(54) 发明名称

一种 GIS 内金属导电微粒的声电联合直流检出方法

(57) 摘要

一种 GIS 内金属导电微粒的声电联合直流检出方法。本发明 1) 利用直流发生器装置(1)所产生的直流电压使得设备(8)内部的金属微电微粒(11)容易起跳的特性，对 GIS 施加直流电压检出和发现设备(8)内部的金属导电微粒(11)污染，其中金属导电微粒(11)直径 < 5 mm；2) 通过微粒所处静止和运动状态的超声信号和超信号的强度差值相互印证，联合检测出 GIS(2)内部的金属导电微粒(11)。本发明具有较高的移动性、微粒甄别有效性，现场实际应用简单、操作方便等显著优点。
1. 一种 GIS 内金属导电微粒的声电联合直流检出方法，其特征是：

1) 利用直流发生器装置(1)产生的直流电压使得设备(8)内部的金属导电微粒(11)容易起跳的特性，对 GIS 施加直流电压检出和发现设备(8)内部的金属导电微粒(11)污染，其中金属导电微粒(11)直径 < 5mm；

2) 通过微粒所处静止和运动状态的超声信号和超高频信号的强度差值相互印证，联合检测出 GIS(2)内部的金属导电微粒(11)。
一种 GIS 内金属导电微粒的声电联合直流检出方法

技术领域
[0001] 本发明涉及一种电力设备内部金属导电微粒声电联合直流检测方法领域，尤其适用于不拆卸设备的 GIS 金属导电微粒的检出技术领域。

背景技术
[0002] 电力系统中 GIS 多为金属外壳，但是由于各种原因例如装配、运输、运行过程电弧烧蚀等原因导致金属内腔内存在一些金属导电微粒，然而这些微粒对于充有高气压 SF₆ 气体的 GIS 运行是极大的威胁。SF₆ 气体对于金属尖端较为敏感，导致 GIS 电场强度局部集中，易于降低耐压水平，是 GIS 主要的安全隐患。
[0003] 随着 GIS 小型化和高可靠性的要求，GIS 内的金属导电微粒对设备运行存在越来越大的威胁，因此对于金属导电微粒的检测是目前国际高电压领域一个重要研究课题。常用的方法有超声波检测方法、超声频法以及脉冲电流法等。但是这些方法各自有本身的方法特点，由于脉冲电流法必须要有明显的接地点，然后充有 SF₆ 气体的 GIS 类 GIS 常常并没有明显接地点，并且该方法必须要在设备有直接电连接，这样会直接影响到 GIS 安全运行，因此该方法使用范围有限。而对于超声波法和超高频检测 GIS 无需拆卸 GIS，设备无需停电和没有与电气主设备直接的电气连接，因此这两种方法对于某些重要的 GIS 类 GIS 具有较好的优势和效果。
[0004] 基于以上情况，本发明提出一种对 GIS 进行离线施加直流电压，采用声电联合检测金属导电微粒的方法。

发明内容
[0005] 本发明的目的在于考虑电力设备长期运行过程产生的金属导电微粒容易对安全稳定运行造成威胁等实际情况，提出一种声电联合超声和超高频检测方法的 GIS 内金属导电微粒的检出方法，实现对 GIS 内部金属导电微粒快速准确的检测。
[0006] 本发明是通过下列技术方案来实现的。
[0007] 一种 GIS 内金属导电微粒的声电联合直流检出方法，本发明的特征是：
[0008] 1）利用直流发生器装置产生的直流电压使得设备内部的金属导电微粒容易起跳的特性，对 GIS 施加直流电压检出和发现设备内部的金属导电微粒污染，其中金属导电微粒直径＜5mm；
[0009] 2）通过微粒所处静止和运动状态的超声信号和超高频信号的强度差值相互印证，联合检出 GIS 内部的金属导电微粒。
[0010] 利用直流发生器装置产生的直流电压使得设备内部的金属导电微粒容易起跳的特性，采用交流 GIS 通过施加直流电压检出和发现设备内部的金属导电微粒污染，金属导电微粒声电联合直流检出装置由直流发生装置、被检测 GIS 以及声电信号分析系统构成；首先，在被检测 GIS 通过高压引线在高压导体上产生能够使得 GIS 内金属导电微粒端部达到起跳电压或者起跳电场强度，同时测量金属导电微粒静止于 GIS 内部时的超高频和超声
波信号；其次，当金属导电微粒处于运动状态时，获取金属导电微粒在 GIS 内部运动过程产生的超声信号和超高频信号；最后，通过静止和运动状态的超声信号和超高频信号的强度差值检测出 GIS 内部的金属导电微粒；

【0011】 下面结合附图及实例进一步说明本发明内容。

附图说明
【0012】图 1 是金属导电微粒声电联合探测方法示意图；
【0013】图 2 是微粒静止时超声时间序列比较图；
【0014】图 3 是微粒运动时超声时间序列比较图；
【0015】图 4 是微粒静止时超高频信号幅值统计图；
【0016】图 5 是微粒运动时超高频信号幅值统计图。
【0017】图 1 中标注有 1、直流发生器装置；2、GIS；3、声电信号分析系统；4、直流源；5、低通滤波器；6、静电电压表；7、高压引线；8、设备；9、绝缘子；10、高压导体；11、金属导电微粒；12、超高频传感器；13、超声传感器；14、信号电缆；15、前置信号处理器；16、电线；17、计算机显示界面；18、接地装置。
【0018】具体实施方式：
【0019】一种 GIS 内金属导电微粒的声电联合探测方法，本发明的特征是：
【0020】（1）利用直流发生器装置的产生的直流电压使得设备 8 内部的金属导电微粒 11 容易起跳的特性，对 GIS 施加直流电压检出和发现设备 8 内部的金属导电微粒 11 污染，其中微粒直径 < 5mm；
【0021】（2）通过微粒所处静止和运动状态的超声信号和超高频信号的强度差值相互印证，联合检测出 GIS 2 内部的金属导电微粒 11；
【0022】如图 1 所示，该图给出了金属导电微粒声电联合探测方法示意图。图中显示了首先通过直流发生器装置 3 产生低于 GIS 2 标称额定运行电压（例如 110kV 的 GIS，直流施加小于 110kV 即可），直流电压要缓慢施加，密切观察超声和超高频信号的幅值增加，一旦超声和超高频信号的幅值强度有明显的增加（数十倍信号幅值的增加）时，就说明金属导电微粒 11 由静止装置向运动状态转变，也说明金属导电微粒 11 的存在。如果 GIS 内部不存在微粒，那么 GIS 内部存在的背景噪声信号幅值增加幅度并不会很大。
【0023】如图 2，图 3 所示，该图给出了微粒静止和运动时超声时间序列比较图。图中从时间序列图谱中可以看出超声信号幅值随着直流电压的增加，金属导电微粒 11 所处状态由静止状态改变为运动状态，从而可以初步判断 GIS 腔体内存在金属导电微粒 11。
【0024】如图 4，图 5 所示，该图给出了微粒静止和运动时超高频信号幅值统计图。图中显示的是 GIS 2 内部存在金属导电微粒 11 时的超高频信号情况，从图中大量信号幅值统计图谱中可以看出微粒前后状态的超高频信号变化较高，因而联合图 2 可以进一步联合判断 GIS 内存在金属导电微粒 11。
图 5