 

a plurality of responses in a data flow that are received at regular time intervals may 

further indicate that the download is an ABR streaming download.



20

5

10

15

20

25

30

Third Example - characterising a large single file download

Figure 5 shows a flow of data through the proxy server 5 when the client device 

3 downloads an app from the origin server 7 using HTTP.

The client device 3 sends a first HTTP request RQ200 to the origin server 7 to 

request the downloading of the app. The data of the first HTTP request RQ200 is 

received by the proxy server 5 and the proxy server 5 forwards the data of the HTTP 

request RQ200 to the origin server 7. In response to receiving the HTTP request 

RQ200, the origin server 7 sends a HTTP response RP200 which comprises an app.

The HTTP response RP200 comprises 10,000,000 bytes of data and is 

transmitted through the network encapsulated in a very large number of IP packets as 

indicated in Figure 4 by the use of multiple arrows and dots. The proxy server 5 

receives the data of the HTTP response RP200 and forwards it to the client device 3.

In this third example, again, for the HTTP response, the proxy 5 monitors, at 

the Transport Layer, the data flowing through the proxy server 5 and determines the 

size (expressed as a number of bytes) of, or an estimate of the size of, the HTTP 

response by determining the size of the TCP payload data that the proxy server 5 

receives from the origin server 7 and forwards to the client application 3a. In this 

example, because a single response is received in respect of which there is a TCP 

payload data size that is larger than 1048577 bytes, the download is classified as a single 

large file download.

Determining the TCP payload data size of any given

Response

Figure 6 illustrates one example of a system by which the proxy server 5 may 

determine the data size, or an estimate of the data size, of any given one of the HTTP 

responses described in the above examples by monitoring the data flowing through the 

proxy server 5 at Layer 4.

In this example, a split TCP connection 200a, 200b between the client device 3 

and the origin server 7 comprises a first TCP connection 200a between the client device 



21

5

10

15

20

25

30

3 and the proxy server 5 and a second TCP connection between the proxy server 5 and 

the origin server 7.

The first TCP connection 200a (illustrated by a pair of broken lines) between 

the client device 3 and the proxy server 5 is established using a standard first TCP 3- 

way handshake (not illustrated). The first TCP handshake comprises a SYN packet sent 

by the client application 3a to the origin server 17 but which is intercepted by the proxy 

server 5, a SYN-ACK sent from the proxy server 5 to the client application 3a in 

response to the SYN, and an ACK sent from the client application 3a in response to the 

SYN-ACK and which is also intercepted by the proxy server 5. The first TCP 

connection 200a comprises as its end points a client TCP socket (not illustrated) at the 

client device 3 and a client side TCP socket 300 at the proxy server 5.

The second TCP connection 200b (also illustrated by a pair of broken lines) 

between the proxy server 5 and the origin server 7 is established also using a standard 

second TCP 3-way handshake (not shown). The second TCP handshake comprises a 

SYN packet sent from the proxy server 5 to the origin server 7, a SYN-ACK sent from 

the origin server 7 to the proxy server 5 in response to the SYN, and an ACK sent from 

the proxy server 5 in response to the SYN-ACK. The second TCP connection 200b 

comprises as its end points a server TCP socket (not illustrated) at the origin server 7 

and a server side TCP socket 302 at the proxy server 5.

In this example, after the first TCP connection 200a is established, the proxy 

server 5 receives, at the client side TCP socket 300, TCP payload data that makes up a 

first HTTP request 401 from the client application 3a. It will be appreciated that, in 

accordance with the TCP/IP protocol stack, the TCP payload data arrives at the proxy 

server 5 over the first TCP connection 200a encapsulated in one or more IP packets. 

The IP Layer at the proxy server 5 reassembles these one or more IP packets into TCP 

data (i.e. the IP Layer strips out the IP headers of the one or more IP packets) and 

presents this TCP data to the TCP layer at the proxy server 5. The TCP layer at the 

proxy server 5 strips out the TCP headers in this TCP data to provide the TCP payload 

data.

The proxy server 5 reads the TCP payload data from the client side TCP socket 

300 and writes it to the server side TCP socket 302 for onwards transmission of the first 

HTTP request 401 to the origin server 7. Again, it will be appreciated that, in 



22

5

10

15

20

25

30

accordance with the TCP/IP protocol stack, the TCP layer at the proxy server 5 will add 

appropriate TCP headers to the TCP payload data and pass this TCP data to the IP layer 

at the proxy server 5 which transmits it to the origin server 7 encapsulated in one or 

more IP packets.

Subsequently, the proxy server 5 then receives at the server side TCP socket 

302 TCP payload data that makes up a HTTP response 303 to the first HTTP request 

301. Again, it will be appreciated that, in accordance with the TCP/IP protocol stack, 

this TCP payload data arrives at the proxy server 5 over the second TCP connection 

200b encapsulated in one or more IP packets. The IP Layer at the proxy server 5 

reassembles these one or more IP packets into TCP data (i.e. the IP Layer strips out the 

IP headers of the one or more IP packets) and presents this TCP data to the TCP layer 

at the proxy server 5. The TCP layer strips out the TCP headers in this TCP data to 

provide the TCP payload data.

The proxy server 5 reads the TCP payload data from the server side TCP socket 

302 and writes it to the client side TCP socket 300 for onwards transmission of the 

HTTP request 401 to the origin server 7. Again, it will be appreciated that, in 

accordance with the TCP/IP protocol stack, the TCP layer at the proxy server 5 will add 

appropriate TCP headers to the TCP payload data and pass this TCP data to the IP layer 

at the proxy server 5 which it transmits it to the client application 3a encapsulated in 

one or more IP packets.

During this process, the proxy server 5 maintains a running count of the amount 

data (i.e. the number of Bytes) that it reads from the server side TCP socket 302 and 

then writes to the client side TCP socket 300. Then, at some point in time, the proxy 

server 5 receives at the client side TCP socket 300 TCP payload data that makes up a 

subsequent request HTTP 305. The reception of this data at the client side TCP socket 

300 indicates to the proxy server 5 that the first HTTP response 301 has now fully 

passed through the proxy server 5 (because a subsequent HTTP request is not sent by 

the client application 3a until it receives the previous response) and hence the count of 

the TCP payload data that makes up the first HTTP response 301 is now complete.

This process may be repeated for multiple requests and responses, with the 

proxy server 5 in effect inferring that a set of TCP payload data arriving at the TCP 

client side socket 300 and then passing through the TCP server side socket 302 relates 



23

5

10

15

20

25

30

to a request and that all the TCP payload data that is then subsequently received at the 

server side TCP socket 302 before a new set of TCP payload data is received at the 

client side socket 300 relates to a response to that request.

In the event that just a single request is received at the client side socket 302, 

the proxy server 5 may infer that no further requests will be received if a timer, that is 

started when the response to the request has passed through the proxy server 5, expires 

but no further data is receive at the client side socket 302.

In the context of Figure 2, the data flow registration component 20 registers a 

data flow as being that between the client socket and the server socket (via the client 

side TCP socket 300 and the server side TCP socket 302), the request monitoring 

component 22 monitors the data of the requests that is read from the client side TCP 

socket 300 and written to the server side TCP socket 302, the response monitoring 

component 24 monitors the data of the responses that is read from the server side TCP 

socket 302 and written to the client side TCP socket 300 and the download categorising 

component.

It will be appreciated that each of the client side TCP socket 300 and the server 

side TCP socket 302 may have data buffers associated therewith for storing the TCP 

payload data.

Although this example has been described in the context of TCP, it will be 

appreciated that other suitable transport layer protocols may be used instead in the same 

or a similar way.

Transport Layer Security (TLS) /Secure Sockets Layer (SSL)

The Transport Layer Security (TLS) protocol and its predecessor the Secure 

Sockets Layer (SSL) protocol are cryptographic protocols for providing secure 

communications over a computer network. In the OSI model of computer networking 

the TLS/SSL protocols are in Layer 5 (the session layer).

Figure 7 shows a simplified version of the exchange of messages between the 

client device 3 and the origin server 7, via the Proxy 3, during a TLS/SSL handshake to 

establish a secure connection between the two. This handshake may occur prior to the 



24

5

10

15

20

25

30

data flows between the client device 3 and the origin server 7 illustrated in Figures 3 to 

5, which would then take place over the secure connection.

The handshake begins when the client device 3 sends a ‘ClientHello’ message 

HS1 to the origin server 7 requesting a secure connection. The ‘ClientHello’ message 

HS1 may comprise the highest TLS version protocol it supports and a list of available 

cipher suites and a Server Name Indication (SNI) extension.

As is known in the art, the SNI indicates what hostname (e.g. xyz.com) that the 

client device 3 is attempting to connect to. The origin server 7 responds by sending to 

the client device 3 a ‘ServerHello’ message HS2 that, amongst other information, 

includes a chosen protocol version and a cipher suite. The origin server 7 then sends a 

message HS3 that includes the origin server’s 7 digital certificate which contains the 

origin server’s 7 domain name, the trusted certificate authority and the origin server’s 

public encryption key. The client device 3 verifies the digital certificate and sends to 

the origin server 7 a message HS4 including a random number encrypted using the 

origin server’s 7 public key which only the origin server 7 can decrypt with its private 

key. From the random number, the client device 3 and the origin server 7 generate a 

master secret and then, in steps not shown in Figure 7, negotiate a session key for 

encryption and decryption. This concludes the handshake and begins the secured 

connection, which is encrypted and decrypted with the session key until the connection 

closes.

In some examples, the proxy server 5 extracts information from one or more of 

the messages exchanged between the client device 3 and the origin server 7 to establish 

a secure connection between the two and uses this information to infer more details 

about the content/media that is subsequently downloaded from the origin server 7 to the 

client device 5.

In one example, the proxy server 5 is arranged to parse the ‘ClientHello’ 

message and extract from it, if present, the domain of the origin server 7 (e.g. xyz.com) 

from the SNI and/or to parse the message from the origin server 7 that includes its 

certificate and extract, from the origin server’s 7 certificate, the origin server’s 7 

domain.

xyz.com
xyz.com


25

5

10

15

20

25

30

The proxy server 5 may maintain a database of domain information that for each 

domain that has an entry in the database that indicates information that may be used to 

infer one or more details about media that is downloaded from the origin server 7.

For example, if a look-up in the database indicates that the domain name 

extracted from a handshake message is that of an app store and a subsequent analysis 

of a download over that connection from the origin server 7 to the client device 3 

indicates that the download should be classified as ‘single large file download’, then 

the object can be more precisely classified as an “App Download”. Alternatively, if the 

look-up indicates that the domain name is that of a video store, then the object can be 

more precisely classified as a “Video Download”.

As another example, if it is known that a particular domain is configured to 

provide ABR streaming video segments that always represent T seconds (e.g. 10 

seconds) of video playback time, then this information can be stored for that domain in 

the domain database so that if a download from that domain is classified as ‘an ABR 

streaming video download, the proxy server 5 can determine further information about 

the download. For example, the proxy server 5 can determine an estimate of the 

playback bit rate of an individual segment of the video stream by dividing the estimated 

size of the response conveying that segment by determined playback time of a segment. 

Alternatively, the proxy server 5 can determine an estimate of the average playback bit 

rate of the media currently being download by summing the determined estimated sizes 

of a plurality of responses and dividing that sum by the total playback time of the 

segments conveyed by those responses (i.e. the playback time of an individual segment 

multiplied by the number of responses).

It should be appreciated that even though a priori analysis has shown or it is 

otherwise known that a domain provides a specific type of download or streaming 

content, other content types may also be delivered from the domain so flow analysis is 

still required to correctly classify the actual content type before the more precise 

classification is applied.



26

5

10

15

20

25

30

Use of Device information

In other examples, the proxy server 5 may make use of device classification 

information that classifies the client device 3 as a particular class or type of device in 

order to infer more detail about the media that is being downloaded from the origin 

server 7 to the client device 5.

The device classification information may be obtained from the network or from 

observing other flows involving the client device 3.

For example, if a data flow involving the user device 3 is a non-secure HTTP 

flow, it is possible for the proxy server 5 to observer the User-Agent Field in the headers 

of the HTTP messages sent from the user device 3 and the User-Agent field may be 

used to classify the user device 3 as a phone or a desktop as the case may be.

Extending the ABR streaming example above, if a look-up in the database 

indicates that the domain name extracted from a handshake message is that of a video 

store and that video store provides video fragments to a desktop device that represent 

10s of playback time but video fragments to a mobile devices that represent 5s of 

playback time, then classifying the user device 3 as either a mobile device or a desktop 

device enables the proxy server 5 when ABR streaming traffic is detected to correctly 

estimate the media bit-rate of the video stream by dividing a segment size by 5 s or 10s 

depending upon whether the user device 3 is classified as a mobile or desk top device.

Use of User Application Information

In other examples, the proxy server 5 may make use of user application 

classification information that classifies the user application at the client device 3 as 

being a particular class or type of user application.

For example, extending further the streaming example given above, if the proxy 

server 5 identifies that the client device 3 is a mobile device and a look-up in the 

database indicates that a domain name extracted from a handshake message is that of a 

video store and that video store provides video segments to browsers on mobile devices 

that have a variable amount of playback time and provides video segments to a 

dedicated video playback app on mobile devices that have a fixed amount of playback 



27

5

10

15

20

25

30

time, then further knowledge that the user application at the user device 3 is a browser 

or is a dedicated video app player allows the download to be better categorised (i.e. as 

an adaptive video streaming download to a browser on a mobile device, or as an 

adaptive video streaming download to a fixed app on a mobile device. Furthermore, in 

this specific example, if the download is categorised as ‘ABR streaming download to a 

dedicated video playing app on a mobile device’ then the bit-rate of the video stream 

can be estimated by performing the calculation fragment size / Ts as already described 

above.

In one example, the proxy server 5 is arranged to parse the ‘ClientHello’ 

message and identify the set of extensions and/or cipher suites that are presented in it. 

This information may be used to infer what type of, or the identity of, the user 

application that is being used as the client device 3 and is involved in the data flow or 

what type of client device the client device 3. For example, it may be known that client 

app or device a sends cipher suites { 1,2,3 4 } in that order, client app or device b sends 

cipher suites) 2, 3, 4, 5} in that order and client app or device c may send cipher suites 

{ 2, 3, 1, 4 } in that order etc and likewise for extensions. Accordingly, observed cipher 

suites and/or extensions may be used to query a database of cipher suites and/or 

extensions and the particular apps or devices known to use those cipher suites and/or 

extensions in order to identify the likely identity of the app or device using the observed 

cipher suites or extensions.

Session Analysis

In some examples, the proxy server 5 may correlate together information about 

concurrent and/or previous related flows (e.g. to the same destination address or from 

Layer 7 inspection) to drive a classification of a download.

For example, it is well known that many video playback client applications 

running on client devices will cause multiple TCP connections to be opened with a 

video server when downloading a video from that video server. The multiple TCP 

connections may be opened sequentially e.g. a first TCP connection may be opened and 

segments 1 and 2 of the video downloaded over it before the connection is closed and 



28

5

10

15

20

25

30

then a second TCP connection is then opened and segments 3 and 4 of the video 

downloaded over it before the connection is closed and so on.

The proxy server 5 may record the details of a connection opened between the 

client device 3 and the origin server 7 and may associate subsequently opened 

connections that have the same IP quadruplet (i.e. client IP address and TCP port, server 

IP address and TCP port) as the first connection as all belonging to same “download 

event”. By effectively aggregating all of these connections together and treating them 

as a single connection, the proxy server 5 is able to monitor the entire downloading of 

the video and can accurately classify the downloading.

It will be appreciated that in the above described example of each connection 

being closed after two video segments have been downloaded over it, if each connection 

were considered separately by the proxy server 5, no connection would be used to 

download a sufficient number of consecutive video segments (e.g. 3 in the example of 

Table 1) to make an accurate classification. This is not the case if the proxy server 5 

aggregates the connections together.

A client application running on a client device may also cause multiple TCP 

connections to be opened in parallel in order to download content from a content server 

using all of the opened TCP connections concurrently. For example a video client 

application can open multiple concurrent TCP connections to a video content store if 

the video and audio streams of a video to be downloaded are to be downloaded 

separately. Alternatively, a video client application may open multiple concurrent TCP 

connections to a video content store in order to download video segments in parallel to 

increase overall throughput. As with the example of sequentially opened connections 

discussed above, the proxy server 5 may aggregate the multiple concurrent connections 

together at a session level (based on their common IP quadruplet), effectively treating 

them as a single connection, allowing the downloading to be characterised correctly.

In general, video players will use sets of parallel flows opened sequentially over 

the duration of the video.

Often, if a client device and a server establish a first secure TCP connection (i.e. 

they set up a TCP connection and successfully perform a TLS/SSL handshake over it) 

and then close that first connection and immediately open a new second TCP 

connection, in order to secure the second TCP connection, the client and server use an 



29

5

10

15

20

25

30

abbreviated TLS/SSL handshake. The abbreviated TLS/SSL handshake re-uses the 

TLS/SSL session parameters established for the first connection. This avoids having 

to repeat a full handshake over the second connection but results in the SNI and/or 

server certificate not being transmitted over the new connection.

In examples where the proxy server 5 aggregates multiple TCP connections 

together, effectively treating them as a single connection, the proxy server 5 is able to 

make use of domain information that is only obtainable from the full TLS/SSL 

handshake used over the initially established connection for each of the aggregated 

connections. For example, as discussed above, the proxy server 5 may use domain 

information obtained from the full handshake to look up video segment duration 

information for that domain stored in the database and then use that video segment 

duration information to determine bit rates for each of the aggregated connections.

If the second and subsequent connections were not correlated with the first 

connection by the proxy server 5, then this would not be possible.

It should also be noted that at least some of the operations for the methods may 

be implemented using software instructions stored on a computer useable storage 

medium for execution by a computer. As an example, an embodiment of a computer 

program product includes a computer useable storage medium to store a computer 

readable program that, when executed on a computer, causes the computer to perform 

operations, as described hereinbefore.

Furthermore, embodiments of the invention can be embodied in the form of a 

computer program product accessible from a computer-usable or computer-readable 

medium providing program code for use by or in connection with a computer or any 

instruction execution system. For the purposes of this description, a computer-usable or 

computer-readable medium can be any apparatus that can contain, store, communicate, 

propagate, or transport the program for use by or in connection with the instruction 

execution system, apparatus, or device.

The computer-useable or computer-readable medium can be an electronic, 

magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or 

device), or a propagation medium. Examples of a computer-readable medium include 

a semiconductor or solid state memory, magnetic tape, a removable computer diskette, 

a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk,



30

10
05

 19

only memory (CD-ROM), a compact disk with read/write (CD-R/W), and a 

digital versatile disk (DVD).

The functionality of the embodiments depicted in Figures 1 to 7 is typically 

performed by a computer that executes computer readable instructions. Figure 8 depicts 

5 a computer 500 that includes a processor 501, memory 502, storage 503 and a 

communications interface 504. The communications interface 504 enables 

communications with other computers in a network using suitable protocols, such as 

those discussed above. The computer executes computer readable instructions stored 

in storage 503 to implement embodiments of the invention as described hereinbefore.

10 The above embodiments are to be understood as illustrative examples of the

invention. Further embodiments of the invention are envisaged. For example, in further 

embodiments, the intermediate network device 5, rather than determining the size of, 

or an estimate of the size of, each of the one or more Layer 7 protocol responses by 

monitoring data flowing through the network device at Layer 4 (i.e. the transport Layer)

15 as described above, may instead do so by monitoring the data flow at Layer 3 (i.e. the 

IP or network layer instead). This approach would need to take account of IP packet 

re-transmissions (so that the payloads of re-transmitted packets are not counted multiple 

times) as well as IP and TCP header overheads. In this example, the intermediate 

network device 5 may be for example a router.

20 It is to be understood that any feature described in relation to any one

embodiment may be used alone, or in combination with other features described, and 

may also be used in combination with one or more features of any other of the 

embodiments, or any combination of any other of the embodiments.



31

20
 0

8 1
8

Claims

1. A method for categorising a downloading of a resource to a user device from a 

resource server in a data network, the method comprising:

5 receiving, at an intermediate network device in the data network, data of one

or more requests from the user device, wherein the one or more requests are Layer 7 

protocol requests, wherein each of the one or more requests is a request for a different 

portion of, or the whole of, the resource to be downloaded to the user device;

forwarding the data of each of the one or more Layer 7 protocol requests from 

10 the intermediate network device to the resource server;

receiving, at the intermediate network device, data of one or more responses 

from the resource server, wherein the one or more responses are Layer 7 protocol 

responses, each Layer 7 protocol response corresponding to a respective one of the 

Layer 7 protocol requests;

15 determining, at the intermediate network device, a size of, or an estimate of the

size of, each of the one or more Layer 7 responses by monitoring data flowing 

through the intermediate network device at a Layer below Layer 7;

categorising, at the intermediate network device, the downloading of the 

resource to the client device as being one of one or more pre-defined download 

20 categories, wherein the categorising is based on a count of the one or more Layer 7 

protocol responses and the determined sizes or estimated sizes of the one or more 

Layer 7 protocol responses.

2. The method of claim 1, wherein the Layer below Layer 7 is Layer 4 or Layer

25 3.

3. The method of any of claims 1 to 2, wherein determining, at the intermediate 

network device, a size of, or an estimate of the size of, the one or more Layer 7 

protocol responses comprises receiving data at the intermediate network device from

30 the resource server at a server side socket, reading the data from the server side socket 

and writing the data to a client side socket for onwards transmission to the user 

device.



32

20
 0

8 1
8

4. The method of claim 3 wherein determining, at the intermediate server, a size 

of, or an estimate of the size of, the data of each of the one or more Layer 7 protocol 

responses comprises counting the number of bytes that are read from the server side

5 socket and are written to the client side socket.

5. The method of any preceding claim wherein the categorising is based on the 

count of the one or more Layer 7 protocol responses reaching a predetermined 

threshold value and the determined size of, or the determined estimate of the size of,

10 each of the one or more Layer 7 protocol responses each being within a pre-defined 

data range.

6. The method of claim 5 wherein the count of the one or more Layer 7 protocol 

responses reaching a predetermined threshold value is a count of consecutive Layer 7

15 protocol responses.

7. The method of any preceding claim, wherein the one or more pre-determined 

categories comprise at least one of or two or more of: a web-page download; an 

Adaptive Bit Rate streaming download and a single file download.

20

8. The method of any preceding claim wherein the one or more Layer 7 protocol 

requests and the one or more the one or more Layer 7 protocol responses are transmitted 

over one or more Layer 4 data connections.

25 9. The method of any preceding claim, further comprising:

obtaining user device information that identifies or infers a category of or type 

of the user device;

using the information to further categorise the downloading of the resource.

30 10. The method of claim 9 further comprising:

obtaining the user device information by inspecting a message sent by the user

device.



33

20
 0

8 1
8

11. The method of any preceding claim, further comprising:

determining client application information that identifies or infers a category of 

or type of an application at the user device, which application is sending the one or 

5 more Layer 7 protocol requests;

using the client application information to further categorise the downloading 

of the resource.

12. The method of claim 11, the method further comprising:

10 inspecting one or more messages sent from the user device to the resource server

to establish a secure connection between the two;

inferring, from content in the one or more messages, the client application 

information.

15 13. The method of any preceding claim, further comprising:

obtaining resource server identity information that identifies a category of or 

type of the resource server;

using the resource server identity information to further categorise the 

downloading of the resource or to determine further information regarding the 

20 downloading of the resource.

14. The method of claim 13 further comprising:

inspecting one or more messages sent from the user device to the resource server 

to establish a secure connection between the two;

25 obtaining, from content in the one or more messages, the resource server identity

information.

15. The method of claim 14, the method further comprising:

categorising the download as being an adaptive video streaming download;

30 using the resource server identity information to look up segment playback time

information regarding the resource server;



34

using the segment playback time information and the determined sizes of the 

one or more Layer 7 protocol responses to estimate a media playback data rate.

16. Apparatus for an intermediate network device, the apparatus comprising a 

5 processing system arranged to implement the method of any of claims 1 to 15.

17. A computer programme comprising a set of instructions, which, when executed 

by a processing system causes the system to implement the method of any of claims 1 

to 15.

10

20
 0

8 1
8


